

The Grey Matter of Securing Android
Applications

Version 1.0
6th April, 2018

A whitepaper to help developers code a secure Android application by
leveraging the security features provided by Google

Whitepaper
By

Shiv Sahni
Senior Security Analyst
Lucideus Technologies

shiv.s@lucideustech.com

Page 1 of 55

mailto:shiv.s@lucideustech.com
http://lucideus.com/
https://www.linkedin.com/in/shivsahni/
https://security.stackexchange.com/users/159736/shiv-sahni
https://twitter.com/shiv__sahni

Table of Contents
Abstract 5

Introduction 7
Android Software Stack 7
APK: Android Application Package 8

APK Internals 9
Android Application Components 10

Background/Problem Statement 12

Security Features By Google 13
Application Sandbox 13

Notes for Developers 14
World Accessible Files 14
Rooted Devices 14

Android Permission Model 16
Permission Protection Levels 16

Permission Groups 16
Correlation of Application Sandbox and Android Permission Model 17
Notes for Developers 18

Excessive Permissions 18
Securing Application Components Using Permissions 18

IPC: Inter Process Communication 19
Intents 19

Explicit Intents 19
Implicit Intents 19

Intent Filters 19
Notes for Developers 20

Insecure IPC Mechanisms 20
Insecure Android Broadcasts 20
Insecure Implementation of Pending Intents 21

Exploit Mitigation Techniques 23
ASLR 23
Data Execution Prevention 23
Protecting Stack 24
Notes for Developers 24

Leveraging Underlying Exploit Mitigation Techniques 24
Usage of Banned Functions and Vulnerable Libraries 25

Application Signing 26

Page 2 of 55

Digital Signature 26
Application Signing Process 29

Notes for Developers 30
Insecure Signing Scheme 30
Insecure Signing Algorithms 30

Android Keystores 31
Keystore 31
Android Keystore 31

Hardware Backed Keystore 32
TEE:Trusted Execution Environment 32

Keystore Entries 33
SafteyNet: Developers Friend 35

SafteyNet APIs 35
SafetyNet Attestation API 35

Compatibility Test Suite Results 35
Basic Integrity Checks 36
Application Integrity Checks 36
Architecture 36

SafetyNet Verify Apps API 38
SafetyNet reCAPTCHA API 39
SafetyNet Safe Browsing API 39

Notes for Developers 40
Lack of Rate Limiters 40
Insecure Implementation of Attestation API 41

Some Other Security Practices 42
Secure Crypto Implementation 42

Reducing Unnecessary Attack Surface 42
Avoid Usage of Insecure and Custom Cryptographic Algorithms 42
It is recommended that following cryptographic algorithms should be used: 43
Avoid Insecure Key Derivation Mechanisms 43
Secure Pseudo Random Number Generation 44

Securing Android Webviews 45
Webview Hardening 45
Preventing Excess Authorization 46

OWASP Dependency Check 47
10 Things To Check Before Publishing The Application 48

Conclusion 49

About Author 50

Page 3 of 55

Lucideus Technologies: The Author’s Company 50
About Technical Editor and Reviewer 50

Acknowledgements 52
References 52
Additional Resources 55

Page 4 of 55

Abstract
According to Gartner’s research Google's Android is the leading smartphone operating system
in the world ​[1] (Exhibit 1). One of the significant reasons for the popularity of the Android
platform is indeed its openness. The popularity of Android platform has lead to a massive
increase in third-party application development in Google’s Play Store. According to Statista, the
number of available apps in the Google Play Store was most recently placed at 3.3 million apps
in September 2017, after surpassing 1 million apps in July 2013​[2]​.
The Android applications nowadays, are not only used for entertainment purposes but also for
making financial transactions, medical assistance etc. which means that there is a flow of
sensitive data on the underlying platform which has a significant requirement of security.

Exhibit 1

Source: ​Gartner​[1]

Page 5 of 55

https://www.gartner.com/newsroom/id/3725117

Exhibit 2

Source: ​Statista​[2]

The paper discusses the security features that are provided by Google and how the same can
be leveraged by developers to make the applications secure and robust. The security features
provided by Google often aren't implemented or are implemented in an improper way. This
makes the application vulnerable to the security issues. The paper will enable developers to
understand the security features and will also highlight the benefits of implementing the same.

Page 6 of 55

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/

Introduction
Android is a open source Linux based software stack that is developed by Google. It was initially
developed by Android Inc. and was later bought by Google. It is used by many commonly used
devices such as smartphones, tablets, wearables, smart TVs etc.

Android Software Stack
The Android software stack is shown in Exhibit 3 and the same is explained below:

Exhibit 3

Insides of Android Platform​[3]

Linux Kernel: Android platform is built on the top of a robust Linux kernel. The Linux kernel
itself provides the advantage of ​underlying security features such as process isolation,
user-based permission model etc.​[4] As shown in Exhibit 3 this layer provides all the essential
hardware drivers like camera, keypad, display etc.
As of 2017, Linux kernel v3.18 or v4.4 is used by Android devices. However, The actual kernel
depends on the individual device.

Hardware Abstraction Layer: ​Hardware Abstraction Layer gives the Android Platform freedom
to implement any device specifications and drivers by providing the standard method for
creating software hooks between the Android platform stack and your hardware.

Page 7 of 55

https://source.android.com/security/overview/kernel-security.html

Android Runtime: It consist of core libraries and Dalvik Virtual Machine(DVM). The core
libraries are the Java based libraries that provide the primary APIs for developers to write
Android applications.
Each Android application runs as a different process on the Linux kernel in its own Virtual
machine. Just like JVM, DVM is also a virtual machine but the latter is designed by Google
specifically for mobile platforms. For Android version 5.0 (API level 21) or higher, the successor
of DVM was introduced viz. ART(Android Runtime) which had the following performance
improvements over conventional DVM:

● Compilation: Compiles the application only once using AOT(Ahead of Time) approach.
● Power Consumption: Reduces power consumption.
● Garbage Collection: Optimizes garbage collection (GC).

Native Libraries: The core Java based libraries can be considered as the java ​wrappers
around the C/C++(Native) libraries. The platform also allows developers to use C or C++ code
to build Android applications using native libraries in the native code through Android NDK.

Application Framework: The Application Framework is a set of services that collectively form
the environment in which Android applications run and are managed. It provides high-level
services to the applications through Java classes. Application developers use these high-level
services using Java APIs.

Applications: Applications are present at the top of the Android software stack. It consists of
both the native system applications and the third party applications installed by the user.

APK: Android Application Package
APK is an acronym used for Android Package Kit. It is a software package that can be installed
on Android devices. The software package uses .apk extension. An APK is an archive i.e. a
signed zip file that contains the application’s code, resources etc.
Exhibit 4 shows how Android application compilation and execution is different from a java
application.

Page 8 of 55

Exhibit 4

Compilation and Execution of Android Applications

APK Internals
APK is basically a signed zip archive that contains the application code, resources, signing
certificate etc. On unzipping the APK file we can get the following:

● AndroidManifest.xml: The manifest file describes the essential information about the
application. It defines the key attributes of the application such as application
components, permission requirements, target and min API version, application icon,
package name etc.

● META-INF: The META-INF contains the following:

○ MANIFEST.MF: It is the manifest file and it contains the hashes corresponding to
application resources.

○ CERT.SF: It is the signature file that is created after the application is signed. It
contains the list of resources and the hash value of each resource corresponding
to its entry in the manifest file.

○ CERT.RSA: It is the signature block file. The signature file is a signed file and the
signature of the same is placed in signature block file. It also contains the
certificate and its metadata.

● assets: It contains the applications assets(HTML/JS Files, pictures etc.) The resources in

assets folder can be accessed by Java code using AssetManager.

Page 9 of 55

● classes.dex: This contains the Dalvik bytecode. All the Java code is compiled into Dalvik
bytecode and is executed by the DVM.

● lib: It contains libraries that are part of the Android application. The lib directory contains

all the libraries that an application may refer to during its execution and which is not a
part of the Android SDK.

● res: The res directory contains all the application resources that are not compiled in

resources.arsc.

● Resources.arsc: It is a file that contains all the pre-compiled resources.

Exhibit 5

File type of APK

Exhibit 6

Contents of an APK file

Android Application Components
Android application components are high level building blocks of an Android application. Each
Android application component is an entry point through which a user or system can interact.
These components are well described in AndroidManifest.xml

Page 10 of 55

The main Android application components are:

● Activity: An activity can be considered as a ​screen​. It is an application component that
has a user interface. A user can interact with the application through activities. The
activity handles user interaction. Any Android application usually has one or more
activities.

● Service: ​A service is an application component that usually performs long running tasks

in the background. Unlike activities, a service lacks a user interface.

● Broadcast Receiver: A broadcast receiver listens to system wide broadcast
announcements. Like services, broadcast receivers lacks a user interface but the former
is meant for long running tasks.

● Content Provider: A content provider is an application component that is used to store

and share data efficiently. The data can be stored in the file system, SQLite database
etc.

Intents
An intent is an asynchronous messaging object that allows communication between application
components. It can be used for communication between application components of same or
different applications. It can be used to start an activity, service or for delivering broadcasts.

Exhibit 7

Intent to invoke an application component

Page 11 of 55

Background/Problem Statement
Android is built on the top of the secure and robust Linux kernel. The platform itself is
considered to be secure due to multiple reasons few of them being its openness, regular
updates for security enhancements and programs like ​ASRP​[5]​(Android Security Reward
Programs) that attracts security researchers to build the secure platform.
In addition to making the platform secure, Google also helps developers build secure
applications by providing features like ​SafteyNet APIs​[6] which helps them to add security to their
applications and programs like ​ASI​[7]​(App Security Improvement) that scans applications against
26 odd vulnerabilities and notifies developers to remediate the issues.

In spite of having security features like SafteyNet, programs like ASI, and the underlying robust
platform the entire ecosystem can only be made secure if the applications are built considering
security in SDLC(Software Development Life Cycle). The developers must be aware of using
the security features properly. For instance: Using encryption for handling sensitive data will
only solve the problem if it is implemented in a proper way by using secure algorithms, secure
key management etc.

Exhibit 8

Android Security Model

Page 12 of 55

https://www.google.com/about/appsecurity/android-rewards/
https://developer.android.com/training/safetynet/index.html
https://developer.android.com/google/play/asi.html

Security Features By Google

Application Sandbox
Android is built on top of a secure and robust multi-user Linux operating system. The security
features of Linux operating system are thus an integral part of the Android platform. For
instance, every user in a linux operating system is identified by a unique user ID(UID) and
user’s resources are also isolated from each other.

Android takes advantage of the underlying Linux kernel to achieve the concept of ​Application
Sandbox​. An application installed in an Android device is assigned a unique app ID and each
application is considered as a user of the underlying Linux OS. Also each user is allotted a
private directory​(/data/data/<package-name>​) which is the local data storage directory of the
application.

Application are sandboxed both at process level and at storage level since each application
executes as a dedicated process and each application has its own private storage that can not
be accessed by any other application on the system.

Note: ​UIDs are statically defined in ​android_filesystem_config.h​[8] header file. For example, UID
for root is 0. Also, UID 1000-9999 are reserved for system processes. The UID for user
application is from ​FIRST_APPLICATION_UID​ to ​LAST_APPLICATION_UID​ (10000-99999)
The UID is represented as ​uY_aXXX​ where xxx is an offset from FIRST_APPLICATION_UID.

For Example: Exhibit 9 shows the results of the ​ps command for user installed application ​Effort
On The Go where the package name ​ebu.lucideus.com.effortonthego is same as that of
process name. The user id is ​u0_a167 which is equivalent to ​10167 ​(10,000+offset_167).
Exhibit 10 shows the data directory for the application.

Exhibit 9

Application Sandbox in Android Platform

Page 13 of 55

https://android.googlesource.com/platform/system/core/+/master/libcutils/include/private/android_filesystem_config.h

Exhibit 10

Application Sandbox in Android Platform

Notes for Developers

World Accessible Files
By default, the files created in the application sandbox are not accessible to other applications
installed on the device. The flags like ​MODE_WORLD_READABLE [9]​and
MODE_WORLD_WRITABLE ​[10] allows developers to create world readable and writable files
respectively. The flags can be used for IPC(Inter Process Communication) through system files.

These flags were deprecated in API level 17 and the usage of same for application targeting
API level 17 or below is strongly discouraged. Android provides much better IPC mechanisms
and it is recommended that developers must use them instead of conventional world accessible
files. Explicitly specifying insecure file permissions such as ​0666​,​0777​, ​0664 ​through syscalls or
chmod binary is also strongly discouraged.

The best practice recommendation is to explicitly specify the secure file permissions instead of
relying on system’s umask. Since the Android application sandbox could collapse due to
misconfiguration and exploitation.
For Example:
Creating File:
FileOutputStream secureFile=openFileOutput(“SecretFile”, Context.MODE_PRIVATE);

Creating Folder:
File secureDirectory=getDir(“SecretDir”,Context.MODE_PRIVATE);

Rooted Devices
Rooting an Android device allows a user to run any application as ​root user. Android is built on
the top of Linux kernel and rooting allows a user to give administrative privileges to any
application. This collapses the application sandbox, since a root user can run any process with

Page 14 of 55

https://developer.android.com/reference/android/content/Context.html#MODE_WORLD_READABLE
https://developer.android.com/reference/android/content/Context.html#MODE_WORLD_WRITEABLE

any user ID and can also access private data of any application. Rooting a device circumvents
all the security measures of the operating system.

From developer’s point of view, a rooted device can impact the security of the application since
it allows any malicious application installed on the rooted device to access the application’s
sandbox. It also allows an attacker to perform the runtime analysis of the application where the
application could perform unintended actions when the runtime behaviour of the application is
modified.

For the applications that involve the flow of sensitive data, it is recommended that the
developers must detect and prevent the access from a rooted device. Although there is no
sure-shot solution for proper root detection since root cloakers (Ex. ​Magisk ​[11]​) work with
administrative privileges and root detection can be bypassed but the checks indeed increases
the attack complexity thus reducing the overall risk. Developers can use ​SafteyNet Attestation
API​, the same being described in the later section.

Page 15 of 55

https://forum.xda-developers.com/apps/magisk
https://developer.android.com/training/safetynet/attestation.html
https://developer.android.com/training/safetynet/attestation.html

Android Permission Model
Application sandboxing allows Android applications to only access the files that resides in its
sandbox and world accessible files. This limits the scope and functionality of the applications
and in order to prevent this Android permission model was designed. In order to provide richer
functionalities the model allows applications to request additional fine grained access rights
known as permissions.
Application can request permission and the same is granted to application by either system or
user depending on the type. These permissions are listed in ​AndroidManifest.xml​ file.

Permission Protection Levels
The Android system permissions are broadly categorized on the basis of protection level into
four categories. The two most important ones are discussed below:

● Normal Permissions: When the data/resources required by the application outside the
sandbox involves very little risk to user’s privacy.
If an application requests for normal permissions, these permissions are automatically
granted by the system.

● Dangerous Permissions: When the data/resources required by the application outside
the sandbox involves user’s privacy.
If an application requests for dangerous permissions, these permissions are explicitly
granted by the user.

Permission Groups
Android supports the concept of permission groups such that any permission can belong to a
permission group but since the normal permissions are automatically granted by system the
concept of permission groups only affect if the permission is dangerous.

The other two categories are:

● Signature Permissions: ​The permission with protection level ​Signature is granted by
the system only if the requesting application is signed with the same certificate as the
application that declared the permission.

● signatureOrSystem Permission: ​The permission with protection level

signatureOrSystem is granted by the system to applications that are in the Android
system image or that are signed with the same certificate as the application that
declared the permission.

Page 16 of 55

Granting and Revoking Android Permissions

Device and
Application
Specifications

Requesting Permission

Revoking
Permission Normal

Permission
Dangerous
Permission

Dangerous
Permission in
the Same
Group

Device running
API level 23 or
higher ​AND
targetSDK is 23
or higher

Automatically
granted by
system

Dialog box at
runtime for user
to explicitly
grant permission

System
automatically
grants

Permission can
be revoked

Device running
API level 22 or
lower ​OR
targetSDK is 22
or lower

Automatically
granted by
system

The permission
is granted at the
time of
installation

The permission
is granted at the
time of
installation

Permission can
only be revoked
by uninstalling
the application

Table 1
Android Permission Model​[13]

Correlation of Application Sandbox and Android Permission Model
Android maps application UID with the corresponding metadata in ​/data/system/packages.list
file. This helps to correlate between two different concepts namely Application Sandbox and
Permission Model.

Exhibit 11 shows the metadata corresponding to the application UID
root@1201:/ # cat /data/system/packages.list |grep /data/data/ebu.lucideus.com>
ebu.lucideus.com.effortonthego​ ​10167​ ​1​ ​/data/data/ebu.lucideus.com.effortonthego​ ​default​ ​3003

Where each entry is defined below:

ebu.lucideus.com.effortonthego​: Package Name
10167​: UID assigned to application
1​: Debuggable Status (1 if debuggable)
/data/data/ebu.lucideus.com.effortonthego​: Application’s private directory.
default​: SEinfo label(Used by SE Linux)
3003​: List of GIDs(Group IDs) that the application belong to, such that each GID is
typically linked with Android permission.

Page 17 of 55

https://developer.android.com/guide/topics/permissions/requesting.html

Exhibit 11

Android application and its metadata

Notes for Developers

Excessive Permissions
An Android application should not request for the permissions that are not even required by the
application. This increases the attack surface unnecessarily.

As the name implies, dangerous permissions request the data/resources that involve users
private information, hence even if one dangerous permission is granted by the user, all the
dangerous permissions in the same group are granted implicitly. So it is recommended that the
dangerous permissions should be taken seriously and should only be requested if required.

Securing Application Components Using Permissions
Android applications are built of application components such as activities, receivers, services
and providers. These application components interact with each other so as to perform intended
functionalities.
In the scenarios where the scope of interaction of an application component is limited to that of
same application it is recommended that the component developers should explicitly specify
that the component is non-exported in AndroidManifest.xml by setting the attribute
android:exported​ to false in the component's manifest element.

If the application component interacts with other components of the developer’s own application
signed with same key. It is recommended that the developers must use signature level
permission in ​android:protectionLevel ​and the same permission must be specified in the
component's manifest element.

Page 18 of 55

https://developer.android.com/guide/topics/manifest/permission-element.html#plevel

IPC: Inter Process Communication
IPC(Inter Process Communication) is a mechanism which allows processes to communicate
with each other and allows them to synchronize their actions.
Linux operating system allows several mechanisms to achieve IPC via files, pipes, FIFO,
sockets etc.
Android is built over Linux which supports the concept of ​Binder Framework​[14] i.e. it allows IPC
through ​RPC​[15]​(Remote Procedure Calls) between client and server processes. Binder
framework manages the underlying RPC mechanism and provides a simple user interface by
exposing the APIs. The infrastructure provided by binders is used by in-process and
cross-process calls.

Intents
Intents supports the communication between application components. An intent is a simple
message object that represents an intention. They are basically of two types:

Explicit Intents
Explicit intents specify the fully qualified class name of the component with which the application
wants to communicate. Since the name of the component is explicitly mentioned in intent object
the resolution happens by invoking the recipient.

Implicit Intents
Implicit intents are sent to the Android system for resolution. Implicit intents do not specify the
application component to interact instead it includes other attributes that help the system to
resolve the intent.

Intent Filters
Intent filters help the Android system to resolve implicit intents as system compares the contents
of the received implicit intent with the intent filters declared in the manifest file of other
applications installed on the device.

● In the scenario where the contents of an intent matches the intent filter, the system
invokes the component with matching intent filters and it also passes the intent object.

● In the scenario where multiple intent filters are compatible, the system displays a dialog
box for a user to select among various application. The same is shown by Exhibit 12.

Page 19 of 55

https://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf
https://en.wikipedia.org/wiki/Remote_procedure_call

Exhibit 12

Resolution of implicit intents

Notes for Developers

Insecure IPC Mechanisms
Developers sometimes use sockets(​localhost network ports) for handling sensitive IPC. Having
said that, binding on ​INADDR_ANY​[16] is even worse than using ​INADDR_LOOPBACK​[16] as it
will allow application to communicate from anywhere. Similarly usage of world accessible for
IPC is strongly discouraged.
It is recommended that developers should instead use Android IPC mechanisms which allows
the verification of identity of the application that are trying to interact through IPC. For Ex: Usage
of content provider is an efficient and secure way of sharing data with other applications than
conventional world accessible files since it offers fine-grained and dynamic access control in
terms of read and write permissions.

Insecure Android Broadcasts
Android allows applications to use broadcast to send messages to multiple applications through
the following ways:

Page 20 of 55

http://www.delorie.com/gnu/docs/glibc/libc_317.html
http://www.delorie.com/gnu/docs/glibc/libc_317.html

Normal Broadcast through ​Context.sendBroadcast()​[17]​: The normal broadcasts are
asynchronous broadcasts i.e. these broadcasts are sent to every registered receiver and they
act in an asynchronous fashion.

Ordered Broadcast ​through ​Context.sendOrderedBroadcast()​[18]​: ​The ordered broadcasts are
delivered based on priority associated with every registered receiver. Priority is defined through
“​android:priority​” attribute. Receivers with higher priority received it before those with lower
priority.

Sticky Broadcast ​through ​Context.sendStickyBroadcast()​[19]​(​deprecated in API 21​): These
broadcasts are sticky in nature as they stay around even after completion of broadcast such that
receivers can receive these intents even after their dormancy.

The following are the possible security issues associated with public broadcasts:

● Sensitive Data Exposure: In the scenario where an application sends sensitive data in a
public broadcast, a malicious application installed on user’s device could register a
receiver with intent filters having all possible actions, data and categories, in order to
receive all public broadcasts​.

● DOS(Denial of Service): ​In the scenario of ordered broadcast a malicious application
installed on user’s device could register a malicious receiver with high priority in order to
receive the broadcast on priority. On receipt of the broadcast the malicious receiver
could either drop the broadcast or inject malicious data, resulting into the broadcast that
is ultimately returned to the sender causing DOS.

It is recommended that developers should use explicit intents if the intent is destined for a single
receiver and otherwise use ​Local Broadcast Manager​[20] when the broadcast is not a public
broadcast. Local broadcast manager is a helper class to register local broadcast receiver and to
send local broadcasts. The broadcast remains within application and never goes outside the
current process. This is an efficient and secure way of implementing local broadcasts.

In the scenarios where the broadcast is to be sent to the receiver of the other application signed
with the same key it is recommended that signature permission must be created in the
application manifest and the same must be used at the time of initiating broadcast.
If the application has to interact with the broadcast receiver of other applications the broadcast
should never contain any sensitive data.

Insecure Implementation of Pending Intents
A pending intent is an intent whose execution can be delayed. A pending intent can be sent to
any application and the receiving application can perform actions corresponding to it with same
privileges and permissions as that of the original application. Using pending intents, we allow a

Page 21 of 55

https://developer.android.com/reference/android/content/Context.html#sendBroadcast(android.content.Intent,%20java.lang.String)
https://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(android.content.Intent,%20java.lang.String)
https://developer.android.com/reference/android/content/Context.html#sendStickyBroadcast(android.content.Intent)
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html

foreign application to perform operations corresponding to intent as if the the operations are
performed by the very own application.

Since pending intents allows foreign applications to perform actions corresponding to it, with the
privileges of the original application and hence it must be developed with security in mind.

Using an implicit intent for the pending intent is highly discouraged as any application installed
on user’s device could intercept the implicit intent and pass it on to an inappropriate location,
while both the intent originator and the intent recipient would remain unaware that the intent had
been intercepted. This could lead to sensitive data exposure or redirection of intent that could
lead to unintended behavior.

Page 22 of 55

Exploit Mitigation Techniques
Buffer Overflow is an anomaly where a program/process while writing data to a buffer(fixed
length ​buffer block of memory) overwrites adjacent memory locations of a buffer. It is a serious
software anomaly, since if exploited it can even allow an attacker to control the underlying
process. Exhibit 13 shows the simple example of buffer overflow.

Exhibit 13

Buffer Overflow
Source: ​Wikimedia​[21]

In the usual scenario of exploitation of buffer overflow vulnerability, attackers inject code into the
adjacent memory locations of a buffer and then redirects the execution to the injected code.
This allows an attacker to execute code with the privileges of a vulnerable program/process.
Attackers can also inject the garbage input to crash the running process to create DOS(Denial
of Service)

Android applications can have native components that are built using native code(C/C++).
Native code can create lots of security issues as any input into Android native code can lead to
memory exploitation issues and can cause code execution or may crash the application.

Android supports technologies like ​ASLR​[22][23]​(Address Space Layout Randomization),
NX​[23][24]​(Never eXecute), ​ProPolice​[23[25]]​, ​safe_iop​[23] etc. to mitigate risks associated with
common memory management issues.

ASLR
ASLR is a mitigation concept that prevents exploitation of memory corruption issues. As the
name suggests ASLR randomly arranges the address space position of key modules of a
process like base of executable, stack, heap etc in order to bring randomness.

Data Execution Prevention
Android supports the concept of data execution prevention which prevents attacker from
executing the arbitrary code by disallowing the execution of data.

Page 23 of 55

http://searchcio-midmarket.techtarget.com/definition/buffer
https://commons.wikimedia.org/wiki/File:Buffer_overflow_basicexample.svg
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/Buffer_overflow_protection#PROPOLICE
https://www.wiley.com/en-us/Android+Hacker%27s+Handbook-p-9781118608647

Android supports this concept from API level 9 and above by supporting the concept of
hardware-based ​NX​(No eXecute) to prevent code execution on the stack and heap.

Protecting Stack
Android also supports techniques to combat stack-based buffer overflows. The concept of ​stack
canaries​[26] also known as cookies is used. It is a random value that is stored before the return
address of current stack frame and when a overflow occurs the canary is also modified which
indicates that the occurrence of buffer overflow.
Android supports the concept of ProPolice from API level 3, the former is a more effective than
Stackgaurd.

Notes for Developers

Leveraging Underlying Exploit Mitigation Techniques
Android supports exploit mitigation techniques such as ASLR, NX, PRoPolice etc. but the
underlying Linux kernel enables these protections only and only if the binaries are compiled
using these security options. It is strongly recommended that developers must use these
security options.

● ASLR: Linux kernel enables and disables ASLR based on information in the information
in the binary format of executable code module.
Position independent binaries can be created when the executable is compiled with ​-pie
and ​-fpie​ flags.

● Non Executable Stack: Architectures corresponding to Android 2.3 and later supports

non-executable pages by default including non executable stack and heap. But the
underlying linux kernel marks the underlying stack memory as executable unless the
same is explicitly specified through the compilation options of binary.
The binary must be compiled with ​-znoexecstack option as it adds non executable flag
for ​GNU_STACK​ program header.

● Stack Protection: In order to combat stack based buffer overflows the ProPolice exploit
mitigation must be enabled. The ProPolice stack protection is enabled by using
-fstack-protector compilation option.

All the exploit mitigation mechanism supported by Android platform must be enabled while
compiling the binaries. Google has made this very simple for Android developers as developers
can use Android NDK(Native Development Kit) as it enables all the exploit mitigation techniques
by default. It is strongly recommended that the developers use the latest version of the Android
NDK and must also target highest possible Android API versions.

Page 24 of 55

https://en.wikipedia.org/wiki/Buffer_overflow_protection#Canaries
https://en.wikipedia.org/wiki/Buffer_overflow_protection#Canaries

Usage of Banned Functions and Vulnerable Libraries
Even though Android provides lots of exploit mitigation techniques and Android NDK enables
them by default, this should not be considered as an excuse for insecure coding. Developers
must not completely rely on the security of the underlying platform and instead concentrate
more towards coding a secure and robust application.

The usage of ​banned functions​[27] like ​gets()​, ​puts()​, strcpy()​, strcat() etc. is very strongly
discouraged. Avoiding these banned functions in native code can lead to significant reduction of
potential security issues in native code.

Developers should also not use vulnerable third-party libraries. It is recommended that the
updated libraries with all the latest security fixes must be used if required.

When dealing with native code, developers must consider each entry point to be a potential
security threat and should scrutinize each entry point. For example, any data read from a world
writable file, received over a network or through IPC should be validated properly before
processing it through native code.
It is also recommended that the developers must follow ​secure coding guidelines​[28][29][30] while
developing the code. It is also recommended that ​static code analyzers​[31][32]​ should be used.

Page 25 of 55

https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.owasp.org/index.php/Source_Code_Analysis_Tools

Application Signing
Android supports the concept of application signing such that it only allows signed application
packages to be installed on Android device. Application signing ensures that the future updates
to the application are authentic and come from the same author.

Digital Signature
Before diving deep into the concept of digital signatures let us first understand the following
concepts:

Cryptography
Cryptography is the science of hiding things. It is used for converting plaintext to cipher-text
such that the confidentiality of the secret message is maintained. Basically cryptography is
broadly classified into two categories:

● Symmetric Key Cryptography: It refers to the encryption methodologies where both
the parties share the same key. The key is known as symmetric/secret key.

● Asymmetric Key Cryptography: It refers to the encryption methodologies where both

the parties have different keys namely public and private key. It is also known as public
key cryptography.

Hashing
Hashing is a cryptographic operation that converts the input message of any length to value of
fixed length known as hash/message digest. It is implemented using a one way function i.e. it is
not reversible. Cryptographic hash functions are used to determine the integrity of the input
message.

Page 26 of 55

Exhibit 14

Symmetric Key Cryptography

Exhibit 15

Asymmetric Key Cryptography

Exhibit 16

Cryptographic Hash Function

Page 27 of 55

Now after understanding the basic cryptography mechanism it will be easier to understand the
concept of digital signature.
Digital signature is an application of cryptography that uses the concepts of public key
cryptography and cryptographic hash functions for demonstrating the authenticity of digital
messages or documents.
A valid digital signatures provides an authenticity of the sender and along with that it helps the
receiving party know that the integrity of the message is maintained.

Exhibit 17 very well explains the mechanism of generation and verification of digital signatures.

Exhibit 17

Generation and Verification of Digital Signatures
Source: ​Wikipedia​[33]

Page 28 of 55

https://en.wikipedia.org/wiki/Talk:Digital_signature#/media/File:Digital_Signature_diagram.svg

Application Signing Process
For signing an Android application we need ​Keystore. ​A keystore is a store that contains one or
more keys. Basically there are two types of keystores:

● Debug Keystore: It is used during debugging phase of the Android application
development. The application signed using debug keystore can not be pushed to
application stores such as Google Play.

● Release Keystore: It is used for the signing of the release build. The application signed

with release keystore can be uploaded on application stores such as Google Play.

Exhibit 18

Application Signing and Verification Process

The following utilities are used during application signing:

Keytool​[34]​: It is a Java utility and is part of Android SDK. It helps to manage cryptographic keys,
X.509 certificate chains, and trusted certificates. As discussed, a keystore file may contain
multiple keystores and each one of them is identified by a unique alias.
A Keystore file is protected by two passwords one for keystore itself and another for each entry
in keystore.

It is recommended that the passwords used should be unique.

Page 29 of 55

https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

Jarsigner​[35]​: It is also a Java utility that is part of Android SDK. The utility has two main
purpose, one is signing java archive and the other is verification of signing. It generates digital
signatures using key and certificate information from keystore.

Once the APK is signed two additional files are created in the application package namely
MANIFEST.SF and CERT.XXX(where XXX depends on usage of underlying algorithm eg. RSA,
DSA etc.)

Apksigner​[36]​: It is signing utility that is developed by Google. Google introduced a new signing
scheme(v2 Signing Scheme). It is used for the signing using scheme v2. This signing scheme is
considered more efficient and it also provides more protections against unauthorized alterations
to APK file.

Notes for Developers

Insecure Signing Scheme
Signature scheme v1 only takes into the zip entries and ignores any extra bytes while
calculating and verifying the signatures. A serious vulnerability (​Janus Vulnerability-CVE
2017-13156​[37]​) was also identified in signature scheme v1 that allows attacker to modify the
code in application without affecting its signature. Applications signed with signature scheme v2
and running on supporting device are protected against the vulnerability.

It is recommended that developers must use signing scheme v2 over signing scheme v1 as the
latter do not properly protect the APK from unauthorized alterations. Signature scheme v2 treats
the APK as a ​blob​ and performs the signature checking across the entire file.

Insecure Signing Algorithms
During application signing usage of weak cryptographic algorithm such as ​SHA-1​, ​RSA-1024
etc. should be avoided in order to prevent security issues. Hashing algorithms such as MD5,
SHA-1 etc. are vulnerable to ​collision​[38][39][40] attacks whereas encryption algorithm such as
RSA-1024 is vulnerable to multiple known cryptographic attacks making it weak and officially
deprecated.

It is also recommended that strong hashing algorithm such as ​SHA-256 be used. Also, instead
of ​RSA-1024​, ​RSA-4096 or ​RSA-2048 should be used. However, ​SHA256withRSA and other
better hashes are only supported on API level 18 and above. It is without a doubt a security
versus compatibility trade off on which developers need to take a decision.

Page 30 of 55

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
https://developer.android.com/studio/command-line/apksigner.html
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
https://en.wikipedia.org/wiki/Collision_attack

Android Keystores

Keystore
As the name implies keystore is a storage facility that is used to store keys and certificates. It
can be implemented by a file or a hardware device. Generally it is used to store the following
entries:

● Private Key: The encryption key that is used during asymmetric encryption. It is used to
sign a digital signature.

● Certificate: It is a signing certificate that contains the public key(asymmetric encryption)
and metadata.

● Symmetric Key:​ It is secret key that is used for symmetric key cryptography.

There are different types of keystore depending on the underlying implementations. For
example, ​JKS​[41]​(Java KeyStore), ​BKS​[42]​(Bouncycastle KeyStore) etc.

Android Keystore
Android platform supports the concept of Android Keystore. Android Keystore system allows the
secure storage of cryptographic keys that makes the extraction of the stored keys difficult. The
concept of Android Keystore has undergone a tremendous evolution as shown in Exhibit 18 and
further discussions below.

Android supported the concept of ​System Credential Store​[43] from Android 1.6. It was used to
store the encryption key that was derived using user’s password. The key was used to encrypt
VPN and WiFi EAP credentials such that these credentials were stored encrypted on disk. The
System Credential Store was only accessible to system applications and no public APIs were
available.

Android introduced ​KeyChain API​[44] in Android 4.0-API 14. This API was provided to regulate
the access to System Credential Store. It allowed application developers to import keys to
system store. These keys were owned by ​System user. The keys stored using Keychain API
were not ​per-app​ keys, but any application could request access to keys.

Android introduced the concept of Android Keystore Service in Android API 4.3-API 18. It
supported the concept of ​per-app keys such that key generated for a given application could not
be accessed by other application. The service runs as ​Keystore user and the concerned files
are stored in ​/data/misc/keystore​.

Page 31 of 55

https://docs.oracle.com/javase/7/docs/api/java/security/KeyStore.html
https://bouncycastle.org/specifications.html
https://www.amazon.in/Android-Security-Internals-Depth-Architecture/dp/1593275811#reader_1593275811
https://developer.android.com/reference/android/security/KeyChain.html

Exhibit 19

Evolution of Android Keystore

Hardware Backed Keystore

TEE:Trusted Execution Environment

As the name implies ​TEE​[45]​(Trusted Execution Environment) is a secure region of the main
processor. TEE is meant for handling sensitive data such that it ensures that sensitive data is
stored, processed and protected in an isolated, ​trusted environment​.

ARM​[46]​(Advanced ​RISC​[47]​(Reduced Instruction Set Computing) Machine) is a family of RISC
architecture for computer processors. Organizations such as Qualcomm and Texas Instruments
make CPUs based on the architecture licensed from ARM. ARM implements the concept of TEE
through ​ARM Trustzone​[48]​. This technology provides hardware features to create a secure
environment separated from normal execution environment.

Page 32 of 55

https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://www.arm.com/products/security-on-arm/trustzone

Exhibit 20

ARM Trustzone
Source: ​Analysis of Secure Key Storage Solutions on Android

Exhibit 20 shows separation of the hardware in two worlds namely secure world and normal
world. Two isolated virtual environments are created that includes virtual processors and virtual
resources such that the processes running in normal world can not access the secure resources
directly.

Keystore Entries
Keystore service maintains different directories for different user of Android device. The entries
are stored in ​/data/misc/keystore/user_x where x is the Android user ID, starting with 0 for the
primary user. Exhibit 21 shows the storage of entries in ​user_0 directory. As shown, each entry
is owned by ​keystore user and is only accessible to the same. The entries have a common
naming convention of ​XXX_YYY_ZZZ​. ​Where each underscore separated value has the
following meaning:

● XXX ​is​ ​UID of the application that created the keystore.
● YYY​ is type of entry, it can be one of the following:

○ CACERT-CA Certificate
○ USRCERT-User Certificate
○ USRPKEY-Private Key

● ZZZ​ is alias name.

Page 33 of 55

http://www.cs.kun.nl/~erikpoll/publications/AndroidSecureStorage.pdf

Exhibit 21

Keystore Entries
Whenever any Android application generates a key pair using ​KeyPairGenerator​[47] ​API. The
following entries are created in the keystore:

● USRPKEY: The file stores the key pair parameters including the private key.
● USRCERT: The file stores the certificate for the publickey.

As shown in Exhibit 21, the very first entry in the keystore directory is ​.masterkey, when the
device is protected using secure lock screen credential (e.g., password, PIN, or pattern) a
random 128-bit AES master key is used for encryption. This key is encrypted through a key
derived from user’s credential using ​PBKDF​[48]​(8192 rounds of ​PKCS5_PBKDF2_HMAC_SHA1​)
and the encrypted key is stored in ​.masterkey​ file.

For hardware-backed keystore, the key files are encrypted using a device-specific key that
is stored in TEE and cannot be retrieved to normal world applications even with root access.
When the key pair is generated with ​setEncryptionRequired​[49] set to true, then keys will be
further encrypted with a key derived from secure lock screen credential (e.g., password, PIN, or
pattern). Having said that, the following are the cons if this security layer is used:

● The successful key pair generation requires that the secure lock screen (e.g., password,
PIN, pattern) is set up.

● The generated key pair are automatically deleted when the secure lock screen is
disabled or reset.

● The generated key pair cannot be used until the user unlocks the secure lock screen
after boot.

For API level 22 and below, the functionality/bug in Android keystore encrypts all the keystore
entries using masterkey, which may cause the deletion of keystore files whenever lock screen
credential is changed. In API level 23, keys which do not require encryption at rest i.e. where
setEncryptionRequired is false, will no longer be deleted when secure lock screen is disabled or
reset. However, keys which require encryption at rest will be deleted during these events.

Page 34 of 55

https://developer.android.com/reference/java/security/KeyPairGenerator.html
https://en.wikipedia.org/wiki/PBKDF2
https://developer.android.com/reference/android/security/KeyPairGeneratorSpec.Builder.html#setEncryptionRequired()

SafteyNet: Developers Friend
SafteyNet is a set of services and APIs that was introduced by Google in 2013. It helps users
and developers to secure the Android platform. It protects the application against security
threats, including device tampering, bad URLs, ​PHAs​[49]​(Potentially Harmful Applications), and
fake users.

Google Play Services​[50] starts an always-running service named ​snet​[51]​. This service frequently
collects various pieces of data from the device and sends it back to Google’s cloud, this makes
Android devices to contribute security-related information to Google’s cloud services. The
information includes security events, logs, configuration etc. The collected information is used in
multiple ways such as ecosystem analysis and threat profiling of the device.

Before 2016, user’s enabling installation from unknown sources were prompted to enable
SafteyNet but from 2016 SafteyNet is enabled by default on all Android devices with Google
play.

SafteyNet APIs
Google provides the following APIs that helps developers to assess the health of Android device
in which the application runs. It also help developers to secure the Android application. The
usage of SafteyNet API is optional. However, it is strongly recommended that developers must
leverage the same.

● SafetyNet Attestation API​12]

● SafetyNet Verify Apps API​[52]

● SafetyNet reCAPTCHA API​[53]

● SafetyNet Safe Browsing API​[54]

SafetyNet Attestation API
SafteyNet Attestation API helps the developers to check the security and compatibility of the
Android device in which the application runs. The API examines the software and hardware
information on the device so as to provide confidence to developers about the integrity of a
device and the application itself.

The features provided by this API is broadly categorized below:

Compatibility Test Suite Results

CTS​[55]​(Compatibility Test Suite) is a free and commercial-grade test suite for Android and it
represents the "mechanism" of compatibility. For the certification process for Google’s
applications, device manufacturers have to submit their CTS test results. SafteyNet creates the
profile of the device based on the hardware and software information of the device. The service

Page 35 of 55

https://source.android.com/security/reports/Google_Android_Security_PHA_classifications.pdf
https://en.wikipedia.org/wiki/Google_Play_Services
https://koz.io/inside-safetynet/
https://developer.android.com/training/safetynet/attestation.html
https://developer.android.com/training/safetynet/verify-apps.html
https://developer.android.com/training/safetynet/recaptcha.html
https://developer.android.com/training/safetynet/safebrowsing.html
https://source.android.com/compatibility/cts/

then attempts to find this same profile within a list of device models that have passed Android
compatibility testing. If the device in which the application is running meets the security and
compatibility requirements of Google the ​ctsProfileMatch​ response is returned.

Basic Integrity Checks

The API also helps us to check the integrity of the device so as to determine whether or not the
particular device has been tampered with or otherwise modified. This provides developers with
confidence about the integrity of a device in which the application is running.

Application Integrity Checks

SafteyNet Attestation API allows developers to check the integrity of the application that is using
the API so that developers can assess whether the calling app is legitimate.

Architecture

The workflow involved in SafteyNet Attestation API is explained below.

Exhibit 20

SafetyNet Attestation API protocol

1. A ​nonce​[56] is a random token generated in a cryptographically secure manner. It is
recommended that the nonce must be generated at server side and sent to client over a
secure connection. Usage of nonce prevents from replay attacks.

2. The application makes a call to the SafetyNet Attestation API via Google Play Services.

Page 36 of 55

https://en.wikipedia.org/wiki/Cryptographic_nonce

3. The SafetyNet Attestation API communicates with the backend server and requests a
signed response.

4. The SafteyNet Attestation backend sends the response to Google Play services. The
received response is formatted as a ​JWS​[57]​(JSON Web Signature). The following JWS
excerpt shows the format of the payload data:

Exhibit 22

Attestation Response
Source: ​Google SafteyNet Attestation Document​[12]

● ctsProfileMatch​: The value contains the result of CTS compatibility. If the value is true

then the profile of the device running the application matches the profile of the device
that has passed Android compatibility testing.

● basicIntegrity​: The value contains the results of device’s integrity checks. If the value is
true then the device running the application wasn't tampered with. If the result is true, it
doesn't mean the device has passed Android compatibility test.

● apkPackageName​: The parameter provides the package name of the application
invoking SafteyNet Attestation API.

● apkCertificateDigestSha256​: The parameter provides the base64 encoded SHA-256
digest of certificate used to sign the application.

● apkDigestSha256​: The parameter provides the base64 encoded SHA-256 hash of the
application’s APK file.

5. The JWS attestation response is then sent to the application requesting the services.
6. One of the best thing of SafteyNet Attestation API is that, it can be verified at the

application server side. Application client will send the received response to server for
the verification.

7. Application server processes the attestation response and sends the result of the
verification process back to the application. The application server can then directly ask
Google to verify the JWS signature (or do it itself) and proceed to act on the results on
the server side, for example deny API access to the client.

Page 37 of 55

https://tools.ietf.org/html/rfc7515
https://developer.android.com/training/safetynet/attestation.html

Note: If the device running the application is CTS compatible, this does not mean that the
device is vulnerability-free. Google does not check if a device is up to date or vulnerable to
public exploits, as part of the SafetyNet service. It checks if it has been tampered compared to
an expected normal and safe state.

SureShot Solution
As already discussed, there is no sure-shot mechanism of identifying the rooted device. Root
cloakers run with root privileges hence root detection can be bypassed but, the checks indeed
increases the attack complexity thus reduces the overall risk. However, it is strongly
recommended that SafteyNet attestation API should be implemented in the suggested way.

Application Integrity
The APK information ​apkPackageName​, ​apkCertificateDigestSha256 ​and apkDigestSha256 ​for
the integrity checks of the application should only be trusted if ​ctsProfileMatch​ is true.

Secure Implementation

● It is strongly advised that security decisions must happen on the server and not at the
client as the client side code can be very easily tampered. Instead, developers should
send the entire JWS response to their own server over a secure connection, for the
verification. The signed JWS response must be validated before processing.

● It is recommended that the attestation check must be performed for all the critical

workflows such as login, financial transactions etc. However, attestation introduces
latency, bandwidth, power usage etc. and hence a balance between security and
usability must be maintained.

SafetyNet Verify Apps API
In early 2012, Google introduces an automated security scanner, to scan new and existing
applications for for malware, spyware, and trojan viruses. In 2017, Google launched ​Google
Play Protect​[58]​ which is a suite of safety services such as Verify Apps.

As per ​Google’s Android Security 2016 Year In Review​[59]​, Google scans all the Android devices
at least once every six days and devices with risk factors are scanned more frequently. Google
Play Protect improves the security of the underlying device in the following ways:

● It scans the applications before downloading from Google Play Store and blocks the
installation if the application is found to be a PHA(Potentially Harmful Application).

● It regularly scans the installed applications on the device and if it finds the PHA, it may
prompt the user to delete the application or automatically remove the same.

Page 38 of 55

https://en.droidwiki.org/wiki/Google_Play_Protect
https://en.droidwiki.org/wiki/Google_Play_Protect
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf

Google Play Protect is available on all Android devices with Google Play installed. It helps users
to secure their Android device. Moreover, it also helps application developers to get security
insights of the devices on which the application is running using SafetyNet Verify Apps API.

SafteyNet verify Apps API allows the application to interact with Verify Apps feature on device
so as to protect the device against PHAs. It is unlike SafteyNet Attestation API which checks for
the device integrity.

Installed malicious applications on user’s device may interact with the other applications to let
them behave in unintended manner. It is strongly recommended that for the applications
involving flow of sensitive data, application developers should confirm that the device on which
the application is running is protected against malicious applications.

SafetyNet reCAPTCHA API
SafteyNet reCAPTCHA API protects the application from malicious traffic. It is developed to
authenticate that the user is human and not a bot or an automated tool. It uses an advanced risk
analysis engine to protect the applications from malicious traffic generated using a bot,
automated tool etc. If the service suspects that the user interacting with the application may be
a bot rather than a human, it serves a CAPTCHA that a human must solve before the
application can continue the execution.

SafetyNet Safe Browsing API
Google introduced safe browsing in 2005. It allows the applications to check URLs against
unsafe web resources such as phishing websites, deceptive sites, malware hosting websites
and hence prevents a user from security threats. Whenever a user tries to access such web
resources, safe browsing enabled web browsers displays a warning to inform users regarding
the malicious web resource. The warning displayed is shown by Exhibit 22.

Page 39 of 55

Exhibit 23

Safe Browsing Warning Message

Safe Browsing is a very popular security feature introduced by Google. Approximately a billion
users take advantage of Safe Browsing everyday. (Source: ​Google’s Android Security 2016
Year In Review​[59]​). The protection is already enabled on the chrome browser on Android
devices.

In mid-2016, Google released Safe Browsing API for third-party developers, to protect their
applications from malicious web resources. The application can use SafteyNet Safe Browsing
API to determine whether a particular URL has been classified by Google as a known threat.
Developers can use Safe Browsing’s database of known harmful URLs to secure the
application. It is strongly emphasised that application developers should use this API to take full
advantage of Google's Safe Browsing service on Android in the most resource-optimized way.

Notes for Developers

Lack of Rate Limiters
The lack of implementation of rate limiters on critical workflows such as authentication,
registration, initiating Email or OTPs etc. allows an attacker to exploit the service using an
automated tool. Few of the such instances are briefly explained below:

● Authentication Requests: An attacker may bruteforce user’s password/PIN/OTP in order
to bypass authentication and login into victim’s account.

● Initiating Email/OTP: An attacker may initiate several Email and/or OTP requests for
spamming, Denial of Service(DOS) etc.

It is advised that the developers must implement rate limiters such as CAPTCHA in order to
block malicious traffic generated by automated tool/bots. The SafetyNet reCAPTCHA API can
also be used for it to protect the application from such attacks.

Page 40 of 55

Insecure Implementation of Attestation API
SafteyNet Attestation API is the robust API that can be used by application developers to build a
secure Android applications. Unfortunately sometimes the API is not implemented in the proper
way by the application developers. The following should be considered while implementing the
Attestation API:

● Nonce Implementation: The nonce should be generated using a cryptographic secure
random function at the server side. It is recommended that the nonce should be derived
from multiple user-specific details and a timestamp(Ex. Hash of username and
timestamp) to prevent replay attacks. Once the nonce is generated at the server side it
should be shared over secure connection with the client and during the verification of
attestation response it should also be validated in the JWS response.

● Client Side Verification: Verification of the attestation response at the client side is
strongly discouraged as the verification logic can be easily tampered by modifying and
repacking the application.

● Secure Server Side Verification: The verification must happen at the server side such
that the attestation response must be sent to the server over a secure communication
channel and the origin and the integrity of the JWS message must be validated before
processing it further.

● Updated Version: The SafetyNet Attestation API is continuously evolving and the
security features are also improving with time. It is recommended that the developers
should use the latest version of SafteyNet APIs.

Page 41 of 55

Some Other Security Practices

Secure Crypto Implementation
Cryptography is a science of hiding things. There are several scenarios where the usage of
cryptography is required to protect the confidentiality and integrity of sensitive user data. The
strength of cryptography lies in its configuration and implementation. For an instance, while
implementing cryptography, using a strong cryptographic algorithm alone is not enough as the
security of otherwise strong algorithms can be affected through their implementation. For
Example, poor key management may easily compromise strong encryption algorithms.

Reducing Unnecessary Attack Surface
In the scenario where cryptography is required to secure the local data storage, developers
must avoid the storage of unnecessary data in the application’s local data storage. During the
security evaluations of different Android applications, often it is observed that the code snippets
introduced during development/debugging phase of the application to store the sensitive
information and/or ​Personally Identifiable Information(PII)​[61] of the user in the application’s local
data store were not removed by the a application developers before releasing the production
build. It is recommended that the application should not capture unnecessary sensitive data.
Only the required sensitive data should be captured and must be securely handled.

In scenario, where the application is required to store sensitive data or user’s PII in the local
data storage of the application, developers must manage the data securely using secure crypto
implementations.

Avoid Usage of Insecure and Custom Cryptographic Algorithms
The cryptographic algorithms and protocols that were considered as secure couple of years
back aren't viewed as secure any longer this is in indeed due to the advancement in the
computation. Established algorithms which once required significant computing time, can now
be broken down in a matter of days or hours. This means that with the expansion in
computational power the security requirements must increase accordingly. Cryptographic
algorithms must be up to date and in-accordance with the industry standards.

Usage of weak encryption algorithms such as DES, Triple DES, AES-ECB and hashing
algorithms such as MD4, MD5, SHA-1 is not advised since these algorithms are vulnerable to
known cryptographic attacks.

Usage of custom encryption algorithms are strongly discouraged. The standard algorithms
undergo research and are well tested. Usage of custom algorithms is tedious, troublesome, and
likely to fail.

Page 42 of 55

https://en.wikipedia.org/wiki/Personally_identifiable_information

It is recommended that following cryptographic algorithms should be used:

● Confidentiality Algorithms: ​AES-GCM-256 or ChaCha20-Poly1305
● Integrity Algorithms:​ SHA-256, SHA-384, SHA-512, Blake2
● Digital Signature Algorithms: ​RSA (3072 bits and higher), ECDSA with NIST P-384
● Key Establishment Algorithms: ​RSA (3072 bits and higher), DH (3072 bits or higher),

ECDH with NIST P-384
Source: ​OWASP Mobile Testing Security Guide​[60]

Avoid Insecure Key Derivation Mechanisms
As already discussed, the strength of cryptography not only depends on the cryptographic
algorithms but also on its implementation. Key management is one of the most important
process since poor key management may easily compromise secure and strong algorithms. The
confidentiality and integrity provided by cryptographic processes such as symmetric encryption
and keyed hashes (MACs) depends on the secrecy of the encryption key involved. In the event
that the key is revealed, the confidentiality and integrity provided is lost.

During security analysis of various Android applications often it is found that the developers
hard-code encryption keys in the application source code. Sometimes, it is also observed that
the encryption keys are stored in the application resources or local data store. This way of key
management is insecure as an attacker can get access to the encryption keys by reverse
engineering the application. Even if the source code is obfuscated, developers must not
hardcode the encryption keys since obfuscation only increases the analysis time and can be
easily bypassed using dynamic instrumentation.

Exhibit 24

Working of PBKDF2

Page 43 of 55

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04g-Testing-Cryptography.md

Since the security of information protected by cryptography directly depends on the robustness
of the keys, so the encryption keys must be securely managed. It is recommended that
developers use PBKDF2(Password Based Key Derivation Function) for deriving the encryption
key as shown by Exhibit 24. It applies a cryptographic pseudo random function(A) such as
HMAC to the input value(P) along with a salt(S) and repeats the process for specified
iterations(I) to produce a key of the specified length(L). The algorithm inherently blocks brute
force attacks.

While implementing PBKDF2, developers must take care of the following:

● The input value to the algorithm must not be hardcoded in the application’s source code
and instead a user supplied password should be used to derive encryption key. It is also
recommended that the application must enforce the usage of strong password policies to
further prevent possibilities of brute-force attacks.

● The strength of PBKDF2 lies in its iteration count as it traditionally serves the purpose of
increasing the cost of key generation from an input value. If the iteration count is too low,
the feasibility of an attack increases as an attacker may compute "rainbow tables" for the
application and may easily determine the hashed password values. It is recommended
that the key derivation function should be used with 10,000 or more rounds of iteration
so as to make brute-force attacks expensive.

● The encryption key can be derived at the time of registration/first login and can be used
to encrypt sensitive data and the same key can be used to decrypt sensitive data
whenever correct password is supplied.

Secure Pseudo Random Number Generation
During the function flow of the application, developers often use random numbers for nonce,
salt, IV(Initialization Vector) etc. It is strongly recommended that the application developers use
secure random numbers instead of conventional random numbers. Since the latter does not
withstand cryptographic attacks. Application developers must use ​java.security.SecureRandom
instead of ​java.util.Random so as to prevent insecure randomness errors that may occur in a
security-sensitive context.

Also, when random numbers are used application developers must avoid explicit seeding to
prevent deterministic random number generations. For API levels 17 and below, calling ​setSeed
method will make the RNG (Random Number Generator) into a Deterministic RNG as it will only
use the supplied seed that may lack entropy. The default implementation automatically seeds
itself using the system random number generator whereas for API level 18 and above the
specified seed is just added to the random state, so the RNG stays fully random.

Page 44 of 55

Securing Android Webviews
Android allows developers to display web content directly into their application through
Webviews. In the past, Webview was tightly coupled with the Android platform however, from
Android 5.0
Google seperated Webview from the core Android platform in order to aid separate security
updates. It is shown by Exhibit 25.

Exhibit 25
Decoupling of Webview from Android OS

Usage of Webviews is very developer friendly and the same is strengthened over the years but
in spite of that it can be easily abused. The following sections describes the recommendations
of securely using webviews.

Webview Hardening
It strongly recommended that the Webview must be hardened properly before usage. The

following key points should be taken care while working with Android webviews.

● Usage of JavaScript: Whenever a webview instance is instantiated the JavaScript is
disabled by default. It is recommended that the JavaScript should not be enabled unless
it is very much required as the usage of the same increases the attack surface. If
JavaScript is disabled, the impact of Man In The Middle attack is reduced and it also
prevents the application from Cross Site Scripting(XSS) attacks.
If the usage of JavaScript is required, then all the input consumed by the application
must be validated at the server side. It is also recommended that the input must be
encoded using encoding schemes such as URI/HTML encoding before it is sent as the
part of HTTP response.

● Access to Content Providers: Whenever an instance of Webview is created, by default
it has access to the content providers which may unnecessarily increase the attack

Page 45 of 55

surface. In scenario where the access to content providers is not required and the same
is not explicitly disabled, a compromise of Webview will also lead to the compromise of
content providers.
It is recommended that if the access to content providers is not required it should be
explicitly disabled using the ​setAllowContentAccess​ method.

● Access to File System: ​Whenever an instance of Webview is created, by default it has
access to the file system which may unnecessarily increase the attack surface. In
scenario where the access to file system is not required and the same is not explicitly
disabled, a compromise of Webview will also lead to the compromise of file system.
It is recommended that the if the file system access is not required it must be explicitly
disabled using the ​setAllowFileAccess​ method.

● File Access From File URLs: ​For API level 15 and below, whenever an instance of
webview is created, by default it allows JavaScript running in context of a file scheme
URLs to access resources on the filesystem. It is recommended that If the application
supports API level 15 and below, it must be explicitly disabled using
setAllowFileAccessFromFileURLs​ ​to reduce the attack surface.

● Universal File Access From File URLs: For API level 15 and below, whenever an

instance of webview is created, by default it allows JavaScript running in context of a file
scheme URLs to access content from any origin and the content from other file scheme
URLs. It is recommended that If the application supports API level 15 and below, it must
be explicitly disabled using ​setAllowUniversalAccessFromFileURLs and
setAllowFileAccessFromFileURLs​ respectively so as to reduce the attack surface.

Preventing Excess Authorization
Android enables developers to inject Java objects into the webview, it allows JavaScript to
access the Java object methods. Developers can create a bridge between JavaScript and Java
using ​addJavascriptInterface method. This is a very powerful feature, but it had serious security
issues for API levels JELLY_BEAN and below.
API level 16 and below, allows JavaScript to execute all the public methods (including the
inherited ones) which can be abused in the scenario where ​addJavascriptInterface method is
invoked with untrusted content in a WebView, leaving the application vulnerable to scripting
attacks using reflection to access public methods through JavaScript.

Application developers should refrain from calling ​addJavascriptInterface, ​if the usage is
required developers must not support vulnerable Android versions (API level <=16).
Also, the following things must be taken care when registering the JavaScript interface:

1. The JavaScript content should be shared over a secure connection.
2. The JavaScript content should not be loaded from a third-partyserver.

Page 46 of 55

3. Security measures to prevent Cross Site Scripting(XSS) attacks must be strictly
followed. In order to secure the application from XSS attacks, application developers can
refer ​XSS Prevention Cheat Sheet​[62]​.

For API Levels 17 and above this issue was fixed as only public methods annotated with
JavascriptInterface could be accessed through JavaScript.

OWASP Dependency Check
Application developers often use components(e.g., framework libraries) that aren’t written by
them, as it is usually not realistic to write the entire application code from the scratch. It is very
usual that these application components have vulnerabilities. An attacker can identify these
vulnerable components during information gathering phase and can then frame the attack using
publicly available exploit code.

There are known vulnerabilities in common libraries for Android development such as ​OkHttp​[63]
and ​Apache Commons I/O​[64]​.

In order to reduce the attack surface, application developers must remove unnecessary
dependencies, features, components, files etc. Also, application developers must maintain an
inventory of the versions of both client side and server side components and sources like
CVE​[65]​ and ​NVD​[66]​ must be continuously monitored for vulnerabilities.
Fortunately ​OWASP Dependency Check​[​67] utility made the life of developers easy. The ​utility is
maintained by Jeremy Long, it identifies the project dependencies and reports on any known,
publicly disclosed, vulnerabilities.
The step by step guide of using the OWASP Dependency Check utility is very well explained
here​[68]​.

Page 47 of 55

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.cvedetails.com/cve/CVE-2016-2402/
https://www.cvedetails.com/product/32731/Apache-Commons-Collections.html?vendor_id=45
https://cve.mitre.org/
https://nvd.nist.gov/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://medium.com/@appmattus/android-security-scanning-your-app-for-known-vulnerabilities-421384603fc5

10 Things To Check Before Publishing The Application

Exhibit 26

Page 48 of 55

Conclusion
Adding security to the applications was yesterday’s need. In the present era of cyber security
and cyber crimes, it is integral that security is incorporated into the Software Development Life
Cycle(SDLC) itself and it goes hand-in-hand with development. The white paper will enable
developers and security researchers to securely code Android applications leveraging its
inherent security features.

The paper introduces the fundamentals of Android system architecture and the internals of the
Android application. This could serve as a bridge between developers who have limited
understanding of security and security analysts with limited knowledge of development.

Several security features like SafetyNet APIs, Android Keystores, Exploit Mitigation Techniques
etc. are discussed in this paper. The paper also addresses recommendations to common
problems like missing integrity checks, secure crypto implementations etc. In scenarios where
some of these features are already implemented, this paper could serve as a baseline to
distinguish the proper implementations from improper ones.

Page 49 of 55

About Author
Shiv Sahni is an information security professional with a master’s degree focused in Informatics
from Institute of Informatics and Communication, University of Delhi. He was also awarded a
gold medal from the University of Delhi for outstanding academic achievements. Shiv is working
as a Senior Security Analyst with Lucideus Technologies. He’s an Offensive Security Certified
Professional and BSI certified ISMS Lead Auditor ​and acquires the ​skills to perform automated as
well as manual vulnerability assessment and penetration testing along with the abilities to
provide code-level remedies to fix the open gaps. With close to two years of work experience in
web application, mobile application and network vulnerability assessment and penetration
testing, he specializes in Android application vulnerability assessment and penetration testing.
Shiv has worked with government and private industries to secure their digital infrastructure.
Some of the many industries include Banking, Financial Services and Insurance (BFSI), Online/
ECommerce, Food & Beverages, Media etc.

Lucideus Technologies: The Author’s Company
Lucideus Technologies is an Indian cyber security company and is the best IT Startup in India
awarded by the Government of India at National Entrepreneurship Awards 2016. Incubated out
of IIT Bombay, we are a pure play cyber security platforms company. We provide IT risk
assessment services and platforms to corporates and governments across the globe. We build
and deliver information security services, both generic and customized to proactively secure,
continuously monitor and reactively respond to cyber threats to your technology stack. Our
objective is quantify digital risk to inculcate a knowledge-based culture of safe and secure use of
technology, such that risk becomes an informed business decision leading to minimal
disruptions to your business and life.

About Technical Editor and Reviewer
Vidit Baxi is an information security analyst with 8 years of experience in handling over 200
cyber security & incident response projects across sectors around the globe. Areas of expertise
include Penetration Testing, Cyber Security Consulting, business process analysis, and risk
assessments. Vidit has tested a variety of applications and hardware platforms to identify
system-level as well as architectural-level vulnerabilities, and supported Tech Teams in fixing
potential business risks to enhance the overall security stature of the organizations. Working
with Lucideus since its inception and has played a vital role in setting up the cyber security
services division and relevant practices.

Tony Thomas is an Information security professional with 2 years of experience in the fields of
Web, Mobile and Network Security with his core competence being Mobile Security. He has
been an integral part of securing various Infrastructures ranging from the Government

Page 50 of 55

http://pib.nic.in/newsite/PrintRelease.aspx?relid=157785

Organisations to Independant Private Enterprises. Being OSCP Certified, he has also
conducted various penetration tests for critical and information sensitive environments. He has
also delivered various trainings across India to both the Development and Security Community.
Knowledge of the secure coding practices has enabled him to perform source code review on
various applications to identify logical bugs and misconfigurations in them.

Page 51 of 55

Acknowledgements

References
[1]​ ​https://www.gartner.com/newsroom/id/3725117
[2]
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-s
tore/
[3]​ ​https://developer.android.com/guide/platform/index.html
[4]​ ​https://source.android.com/security/overview/kernel-security#linux-security
[5]​ ​https://www.google.com/about/appsecurity/android-rewards/
[6]​ ​https://developer.android.com/training/safetynet/index.html
[7]​ ​https://developer.android.com/google/play/asi.html
[8]
https://android.googlesource.com/platform/system/core/+/master/libcutils/include/private/android
_filesystem_config.h
[9]
https://developer.android.com/reference/android/content/Context.html#MODE_WORLD_READA
BLE
[10]
https://developer.android.com/reference/android/content/Context.html#MODE_WORLD_WRITE
ABLE
[11]​ ​https://forum.xda-developers.com/apps/magisk
[12]​ ​https://developer.android.com/training/safetynet/attestation.html
[13]​ ​https://developer.android.com/guide/topics/permissions/requesting.html
[14]​ ​https://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf
[15]​ ​https://en.wikipedia.org/wiki/Remote_procedure_call
[16]​ ​http://www.delorie.com/gnu/docs/glibc/libc_317.html
[17]
https://developer.android.com/reference/android/content/Context.html#sendBroadcast(android.c
ontent.Intent)
[18]
https://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast(a
ndroid.content.Intent,%20java.lang.String)
[19]
https://developer.android.com/reference/android/content/Context.html#sendStickyBroadcast(an
droid.content.Intent)
[20]
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.ht
ml
[21]​ ​https://commons.wikimedia.org/wiki/File:Buffer_overflow_basicexample.svg

Page 52 of 55

https://www.gartner.com/newsroom/id/3725117
https://www.gartner.com/newsroom/id/3725117
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://developer.android.com/guide/platform/index.html
https://developer.android.com/guide/platform/index.html
https://source.android.com/security/overview/kernel-security#linux-security
https://source.android.com/security/overview/kernel-security#linux-security
https://www.google.com/about/appsecurity/android-rewards/?authuser=0
https://www.google.com/about/appsecurity/android-rewards/?authuser=0
https://developer.android.com/training/safetynet/index.html
https://developer.android.com/training/safetynet/index.html
https://developer.android.com/google/play/asi.html
https://developer.android.com/google/play/asi.html
https://android.googlesource.com/platform/system/core/+/master/libcutils/include/private/android_filesystem_config.h
https://android.googlesource.com/platform/system/core/+/master/libcutils/include/private/android_filesystem_config.h
https://android.googlesource.com/platform/system/core/+/master/libcutils/include/private/android_filesystem_config.h
https://developer.android.com/reference/android/content/Context.html#MODE_WORLD_READABLE
https://developer.android.com/reference/android/content/Context.html#MODE_WORLD_READABLE
https://developer.android.com/reference/android/content/Context.html#MODE_WORLD_READABLE
https://developer.android.com/reference/android/content/Context.html#MODE_WORLD_WRITEABLE
https://developer.android.com/reference/android/content/Context.html#MODE_WORLD_WRITEABLE
https://developer.android.com/reference/android/content/Context.html#MODE_WORLD_WRITEABLE
https://forum.xda-developers.com/apps/magisk
https://forum.xda-developers.com/apps/magisk
https://developer.android.com/training/safetynet/attestation.html
https://developer.android.com/training/safetynet/attestation.html
https://developer.android.com/guide/topics/permissions/requesting.html
https://developer.android.com/guide/topics/permissions/requesting.html
https://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf
https://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Remote_procedure_call
http://www.delorie.com/gnu/docs/glibc/libc_317.html
http://www.delorie.com/gnu/docs/glibc/libc_317.html
https://developer.android.com/reference/android/content/Context.html#sendBroadcast%28android.content.Intent%29
https://developer.android.com/reference/android/content/Context.html#sendBroadcast%28android.content.Intent%29
https://developer.android.com/reference/android/content/Context.html#sendBroadcast%28android.content.Intent%29
https://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast%28android.content.Intent,%20java.lang.String%29
https://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast%28android.content.Intent,%20java.lang.String%29
https://developer.android.com/reference/android/content/Context.html#sendOrderedBroadcast%28android.content.Intent,%20java.lang.String%29
https://developer.android.com/reference/android/content/Context.html#sendStickyBroadcast%28android.content.Intent%29
https://developer.android.com/reference/android/content/Context.html#sendStickyBroadcast%28android.content.Intent%29
https://developer.android.com/reference/android/content/Context.html#sendStickyBroadcast%28android.content.Intent%29
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html
https://commons.wikimedia.org/wiki/File:Buffer_overflow_basicexample.svg
https://commons.wikimedia.org/wiki/File:Buffer_overflow_basicexample.svg

[22]​ ​https://en.wikipedia.org/wiki/Address_space_layout_randomization
[23] Chapter 12:
https://www.wiley.com/en-us/Android+Hacker%27s+Handbook-p-9781118608647
[24]​ ​https://en.wikipedia.org/wiki/NX_bit
[25]​ ​https://en.wikipedia.org/wiki/Buffer_overflow_protection#PROPOLICE
[26]​ ​https://en.wikipedia.org/wiki/Buffer_overflow_protection#Canaries
[27]​ ​https://msdn.microsoft.com/en-us/library/bb288454.aspx
[28]​ ​https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
[29]
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard?src=spaceshortc
ut
[30]​ ​https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
[31]​ ​https://www.owasp.org/index.php/Source_Code_Analysis_Tools
[32]​ ​https://github.com/MobSF/Mobile-Security-Framework-MobSF
[33]
https://en.wikipedia.org/wiki/Talk:Digital_signature#/media/File:Digital_Signature_diagram.svg
[34]​ ​https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
[35]​ ​https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
[36]​ ​https://developer.android.com/studio/command-line/apksigner.html
[37]
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-w
ithout-affecting-their-signatures
[38]​ ​https://en.wikipedia.org/wiki/Collision_attack
[39]​ ​https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
[40]​ ​https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
[41]​ ​https://docs.oracle.com/javase/7/docs/api/java/security/KeyStore.html
[42]​ ​https://bouncycastle.org/specifications.html
[43] Chapter 7
https://www.amazon.in/Android-Security-Internals-Depth-Architecture/dp/1593275811#reader_1
593275811
[44]​ ​https://developer.android.com/reference/android/security/KeyChain.html
[45]​ ​https://en.wikipedia.org/wiki/Trusted_execution_environment
[46]​ ​https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
[47]​ ​https://developer.android.com/reference/java/security/KeyPairGenerator.html
[48]​ ​https://en.wikipedia.org/wiki/PBKDF2
[49]
https://source.android.com/security/reports/Google_Android_Security_PHA_classifications.pdf
[50]​ ​https://en.wikipedia.org/wiki/Google_Play_Services
[51]​ ​https://koz.io/inside-safetynet/
[52]​ ​https://developer.android.com/training/safetynet/verify-apps.html
[53]​ ​https://developer.android.com/training/safetynet/recaptcha.html
[54]​ ​https://developer.android.com/training/safetynet/safebrowsing.html
[55]​ ​https://source.android.com/compatibility/cts/

Page 53 of 55

https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://www.wiley.com/en-us/Android+Hacker%27s+Handbook-p-9781118608647
https://www.wiley.com/en-us/Android+Hacker%27s+Handbook-p-9781118608647
https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/Buffer_overflow_protection#PROPOLICE
https://en.wikipedia.org/wiki/Buffer_overflow_protection#PROPOLICE
https://en.wikipedia.org/wiki/Buffer_overflow_protection#Canaries
https://en.wikipedia.org/wiki/Buffer_overflow_protection#Canaries
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard?src=spaceshortcut
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard?src=spaceshortcut
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard?src=spaceshortcut
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://en.wikipedia.org/wiki/Talk:Digital_signature#/media/File:Digital_Signature_diagram.svg
https://en.wikipedia.org/wiki/Talk:Digital_signature#/media/File:Digital_Signature_diagram.svg
https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
https://developer.android.com/studio/command-line/apksigner.html
https://developer.android.com/studio/command-line/apksigner.html
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
https://en.wikipedia.org/wiki/Collision_attack
https://en.wikipedia.org/wiki/Collision_attack
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://docs.oracle.com/javase/7/docs/api/java/security/KeyStore.html
https://docs.oracle.com/javase/7/docs/api/java/security/KeyStore.html
https://bouncycastle.org/specifications.html
https://bouncycastle.org/specifications.html
https://www.amazon.in/Android-Security-Internals-Depth-Architecture/dp/1593275811#reader_1593275811
https://www.amazon.in/Android-Security-Internals-Depth-Architecture/dp/1593275811#reader_1593275811
https://www.amazon.in/Android-Security-Internals-Depth-Architecture/dp/1593275811#reader_1593275811
https://developer.android.com/reference/android/security/KeyChain.html
https://developer.android.com/reference/android/security/KeyChain.html
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://developer.android.com/reference/java/security/KeyPairGenerator.html
https://developer.android.com/reference/java/security/KeyPairGenerator.html
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/PBKDF2
https://source.android.com/security/reports/Google_Android_Security_PHA_classifications.pdf
https://source.android.com/security/reports/Google_Android_Security_PHA_classifications.pdf
https://en.wikipedia.org/wiki/Google_Play_Services
https://en.wikipedia.org/wiki/Google_Play_Services
https://koz.io/inside-safetynet/
https://koz.io/inside-safetynet/
https://developer.android.com/training/safetynet/verify-apps.html
https://developer.android.com/training/safetynet/verify-apps.html
https://developer.android.com/training/safetynet/recaptcha.html
https://developer.android.com/training/safetynet/recaptcha.html
https://developer.android.com/training/safetynet/safebrowsing.html
https://developer.android.com/training/safetynet/safebrowsing.html
https://source.android.com/compatibility/cts/
https://source.android.com/compatibility/cts/

[56]​ ​https://en.wikipedia.org/wiki/Cryptographic_nonce
[57]​ ​https://tools.ietf.org/html/rfc7515
[58]​ ​https://en.droidwiki.org/wiki/Google_Play_Protect
[59]
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
[60]
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04g-Testing-Cryptography.md
[61]​ ​https://en.wikipedia.org/wiki/Personally_identifiable_information
[62]​ ​https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
[63]​ ​https://www.cvedetails.com/cve/CVE-2016-2402/
[64]
https://www.cvedetails.com/product/32731/Apache-Commons-Collections.html?vendor_id=45
[65]​ ​https://cve.mitre.org/
[66]​ ​https://nvd.nist.gov
[67]​ ​https://www.owasp.org/index.php/OWASP_Dependency_Check
[68]
https://medium.com/@appmattus/android-security-scanning-your-app-for-known-vulnerabilities-
421384603fc5

Page 54 of 55

https://en.wikipedia.org/wiki/Cryptographic_nonce
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://en.droidwiki.org/wiki/Google_Play_Protect
https://en.droidwiki.org/wiki/Google_Play_Protect
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04g-Testing-Cryptography.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04g-Testing-Cryptography.md
https://en.wikipedia.org/wiki/Personally_identifiable_information
https://en.wikipedia.org/wiki/Personally_identifiable_information
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
https://www.cvedetails.com/cve/CVE-2016-2402/
https://www.cvedetails.com/cve/CVE-2016-2402/
https://www.cvedetails.com/product/32731/Apache-Commons-Collections.html?vendor_id=45
https://www.cvedetails.com/product/32731/Apache-Commons-Collections.html?vendor_id=45
https://cve.mitre.org/
https://cve.mitre.org/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://medium.com/@appmattus/android-security-scanning-your-app-for-known-vulnerabilities-421384603fc5
https://medium.com/@appmattus/android-security-scanning-your-app-for-known-vulnerabilities-421384603fc5
https://medium.com/@appmattus/android-security-scanning-your-app-for-known-vulnerabilities-421384603fc5

Additional Resources

OWASP Mobile Testing Guide
https://github.com/OWASP/owasp-mstg

Google’s Android Security 2016 Year In Review
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf

Carnegie Mellon University Secure Coding Blogs
https://wiki.sei.cmu.edu/confluence/display/android/Android+Secure+Coding+Standard?src=spa
ceshortcut

Android Security Internals
https://www.nostarch.com/androidsecurity

Mobile Application Hacker’s Handbook
http://onlinelibrary.wiley.com/book/10.1002/9781119183655

Android Hacker’s Handbook
https://www.wiley.com/en-us/Android+Hacker%27s+Handbook-p-9781118608647

Research Paper-Analysis of Secure Key Storage Solutions on Android
http://www.cs.kun.nl/~erikpoll/publications/AndroidSecureStorage.pdf

Research Paper- Analyzing WebView Vulnerabilities in Android Applications
 ​https://pdfs.semanticscholar.org/99be/d589a51c763133c9fb4222beb35950c31788.pdf

SafetyNet: Google's tamper detection for Android by John Kozyrakis
https://koz.io/inside-safetynet/

Android Developer Blogs
https://developer.android.com/training/articles/security-tips.html#IPC

Page 55 of 55

https://github.com/OWASP/owasp-mstg
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://wiki.sei.cmu.edu/confluence/display/android/Android+Secure+Coding+Standard?src=spaceshortcut
https://wiki.sei.cmu.edu/confluence/display/android/Android+Secure+Coding+Standard?src=spaceshortcut
https://www.nostarch.com/androidsecurity
http://onlinelibrary.wiley.com/book/10.1002/9781119183655
https://www.wiley.com/en-us/Android+Hacker%27s+Handbook-p-9781118608647
http://www.cs.kun.nl/~erikpoll/publications/AndroidSecureStorage.pdf
https://pdfs.semanticscholar.org/99be/d589a51c763133c9fb4222beb35950c31788.pdf
https://pdfs.semanticscholar.org/99be/d589a51c763133c9fb4222beb35950c31788.pdf
https://koz.io/inside-safetynet/
https://developer.android.com/training/articles/security-tips.html#IPC

