
Anti Brute Force Resource Metering

NGSSoftware Insight Security Research Page 1 of 12 http://www.ngssoftware.com

NGS NISR
Next Generation Security Software Ltd.

Anti Brute Force Resource Metering

Helping to Restrict Web-based Application Brute Force
Guessing Attacks through Resource Metering

Abstract

Web-based applications authentication processes are frequently vulnerable to automated
brute force guessing attacks. Whilst commonly proposed solutions make use of escalating
time delays and minimum lockout threshold strategies, these tend to prove ineffectual in real
attacks and may actually promote additional attack vectors.

Resource metering through client-side computationally intensive “electronic payments” can
provide an alternative strategy in defending against brute force guessing attacks. This
whitepaper discusses how such a solution works and the security advantages it can bring.

Author

Gunter Ollmann, Professional Services Director, NGS – email: gunter [at] ngssoftware.com

Anti Brute Force Resource Metering

NGSSoftware Insight Security Research Page 2 of 12 http://www.ngssoftware.com

Anti Brute Force Resource Metering..1
Section 1: Background ... 3
Section 2: Resource Metering.. 4

2.1. Learning from Spam .. 4
2.2. Hashcash... 4
2.2.1. Hash Functions .. 5
2.2.2. Partial Hash-collisions.. 5

Section 3: Web-Authentication Resource Metering ... 6
3.1. Incremental Timeouts .. 6
3.2. Understanding Web-Authentication Resource Metering.......... 7
3.3. Design Decisions with Resource Metering 8
3.3.1. Hashcash in Web Authentication... 8
3.3.2. Resource Metering Recommendations 10
3.4. Resource Metering and Brute Force Attack Vectors 10
3.4.1. Why not use Mandatory Server-side Timeouts?........................ 11

Section 4: Conclusions .. 12
4.1. References .. 12

Anti Brute Force Resource Metering

NGSSoftware Insight Security Research Page 3 of 12 http://www.ngssoftware.com

Section 1: Background
For most web-based applications that require customers to uniquely identify themselves prior
to granting access to key functional aspects of the online system, a solid and reliable
authentication process is the primary security barrier. When these applications are providing
online services to a large and/or diverse customer base, the authentication process must be
able to withstand an increasing number of malicious attack vectors. Poorly designed or
implemented authentication processes are easily exposed and as a consequence are likely to
result in subsequent exploitation resulting in an increase in adverse public scrutiny and a
concomitant decrease in customer confidence.

A critical element to any successful online authentication solution is the way in which account
lock-out processes are implemented. In particular, how the application handles an attacker
attempting to guess the login credentials of customers and prevents access during automated
brute-force guessing attacks. For an attacker, authentication solutions that unintelligently
lock-out access to customer accounts after a specific threshold has been reached (typically
three attempts) can be easily turned into a highly successful denial of service attack. By
quickly reaching the threshold limit of bad password attempts, the attacker can cycle through
customer names or account numbers and lock-out each in turn.

The speed at which these attacks can be conducted can be remarkable. It is not uncommon
for attackers to conduct as many as 200 login attempts per second over standard DSL
connections. In some cases, when applications have very simple single-tier authentication
processes and the attacker has good network access to the host, they can achieve many
simultaneous parallel connections – rates of between 1500-10,000 login attempts per second
can be achieved.

While various solutions for handling authentication processes and account lock-out policy
have been suggested in an attempt to manage these attack vectors, it is left to each individual
organisation to carefully weigh up the pro’s and con’s of each option before arriving at a
compromise solution.

One frequently considered compromise is to link authentication failures to a specific IP
address and to conduct multiple actions based upon this information. Unfortunately, due to
the use of ISP proxies and network address translation, it is highly likely that legitimate
customers will seek to access an application from behind these devices and that therefore
their connections will appear to come from the same IP address. Subsequently, any
automated response to block or otherwise inhibit IP addresses associated with an attack may
consequently prevent legitimate customers from accessing the application.

However, the use of IP address information as part of an automated defence strategy can still
be valuable. Instead of focusing upon the outright blocking of an attackers IP address,
organisations may wish to adopt a strategy capable of slowing down an automated attack to
such a degree that it becomes an unviable attack vector and therefore forces an attacker to
direct their attention to alternative “softer” targets – preferably some other organisation. By
requiring an “electronic payment” for each login attempt, the application can enforce a
computational overhead (and subsequent time delay) upon the submitting host which can
then be used as a form of resource metering. A similar strategy has proved successful in
reducing email-based Spam attacks – where the “electronic payment” overhead is referred to
as “hashcash”.

Anti Brute Force Resource Metering

NGSSoftware Insight Security Research Page 4 of 12 http://www.ngssoftware.com

Section 2: Resource Metering
Resource metering is a technique designed to restrict the repetition frequency of data
submission to an application or host system. The ability to reduce the frequency of data
submissions can play an important role in controlling an attacker’s ability to conduct an
automated brute force guessing attack. To be successful, a resource metering solution
should enforce restrictions at the client-side and not consume additional resources at the
server-side.

The most practical method of implementing resource metering is through the use of
cryptographic hashes. The use of a cryptographic hash in this fashion is sometimes referred
to as requiring an “electronic payment” before processing the customer’s submission. In
essence, the server-side application requires the customer’s client to compute a value that is
computationally intensive, but easy to validate, before processing the submitted data.

The principles are based upon the fact that there are numerous mathematical problems that
are easier to verify than they are to compute. For example, the calculation of square roots of
a large number is a complex and processor intensive task – but is easy to validate since:

yyy ×=

While the concept of using square root computations sounds appealing, unfortunately
computers are very fast and therefore to be conducive to resource metering the number
would have to be 1000’s of digits long. Given the HTTP medium, it would probably take
longer for the transmission of the data than the time taken to compute the values.

2.1. Learning from Spam
Email has been around longer than the web – consequently there are a number of security
solutions that have had a longer gestation period in which to mature and prove their worth.
The implementation of resource metering in the fight against email-based Spam has already
proven to positively reduce the success of these automated intrusions – normally resulting in
Spammers seeking softer or alternative targets.

The most important resource metering solution within the SMTP domain is commonly referred
to as “hashcash”. By requiring the attacker’s email agent to conduct a computationally
intensive process as part of each email submission, the spammer incurs a delay with each
email delivery and greatly reduces the effectiveness of their intrusion. Whilst not completely
eliminating the threat, “hashcash” helps to restrict the flow of Spam and can force the
malicious spammer to seek a more vulnerable system.

Borrowing heavily from the concept of “hashcash” within email services, it is a relatively
simple process to include a similar level of resource metering within a web-based applications
authentication process – the purpose being to greatly reduce the effectiveness of an
automated brute force guessing attack.

2.2. Hashcash
Originally proposed by Cynthia Dwork and Moni Naor in 1992, and independently invented in
May 1997 by Adam Back, the concept of hashcash was introduced as a way of installing a
resource metering solution (referred to as an “electronic payment”) capable of throttling the
systematic abuse of services such as email and anonymous re-mailers.

As mentioned previously, there are a number of mathematical problems that are far easier to
verify than they are to initially compute. “Hashcash” makes use of a mathematical principle
called “partial hash-collisions”. These partial hash-collisions require smaller variables than
those required for the equivalent resource metering by square root calculations (making them
more convenient for inclusion in server responses), are substantially faster to verify, and often
simpler to program.

“Hashcash” traditionally computes hash-collisions based upon the email recipients address,
date and some random seed data.

Anti Brute Force Resource Metering

NGSSoftware Insight Security Research Page 5 of 12 http://www.ngssoftware.com

2.2.1. Hash Functions
A hash function is a one-way cryptographic function that transforms a string of characters,
usually into a shorter fixed-length value or key, based upon the assumption that it is extremely
difficult and time consuming to find two strings capable of producing the same output. Given
a change in the input string, the resultant hash also changes. Common hash functions
include MD5 and SHA-1. “Hashcash”, as implemented in numerous anti-spam email
solutions, makes use the SHA-1 hash function.

Hash functions such as SHA-1 have been designed to be collision resistant – i.e. two distinct
input strings should not produce that same hash value. In fact, the SHA-1 cryptographic
function is not expected to result in the same hash result for two distinct input strings for 2160
different values.

2.2.2. Partial Hash-collisions
In theory, calculating a full “hash-collision” is computationally infeasible – requiring great
computing resources and extended timescales (although shortcut vectors for finding collisions
have been announced in the common hashing functions: SHA-0, SHA-1, MD4, MD5, HAVAL-
128, and RIPEMD).

“Hashcash” makes use of partial hash-collisions (sometimes referred to as n-bit collisions).
Instead of requiring the hashed value from one string to be completely the same as the
hashed value of a different string (or indeed calculating the same string), only parts of the two
hash values need to be identical. By defining how much of the first hash value must match
the other, it is possible to control how much computational time must be expended in
evaluating a correct answer.

For example, using an online “hashcash” demo supplied by Lapo Luchini and implemented in
Java, calculation of the first 21 most significant bits takes around 4 seconds on a 3GHz
processor desktop computer – while calculating the first 27 most significant bits takes a little
over 2 minutes.

Figure 1: Screenshot of a Java-based “hashcash” calculation at http://www.lapo.it/hashcash.html

Anti Brute Force Resource Metering

NGSSoftware Insight Security Research Page 6 of 12 http://www.ngssoftware.com

Section 3: Web-Authentication Resource Metering
The purpose of introducing an “electronic payment” to the authentication process is to provide
a degree of time control over which customers may submit their login credentials to the
application server – therefore providing a mechanism for resource metering. Additionally, by
forcing a computational overhead to occur at the client-side host, the application server is free
to process other application processes.

3.1. Incremental Timeouts
A well-discussed and increasingly popular strategy for handling automated brute force
guessing attacks against an application’s authentication process is through the use of
incremental timeouts. Essentially, with each failed login attempt, the application server takes
longer to respond to the attacker (or customer).

Consider an authentication process that requires the customer to fill in their user ID and
password on an HTML-based form and submit this data to the application for authentication.
If the login credentials are incorrect, the server redirects the customer to the original login
page after a couple of seconds telling them that they have failed and must retry. If the
customer supplies incorrect login details a second time, the response from the server takes 4
seconds longer – and so on until some maximum threshold is reached (typically no more than
2 minutes). This incremental timeout strategy may be combined with a maximum login
attempt threshold – at which, after say 6 incorrect login attempts, the customer account is
locked out and no longer available.

There are a number of problems with this incremental timeout strategy:

 The timeouts are typically linked to SessionID’s supplied to the client browser when
the customer first connects to the application. An attacker can instead reject
SessionID’s if they become associated with an unacceptable timeout and make a
new connection – therefore acquiring a new untainted SessionID without the
overhead of a timeout.

 Alternatively, application designers may choose instead to link the incremental
timeouts to each unique customer’s user ID. Instead of trying to brute force guess
the password associated with a specific user ID, the attacker decides upon a fixed
password and cycles through user ID’s to discover customers that have chosen to
use that particular password. In this attack, the attacker is never subjected to any
incremental timeouts.

 If the application developer chooses to base their incremental timeout strategy on the
connection IP address – it is likely that any legitimate customers attempting to access
their own accounts from behind a proxy (AOL and many dial-up ISP’s use these) or
NAT firewall (many corporate environments implement this) shared with the attacker
will be subjected to similarly long timeouts. In addition, it is not uncommon for the
proxy servers of large ISP’s to be load balanced – meaning that there is no guarantee
that the attacker will consistently access the application from the same IP address.

 In a load-balanced environment it is difficult to enforce server response timeouts as
the attacker may simply break their connection with one server and establish a new
connection with a different server.

 With increasing frequency, attackers are making use of Botnets (essentially
numerous home PC’s and workstations that have previously been compromised and
had Trojan horse software installed on them) to conduct large-scale brute force
attacks from multiple sources. Therefore, the attack may be spit up and distributed
amongst the numerous hosts of the botnet and not just come from a single IP
address source.

However, by using a carefully designed and implemented “electronic payment” resource
metering solution, it is possible to utilise a resource metering strategy without being subject to
many of the limitations listed above.

Anti Brute Force Resource Metering

NGSSoftware Insight Security Research Page 7 of 12 http://www.ngssoftware.com

3.2. Understanding Web-Authentication Resource Metering
Typically, in order to implement a resource metering solution, it is necessary for the client
browser to be capable of performing mathematical functions via a scripting language.
Therefore, resource metering cannot be used in the authentication process for web-based
applications designed specifically not to require client-side scripting.

In the majority of cases, depending upon the mathematical routine(s) used to create the
“electronic payment”, any popular client-side language may be used (e.g. Java, JavaScript
and VBScript).

The sequence of events in this process is:

1. The client browser requests the application login page,
2. The server sends the HTML login page which also contains the JavaScript

mathematical routine necessary for calculating the “electronic payment” and any
necessary computational values. Alternatively the mathematical routine could be
held in a separate downloadable JavaScript file (*.js).

3. The client browser then renders the HTML page, presents the login page to the
customer, and prompts them to supply their authentication credentials.

4. Once completed, the customer clicks the “submit” button – at which stage the
JavaScript computational routines are executed and the “electronic payment” is
calculated.

5. The client browser then submits this calculated value along with their authentication
credentials.

6. The server first validates the calculated value and, if the value is correct, proceeds to
process the submitted login credentials.

Customer’s PCWeb Application Server

Browser requests the login page

Login page content

Any supplemental code files

Additional unique computational values

Time delay while the “electronic
payment” is calculated”

Browser renders the login form

Completes login form

Clicks “Submit”

Login credentials and “electronic
payment” are sent

Anti Brute Force Resource Metering

NGSSoftware Insight Security Research Page 8 of 12 http://www.ngssoftware.com

If the “electronic payment” value is missing or incorrect, a number of options exist for handling
the customer and probable attacker:

 Redirect the customer back to the login page and start the entire process again using
the same mathematical routine and different computational values,

 With each failed submission the computational values become longer or more time
consuming to calculate,

 To prevent any external modification or optimisation of the mathematical routine it
could be selected at random from a library of pre-created routines (only one routine
should be sent within the HTML page at any one time) or rotated between multiple
calculating engines,

 The mathematical routines could become more sophisticated and require a higher
“electronic payment” for each failed or repeated login attempt.

3.3. Design Decisions with Resource Metering
A number of options exist when selecting and building a resource metering solution designed
specifically to protect the web-based authentication process. Dependant on the nature of the
application and the likely customer audience, a number of design considerations should be
made:

 Mathematical algorithm selection – The choice of mathematical algorithm(s) used to
create the “electronic payment” is critical. It must operate in a way that granular
control of “payment” thresholds is possible and can therefore cover the minimum and
maximum resource metering thresholds necessary to provide protection – typically 0
to 300 seconds.

 Simple and mathematically robust – the chosen client-side algorithm must be
mathematically robust so that computational shortcuts cannot be achieved, or are
unlikely to greatly affect the speed in calculating the “electronic payment”. At the
server-side, the chosen algorithm must be capable of receiving a customer “payment”
that can be easily and rapidly validated. Consequently it is recommended that a well
known cryptographic algorithm be used.

 Minimum “electronic payment” thresholds – developers should decide upon an initial
or minimum “payment” threshold. In many cases, an initial “payment” calculation
delay of 1 to 3 seconds is to be recommended.

 Maximum “electronic payment” thresholds – dependant on whether any other anti
brute forcing mechanisms are included within the authentication processes; a
maximum “payment” calculation delay of 2 to 3 minutes is normally recommended.

 Download size – the combined file size of the HTML code content along with any
necessary file inclusions and algorithms should be considered. While focused
attacks are common, attackers are the minority and the time taken for the client
browser to download all page content should not become prohibitive over slow
Internet connections.

 Fit with account lock-outs – automated account lock-out processes are likely to
influence the way a resource metering solution is to work. Developers should review
the number of incorrect login attempts necessary to trigger an account lock-out event,
and then decide upon the appropriate intermediary thresholds for each “electronic
payment”. In general, increasing the threshold by 50% or a doubling of the time to
calculate the “electronic payment” is to be recommended – until the maximum
threshold is reached

3.3.1. Hashcash in Web Authentication
Extending the lessons learned in implementing anti-spam “hashcash” solutions, it is a trivial
task to adopt similar formatting and cryptographic algorithms and use them as the key
resource metering process for web-based application authentication systems. The following
example shows one way in which “hashcash” could be implemented.

Anti Brute Force Resource Metering

NGSSoftware Insight Security Research Page 9 of 12 http://www.ngssoftware.com

It is important to note the following about this sample “hashcash” implementation:

 A separate code library (e.g. a Java class file) is downloaded by the customers PC.
This file may contain multiple cryptographic routines capable of calculating several
different types of “hashcash” electronic payment. The specific routine to be used in
the authentication process will be selected by the application server, and may be
varied between login attempts to help prevent pre-computation issues or shortcut
optimisations.

 For each and every customer connection, a different “seed” value is supplied. This
seed value is used as part of the “hashcash” calculation process. It is important that
this seed value be sufficiently long enough to ensure that an attacker could not viably
pre-compute the hashes in advance (i.e. the “050318” in the example above could be
longer and composed of alphanumeric values).

 The application must keep a record of which seed value is assigned to each
connection. In many cases this connection monitoring can be maintained through
standard SessionID handling processes.

 The inclusion of date or time information is included to make it more difficult for an
attacker to pre-compute all hashes in advance. This can also be complicated by the
fact that the server may also require a different hashing algorithm or computational
code segment be used to calculate the “Hashcash”. For added complexity, the use of
hour and minute data within the “hashcash” prefix would be recommended.

 The server decides upon the number of bits necessary for a partial “hash-collision”.
This value is the key to defining how much computational effort (and consequently
time delay) must be incurred by the customer’s client in calculating the electronic
payment.

Anti Brute Force Resource Metering

NGSSoftware Insight Security Research Page 10 of 12 http://www.ngssoftware.com

 The customer’s client must append collision garbage (random data) to the prefix and
calculate SHA-1 hashes until it comes across a “hashcash” string that result’s in a
partial “hash-collision”. In this example, a partial hash-collision occurs when the first
20 characters of the hash are all zero – i.e. “00000000000000000000”. Developers
could of course define any value they wish to collide with. Using the SHA-1 hashing
algorithm coded in Java, a 20 bit collision took about 2 seconds.

 After the “hashcash” value has been calculated, it is submitted to the application
server along with the other authentication data. The application should validate the
structure of the “hashcash” first before calculating the corresponding hash. If the
appropriate partial hash-collision occurs, the application can then proceed with
processing the authentication information (e.g. User ID and password).

 Should the customer fail to authenticate, the application would require the user to
attempt to login again. However, in this and subsequent failed attempts, the server
would assign a new “seed” value and also increase the number of bits necessary to
cause a partial hash-collision (i.e. increasing the time it takes to calculate a valid
“Hashcash” value).

3.3.2. Resource Metering Recommendations
Should an organisation choose to implement a resource metering solution, the following
recommendations are made:

 Well known mathematical cryptographic hashing algorithms are recommended as
they are likely to require less dynamic data to be transported between client and
server for the process of calculating the “electronic payment”. Additionally, since
these algorithms have received a lot of independent analysis, they are likely to be
more robust against computational shortcuts.

 The calculation of the “electronic payment”, when using a partial “hash-collision”
algorithm, should include a random seed value supplied by the application server
(which forms a unique identifier for the connection, and is changed with each
connection or refresh of the login page).

 Developers should carefully review and test the time necessary for a customer’s
client to calculate valid partial hash-collisions for each value likely n-bit collision value.
If multiple calculation routines are used, each routine should be tested. Developers
should be aware that older computers may be slower in calculating hashes.

 Given that there is a delay between submitting the login credentials, calculation of the
“electronic payment” and final response from the server; the customer should be
provided with a visual effect to indicate that things are proceeding as planned and
that they do not need to re-submit the data or refresh their browser page. The use of
progress bars and animated timers are recommended.

3.4. Resource Metering and Brute Force Attack Vectors
Resource metering can provide a valuable method of preventing or otherwise limiting the
susceptibility of a web application’s authentication process to multiple brute force guessing
attack vectors. Unlike implementations that rely on incremental timeouts being enforced at
the server-side or enforcing access threshold limitations, the use of client-side
computationally intensive “electronic payments” can provide a more elegant and robust
solution. Key points to a resource metering solution include:

 Load Balancing - Since the resource metering effectively occurs at the client side, it is
not necessary for the application to manage submission timeouts. Therefore, with
load balanced applications, it is not possible for an attacker to bypass server
response delays by requesting data from alternative load balanced hosts.

 Multi-threaded Attacks – in most web-based brute force guessing attacks, the
attacker makes multiple simultaneous connections to the application server; thus
conducting a multi-threaded attack. In doing so, the attacker can conduct hundreds
or thousands of guessing attempts every second. By forcing an attacker to calculate

Anti Brute Force Resource Metering

NGSSoftware Insight Security Research Page 11 of 12 http://www.ngssoftware.com

and submit an “electronic payment” with each guess, even using an algorithm with
partial hash-collisions that result in only 1 second of delay, the attacker may only
carry out one guess per second irrespective of how may simultaneous connections
they have from the same attack client (since the CPU often reaches 100% utilisation
when calculating the “hashcash”, calculating 200 simultaneous values means that
each thread has a 1/200th share of the CPU’s computational ability, and
correspondingly it will take 200 times longer to calculate a standard “1 second”
value).

 Incremental Control – Since time delays and computational effort are controlled by a
collision bit length, it is a simple process to increase the time spent in calculating the
“electronic payment” without any subsequent increases in server-side session
management requirements.

 Unbounded payment - These incremental steps in “electronic payment” are not bound
to a single customer’s login variables. Consequently, the same payment is required
whether an attacker is brute force guessing the customers User ID, Password, or any
other authentication value.

 IP Address Restrictions – By enforcing “electronic payments” on all authentication
submissions (even without the use of incremental controls), the application could also
enforce different levels of payments for different IP ranges. For instance, IP
addresses or ranges associated with DSL users in China could require “hashcash”
that takes 10 seconds to calculate, while well known ISP Proxies could incur 5
seconds and trusted IP addresses only 1 second of payment.

 Script Requirements - This solution requires that the customer’s client browser
supports an appropriate scripting language.

 Computer Specifications - The specification of the customer’s client host will dictate
the speed at which it can calculate mathematical challenges and consequently the
“electronic payment” may be less for new or high end computers.

 Alternative Applications – Resource metering through “electronic payments” does not
have to be limited to authentication processes. Organisations may find that
implementing a similar strategy for financial transactions or any other form of data
submission back to the application server could benefit from its use and the
corresponding throttling of speed.

3.4.1. Why not use Mandatory Server-side Timeouts?
Some organisations may have chosen to adopt a mandatory server-side timeout strategy to
implement a form of resource metering against brute force attacks. In these schemes, the
application server forces all authentication submissions to wait some period of time before
responding (e.g. the customer clicks “submit” – the data is sent to the server – the server
processes the data and waits 4 seconds before issuing any response to the customer).
However, there are a number of limitations to this strategy which may be overcome through
the use of client-side imposed resource metering.

Most importantly, by forcing computationally intense processes to occur at the client-side (not
just a wait or sleep-type function) it becomes almost impossible to conduct a multi-threaded
brute force attack. Consider an application that enforces a 4 second delay at the server-side
for each submission. If an attacker opens 1000 simultaneous connections to the server and
submits a different customer authentication to each one, after 4 seconds 1000 responses are
received by the attacker – corresponding to 250 guessing attempts per second. Using the
earlier “hashcash” example but with a 4-second computational load, if the attacker makes
1000 simultaneous connections to the server, it will take approximately 4000 seconds to
submit all the guesses – corresponding to 0.25 attempts per second.

Finally, by shifting the onus away from the server environment and on to the client, valuable
resources are freed up (including processing overheads, threads, memory allocations and
open TCP ports).

Anti Brute Force Resource Metering

NGSSoftware Insight Security Research Page 12 of 12 http://www.ngssoftware.com

Section 4: Conclusions
The enforcement of resource metering through the use of “electronic payments” is likely to
provide valuable protection against many forms of brute force guessing attack vectors
commonly employed against web-based authentication systems.

Implementing a system capable of enforcing “electronic payments” is a relatively simple
process and likely to result in an immediate strengthening of an application’s security
robustness. Implementation lessons learned from anti-spam solutions such as “hashcash”
provide a valuable insight in selecting and tuning a resource metering solution. Strategies
which incorporate partial “hash-collision” calculations provide an effective granular control
over the necessary “electronic payments”, without incurring greater server-side and
application functionality overheads.

As an anti brute force guessing protection system, resource metering provides several
advantages over more traditional strategies such as fixed or incremental time-outs and
account lock-out thresholds. In almost all cases, the system would appear transparent to the
customer (and certainly cause no more delays than a traditional submission time delay
solution) and is capable of severely limiting automated attacks.

Resource metering through “electronic payments” is recommended for web-based
applications that have large customer bases, and/or are likely to be targeted for attack with
automated brute force guessing tools. Similarly, organisations that have encountered
problems through account lock-out denial of service attacks are also encouraged to review
the possible benefits of implementing a resource metering solution.

4.1. References
Web - http://www.hashcash.org/papers/hashcash.pdf

Web - http://www.lapo.it/HashCash.html

Cynthia Dwork and Moni Naor. “Pricing via processing or combating junk mail” In Proceedings
of Crypto, 1992.

About Next Generation Security Software (NGS)

NGS is the trusted supplier of specialist security software and hi-tech consulting services to
large enterprise environments and governments throughout the world. Voted “best in the
world” for vulnerability research and discovery in 2003, the company focuses its energies on
advanced security solutions to combat today’s threats. In this capacity NGS act as adviser on
vulnerability issues to the Communications-Electronics Security Group (CESG) the
government department responsible for computer security in the UK and the National
Infrastructure Security Co-ordination Centre (NISCC). NGS maintains the largest penetration
testing and security cleared CHECK team in EMEA. Founded in 2001, NGS is headquartered
in Sutton, Surrey, with research offices in Scotland, and works with clients on a truly
international level.

About NGS Insight Security Research (NISR)

The NGS Insight Security Research team are actively researching and helping to fix security
flaws in popular off-the-shelf products. As the world leaders in vulnerability discovery, NISR
release more security advisories than any other commercial security research group in the
world.

Copyright © March 2005, Gunter Ollmann. All rights reserved worldwide. Other marks and trade names are the
property of their respective owners, as indicated. All marks are used in an editorial context without intent of
infringement.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

