Taint analysis and pattern matching with Pin

by Jonathan Salwan (http://twitter.com/JonathanSalwan) - 2013-08-08

Last weeks | played with the Pin APl and this post can be considered as my personal bloc note. All examples
written in this post are just proof of concept thus not 100% reliable. But it can maybe give some ideas for
other people.

1 - Introduction
1.1 - Concept
1.2 - How taint
1.2.1 - Dynamic analysis
1.2.2 - Static analysis
1.2.3 - Dynamic or Static ?
1.3 - Some problematic
1.3.1 - Byte or bits ?
2 - Simple taint a memory area
2.1 - Catch the syscalls
2.2 - Catch the LOAD and STORE instructions
2.3 - Output
3 - Spread the taint
3.1 - Requirement
3.2 - Memory spread
3.3 - Registers spread
3.4 - Output
4 - Follow your data
4.1 - Requirement
4.2 - Output
5 - Detect a use after free vulnerability
5.1 - Via obsolete stack frame
5.2 - Classical use after free
5.2.1 - Methodologie
5.2.2 - Pin API - Symbols
5.2.3 - Test on a C based program
5.2.4 - Test on a C++ based program
6 - Detect pointer utilization without check

http://twitter.com/JonathanSalwan
http://shell-storm.org/blog/paper_pack.php#1
http://shell-storm.org/blog/paper_pack.php#1.1
http://shell-storm.org/blog/paper_pack.php#1.2
http://shell-storm.org/blog/paper_pack.php#1.2.1
http://shell-storm.org/blog/paper_pack.php#1.2.2
http://shell-storm.org/blog/paper_pack.php#1.2.3
http://shell-storm.org/blog/paper_pack.php#1.3
http://shell-storm.org/blog/paper_pack.php#1.3.1
http://shell-storm.org/blog/paper_pack.php#2
http://shell-storm.org/blog/paper_pack.php#2.1
http://shell-storm.org/blog/paper_pack.php#2.2
http://shell-storm.org/blog/paper_pack.php#2.3
http://shell-storm.org/blog/paper_pack.php#3
http://shell-storm.org/blog/paper_pack.php#3.1
http://shell-storm.org/blog/paper_pack.php#3.2
http://shell-storm.org/blog/paper_pack.php#3.3
http://shell-storm.org/blog/paper_pack.php#3.4
http://shell-storm.org/blog/paper_pack.php#4
http://shell-storm.org/blog/paper_pack.php#4.1
http://shell-storm.org/blog/paper_pack.php#4.2
http://shell-storm.org/blog/paper_pack.php#5
http://shell-storm.org/blog/paper_pack.php#5.1
http://shell-storm.org/blog/paper_pack.php#5.2
http://shell-storm.org/blog/paper_pack.php#5.2.1
http://shell-storm.org/blog/paper_pack.php#5.2.2
http://shell-storm.org/blog/paper_pack.php#5.2.3
http://shell-storm.org/blog/paper_pack.php#5.2.4
http://shell-storm.org/blog/paper_pack.php#6

6.1 - Via pattern matching
6.2 - Output
7 - Conclusion
7.1 - Taint analysis and pattern matching with Pin
7.2 - References
7.2.1 - Web references
7.2.2 - My pin tool sources
7.3 - Special Thanks

1 - Introduction

1.1 - Concept

The taint analysis is a popular method which consists to check which variables can be modified by the user
input. All user input can be dangerous if they aren't properly checked. With this method it is possible to check
the registers and the memory areas which can be controlled by the user when a crash occurs - That can be

useful.

Memory area

Byte which can be controlled

Byte which cannot be controlled

In order to know if an area is readable/writeable is very straightforward. The difficulty is to check if this area
can be controlled by the user and to spread the taints. For example see the following code.

http://shell-storm.org/blog/paper_pack.php#6.1
http://shell-storm.org/blog/paper_pack.php#6.2
http://shell-storm.org/blog/paper_pack.php#7
http://shell-storm.org/blog/paper_pack.php#7.1
http://shell-storm.org/blog/paper_pack.php#7.2
http://shell-storm.org/blog/paper_pack.php#7.2.1
http://shell-storm.org/blog/paper_pack.php#7.2.2
http://shell-storm.org/blog/paper_pack.php#7.3

/* Example 1 */
void fool (const char *av][])

{
uint32 t a, b;

a atoi(av[1l]):;
b = a;

foo2 (b);

/* Example 2 */
void foo2 (const char *av][])

{
uint8 t *buffer;

if (! (buffer = (uint8 t *)malloc (32 * sizeof (uint8 t))))
return (-ENOMEM) ;

buffer[2] = av[1l][4];
buffer[12] = av[1][8];
buffer[30] = av[1]1I[12];

In the first example, at the beginning, the 'a' and 'b' variables are not tainted. When the atoi function is called
the 'a' variable is tainted. Then 'b' is tainted when assigned by the 'a' value. Now we know that the foo2
function argument can be controlled by the user.

In the second example, when the buffer is allocated via malloc the content is not tainted. Then when the
allocated area is initiazlied by user inputs, we need to taint the bytes 'buffer+2’, 'buffer+12' and 'buffer+30'.
Later, when one of those bytes is read, we know it can be controlled by the user.

1.2 - How taint

We have two possible ways, static or dynamic analysis. For each of them, we can find some pros and cons.

1.2.1 - Dynamic analysis

For the dynamic analysis, basically we need to determinate all user inputs like environment and syscalls. We
begin to taint these inputs and we spread/remove the taint when we have instructions like GET/PUT,
LOAD/STORE.

1HHHH"

environ

stack

In order to do this, we need a dynamic binary instrumentation framework. The purpose of the DBl is to add a
pre/post handler on each instruction. When a handler is called, you are able to retrieve all the information you
want about the instruction or the environment (memory).

Several tools provide an intermediate representation (IR). For example, Valgrind (http://valgrind.org/) is a
popular instrumentation framework which uses an IR (Vex). Generally with an IR, each variable is on SSA-
based (http://en.wikipedia.org/wiki/Static_single_assignment_form) form (Static Single Assignment), with that it
is easier to taint and to manage your memory. To show you, an example about VEX and the SSA form, the
following code is a Vex representaion to the add eax, ebx instruction.

t3 = GET:I32(0) # get %eax, a 32-bit integer (t3 = eax)
t2 = GET:1I32(12) # get %ebx, a 32-bit integer (t2 = ebx)
tl = Add32(t3,t2) # eger (t2 = ebx)

PUT (0) = t1l put %$eax (eax = tl)

| chose to use Pin (http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool): a C++
dynamic binary instrumentation framework (without IR) written by Intel.

1.2.2 - Static analysis

The advantage of using static analysis is the fact that it provides better code coverage than dynamic analysis.
As you can see below, when the code is parsed, we can provide a CFG and detect all branchs.

http://valgrind.org/
http://en.wikipedia.org/wiki/Static_single_assignment_form
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

int i = *user_input;
constant = 2;

if (i % constant == 0)

True False

v Y

| =1 *caonstant ="

v

return I;

On the other hand, the principal disadvantage of the static analysis is that it's not as accurate than the
dynamic analysis - It cannot acces the runtime information for example. We can't retrieve registers or memory
values.

1.2.3 - Dynamic or Static ?

As you can see, each approaches have some advantages and disadvantages... If you use dynamic analysis
we can't cover all the code but you will be more reliable. If you use static analysis you can cover the code, but
you can't get the context information at runtime. | have chosen to take the dynamic analysis and talk about the
Pin usage. Maybe in a future blog post | will talk more about the static analysis - Static analysis is a very
interesting method and we can do a lot of great things from the AST (Abstract Syntax Tree).

1.3 - Some problematics

During research about this method, | encountered several problems. | think we can find lot of interesting
problems about the taint analysis.

1.3.1 - Byte or bit ?

One of these problematic is to determine what method is the more accurate to do a taint with a great
precision. For example, what are we supposed to do when a controlled byte is multiplied and stored
somewhere in memory ? Should we taint the destination variable ? See the following code.

; uint

32 _t num, x;

; X = atoi(av[1l])

; 1f (x > 0 && x < 4)

; num = 7 * x;

; return num;

400556: call 400440 <atoi@plt>
40055b: mov edx, eax

40055d: mov eax, edx

40055f: shl eax, 0x3

4005062 sub eax, edx

4005064 : mov DWORD PTR [rbp-0x4],eax
400567 mov eax, DWORD PTR [rbp-0x4]
40056a: leave

40056Db: ret

In the previous code, we can control only 5 bits of the variable 'num' ; not the whole integer. So, we can't say
that we control the totality of this variable when it is returned and used somewhere else.

So, what to do? Tainting bytes is easier and light or taining bits controlled by the user? If you taint bytes, it will
be easier but not 100% reliable. If we taint bits, it will be harder and more difficult to manage the taint tree but

AL1O O[O |0O]0]|O

shl eax, 0x3

AL {0 |0 |0 0

0

¢ sub eax edx

AL 1O |00

it will be 99% reliable. That's one of several problems we have to solve!

2 - Si

For this first example, we are going to taint the 'read’' memory area and we will see a brief overview of the Pin

mple taint a memory area

API. For this first test we will :

1. Catch the sys_read syscall.
2. Get the second and the third argument for taint area.

3. Call an handler when we have an instruction like LOAD or STORE in this area.

We will work on this following code, the function foo, does a simple LOAD and STORE instructions.

void foo (char *buf)

char a;

a = buf[0];

a = buf[4];

a = buf[8];

a = buf[l0];
buf[5] = '"t'
buf[10] = 'e';
buf[20] = 's';
buf[30] = '"t'

int main (int ac, char **av)
{
int fd;

char *buf;

if (! (buf = malloc(256)))

return -1;

fd = open("./file.txt", O RDONLY) ;
read (fd, buf, 256), close(fd);
foo (buf) ;

2.1 - Catch the syscalls

With Pin it is possible to add a pre and post handler when a syscall occurs. For that, we just need to initialize
the callback function.

typedef VOID(* LEVEL PINCLIENT::SYSCALL ENTRY CALLBACK) (THREADID threadIndex,
CONTEXT *ctxt,
SYSCALL STANDARD std,
VOID *v);

typedef VOID(* LEVEL PINCLIENT::SYSCALL EXIT CALLBACK) (THREADID threadIndex,
CONTEXT *ctxt,
SYSCALL STANDARD std,
VOID *v);

VOID LEVEL_PINCLIENT::PIN_AddSyscallEntryFunction(SYSCALL_ENTRY_CALLBACK fun, VOID
*val) ;

VOID LEVEL_PINCLIENT::PIN_AddSySCallEXitFunction(SYSCALL_EXIT_CALLBACK fun, VOID *v
al);

In our case we will just use the LEVEL PINCLIENT::PIN AddSyscallEntryFunction . When a syscall occurs, we

will check if the syscall is read. Then, we save the second and third argument which describe our memory
area.

/* area of bytes tainted */
struct range
{

UINT64 start;

UINT64 end;

}i
std::list<struct range> bytesTainted;

VOID Syscall entry (THREADID thread id, CONTEXT *ctx, SYSCALL STANDARD std, wvoid *v)
{

struct range taint;

/* If the syscall is read take the branch */
if (PIN_GetSyscallNumber (ctx, std) == _ NR read) {

/* Get the second argument */

taint.start = static cast<UINT64>((PIN GetSyscallArgument (ctx, std, 1)));

/* Get the third argument */
taint.end = taint.start + static cast<UINT64>((PIN GetSyscallArgument (ctx,
std, 2)));

/* Add this area in our tainted bytes list */
bytesTainted.push back(taint);

/* Just display information */

std::cout << "[TAINT]\t\t\tbytes tainted from " << std::hex << "0x" << taint.

start \

<< " to 0x" << taint.end << " (via read)"<< std::endl;

int main (int argc, char *argv([])
{

/* Init Pin arguments */

if (PIN Init (argc, argv)) {

return Usage () ;

/* Add the syscall handler */
PIN AddSyscallEntryFunction(Syscall entry, 0);

/* Start the program */
PIN StartProgram();

return O;

2.2 - Catch the LOAD and STORE instructions

Now we need to cach all instructions that read (LOAD) or write (STORE) in the tainted area. To do that, we will
add a function called each time an access to this area is made.

start end

Tainted area

LOAD STORE
For that we will add a master handler called for each instruction.

typedef VOID(* LEVEL PINCLIENT::INS INSTRUMENT CALLBACK) (INS ins, VOID *v);

VOID LEVEL PINCLIENT::INS AddInstrumentFunction (INS INSTRUMENT CALLBACK fun, VOID *
val) ;

Then, in the master handler we need to find the LOAD / STORE instruction, for example, mov rax, [rbx] or
mov [rbx], rax.

if (INS MemoryOperandIsRead(ins, 0) && INS OperandIsReg(ins, 0)) {
INS InsertCall(
ins, IPOINT BEFORE, (AFUNPTR)ReadMem,
IARG _ADDRINT, INS Address(ins),
IARG_PTR, new string(INS Disassemble (ins)),
IARG_MEMORYOP EA, O,
IARG_END) ;
}
else if (INS MemoryOperandIsWritten (ins, 0)) {
INS InsertCall(
ins, IPOINT BEFORE, (AFUNPTR) WriteMem,
IARG_ADDRINT, INS Address(ins),
IARG PTR, new string(INS Disassemble (ins)),
IARG MEMORYOP EA, O,
IARG_END) ;

int main (int argc, char *argv([])

{

INS AddInstrumentFunction (Instruction, O0);

As you can see above, we make some checks before insert a call. If the instruction's second operand read in
the memory and if the first operand is a register. That means if the instruction looks like 'mov reg, [r/limm]’, it
calls the ReadMem function. When calling this function, it passes several information like: the instruction
address, the disassembly, and the address of the memory read. Same thing with the STORE instructions.

Now we just need to check if the accessed memory is in the tainted area.. For our memory read callback we
have something like that:

VOID ReadMem (UINT64 insAddr, std::string insDis, UINT64 memOp)
{
list<struct range>::iterator i;

UINT64 addr = memOp;

for (i = bytesTainted.begin(); i != bytesTainted.end(); ++1i) {
if (addr >= i->start && addr < i->end) {
std::cout << std::hex << "[READ in " << addr << "]\t" << insAddr

<< ": " << insDis<< std::endl;

2.3 - Output

As you can see below, the Pin tool taints the read memory and display all LOAD/STORE from our area.

$../../../pin -t ./obj-intel64/Taint exl.so -- ./test exl

[TAINT] bytes tainted from 0x665010 to 0x665110 (via read)
[READ in 665010] 400620: movzx eax, byte ptr [rax]

[READ in 665014] 40062a: movzx eax, byte ptr [rax+0x4]

[READ in 665018] 400635: movzx eax, byte ptr [rax+0x8]

[READ in 66501a] 400640: movzx eax, byte ptr [rax+0xa]

[WRITE in 665015] 40064f: mov byte ptr [rax], 0x74

[WRITE in 66501a] 40065a: mov byte ptr [rax], 0x65

[WRITE in 665024] 400665: mov byte ptr [rax], 0x73

[WRITE in 66502e] 400670: mov byte ptr [rax], 0x74

You can see the source code of this example 1 here : example 1 (http://shell-storm.org/blog/Taint-analysis-
and-pattern-matching-with-Pin//taint_example_1.cpp).

3 - Spread the taint

Detecting the access made is the tainted memory area is cool, but it's not enough. Imagine you LOAD a value
in a register from the tainted memory, then you STORE this register in another memory location. In this case,
we need to taint the register and the new memory location. Same way, if a constant is STORED in the memory
area tainted, we need to delete the taint because the user can't control this memory location anymore.

Memary

R I

.. i rp |
- T e T s
o N T O ..
rax § eflags | Xrmma i
I oxmmo | xmme |
""""" i mmi L xmm? |

Internal CFU register

3.1 - Requirement

Based on the previous Pin tool, we modified it to spread the tainted memory. First, we have changed the
memory area structure - struct range . Instead of tainting a memory range, we taint a specific unique
address. Now we have a std::list storing all address tainted.

http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//taint_example_1.cpp

std::11st<UINT64> addressTainted;

To spread the taint in register, we have added a std::list of REG. This list contains all registers controlled by
the user input.

std::1ist<REG> regsTainted;

For each register, Pin assigns a unique enum. That why when you taint a register you need to taint the
smaller size registers.

RAX

\

EAX AX AL
Y A

| g Taint 64 hits
: = Taint 32 hits
— = Taint 16 bits

— Taint 08 bits

For that, we can use a big switch case which taints the target register and their all smaller size registers.
Same way when you need to delete a tainted register.

switch (reqg) {

case

case

case

case

case

REG_RAX:
REG_EAX:

REG_AX:
REG_AH:
REG_AL:

break;

*/

regsTainted.
regsTainted.
regsTainted.
regsTainted.

regsTainted.

3.2 - Memory spread

push front (REG_RAX) ;
push front (REG_EAX) ;
push front (REG_AX) ;
push front (REG_AH) ;
push front (REG_AL) ;

To spread the tainted memory, we just need to change our readMem and writeMem function.

VOID ReadMem (UINT64 insAddr, std::string insDis, UINT32 opCount, REG reg r, UINT64

memOp)

{
1ist<UINT64>::iterator 1i;
UINT64 addr = memOp;

if (opCount != 2)
return;
for (i = addressTainted.begin(); 1 != addressTainted.end(); i++) {
if (addr == *1i){

std::cout << std::hex << "[READ in " << addr << "J\t" << insAddr <<
<< 1insDis << std::endl;
taintReg(reg r);

return ;

}

/* if mem != tained and reg == taint => free the reg */

if (checkAlreadyRegTainted(reg r)) {
std::cout << std::hex << "[READ in " << addr << "]\t" << insAddr <<

AL "

<< insDis << std::endl;

removeRegTainted (reg r);

As you can see above, when the program loads a value from the tainted area, we check if this memory
location is tainted. If it is true, we taint the destination register. Otherwise, the memory is not tainted, so we
check if the destination register is tainted. If not, we remove the register because we can't control the memory

location.

VOID WriteMem (UINT64 insAddr, std::string insDis, UINT32 opCount, REG reg r,

memOp)

{
1ist<UINT64>::iterator 1i;
UINT64 addr = memOp;

if (opCount != 2)
return;
for (i = addressTainted.begin(); 1 != addressTainted.end(); i++) {
if (addr == *1i){
std::cout << std::hex << "[WRITE in " << addr << "]\t" << insAddr
<< ": " << insDis << std::endl;
if (!REG valid(reg r) || !checkAlreadyRegTainted(reg r))

removeMemTainted (addr) ;

return ;

}
if (checkAlreadyRegTainted(reg r)) {
std::cout << std::hex << "[WRITE in " << addr << "]J\t" << insAddr
<< ": " << insDis << std::endl;

addMemTainted (addr) ;

UINT64

For the STORE instruction is the same thing. If the destination location is tainted, we check if the register is
tainted. If it is false, we need to free the location memory. Otherwise if the register is tainted, we taint the

memory destination.

3.3 - Registers spread

First, we add this new callback in our instruction handler. If the current instruction has two oprands and if the

first operand is a register, we call the spreadRegTaint function.

else if (INS OperandCount (ins) > 1 && INS OperandIsReg(ins, 0)) {
INS InsertCall(
ins, IPOINT BEFORE, (AFUNPTR)spreadRegTaint,
IARG_ADDRINT, INS Address(ins),
IARG PTR, new string(INS Disassemble (ins)),
IARG UINT32, INS OperandCount (ins),
IARG UINT32, INS RegR(ins, 0),
IARG UINT32, INS RegW(ins, 0),
IARG_END) ;

Then, is the same thing than the taint memory. We need to check if the source and destination register is
tainted or not. If the source register is tainted we taint the destination register, otherwise we remove the
destination register.

VOID spreadRegTaint (UINT64 insAddr, std::string insDis, UINT32 opCount, REG reg r,
REG reg_w)
{

if (opCount != 2)

return;

if (REG valid(reg w)) {
if (checkAlreadyRegTainted(reg w) && (!REG valid(reg r)
| | !checkAlreadyRegTainted(reg r))) {

std::cout << "[SPREAD]\t\t" << insAddr << ": " << insDis << std::endl;
std::cout << "\t\t\toutput: "<< REG StringShort(reg w) << " | input: "
<< (REG valid(reg r) ? REG StringShort(reg r) : "constant") << std::endl;

removeRegTainted (reg w);
}
else if (!checkAlreadyRegTainted(reg w) && checkAlreadyRegTainted(reg r)) {
std::cout << "[SPREAD]\t\t" << insAddr << ": " << 1insDis << std::endl;
std::cout << "\t\t\toutput: " << REG StringShort(reg w) << " | input: "
<< REG_StringShort (reg r) << std::endl;
taintReg(reg w);

3.4 - Output

Ok, we will try to spread the taint on the following code.

int foo2(char a, char b, char c¢)

a = 1;
b = 2;
c = 3;
return 0;

int foo(char *buf)

{

char ¢, b, a;

c = buf[0];
b = ¢;
a = buf[8];

foo2(a, b, c);

return true;

int main (int ac, char **av)
{
int fd;

char *buf;

if (! (buf = malloc(32)))

return -1;
fd = open("./file.txt", O RDONLY) ;

read (fd, buf, 32), close(fd);
foo (buf) ;

As you can see below, we have a cool first PoC which spreads the taint via mem/reg.

$../../../pin -t ./obj-intel64/Taint.so -- ./test

[TAINT] bytes tainted from 0xb5b010 to 0xb5b030 (via read)

[READ in b5b010] 400649: movzx eax, byte ptr [rax]
eax 1s now tainted

[WRITE in 7fffal85d9ff] 40064c: mov byte ptr [rbp-0x1], al
7f£ffal85d9ff is now tainted

[READ in 7fffal85d9ff] 40064f: movzx eax, byte ptr [rbp-0x1]
eax 1s already tainted

[WRITE in 7fffal85d9fe] 400653: mov byte ptr [rbp-0x2], al
7f£ffal85d9fe is now tainted

[READ in b5b018] 40065a: movzx eax, byte ptr [rax+0x8]
eax 1is already tainted

[WRITE in 7fffal85d9fd] 40065e: mov byte ptr [rbp-0x3], al
7f£ffal85d9fd is now tainted

[READ in 7fffal85d9ff] 400661: movsx edx, byte ptr [rbp-0x1]
edx is now tainted

[READ in 7fffal85d9fe] 400665: movsx ecx, byte ptr [rbp-0x2]
ecx 1s now tainted

[READ in 7fffal85d9fd] 400669: movsx eax, byte ptr [rbp-0x3]
eax 1s already tainted

[SPREAD] 40066d: mov esi, ecx
output: esi | input: ecx

esi 1s now tainted
[SPREAD] 40066f: mov edi, eax
output: edi | input: eax

edi 1s now tainted

[WRITE in 7fffal85d9c4] 40061lc: mov byte ptr [rbp-0x14], dil
7f£ffal85d9%c4 is now tainted

[WRITE in 7ff£fal85d9c0] 400620: mov byte ptr [rbp-0x18], cl
7f£ffal85d9c0 is now tainted

[WRITE in 7fffal85dS%bc] 400623: mov byte ptr [rbp-0xlc], al
7f£f£fal85d9%bc is now tainted

[SPREAD] 400632: mov eax, 0x0
output: eax | input: constant

eax 1s now freed

[SPREAD] T7fcccf0b960d: mov edi, eax
output: edi | input: eax
edi is now freed

[SPREAD] T7fcccfOcf7db: mov edx, 0x1
output: edx | input: constant
edx is now freed

[SPREAD] 7Tfcccf0cf750: mov esi, ebx
output: esi | input: ebx
esi is now freed

[READ in 7fcccfd438140] T7fcccfll027e: mov ecx, dword ptr [rbp+0xcO]

ecx 1s now freed

You can see the source code of this example 2 here : example 2 (http://shell-storm.org/blog/Taint-analysis-
and-pattern-matching-with-Pin//taint_example_2.cpp).

4 - Follow your data

Following your data can be very interesting and this is very straightforward to implement. To follow your data,
you just need to check for each instruction if one of their operands is a memory or register tainted. If it is true,
you just display the current instruction. With that, you can display all instructions like cmp al, Imm which
does not spread the taint. Displaying these information can be very interesting if you would like to implement a
concolic execution - see my previous post (http://shell-storm.org/blog/Concolic-execution-taint-analysis-with-
valgrind-and-constraints-path-solver-with-z3/) on the concolic execution).

4.1 - Requirement

First, we add a new callback function in our instruction handler. This callback is exactly the same as the
spreadReg function. We chose to duplicate the code to keep a clearer source.

if (INS OperandCount (ins) > 1 && INS OperandIsReg(ins, 0)) {
INS InsertCall(
ins, IPOINT BEFORE, (AFUNPTR)followData,
IARG _ADDRINT, INS Address(ins),
IARG_PTR, new string(INS Disassemble (ins)),
IARG UINT32, INS RegR(ins, 0),
IARG_END) ;

As you can see below, the function that follows the data check if the READ register is tainted. If this is the
case, it just display the current instruction.

VOID followData (UINT64 insAddr, std::string insDis, REG req)

{
if (!REG valid(regq))

return;

if (checkAlreadyRegTainted(reqg)) {
std::cout << "[FOLLOW]\t\t" << insAddr << ": " << 1insDis << std::endl;

4.2 - Output

For this test we will just compare each character with a constant.

http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//taint_example_2.cpp
http://shell-storm.org/blog/Concolic-execution-taint-analysis-with-valgrind-and-constraints-path-solver-with-z3/

int foo(char *buf)

{

if (buf[0] != 'A")
return false;
if (buf(l] != 'B")

return false;

if (buf[2] !'= 'C")
return false;

if (buf([3] != 'D")
return false;

return true;

As you can see below, the cmp instruction is displayed because eax is tainted.

$../../../pin -t ./obj-intel64/Taint.so -- ./test

[TAINT] bytes tainted from 0x1ead4010 to 0x1ead4030 (via read)

[READ in 1ead4010] 400620: movzx eax, byte ptr [rax]
eax 1s now tainted

[FOLLOW] 400623: cmp al, 0x41

[READ in lead4011] 400636: movzx eax, byte ptr [rax]
eax 1is already tainted

[FOLLOW] 400639: cmp al, 0x42

[READ in lead4012] 40064c: movzx eax, byte ptr [rax]
eax 1s already tainted

[FOLLOW] 40064f: cmp al, 0x43

[READ in 1lead4013] 400662: movzx eax, byte ptr [rax]
eax 1s already tainted

[FOLLOW] 400665: cmp al, 0x44

[SPREAD] 400670: mov eax, 0x0
output: eax | input: constant

eax 1s now freed

You can see the source code of this example 3 here : example 3 (http://shell-storm.org/blog/Taint-analysis-
and-pattern-matching-with-Pin//taint_example_3.cpp).

5 - Detect a use after free vulnerability

The taint analysis is cool but is mainly used to determine if it is a vulnerability can be triggered by the user. In
this chapiter and the next, we will see how we can detect some vulnerabilities with a pattern matching and how
it is very straightforward to combine these analysis.

5.1 - Via obsolete stack frame

http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//taint_example_3.cpp

First we will try to detect if we can find an access in LOAD or STORE to an obsolete stack frame, and if it can
be controlled by the user. | know this bug is not a serious vector attack, but this blog post aims to show you
what it is possible to do with Pin. So, imagine a memory access like that :

A
Old -

stack frame *—

\
A

Current ®
stack frame

\J

To test the obsolete stack frame detector, we will try our Pin tool on the following code.

char *ptrl;
char *ptr2;

char *foo2 (char *buf)
{

char d = buf[0]; /* 'd' is tainted because buf is controlled by the user */
char e = buf[l]; /* 'e' is tainted because buf is controlled by the user */
char £ = 1; /* '"£' is not tainted */

ptrl = &e;

ptr2 = &f;

return &d;

int fool (char *buf)
{

char a = *foo2(buf); /* UAF match */
char b = *ptrl; /* UAF match */
char ¢ = *ptr2; /* UAF does not match */

As you can see above, the foo2 function initializes the ptr1 and ptr2, but they point on foo2's stack-frame.
The function returns a pointer of its stack-frame. In this case, we can control only the 'a' and 'b' variables,
because 'c' is assigned with a constant and cannot be controlled by the user.

Below is the disassembly of foo1 and foo2:

0000000000400614 <foo2>:

400614: 55 push rbp

400615: 48 89 e5 mov rbp, rsp

400618: 48 89 7d eS8 mov QWORD PTR [rbp-0x18],rdi

40061c: 48 8b 45 e8 mov rax, QWORD PTR [rbp-0x18]

400620 0f bo 00 movzx eax,BYTE PTR [rax]

400623: 88 45 ff mov BYTE PTR [rbp-0x1l],al

400626: 48 8b 45 e8 mov rax, QWORD PTR [rbp-0x18]

40062a: 0f bo 40 01 movzx eax,BYTE PTR [rax+0x1]

40062e: 88 45 fe mov BYTE PTR [rbp-0x2],al

400631: c6 45 fd 01 mov BYTE PTR [rbp-0x3],0x1

400635: 48 8d 45 fe lea rax, [rbp-0x2]

400639: 48 89 05 20 0Oa 20 00 mov QWORD PTR [rip+0x200a20],rax # 601060 <p
trl>

400640: 48 8d 45 fd lea rax, [rbp-0x3]

400644: 48 89 05 1d 0Oa 20 00 mov QWORD PTR [rip+0x200ald],rax # 601068 <p
tr2>

40064Db: 48 8d 45 ff lea rax, [rbp-0x1]

40064f: 5d pop rbp

400650: c3 ret

0000000000400651 <fool>:

400651 : 55 push rbp

400652: 48 89 e5 mov rbp, rsp

400655: 48 83 ec 18 sub rsp,0x18

400659: 48 89 7d e8 mov QWORD PTR [rbp-0x18],rdi

40065d: 48 8b 45 e8 mov rax, QWORD PTR [rbp-0x18]

400661 : 48 89 c7 mov rdi, rax

400664 : e8 ab ff ff ff call 400614 <foo2>

400669: 0f boe 00 movzx eax,BYTE PTR [rax]

40066cC: 88 45 ff mov BYTE PTR [rbp-0x1],al

40066f: 48 8b 05 ea 09 20 00 mov rax, QWORD PTR [rip+0x2009%ea] # 601060 <p
trl>

400676 0f bo 00 movzx eax,BYTE PTR [rax]

400679: 88 45 fe mov BYTE PTR [rbp-0x2],al

40067c: 48 8b 05 e5 09 20 00 mov rax,QWORD PTR [rip+0x2009e5] # 601068 <p
tr2>

400683 0f bo 00 movzx eax,BYTE PTR [rax]

400686: 88 45 fd mov BYTE PTR [rbp-0x3],al

400689: c9 leave

40068a: c3

To detect this issue, you can just check the current stack pointer with the source pointer. If the current stack
pointer is above than the source location it means that we have a potential obsolete stack-frame use.

if (sp > addr && addr > 0x700000000000)
std::cout << std::hex << "[UAF in " << addr << "]\t" << insAddr \

<< ": " << insDis << std::endl;

Here is the output displaying the taint, and the obsolete stack-frame usage:

$../../../pin -t ./obj-intel64/Taint.so -- ./test

[TAINT] bytes tainted from 0x611010 to 0x611030 (via read)

[READ in 611010] 400620: movzx eax, byte ptr [rax]
eax 1s now tainted

[WRITE in 7£££d14495e7] 400623: mov byte ptr [rbp-0x1l], al
7£f££d14495e7 is now tainted

[READ in 611011] 40062a: movzx eax, byte ptr [rax+0xl]
eax 1s already tainted

[WRITE in 7f£f£d14495e06] 40062e: mov byte ptr [rbp-0x2], al
7£f££d14495e6 is now tainted

[READ in 7ff£d14495e7] 400669: movzx eax, byte ptr [rax]
eax 1is already tainted

[UAF in 7fffd14495e7] 400669: movzx eax, byte ptr [rax]

[WRITE in 7f£f£d144960f] 40066c: mov byte ptr [rbp-0x1], al
7£f££d144960f is now tainted

[READ in 7fffd14495e6] 400676: movzx eax, byte ptr [rax]
eax 1is already tainted

[UAF in 7fffd14495e6] 400676: movzx eax, byte ptr [rax]

[WRITE in 7f£f£d144960e] 400679: mov byte ptr [rbp-0x2], al
7f££fd144960e is now tainted

[READ in 7f££f£d14495e5] 400683: movzx eax, byte ptr [rax]

eax 1s now freed

This is the same thing if you write in the obsolete stack frame. In the following code we write in an obsolete
stack frame.

char *foo2 (char *buf)

{
char d = buf[0];

return &d;

int fool (char *buf)

{
foo2 (buf) = 1; / UAF match */

The Pin tool tells us at the address 400644 we have an arbitrary write in an obsolete stack-frame.

$../../../pin -t ./obj-intel64/Taint.so -- ./test

[TAINT] bytes tainted from 0x19fd010 to 0x19fd030 (via read)
[READ in 19£fd010] 400620: movzx eax, byte ptr [rax]
eax 1s now tainted
[WRITE in 7ff£fd3fd0f37] 400623: mov byte ptr [rbp-0x1], al
T7£f££fd3fd0£f37 is now tainted
[WRITE in 7f£f£fd3£fd0£37] 400644: mov byte ptr [rax], 0xl
7£f££fd3£fd0£f37 is now freed
[UAF in 7ff£fd3£fd0£37] 400644: mov byte ptr [rax], O0xl

You can see the source code of this example 4 here : example 4 (http://shell-storm.org/blog/Taint-analysis-
and-pattern-matching-with-Pin//taint_example_4.cpp).

5.2 - Classical use after free

An use after free bug occurs when we continue to use a pointer after it has been freed.

—| Allocate T

Use Use

This error is widely known in the C++ world.. Imagine an object with a classical public/private methods/var. The
first object 'A' is initialized (We do not control this object), then some time later this object is freed. After we
have a second same object 'B' (We can control it), the allocation will be potentially at the same memory
location. If in this object you can control these private/public data, when the object 'A' is used, this is the
object 'B' which will be targeted.

In this little chapiter, we will try to detect these issues.

5.2.1 - Methodology

For this PoC | have chosen to catch all calls at the malloc and free function. With Pin it is very
straightforward to catch these calls via their symbols. When a malloc occurs, we save in a list these
information, like the base address, the size and we assigns a status (ALLOCATE or FREE). When a free
occurs, we set the flag to FREE.

http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//taint_example_4.cpp

allocation n - Base address
allocation 3 - Allocation size
allocation 2 - Status
allocation 1 struct

: mallocArea
std::list

=struct mallocArea=

Then, when we have a LOAD or STORE operation, we check if this address is in our list and we check its flag.
If the flag is FREE and that we have an accesss in LOAD or STORE, that means we have a potential use after
free bug.

5.2.2 - Pin API - Symbols

With Pin it is possible to execute a callback when a symbol is triggered. Here, we add a callback when the
symbol malloc or free occurs. First, we need to initialize the Pin symbols.

PIN InitSymbols();
if (PIN Init (argc, argv)) {

return Usage (),

Then, in the handler Image we can add a callback for a specific symbols.

VOID Image (IMG img, VOID *v)

{
RTN mallocRtn = RTN FindByName (img, "malloc");
RTN freeRtn = RTN_ FindByName (img, "free");

if (RTN Valid(mallocRtn)) {
RTN Open (mallocRtn);

RTN InsertCall (
mallocRtn,
IPOINT BEFORE, (AFUNPTR)callbackBeforeMalloc,
IARG _FUNCARG ENTRYPOINT VALUE, O,
IARG END) ;

RTN InsertCall (
mallocRtn,
IPOINT AFTER, (AFUNPTR)callbackAfterMalloc,
IARG_FUNCRET EXITPOINT VALUE,
IARG END) ;

RTN Close (mallocRtn);

if (RTN Valid(freeRtn)) {

RTN Open (freeRtn) ;

RTN InsertCall(
freeRtn,
IPOINT BEFORE, (AFUNPTR)callbackBeforeFree,
IARG_FUNCARG ENTRYPOINT VALUE, O,
IARG_END) ;

RTN Close (freeRtn);

int main (int argc, char *argv|[])

IMG AddInstrumentFunction (Image, 0);

return O;

In these callbacks, we save and monitor all allocations. Then, in our access memory callback (LOAD/STORE),
we check if the destination/source address is allocated or freed.

for (i2 = mallocArealist.begin(); 12 !'= mallocArealist.end(); i2++) {
if (addr >= i2->base && addr < (i2->base + i2->size) && i2->status == FREE) {
std::cout << std::hex << "[UAF in " << addr << "]\t" << insAddr << ": "
<< 1insDis << std::endl;

return;

5.2.3 - Test on a C based program

First test in a C-based program. Here, we allocate a memory area of 32 bytes. The first and third STORE are
OK, because buf is allocated but when the second STORE occurs buf is freed.

int main (int ac, char **av)
{
char *buf;

char c;

if (! (buf = malloc(32)))

return -1;

c = buf[0]; /* UAF not match */
free (buf) ;
c = buf[0]; /* UAF match */

buf = malloc (32);
c = buf[0]; /* UAF not match */

Our output looks like that.

$../../../pin -t ./obj-intel64/Taint.so -- ./test

[INFO] malloc (32) = 618010

[INFO] free (618010)

[UAF in 618010] 7£0257cb9ccb: mov gword ptr [rbx+0x10], rdx
[UAF in 618010] 4005c9: movzx eax, byte ptr [rax]

[UAF in 618010] 7f0257cba77f: mov r8, gword ptr [rl14+0x10]
[INFO] malloc (32) = 618010

$

5.2.4 - Test based on C++

Second test in C++ based program.

class Test

{
private:
int a;

void foo (void) ;

public:
Test (int num) { this->a = num; };
~Test () {};

void wrapper (void) ;

b

void Test::foo (void) {

std::cout << this->a << std::endl;

void Test::wrapper (void) {

this->foo () ;

int main ()

{
new Test (1234);

Test *ptr
Test *old

ptr;

ptr->wrapper () ;
delete ptr;
ptr->wrapper () ;

ptr = new Test (4321);
old->wrapper () ;

Our output looks like that.

$../../../pin -t ./obj-intel64/Taint.so -- ./testcpp

[INFO] malloc(4) = 1c04010

1234

[INFO] free(1c04010)

[UAF in 1c04010] 7f0913b5accb: mov gword ptr [rbx+0x10], rdx
0

[UAF in 1c04010] 7f0913b5b77f: mov r8, gword ptr [rl4+0x10]
[INFO] malloc(4) = 1c04010

4321

You can see the source code of this example 5 here : example 5 (http://shell-storm.org/blog/Taint-analysis-
and-pattern-matching-with-Pin//taint_example_5.cpp).

http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//taint_example_5.cpp

6 - Detect pointer utilization without check

During the previous chapter, | thought that it was fun to detect the pointer utilization without check. In userland
is not really useful, except for crashing the program. But this paper is just to know what it is possible to do with
Pin, and it may give people other ideas.

So, imagine the following code :
int main (int ac, char **av)

{
char ¢, *buf;

buf = malloc (32);
c = buf[0];

As you know, if malloc fails, it returns NULL and if the source location is NULL and when the STORE occurs,
we get a page fault. To resolve that, we just need to check if the pointer is NULL, like this :

int main (int ac, char **av)
{
char c, *buf;

if (! (buf = malloc(32)))
return -ENOMEM;
c = buf[0];

6.1 - Via pattern matching

For the pattern matching we need to analyze the ASM representation of this check on different forms.

/* Without optimization */

1if (! (buf = malloc (32))) call 400440 <malloc@plt>
mov QWORD PTR [rbp-0x8],rax
cmp QWORD PTR [rbp-0x8],0x0

/* With optimization -03 */

if (! (buf = malloc(32))) call 400440 <malloc@plt>

test rax, rax

/* Without optimization */

buf = malloc(32); call 400440 <malloc@plt>
if (buf == NULL) mov QWORD PTR [rbp-0x8],rax
cmp QWORD PTR [rbp-0x8],0x0

/* Check in other stack frame without optimization */

buf = malloc(32):; call 400480 <malloc@plt>

chk (buf) ; mov QWORD PTR [rbp-0x8],rax
mov rax, QWORD PTR [rbp-0x8]
mov rdi, rax

call 400584 <chk>

void chk (char *buf) { mov QWORD PTR [rbp-0x8],rdi
if (!'buf) cmp QWORD PTR [rbp-0x8],0x0

As you can see above, if you compile without optimization, we get a potential 'cmp mem, imm' instruction.
Otherwise you get a 'test reg, reg' instruction. But it is not reliable because that depends of your compiler.
So, in our case we add two new callbacks for the CMP and TEST instruction.

else if (INS Opcode(ins) == XED ICLASS CMP && INS OperandIsMemory (ins, 0)) {
INS InsertCall(
ins, IPOINT BEFORE, (AFUNPTR)cmpInst,
IARG ADDRINT, INS Address(ins),
IARG_PTR, new string(INS Disassemble (ins)),
IARG_MEMORYOP EA, O,
IARG_END) ;
}
else if (INS Opcode(ins) == XED ICLASS TEST && INS OperandCount (ins) >= 2 &&
REG valid(INS OperandReg(ins, 0)) && REG valid(INS OperandReg(ins, 1))) {
INS InsertCall(
ins, IPOINT BEFORE, (AFUNPTR)testInst,
IARG ADDRINT, INS Address(ins),
IARG PTR, new string(INS Disassemble (ins)),
IARG_REG_VALUE, INS OperandReg(ins, 0),
IARG REG VALUE, INS OperandReg(ins, 1),
IARG_END) ;

And in our callbacks we just see if the TEST or CMP instruction checks a allocated pointer. If it is True we
update the check flag to CHECKED.

VOID cmpInst (UINT64 insAddr, std::string insDis, UINT64 memOp)
{

list<struct mallocArea>::iterator 1i;

UINT64 addr = memOp;

for (i = mallocArealist.begin(); i !'= mallocArealist.end(); i++) {
if (*(UINT64 *)addr == i->base) {
std::cout << std::hex << "[PTR " << * (UINT64 *)addr << " checked]\t\t\t"
<< insAddr << ": " << 1insDis << std::endl;

i->check = CHECKED;

VOID testInst (UINT64 insAddr, std::string insDis, ADDRINT val r0, ADDRINT val rl)
{

list<struct mallocArea>::iterator i;

for (i = mallocArealist.begin(); i != mallocArealist.end(); i++) {
if (val r0 == val rl && val r0 == i->base) {
std::cout << std::hex << "[PTR " << wval r0 << " checked]\t\t\t" << insAddr
<< ": " << insDis << std::endl;
i->check = CHECKED;

Then, when we got a LOAD or STORE instruction we just need to see the check flag. If the flag is
ICHECKED, that means the pointer has potentially been not checked.

if (i->base == addr && i->check != CHECKED)
std::cout << std::hex << "[WRITE in " << addr << " without check]\t\t"

<< insAddr << ": " << 1insDis << std::endl;

6.2 - Output

We will compile the following program with -O0 and -O3.

int main (int ac, char **av)

{
char c, *buf;

if (! (buf = malloc(32)))
return -1;
c = buf[0];

printf ("$x\n", c);

And we get something like that:

$../../../pin -t ./obj-intel64/Taint.so -- ./test without opti
[INFO] malloc(32) = 1909010

[PTR 1909010 checked] 4005al: cmp gword ptr [rbp-0x8], 0x0
0

$../../../pin -t ./obj-intel64/Taint.so -- ./test with opti

[INFO] malloc(32) = 78010

[PTR 78010 checked] 4004ce: test rax, rax

0

Same thing but now without check.
buf = malloc(32);
c = buf[0];

printf ("$x\n", c);

And we get something like that:

$../../../pin -t ./obj-intel64/Taint.so -- ./test

[INFO] malloc (32) = 7ee010

[READ in 7ee010 without check] 4004ce: movsx edx, byte ptr [rax]
0

| have also tested it on a real binary like /usr/bin/id and | got this output (http://shell-storm.org/blog/Taint-
analysis-and-pattern-matching-with-Pin//output_id.txt). You can see the source code of this example 6 here:
example 6 (http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//taint_example_6.cpp).

7 - Conclusion

7.1 - Taint analysis and pattern matching with Pin

This paper was just my personal notes, when last weeks | wanted to play with Pin. | wanted to know what is
really possible to do with Pin. For my first approaches, the API is really easy to use and Pin has a great
documentation. The negative point is that it lacks of an intermediate representation (IR) - It is just my

http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//output_id.txt
http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//taint_example_6.cpp

personnal opinion, maybe it is not the Pin philosophy to give us an IR. In my case, when | wanted to do a taint
analysis, without IR it is really boring. For example with an IR like VEX (Valgrind), you do not need to monitor
the memory access and all is on the SSA form, which give us more flexibility to do the analysis. For the
conclusions, the taint analysis with Pin is possible but boring; I think it is not really made for that... Then if want
do this with Pin and that you want a perfect taint, we need to taint the bits and not the byte like in my examples
and you must not lose one bit, otherwise your tree taint is corrupted. Then if you taint the bits, your taint tree
will consumes a lot of memory. Same for the pattern matching, without IR it is possible but really boring,
complicated and not reliable. To conclude, | think Pin is cool just for small examples, or quick analysis ; but not
for a serious project.

7.2 - References

7.2.1 - Web references

Pin tool (http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool)

Pin API Reference
(http://software.intel.com/sites/landingpage/pintool/docs/55942/Pin/html/group__ API__REF.html)
Pin User Guide (http://software.intel.com/sites/landingpage/pintool/docs/58423/Pin/html/)

7.2.2 - My Pin tool sources

Example 1 - Simple taint a memory area (http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-
with-Pin//taint_example_1)

Example 2 - Spread the taint in memory and registers (http://shell-storm.org/blog/Taint-analysis-and-
pattern-matching-with-Pin//taint_example_2)

Example 3 - Spread the taint and follow your data (http://shell-storm.org/blog/Taint-analysis-and-pattern-
matching-with-Pin//taint_example_3)

Example 4 - Obsolete stack frame access detection (http://shell-storm.org/blog/Taint-analysis-and-
pattern-matching-with-Pin//taint_example_4)

Example 5 - Classical Use after free pattern matching (http://shell-storm.org/blog/Taint-analysis-and-
pattern-matching-with-Pin//taint_example_5)

Example 6 - Pointer without check detection (http://shell-storm.org/blog/Taint-analysis-and-pattern-
matching-with-Pin//taint_example_6)

7.3 - Special thanks

I would like to thank those guys for giving me a lot of feedbacks :-)

Axel "OverclOk" Souchet (https://twitter.com/OverclOk)
Kevin Szkudlapski (https://twitter.com/medusa_disasm)

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://software.intel.com/sites/landingpage/pintool/docs/55942/Pin/html/group__API__REF.html
http://software.intel.com/sites/landingpage/pintool/docs/58423/Pin/html/
http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//taint_example_1
http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//taint_example_2
http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//taint_example_3
http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//taint_example_4
http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//taint_example_5
http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin//taint_example_6
https://twitter.com/0vercl0k
https://twitter.com/medusa_disasm

