

SMB Hijacking.
 Kerberos is defeated.

© Ares, June 2013

intercepter.mail@gmail.com
http://sniff.su

Intro

The last thing i wanted to do was to talk about SMBRelay (or actually NTLM-
Relay) one more time. It was discussed many times before, even by me.
Just to remind, it is about manipulating user's credentials that can be redirected to
third-party resource. This kind of manipulation (called relaying) gives us an ability
to authenticate and get access to that resource. Usually an attacker is able to
execute some code remotely.

Development of SMBRelay has stopped for a while. Right, it seems that
everything is done and known already. A year ago Intercepter-NG learned to
perform SMBRelay with NTLM version 2. After a few months NTLMv2-relay
appeared in Metasploit. Well, this is the logical end. The SMBRelay itself is
outdated and almost unusable. It is much easier to perform NTLM-relay against
another protocols such as HTTP. Furthermore, using SMBRelay in the networks
with Domain is complicated by usage of "undefeatable" Kerberos, that is usually
called "the cure against SMBRelay". In this research i want to break this myth and
introduce a completely new way of attack against SMB protocol. It is necessary to
note that this kind of attack is not actually SMBRelay, let's call it SMB Hijacking.

SMB Hijacking. Kerberos is defeated.
©Ares, 2013 – http://sniff.su

Getting started

Working on the new version of Intercepter i created NTLM-response grabber in
WPAD MiTM. To quickly check if the NTLM-response (and other types of
hashes) were easy to crack i added an option to invoke John the Ripper right from
the program. Looking through Wireshark's archive of packet captures i found one
with Kerberos data inside. Cain was able to get some kind of hash from it and
recover password by means of bruteforce attack. The bruteforce is possible
because the AS-REQ request to authentication server contains a timestamp that is
encrypted by user's password, and some part of the timestamp is known beforehand.
The Kerberos dissector was added to Intercepter and tested on the live Domain
Controller (Windows 2008 R2). Unfortunately nothing was intercepted.
But why? The deal is that new encryption algorithms were added to Windows 2008
and old rc4-hmac was replaced by new aes256-cts-hmac-sha1-96. After little
modifications new hash type was intercepted, but a new problem occurred. There
are no suitable tools to recover password from aes-encrypted timestamp. On the
openwall's maillist i found that someone coded a patch for JTR (john the ripper),
but it still seems kinda raw. Moreover, bruteforcing aes is hundred times slower
than rc4.

That's how Kerberos Downgrade feature appeared in Intercepter-NG. Old DES
encryption was completely disabled starting from Windows 7\2008 R2, hence there
was no reason to downgrade aes down to des. The lowest possible algorithm is rc4
now.

It became my starting point to dig into Kerberos a little bit deeper.

SMB Hijacking. Kerberos is defeated.
©Ares, 2013 – http://sniff.su

The downgrade is easy: just replace available encryption types in outgoing packet.

SMB Hijacking. Kerberos is defeated.
©Ares, 2013 – http://sniff.su

SMB Hijacking

So, reading different documents about Kerberos i've learned that it is vulnerable to
the some kind of replay attacks. However i found only two real tools that perform
evil tricks with Kerberos tickets: an old one kdcspoof, by Dug Song and a tool by
Emmanuel Bouillon. It is no surprise, dealing with Kerberos is really hard when
theory comes to the practice.

After deep thoughts and some traffic analysis i asked myself a question: why do
we need to replay anything at all? Actually, we dont!

See what the typical SMB session is:

(1). Host_A connects to Host_B
(2). Session protocol negotiation
(3). Authentication protocol negotiation
(4). SMB commands...

We don't have to redirect user's credentials to another resource because the
user can authenticate himself !

All we have to do is to stay in the middle and proxify connection between Host_A
and Host_B and then take over control of the session into our own hands.
At the step (4) we already authenticated and can inject our own commands. Bingo!
It absolutely doesn't matter how the user authenticated to the system, using NTLM
or Kerberos. The packets of SMB session are not encrypted and SMB Signing is
not used between common computers (only DC). In addition to greater abilities,
this technique is more elegant than SMBRelay. There is no need to code a pretty
complex SMB authentication algorithm. Very little amount of SMB commands is
necessary to be coded, only those to perform file uploading and service execution.

SMB Hijacking. Kerberos is defeated.
©Ares, 2013 – http://sniff.su

The functionality described above was added to the new version of Intercepter-NG
and was tested on latest versions of Windows 2008 and Windows 7\8.

Let's see what's been done to accomplish this task...
Starting from Windows Vista a new SMB version 2 appeared. It was meant to
simplify the command set and improve performance . The packet structure is also
different from the previous SMB implementation. Two new fields are especially
important for us: the Session ID and the Command Sequence Number. To inject
our own commands we have to track the ID and increment command counter every
new step.

Existing SMBRelay code in Intercepter is based on smbrelay3 by Tarasco Security
and it uses an old SMB format. That's why i decided to create a completely new
code for SMBv2.

The logic of the injection process is the following:
1. Get in the middle between the target and a third-party host
2. Wait for successful SessionSetup Response
3. Get Session ID and current command's number
4. Upload a file to administrative share (admin$)
5. Create a service that will execute it
6. Run the service
7. Profit!

The 5 and 6 steps are possible because Microsoft implemented a transfer of RPC
calls over SMB protocol.

That's all. This technique is perfect for the common domain based networks.
Usually, there is at least one centralized software that connects to the user's shares
with administrative privileges. You can also choose administrator as a target.

SMB Hijacking. Kerberos is defeated.
©Ares, 2013 – http://sniff.su

 We start injection after SessionSetup command.

SMB Hijacking. Kerberos is defeated.
©Ares, 2013 – http://sniff.su

Conclusion

Thus the Kerberos is "defeated" or in fact avoided. By the way, Kerberos is used
only if the SMB connection established by computer name. In case of IP address,
NTLM negotiation will occur.

SMB Hijacking is also suitable for a workgroups, just make sure that your target
has access to the third-party host. Earlier i discussed a "passive" way of attack,
however Intercepter speeds up the process by means of injecting UNC link of the
third-party host into target's pc web traffic.

Whether your attack was successful or not you have to break hijacked connection,
because it's no longer usable for target user - command sequence is broken. To
avoid deadlock situation of unstoppable hijacking and let the user access remote
resource without problems and suspicions Intercepter marks the connection and
lets it pass through.

The only effective way of preventing SMB Hijacking is using SMB Signing: an
attacker will not be able to create a valid signature of injected commands, thus the
server will reject them.

SMB Hijacking. Kerberos is defeated.
©Ares, 2013 – http://sniff.su

	SMB Hijacking.
	Kerberos is defeated.
	Intro
	Getting started
	It became my starting point to dig into Kerberos a little bit deeper.
	SMB Hijacking

