
Software Distribution Malware Infection Vector
Felix Gröbert, Ahmad-Reza Sadeghi, Marcel Winandy

Horst Görtz Institute for IT Security
Ruhr-Universiẗat Bochum

Abstract

Software distribution and usage over the Internet has be-
come an integral part of our daily life. On the one hand
this is an efficient way to make software widely avail-
able to users, particularly for the open source and free
software. On the other hand it bears the risk of infect-
ing computer platforms by malicious software since to-
day many software applications are downloaded and in-
stalled without appropriate security measures. This sit-
uation can obviously be exploited by cyber criminals,
and also by Governments intending to deploy spyware
against suspects.

In this paper we present an efficient mechanism as well
as the corresponding reference implementation for on-
the-fly infecting of executable code with malicious soft-
ware. Our algorithm deploys virus infection routines and
network redirection attacks, without requiring to modify
the application itself. This allows to even infect executa-
bles with a embedded signature when the signature is not
automatically verified before execution. We briefly dis-
cuss also countermeasures such as secure channels, code
authentication as well as trusted virtualization that en-
ables the isolation of untrusted downloads from other ap-
plication running in trusted domains or compartments.
Keywords: Malicious code, infection, virtualization,
Trusted Computing

1 Introduction

Today, software applications (tools, plug-in, etc.) are in-
creasingly downloaded over the Internet making this me-
dia an effective means for software distribution. How-
ever, software distribution in an open and complex sys-
tem such as Internet is also exposed to threats like mali-
cious software that exploits the vulnerabilities of today’s
commodity computing platforms (in particular common
operating systems) to gain control over the victim’s com-
puting platform or spy on it. The financial losses caused
by malicious software are enormous and malware is one
of the most severe threats to information society. Hence,
potentially every single download could have been in-
fected during the transmission under certain circum-
stances. Particularly, for the free and open source soft-
ware it is not common practice to apply corresponding
security measures to downloads before executing them.
Prominent examples are the browser Firefox and the me-

dia player VLC1.Typical protection mechanisms such as
integrity verification and code signing are not applied to
the major part of open source application software. In
addition new malicious software might not be detected
by common anti-malware tools. Moreover, the required
organizational and technical infrastructure (e.g., for trust
management) either does not exist or seems to be not
easy to establish. To infect downloads only an interme-
diate network node in the chain of nodes from the client
to the download server has to act maliciously on the traf-
fic. The network link can be compromised in different
ways, e.g., by malicious administrators, a compromised
router, or network redirection attacks. This threat gets a
new flavor and even more challenging to face when Gov-
ernments attempt to exploit malicious code2. Infection
techniques similar to those presented in this paper can be
considered for this purpose.

In this paper we present an efficient mechanism as well
as a reference implementation for on-the-fly infecting of
executable code with malicious software. Our algorithm
exploits virus infection routines and network redirection
attacks, which will be elaborated in Section 2. Our at-
tack vector simply adds a malicious payload (malware)
to the original application during transmission. There
are various techniques to infect a binary executable ap-
plication with malware (see, e.g., [24]). Most of these
techniques typically modify the original application to
include a small malicious code. In contrast we use a
binder (also called companion or joiner) to execute the
malicious code along the original application. The infec-
tion method of the binder just concatenates the binder ap-
plication, the malware and the original application. Since
original application is not modified one has the advan-
tage that the malicious code can be of a larger size, and
thus provide more functionality. Then, upon starting the
infected application the binder is started. It parses its
own file for additional embedded executable files, re-
constructs and executes them, optionally invisible for the
user. Another advantage of the binder technique is that
the adversary does not need to buffer the file because the

1Firefox has 277.000 downloads per day since February 2004
(http://feeds.spreadfirefox.com/downloads/
firefox.xml ), and VLC has an average of 100.000 down-
loads since February 2005 (http://www.videolan.org/
stats/downloads.php )

2The recent public debate in Germany on the so-called ‘federalTro-
jans’ is a good example in this case. The malware is supposed to be
developed by the federal investigation office to enable law enforcement
to search and spy on the computer platforms of suspects.

1



adversary just prepends the original file to the binder and
the malware. Other infection techniques modify the orig-
inal file and thus require seeking forward and backward
inside the target file. This yields a buffering delay com-
pared to the binder technique. Such a delay might rise
suspicion by the victim or may render the attack useless
if the victim manually executes additional file checks,
i.e. hash comparison with a authentic reference hash.
Under certain circumstances this allows for even infect-
ing signed and encrypted executables. If the underlying
computer platform does not automatically verify the sig-
nature of an executable file before launching it and if it
is left to the user to verify it manually. In this case the
attack would be successful, since an average user usually
does not check whether a binary executable is signed or
not.

To mount the attack, the adversary has to infect the
binary executable in transmission and at the same time
maintain the correctness of the network transmission
protocol used for the download, e.g.,HTTP. Otherwise
the protocol parser of the receiving network node will
not accept the infected application as a result of the mal-
formed protocol.

Outline: The remainder of this paper is organized
as follows: In Section 2 we consider relevant related
work. Section 3 presents the adversary and threat model,
while Section 4 provides some possible countermeasures
against the threats. Section 5 describes our reference im-
plementation of the attack and Section 6 concludes with
a discussion and outlook.

2 Related Work

There is a large body of literature on network flow redi-
rection attacks on the multiple ISO/OSI layer 2 and 3
protocols. For the most commonly used protocols one
can refer to802.11 Wireless LAN takeovers [34],ARP

injection to reroute traffic [33],DNS poisoning to in-
sert fake IP addresses for domain names into name-
servers [30],ICMP redirection messages [15],BGPv4

route manipulation attacks [17],IPv6 traffic rerouting
attacks [10, 32].

Virus infection routines can be found in many practical
tutorials and in textbooks. In [16] a good overview of the
win32 PE 3 file format is given and different infection
methods are outlined. Additional infection methods are
presented in [24]. A more formal view can be found, e.g.,
in [31].

In [22] the authors demonstrate the man-in-the-middle
toolkit ettercap and mention the possibility of infect-
ing binary executable applications on-the-fly during the

3Windows 32 Bit Portable Executable

download phase. In [27] the author states that a software
update server is a significant target, but does not combine
this threat with on-the-fly infection routines and network
flow redirection attacks.

In [8, 9] security flaws of router firmwares are pre-
sented and the author exploits the flaws to modify
the router and add an on-the-fly infection routine for
win32 PE files downloaded throughHTTP. Their infec-
tion method differs from our approach in the follow-
ing aspects: firstly, it is limited to add a downloader
to the binary file by the modification of the DOS stub4

andPE header. The downloader then downloads a spe-
cific malware and executes it alongside the original ap-
plication. We present an on-the-fly infection method,
the binder technique, which already binds the malware
to the original application and thus overleaps the pro-
cess of downloading the malware in a separate malicious
connection. This technique is more flexible for the ad-
versary. The second difference to our approach is that
since our method does not require to modify the origi-
nal target application file one can attach malware even
to an executable with a embedded signature and still
succeed to execute the malware under certain circum-
stances. Thirdly, while we underline the usage of net-
work flow redirection attacks to gain control over the
download link, their approach is limited to the modifi-
cation of router firmware.

3 Adversary and Threat Model

The goal of our attack is to execute malicious code on
a target network node. When the target is downloading
a binary executable application, our method infects the
application during transmission at which we assume that
one network node is under control of an adversary (Fig-
ure 1). The infection routine adds malicious code (mal-
ware) to the binary executable application. Thus, the ma-
licious code will get executed by executing the infected
application. We do not discuss detectability or features
of malware and malware design, and focus on the infec-
tion vector, which can be used in different ways. On the
one hand, the adversary can mass exploit multiple vic-
tims which may request binary executable applications.
On the other hand, the adversary can select single victims
and infect few applications. A mass exploitation of the
attack vector might be suitable to build up a short term
botnet. A selection of a few victims is more suitable to
lower the chance that the malware “signature” is detected
and included in antivirus tools. For launching the attack
we make the following assumptions:
Modification of target traffic. In order to infect a bi-

4A small DOS program to warn the user that the application only
runs under Windows

2



server victim

adversary

local
network

node

local
network

node

global
network
nodes

original
application

infected
application

global
network
nodes

global
network
nodes

rerouted traffic due to
network flow attack

regular routed traffic

Figure 1: Malicious network node is inserted into the
network link using a network flow redirection attack.

nary executable, the adversary has to have the ability to
modify network traffic that contains the application. This
implies that the adversary is in control of at least one net-
work node which is part of the network link over which
the victim is downloading the file. For this, the adversary
has various options of choosing between classic attacks
to gain administrative privileges on a network node (e.g.,
buffer overflows) and network flow redirection attacks to
include an additional malicious network node within the
corresponding network link (Figure 1). A network flow
redirection attack, cf. [10, 15, 17, 29, 30, 32, 34, 33], can
redirect the traffic to a host over which the adversary has
full control. The third possibility concerns a malicious
node that may be under the control of a system adminis-
trator or that the administrator was tricked to include the
node by social engineering. The fourth option can be the
law enforcement pursuing a suspected criminal. The law
enforcement is able to force an Internet service provider
to deploy a “malicious” node inside the network link of
certain users.
Absence of protocol inherent integrity checks. The
protocols containing the target traffic running between
the user and the download server do not enforce encryp-
tion or integrity verification of the traffic. The protocol
may calculate checksums and add them to protocol pack-
ets, but only under the condition that the adversary, i.e.,
the malicious node, is able to recalculate and adjust the
checksums.
Absence of local file integrity verification. The in-
tegrity of the file containing the application is not cryp-
tographically checked after the transmission using cryp-
tographic keys distributed a priori, e.g., a comparison of
hash of the downloaded file with a trusted database of
hashed files obtained over a secure channel. Such checks
must not occur manually by the user, by the software dis-
tribution system or by the operating system. Due to the
nature of the binder (see Section 3.1) the original appli-
cation may embed signatures and decryption algorithms:
the binder reconstructs the original application file and
creates a process from the original file. Thus the applica-
tion will then be in the same state as if the user had ran it

manually.
Detectability. Potential antivirus scanners and host or
network intrusion detection systems do not detect the
binder or the malware. This assumption is reasonable
under the condition that the malware deployed by our at-
tack vector is used in a small scale. Mass exploiting a
large network with one single malware would lead to de-
tection after some time.

Note that, although the assumptions on the absence of
protocol or local integrity verification seem to be very
restrictive, this lack of security reflects common practice
in commodity operating systems for PC platforms and
especially in the context of the distribution of free and
open software applications.

3.1 High-Level Construction

The attack vector consist of a set of actions which mod-
ify the original application in transmission to deliver a
payload functioning as a malware application. There are
multiple techniques to infect a binary executable appli-
cation [24] with malware. Depending on the operating-
system-specific binary executable file loader interprets
the data structures in the binary file. A binary executable
file consists of several sections and a header [16], thus
the infection routine first has to determine the ideal po-
sition for the malware code inside the original applica-
tion. An infection routine can add new sections to the
application, enlarge sections and append or prepend the
malicious code, or find several cavity spaces to spread
the malicious code inside the application. At some stage
the code has to be executed. Therefor the pointer to the
entry code instruction and pointers to other code sections
have to be modified. Other techniques use hijacking API
function pointers or insert jump instructions which jump
to the malicious code in specific places. All of the above
techniques have in common that the original application
file is modified.

In contrast our approach uses a binder to execute the
malicious code along the original application, as illus-
trated in Figure 2. The binder extracts and executes mul-
tiple binary executable files from the infected application
file. Optionally, the binder decrypts itself and attached
applications, or it may also execute certain malware ap-
plications in an invisible way for the user. It has the ad-
vantage that the malicious code can be a malware of large
size, and thus have more functionality while the original
application file structure is not modified and rebuilt be-
fore launching.

As the binder technique does not modify the original
application, it is well-suited for executables with embed-
ded signatures or code decryption algorithms under the
following circumstances: As the original file is recon-
structed and executed upon running the binder, the ap-

3



binary

executable

application

malware

binder

binder

malware

application

read partial file

spawn process

Figure 2: Binder spawning child processes

plication file is in a integral state, i.e., the same state as
if it has not been modified, and the application has to
specifically search for the binder to determine if a ma-
licious payload was executed alongside the application
file. Moreover, there are buffering advantages compared
to other infection techniques since they add new sections
to a file and modify headers based on those new sections.
This requires seeking forward and backward inside the
target file, which yields a buffering and computational
delay compared to the binder technique. Such a delay
might rise suspicion by the victim and may yield the at-
tack unsuccessful if the victim would be able to compare
a hash of the file with a trusted reference value in a secure
manner, and chooses not to execute the file. The binder
just concatenates the binder application, the malware and
the original application.

The attack has a simple structure shown in the follow-
ing algorithms. The contents of the protocol, which is
used to transfer the binary executable, are combined to
a data stream input to the algorithm 1fixprotocol() .
The data stream is read block-wise and the block size
and the corresponding logic depends on the underlying
protocol. The incoming protocol stream is adjusted, also
depending on the protocol, e.g., the checksum or length
fields are modified to contain the infected binary exe-
cutable and at the same time maintain protocol valid-
ity. The protocol fields have to be adjusted because a
malformed protocol packet would not be accepted by the
victim, who would discard the packet, rendering the at-
tack useless. When algorithm 1fixprotocol() has
adjusted the protocol fields and a binary executable is
detected on the incoming protocol streaminfect() is
called on.

First, infect() validates whether(A,B,M) are
known binary executables of the same type and target
operating system:infect() buffers 512 bytes from the
streamA and the filesB andM and compares the data
structure to known data structures of binary executables.
This ensures that the malware and the binder can be ex-
ecuted and are functional on the victim’s operating sys-
tem. If there a mismatch is found,infect() discards

Algorithm 1 Protocol Handling Algorithm: fixprotocol()

Require: Incoming and outgoing protocol data streamP and
Pinfected, binderB, malwareM

Ensure: P contains a protocol without cryptographic in-
tegrity checks, authentication or confidentiality
while Pblock ←read incoming logic block fromP do

if Pblock = protocol headerthen
Pblock−infected ←fix protocol headers, i.e., adjust
length fields to include sizes ofB andM

end if
if Pblock = protocol checksumthen

Pblock−infected ← fix protocol checksum to includeB
andM

end if
if Pblock = binary executable applicationthen

Pblock−infected ← infect(P, B, M)
end if
sendPblock−infected to outgoing protocol data stream
Pinfected

end while

Algorithm 2 Infect Binary Executable Application: infect()

Require: original and infected binary executable application
data streamA andAinf , binderB, malwareM

Ensure: A, B, M are binary executables of the same operat-
ing system
Ainf ← B‖M
while Ablock ← read byte fromA do

Ainf ← Ablock

end while

the application. If not,infect() concatenate the binder
B and the binary executable malwareM and prepends
the result to the original applicationA. The result is de-
noted byAinf , which is the output data stream and re-
turns the bytes tofixprotocol() for further protocol
handling.

4 Countermeasures

In this section we consider some countermeasures
against infection attacks.
Network Integrity Assurance. A short-term counter-
measure is the usage of security protocols that deploy
cryptographic measures. One possibility is VPN solu-
tions like OpenVPN [2] orIPSec , which aim at pro-
viding integrity, authenticity and confidentiality of the
message payload containing the downloaded binary ex-
ecutable file. Another possibility is to use end-to-end
cryptographically secured protocols, e.g.HTTPS [18],
which also aims at assuring integrity, authenticity and
confidentiality. In this case the adversary would have
to launch a man-in-the-middle attack onHTTPS. Such
an attack yields a warning window in current browsers,

4



that the server certificate is invalid, i.e., unsigned by an
certificate authority. But certain browsers contain client-
side flaws which enable the spoofing of the integrity of
a SSL certificate [20]. If we consider VPN solutions, we
have to keep in mind that a VPN only secures a subset of
the whole network link, over which the binary executable
application is transmitted. The other side of the network
link remains insecure. An attacker, who has control over
a local network node on the side of the server, or a global
network node, would still be able to modify the traffic.

File Integrity Assurance. If the network protocol was
unable to detect the modification of the binary executable
application file, software that is already installed has to
detect the modification of the received file. In a binary
signing and verification system, executable files are cryp-
tographically signed and the signature is inserted as a
specific data-structure inside the file itself. If the appli-
cation is started the OS can verify the signature and op-
tionally inform the user. We can deduce that the binder
method also works in this case. When the infected ap-
plication, e.g., the binder, is launched, it is started in a
unsigned context. Although the unsigned context prior
or after the launching of the application might raise sus-
picion of the security-aware user, it is common that most
applications are unsigned. Furthermore on Windows XP
the user has to manually check the signature of the file,
whereas Windows Vista checks the signature automati-
cally before execution. The binder then extracts the orig-
inal and signed application, and starts it. Upon start-
ing the signed application, the binder has reconstructed
the original state of the underlying executable file, and
the OS loader will determine that the signature is valid.
Hence, to avoid this situation the signature of the down-
loaded file must be verified before launching the file, i.e.
the binder.

There exist OS approaches that verify executable files
before loading and running them. For instance, Trust-
edBox [19] is a modified Linux kernel which prohibits
the execution of modified program files. However, the
verification is only performed in a special trusted state
whereas the system has to be booted from a non-writable
boot media which contains the reference values for in-
tegrity check. Thus, approaches like this are not suit-
able for downloadable applications where the reference
values are not known a-priori. In [21] the kernel pro-
hibits execution of modified programs. It identifies unau-
thorized modifications based on verifying cryptographic
signatures which are stored with each application file.
However, this approach requires each application to be
digitally signed and the secure distribution of signature
verification keys. The problem of secure key distribution
is out of the scope of this paper. A common misconcep-
tion is that the trivial file check using the comparison of

hashes, shown on aHTTP website, does not verify the
authenticity since the reference values would have to be
obtained through a trusted channel.

Detection. There are various approaches towards mal-
ware detection [12], however, if one makes the assump-
tion that the malware, which is delivered along the
binder, is not detected, the only possibility for antivirus
scanners to detect the attack is to detect the signature or
the behavior of the binder (Section 5). This is along the
lines of the typical arms-race in the virus vs. antivirus
world today. Additionally, the binder can be rewritten
and compiled in ways that a current signature could not
detect it. Furthermore, the binder can use techniques like
metamorphic5 code [23] to evade virus scanners. Also,
the usage of another infection technique must be consid-
ered [16].

Trusted virtualization. To consider the problem of in-
fection more fundamentally, a promising (and recently
rediscovered) approach is towards secure and interopera-
ble operating systems. Commodity operating systems do
not provide the properties required to reduce the impact
of malware due to lack of appropriate security function-
ality on the one hand and due to their complexity on the
other hand. Moreover, the compatibility to legacy sys-
tems is an important requirement for any new system to
be widely deployed6. In this context virtualization tech-
nology provides an efficient means for isolating poten-
tially critical applications from others while allowing the
interoperability and re-use of existing operating systems
and applications. Virtualization is an already known and
probed technology and today it is supported by the new
processor generation [11] and [6]. It is rediscovered re-
cently, particularly in the context of Trusted Computing.
The combination of virtualization and Trusted Comput-
ing technologies provides a set of security features such
as secure/verifiable boot, and isolation and controlled
communication between virtual machines. Some exam-
ples in this context are [28, 7, 25, 14, 13]. More con-
cretely, [13] gives an implementation based on trusted
computing functionalities according to specifications of
the TCG (Trusted Computing Group) and a small se-
curity kernel aiming at integrating and enhancing solu-
tions based on identity providers (like password man-
agers [7]), and also at providing protection against mal-
ware and interface spoofing like picture-in-picture at-
tacks7.

5Code that mutates itself while keeping its intended algorithm intact
6This aspect is a major reason why many secure operating systems

developed during the past 25 years have not been commercially suc-
cessful.

7Seewww.emscb.org

5



Anonymizers. Anonymizers8 like Tor [4] can be de-
ployed to support the mentioned means to hide identi-
ties in case Governments deploy infection mechanisms
to trace suspects. Note that the state can be considered
as a very powerful entity with access rights to many re-
sources. Typically, law enforcement targets a limited
number of suspects, thus we can assume that law en-
forcement has to identify the victim before the attack.
However, this would be a hard task if the suspects use
anonymizers.

5 Implementation

Our proof of concept implementation consists of two
parts: cyanid and calcium . Cyanid is a toolchain
(based on [1, 5, 3]) to fetch, filter and modifyHTTP

downloads, andcalcium is a binder to infectwin32

PE binary executables. The implementation allows for
adding a chosen malware, e.g., a Trojan, to a binary
executablewin32 application which is downloaded via
HTTPby the victim. The malware is executed in a hid-
den form, using the Windows API, and in parallel to the
original application. The target has to run Windows 98
or newer.

Proxy. The cyanid proxy toolchain uses existing soft-
ware to modifyHTTPbinary downloads. The toolchain
consists of Netfilter [1], Transproxy [5] and a patched
Privoxy [3]. The Privoxy patch consists of 27 lines
of added and modified C code. In analogy to Section
3.1, cyanid implements the algorithmsinfect() and
fixprotocol() .

Using Netfilter and Transproxy we are able to place
an intercepting ISO/OSI layer 7 proxy between anyTCP

connection which is routed over a network node we con-
trol. Netfilter is a framework in the Linux 2.4.x and 2.6.x
kernels to support packet filtering, network address and
port translation and other packet mangling. We use the
Netfilter REDIRECTtarget to redirect specificTCP con-
nections, i.e., with destination port 80, to our localhost.
On localhost the Transproxy software listens for incom-
ing connections and forwards the connection including
the original destination host to the layer 7 proxy, Privoxy.

Privoxy is aHTTP proxy designed to modify traffic.
It enhances privacy on the client-side, e.g., by filtering
HTTPcookies, and modifies websites on the server-side,
e.g., by filtering advertisements. Thus, Privoxy can be
used to filter and rewriteHTTP requests and responses.
In order to modify binary data transmitted overHTTP,

8Tools like Tor provide a tunnel, which bypasses local and state-
specific network nodes and provides anonymity for the client half of
the network link, and there is no other (outband) informationabout
him available.

we had to patch Privoxy: we enabled a filter rule no-
tation to specify binary data (\xNN ) and modified the
filter rule structure to includeNULL bytes in the filter
regular expressions. Additionally, we had to enlarge
buffer sizes to handle binary data of several megabytes.
Then, in the privoxy configuration a filter rule of the type
s-ˆMZ-\x4d\x5a\x00... MZ- is specified. The
expressions-ˆMZ- matches awin32 executable file by
searching for its characteristic byte sequenceMZ. These
bytes are replaced by the byte sequence of the binder
concatenated with the malware. The last two bytes in the
filter rule (MZ) reconstruct the substituted executable sig-
nature. This rule results in the following modified binary
file: ( (byte sequence of (binder‖ malware) )‖ (original
binary file) ). Because the victim uses a unauthenticated
protocol, e.g.HTTP, we are able to modify the contents
of the protocol.

Binder. Thecalcium binder implementation parses it-
self for additional executable binaries, extracts and exe-
cutes the binaries (see Figure 2). It consists of 134 lines
of C code and generates a binary of length 18665 bytes,
although we expect that the size can be reduced through
compiler optimizations. The binder can execute multiple
malwares and hides their displayed windows. It’s default
configuration parses it’s own executable file for 256 byte
long characteristic patterns, extracts the files between the
patterns and executes the files. The malware has to be
placed between patterns at an odd position proceeding
the binder. The visible-started software is also placed
between the patterns at an even position. If the con-
tent between two patterns is a malware, the binder hides
its execution through standard Windows API calls. This
may result in the following concatenation of binaries and
patterns: (binder ‖ pattern ‖ hidden malware
‖ pattern ‖ original software ‖ pattern ‖
hidden malware ). Because the operating system
does not verify the structure of the infected executable
file, the binder is able to execute the malware in parallel
to the original application.

Efficiency. The cyanid proxy can infect binary exe-
cutables up to 3 megabytes. While downloading an ap-
plication of 3 megabytes a buffering delay of about 3 sec-
onds is noticeable. Thecalcium binder works on Win-
dows XP SP2 and Vista 32-bit Business. Depending on
the malware used, the operating system shows warning
messages produced by a bindshell for example. With a
custom malware we were able to suppress the antivirus
warnings. A test using an installer, which contained an
embedded signature in its executable file, was successful
on Windows XP and showed no warning messages. Win-
dows Vista warned that the infected installed contained
no signature.

6



6 Discussion

The currentcyanid toolchain buffers the complete file,
modifies it and then streams it to the users. Depending
on the bandwidth and file size a delay is noticeable. Be-
cause thecalcium infection routine only prepends the
binder to the original file, a better proxy implementation
would reduce the lag, which is currently generated by the
buffering of the original file inside Privoxy.

The infection implementation —calcium — uses the
binder technique to prepend malware ahead of the bi-
nary executable file. Other methods [16][24] include
header infection withAddressOfEntryPoint modifi-
cation, code section prepending, and cavity code, which
have all in common that they modify the original file.
Although the detection of the binder is very easy for an
antivirus engine based on its binary sequence signature,
methods exist to evade the antivirus detection, e.g., by
encrypting the binder and thus the signature of its code.

A drawback of the current implementation is that the
application icon, which is showed by the file browser,
is changed to the application icon of the binder. This
might raise suspicion by the user. However, the binder
may modify its icon on each infection and mimic the
application icon by simply copying the image of the icon
in the original application file.

In our future work thecyanid implementation will
get more targets like Mac OS Xdmg containers and tar-
balls of source code. Thewin32 PE malware routine
and the infection function might be enhanced to leave
the icon and the file size unmodified.

References

[1] Linux Netfilter. http://www.netfilter.org .

[2] OpenVPN.http://www.openvpn.org .

[3] Privoxy. http://www.privoxy.org .

[4] Tor. http://tor.eff.org .

[5] Transproxy.http://transproxy.sf.net .

[6] Advanced Micro Devices, Inc. AMD64 Virtualization Code-
named “Pacifica” Technology, 33047-rev. 3.01 edition, May.

[7] A. Alkassar, M. Scheibel, C. Stüble, A.-R. Sadeghi, and
M. Winandy. Security architecture for device encryption and
VPN. In Proceedings of Information Security Solutions Europe
(ISSE 2006), pages 54–63. Vieweg-Verlag, 2006.

[8] Barnaby. Exploiting Embedded Systems. InBlackhat Amster-
dam, 2006.

[9] Barnaby. Exploiting Embedded Systems The Sequel. In
CanSecWest, 2007.

[10] Biondi and Ebalard. Fun with IPv6 routing headers. In
CanSecWest, 2007.

[11] I. Corporation. LaGrande technology architectural overview.
Technical Report 252491-001, Intel Corporation, Sept. 2003.

[12] W. Cui, R. H. Kat, and W. tian Tan. Design and implementation
of an extrusion-based break-in detector for personal computers.
In Proceedings of the ACSAC, 2005.

[13] S. Gajek, A.-R. Sadeghi, C. Stüble, and M. Winandy. Compart-
mented Security for Browsers – Or How to Thwart a Phisher with
Trusted Computing. InARES 2007: Proceedings of the Second
International Conference on Availability, Reliability and Secu-
rity. IEEE, 2007.

[14] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: a virtual machine-based platform for trusted computing. In
Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), pages 193–206. ACM, 2003.

[15] Gill. ICMP redirects are bad. InCYMRU, 2002.

[16] Goppit. Portable Executable File Format - A Reverse Engineer
View. Code Breakers Journal, 2(2), 2005.

[17] Greene. BGPv4 Security Risk Assessment, 2002.http://
www.cymru.com/Documents/barry2.pdf .

[18] IETF. RFC 2818 HTTP Over TLS, 2000.

[19] P. Iglio and F. U. Bordoni. Trustedbox: a kernel-level integrity
checker. InProceedings of the 15th Annual Computer Security
Applications Conference (ACSAC ’99). IEEE Computer Society,
1999.

[20] ISS X-Force. Mozilla SSL certificate spoofing (http://
xforce.iss.net/xforce/xfdb/16796 ), Multiple ven-
dor SSL intermediate CA-signed certificate spoofing (http:
//xforce.iss.net/xforce/xfdb/9776 ).

[21] G. Mohay and J. Zellers. Kernel and shell based application in-
tegrity assurance. InProceedings of the 13th Annual Computer
Security Applications Conference (ACSAC ’97). IEEE Computer
Society, 1997.

[22] Ornaghi and Valleri. Man in the middle attacks demos. InBlack-
hat US, 2003.

[23] Pearce. Viral Polymorphism. 2003.

[24] Rozinov. PE File Infection Techniques, 2005.

[25] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Doorn, J. L. Grif-
fin, and S. Berger. sHype: Secure hypervisor approach to trusted
virtualized systems. Technical Report RC23511, IBM Research
Division, Feb. 2005.

[26] A. Singh. Understanding Apple’s Binary Protection in Mac
OS X, 2006. http://osxbook.com/book/bonus/
chapter7/binaryprotection .

[27] Skoudis. Don’t discount software distribution sites as attack vec-
tors, 2005.http://SearchSecurity.com .

[28] A. Spalka, A. B. Cremers, and H. Langweg. Protecting the cre-
ation of digital signatures with trusted computing platformtech-
nology against attacks by trojan horse programs. InSec ’01: Pro-
ceedings of the 16th International Conference on Information Se-
curity: Trusted Information, pages 403–419. Kluwer, 2001.

[29] Spangler. Packet Sniffing on Layer 2 Switched Local AreaNet-
works. InPacketwatch Research, 2003.

[30] Steinhof, Wiesmaier, and Araujo. The State of the Art in DNS
Spoofing. InACNS, 2006.

[31] H. Thimbleby, S. Anderson, and P. Cairns. A framework for mod-
elling Trojans and computer virus infection.Computer Journal,
41(7):444–458, 1999.

[32] van Hauser. Attacking the IPv6 Protocol Suite. InProceedings
of the 22C3, 2005.http://www.thc.org/thc-ipv6/ .

[33] Whalen. An Introduction to ARP Spoofing.2600 Magazine, Fall
2001.

[34] D. Zovi and Macaulay. Attacking automatic wireless network
selection. InIEEE SMC IAW, 2005.

7


