
 
Shreeraj Shah                         Web Application Defense at the Gates                          [1] 
 

Web application defense at the gates – Leveraging IHttpModule 

 

Abstract 
Web applications are vulnerable to many attacks, mainly due to poor input validation at 
the source code level. Firewalls can block access to ports but once a web application goes 
live and TCP ports 80 and  443 are accessible, the web application can be an easy prey 
for attackers. HTTP traffic is legitimate traffic for web applications ; all the more reason 
to include application-level content- filtering over unencrypted and encrypted 
communication channels. Application- level content filtering is possible to some extent 
but may not work over HTTPS (port 443). The only way to provide a strong defense is by 
applying powerful content- filtering at the application- level for both TCP port 80 and TCP 
port 443.   
 
The .Net framework with ASP.NET provides the IHttpModule interface access to HTTP 
pipes – the lowest of programming layers – before an incoming HTTP request hits the 
web application. This can provide defense at the gates. In this paper, we look at how one 
can build this sort of defense in all three aspects – coding, deployment and configuration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shreeraj Shah 
Co-Author: "Web Hacking: Attacks and Defense" (Addison Wesley, 2002) 
and published several advisories on security flaws. 

 
n e t - s q u a r e 
http://www.net-square.com 
shreeraj@net-square.com 



 
Shreeraj Shah                         Web Application Defense at the Gates                          [2] 
 

Table of Contents 
 

ABSTRACT ....................................................................................................................................................................1 
TABLE OF CONTENTS .............................................................................................................................................2 
INTRODUCTION.........................................................................................................................................................3 
BUILDING UP WEBAPPMOD USING IHTTPMODULE INTERFACE...................................................4 

DEFINITION AND CODE INITIALIZATION................................................................................................................... 4 
REGEX UTILITY FUNCTION FOR SUPPORT ................................................................................................................. 4 
ACCESSING INIT OF IHTTPMODULE ......................................................................................................................... 5 
PROCESSING INCOMING REQUEST USING PROCESSREQUEST FUNCTION............................................................. 7 

DEPLOYING WEBAPPMOD.DLL IN THE ENVIRONMENT ....................................................................9 
STEP 1: CREATE WEBAPPMOD.INI ............................................................................................................................. 9 
STEP 2: CREATE A “BIN” FOLDER.............................................................................................................................. 9 
STEP 3: MODIFY WEB.CONFIG................................................................................................................................... 9 

DEFENDING WEB APPLICATION AT THE GATES B Y CONFIGURATION...................................10 
REGEX MAGIC ........................................................................................................................................................... 11 

CONCLUSION.............................................................................................................................................................12 

 
 
Acknowledgement 
Lyra Fernandes for her help on documentation. 



 
Shreeraj Shah                         Web Application Defense at the Gates                          [3] 
 

Introduction 
Traditional firewalls block traffic at defined ports but are limited in their ability to 
provide content filtering capabilities. Web applications usually run on TCP ports 80 or 
443. Access to these ports is open at firewalls. Without security controls for content 
filtering and input sanitization in place, distinguishing between legitimate HTTP traffic 
and potentially malicious requests camouflaged as legitimate HTTP traffic on both 
encrypted and unencrypted communication channels, is extremely difficult. Poor input 
validation has been the root cause of security breaches on many web applications running 
on the Internet in today’s world. 
 

 
 
Microsoft’s .Net framework includes two interfaces – IHTTPModule and IHTTPHandler. 
These two interfaces can be leveraged to provide application- level defense customized to 
application- level, folder- level or variable- level. This can act as the first line of defense, 
before any incoming request touches the web application source code level. This is web 
application defense at the gates, for the .Net framework on IIS. This paper discusses how 
to provide using HTTPModule. A similar concept can be extended to HTTPHandler. 
 
 
 
 
 

     

This problem was identified and 
primitive content filtering was provided 
at the firewall level but it was unable to 
block encrypted traffic going back and 
forth over 443. All critical applications 
such as banking, financial or payment 
gateways run on port 443. The scope of 
the problem is reduced but not 
eliminated entirely. IIS web server 
provides ISAPI extensions to handle 
incoming HTTP requests. A similar 
feature is available with Apache as 
well. Microsoft released a tool 
URLScan which provides services-
level content filtering but it is not 
powerful enough to fine tune defense at 
the application-level. 
 

NOTE:  The sample code shown here is written in C#. You must create a project 
as “Class Library” since you will be creating a .dll file that fits into the IIS HTTP 
processing chain or pipe. “System.Web” must be included as reference assembly 
to the project. The IHTTPModule interface resides in “System.Web”. 
 



 
Shreeraj Shah                         Web Application Defense at the Gates                          [4] 
 

Building up WebAppMod using IHttpModule Interface 

Definition and code Initialization 
The WebAppMod namespace is created which in turn, hosts the WebAppWall class by 
extending the IHttpModule interface. With this we can access events of HTTP pipe from 
the top since the IHttpModule interface is higher in the pipe than any other handler 
accessing incoming HTTP requests. 
 
[Code Snippet] 
using System; 
using System.Web; 
using System.Text.RegularExpressions; 
namespace WebAppMod 
{ 
 public class WebAppWall : IHttpModule  
 { 
 

Regex utility function for support 
Regular expressions ("regex") are sets of symbols and syntactic elements used to match 
patterns of text. They allow more complex search and replace functions to be performed 
in a single operation.  
 
In our example, we need to filter HTTP input requests that contain metacharacters that 
could break a web application, disclosing enough useful information to an attacker. We 
do this by using a supporting Regex function to process regular expressions. Take a look 
at the code snippet below: 
 
[Code Snippet] 
public string[] setPattern(string doc,string pat,int num) 
{ 
 Regex exp = new Regex(@pat,RegexOptions.IgnoreCase); 
 MatchCollection mc = exp.Matches(doc); 
 string[] results = new string[mc.Count]; 
 for (int i=0;i<mc.Count;i++) 
 { 
  Match FirstMatch = mc[i]; 
  results[i] = FirstMatch.Groups[num].ToString(); 
 } 
 return results; 
} 
 
The function Regex takes three parameters as input – 
? doc, which is the target string to search for a pattern,  
? pat, which is the set of characters to be matched in the target string and  
? num, which is the match number 

This function will return an entire array of strings –  results –  with all instances of 
matched patterns. 



 
Shreeraj Shah                         Web Application Defense at the Gates                          [5] 
 

Accessing Init of IHttpModule 
[Code Snippet] 
public void Init(HttpApplication httpApp)  
{ 
 httpApp.BeginRequest += new EventHandler(this.OnBeginRequest);           
 
The above lines of code will get called as part of the Init (IHttpModule) interface. An 
HttpApplication handler object is provided for processing. This object has an event called 
“BeginRequest” which will be invoked before an HTTP request is trapped by your web 
application, triggering an event where a “ProcessRequest” function gets invoked. 
 
[Code Snippet] 
string[] query,post; 
public void Init(HttpApplication App)  
{ 
 App.BeginRequest += new EventHandler(this. ProcessRequest);           
 string inifile = Environment.CurrentDirectory +  
      "\\webappmod\\webappmod.ini"; 
 System.IO.StreamReader reader = new  
      System.IO.StreamReader(inifile); 
 string data = reader.ReadToEnd ();    
 reader.Close(); 
  
 string[] qres = setPattern(data,"<QUERY>(.*?)</QUERY>",1); 
 query = new string[qres.Length]; 
 query = qres; 
  
 string[] pres = setPattern(data,"<POST>(.*?)</POST>",1); 
 post = new string[pres.Length]; 
 post = pres; 
} 
 
Major input points for web applications are: 

1. Querystring 
2. POST buffer 

 
Information sent from a form with the GET method, also called querystring, is appended 
to the end of a resource by a question mark (?) and displayed in the browser's address bar. 
A POST buffer, on the other hand, uses the POST method for form submissions. We need 
to provide critical input validation at these two places. 
 
 
 
 
 
 
 

? If the method is "GET", the user agent takes the value of action, appends a ? 
to it, then appends the form data set. The user agent then traverses the link 
to this URI. 

? If the method is "POST", the user agent conducts an HTTP post transaction 
using the value of the action attribute and a message created according to the 
content type specified by the enctype attribute. 



 
Shreeraj Shah                         Web Application Defense at the Gates                          [6] 
 

Example of a Querystring: 
 
 

 
 
Example of a POST buffer: 
HTTP request would look like this once form submission is completed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To achieve the above objective we have created two string arrays – one for a querystring 
(query) and the other for a post buffer (post). These two string arrays are going to be 
filled up from webappmod.ini file; a part of the system directory on Windows.  
 
For example, if C:\Winnt\System32 is a system directory on your system, it must have a 
folder called webappmod and a file called webappmod.ini. We grab the value of the 
environment variable “Environment.CurrentDirectory” and append it to our folder. 
 

string[] res = setPattern(data,"<QUERY>(.*?)</QUERY>",1); 
res = setPattern(data,"<POST>(.*?)</POST>",1); 

 
The above two lines are responsible for fetching XML tags defined for Query and POST. 
These multiple tags are processed and the resulting pattern consolidated in respective 
arrays. These patterns are the rule sets for input sanitization. In other words, rejection of 
input is done on the basis of these criteria.  
 
You may have noticed that these arrays are global in scope, making them accessible to 
other functions as well. 
 

http://192.168.131.3/dvds4less/details.aspx?id=1 

POST /dvds4less/checkout_form.aspx HTTP/1.1 
Host: 192.168.131.3 
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; 
rv:1.7.3) Gecko/20040910 
Accept: 
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,image/png,*/*;q=0.5 
Accept-Language: en-us,en;q=0.5 
Accept-Encoding: gzip,deflate 
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7 
Keep-Alive: 300 
Connection: keep-alive 
Referer: http://192.168.131.3/dvds4less/cart.aspx?id=1&quantity=1 
Cookie: ASP.NET_SessionId=0zrvzp45nzb1sj45piri0f55 
Content-Type: application/x-www-form-urlencoded 
Content-Length: 60 
 
product_id_0=1&quantity_0=1&order_num=513745&submit=Checkout 



 
Shreeraj Shah                         Web Application Defense at the Gates                          [7] 
 

Processing incoming request using ProcessRequest function 
An instance of the HttpApplication object is created and passed from “BeginRequest” 
event in the chain. 
 
[Code Snippet] 
public void ProcessRequest (object o, EventArgs ea)  
 { 
  HttpApplication app = (HttpApplication) o; 
 
The above line of code is invoked every time an HTTP request is directed at your 
application. 
 
[Code Snippet] 
string querystring = app.Request.ServerVariables["QUERY_STRING"]; 
 
if(query.Length > 0) 
{ 
 for(int j=0;j<query.Length;j++) 
 { 
              string[] q = setPattern(querystring,query[j],0); 
    if(q.Length>0) 
    { 
   app.Response.Write("Security Error"); 
   app.Response.End(); 
    } 
 } 
}  
 
In the above code we grab the querystring from the server variables of the request object 
and process them using our list of objectionable patterns defined in our query variable. If 
a pattern match is found we throw a security error and terminate the response, otherwise 
we allow the request to go through. 
 
Similar action is carried out for the POST buffer below: 
 
[Code Snippet] 
string postreq = ""; 
if(app.Request.ServerVariables["REQUEST_METHOD"] == "POST") 
{ 
 long streamLength = app.Request.InputStream.Length; 
 byte[] contentBytes = new byte[streamLength]; 
 app.Request.InputStream.Read(contentBytes, 0, (int)streamLength); 
 postreq = System.Text.Encoding.UTF8.GetString(contentBytes); 
 app.Request.InputStream.Position = 0; 
 
In above code snippet we access Inputstream of the request object and fetch the POST 
buffer of the incoming request. 
 



 
Shreeraj Shah                         Web Application Defense at the Gates                          [8] 
 

Next, we compare all patterns of the POST string array with the HTTP POST buffer 
received. Any objectionable pattern found, results in termination of the response after a 
security error message is displayed. A legitimate request will go through to the web 
application. 
 
[Code Snippet] 
if(post.Length > 0) 
{ 
 for(int k=0;k<post.Length;k++) 
 { 
  string[] p = setPattern(postreq,post[k],0); 
  if(p.Length>0) 
  { 
   app.Response.Write("Security Error"); 
   app.Response.End(); 
  } 
 } 
} 
 
Compile the above code to get an assembly called WebAppMod.dll. Deploy this 
assembly for web application defense at the gates. 



 
Shreeraj Shah                         Web Application Defense at the Gates                          [9] 
 

Deploying WebAppMod.dll in the environment 

Step 1: Create webappmod.ini 
First, create a webappmod.ini file in format shown below. Place this file in the 
webappmod folder residing in the machine’s system directory. 
 
[webappmod.ini] 
 
 
 
 
 
 
 
 
 
 
 
We will see the purpose of these patterns in detail in subsequent sections. 

 

Step 2: Create a “bin” folder 
Create a bin folder in your application directory (virtual root or virtual site) on the IIS 
web server and place the WebAppMod.dll file in this folder.  

 

Step 3: Modify web.config 
Next, add the following lines to your web.config file 
 

<httpModules> 
      <add type="WebAppMod.WebAppWall, WebAppMod" name="WebAppWall" /> 
</httpModules>  

 
This will load webappmod at server startup or when the assembly file WebAppMod.dll is 
changed. 

 

<QUERY> 
     id=(.*?['\"%*$#@]|.*?(select|exec|update))[^&]*([&]|$) 
</QUERY> 
 
<QUERY> 
     quantity=(.*?['\"%*$#@]|.*?(select|exec|update))[^&]*([&]|$) 
</QUERY> 
 
<POST>id=(.*?['\"%*$#@]|.*?(select|exec|update))[^&]*([&]|$)</POST> 
<POST>quantity=(.*?['\"%*$#@]|.*?(select|exec|update))[^&]*([&]|$)</POST> 
 



 
Shreeraj Shah                         Web Application Defense at the Gates                          [10] 
 

Defending web application at the gates by configuration 
Let us look at a web application that takes two parameters as input – id and quantity. We 
have already created a webappmod.ini file in the previous section. Now let’s see how we 
can defend this variable called “id”. 
 
For example, in the URL, 
http://192.168.131.3/dvds4less/details.aspx?id=1 
 
id=1 is the querystring that is passed to the web application code. The web application 
code reads in this value and displays the details accordingly. So far so good.  
Now, what if some one passes malicious content such as this: 
 
http://192.168.131.3/dvds4less/details.aspx?id=’ 
 
id=’ (Single quote) breaks the application and we get an error page like the one shown 
below, before loading webappmod. 
 

 
 
This error is generated from within the web application; the attack touches the application 
code. 
 
Let us load WebAppMod.dll, pass the same HTTP request and view the results. We still 
get an error, but there’s a difference. 



 
Shreeraj Shah                         Web Application Defense at the Gates                          [11] 
 

 
 
A Security Error is generated; only this time, it is generated from WebAppMod.dll and 
not from within the Web Application. The web application code is completely isolated 
and neither the code nor the components are directly affected by the above request. True 
defense at the gates of web applications. 

Regex Magic 
Let’s see how regex magic is performed from a .ini file.  
 
[Sample regex for variable id] 
<QUERY>id=(.*?['\"%*$#@]|.*?(select|exec|update))[^&]*([&]|$)</QUERY> 
 
Let’s slice up the above pattern and see how it works: 

1. We look for “id=” which specifies the variable linked to the application layer. 

2. .*?['\"%*$#@]  
this pattern will grab metacharacters that are likely to break the application. Single 
quote, %, $, etc. 

3. .*?(select|exec|update)  
this pattern looks for SQL special words which are responsible for a sql injection 
attack. 

4. | signifies an (or). The pattern will perform an OR operation on either of  
clauses 2 or 3 mentioned above. 

5. [^&]*([&]|$)  
this pattern will make sure if the id variable is at the start of the line, at the end of 
line or in between, it is segregated by the & character. This character is a 
delimiter, responsible for variable bifurcation in the Querystring or POST buffer 
of the HTTP protocol. 

 
The same pattern will work either in a querystring or in the POST buffer. In this manner, 
one can craft required regex patterns and formulate an INI file. This allows an application 
defense to be fine-tuned at the variable level. 



 
Shreeraj Shah                         Web Application Defense at the Gates                          [12] 
 

Conclusion 
ASP.NET offers an extensible framework for server-side HTTP programming at a lower-
level infrastructure. 
 
This paper introduces the IHttpModule interface – the lowest of programming layers - 
provided with ASP.Net and shows how this interface can be used to securely and 
efficiently implement HTTP request processing in an ASP.NET-based web application. 
 
This paper will enhance your vision on the usage of the IHttpModule interface in web 
applications developed in ASP.NET and is meant to serve as a stepping-stone to add 
sophisticated functionality such as application- level content filtering, to defend web 
applications at the gates. 
 
 
 
 


