Implementing and Detecting a PCI Rootkit

John Heasman [john@ngssoftware.com]
15th November 2006

An NGSSoftware Insight Security Research (NISR)lieabon
©2006 Next Generation Security Software Ltd
http://www.ngssoftware.com

Implementing and Detecting a PCI Rootkit John Heasman

1o o [T 1 o] o P 2
INtroducCtion t0 the PCI BUScoiiiiiiiietcemmmn ettt es s et e et e e e e e eee s temnnmssnnaeeeeaaaenes 3
The POWET ON Self TEST....ciiiiiiiiiiitie ettt ettt e e ee e e e e eee e s 4
EXPANSION ROMSottt ettt ettt ee e e e ne e e e e e e e e aaaeaeaes 4
Re-flashing a PCI EXpansion ROM............oommm e e eieeeeeeeeeeeeeee e aeae s 6

Subverting the NT Kernel from an EXpanSion ROM e ...vveeeeeiiiiiiimiiniiniiiiinininnnnnns 7.

A Pre-Boot Means of Updating a ROOtKIt.........cccceoeeeeeiiieee 8

INTrOAUCTION 10 PXE ..oiiiiiii et 8
Y 01U L3 o T = =R EET 10
Detection Using Off-The-Shelf TOOISoooi i, 11

Auditing EXPanSioN ROMS..........couiiiiiiiiiimmmmme e eeeteeeaeaee e iee e e eae e e eeeteaaaaaeaaaeaaeeas 11

Preventative IMEASUIESuuiiiiiiiee et e e e e e e e e s 12
The Impact of a Trusted Platform Modulecccceeveeeiiii s 13

The Feasibility of Malware AJOPLION...........cceeeuiiiiiri i 14

CONCIUSIONS ...ttt e e e e st e e e e e semr e e e e e e e e e e nannbnaee e 15
RETEIENCES ...ttt ettt e e e e ettt e e e e e e e e e e e e e e e e e 15
ACKNOWIEAGEMENTS ... anne 15
Introduction

In February 2006, the author presented a meanarsisting a rootkit in the system BIOS
via the Advanced Configuration and Power Interfg®@P1l). It was demonstrated that
the ACPI tables within the BIOS could be modifieccbntain malicious ACPI Machine
Language (AML) instructions that interacted witlst®m memory and the I/O space,
allowing the rootkit bootstrap code to overwriterkd code and data structures as a
means of deployment[1]. Furthermore, the highllewsructions processed by the AML
interpreter (typically contained within the ACPIixder) meant that it was possible to
interrogate the operating system and hardwaredardo accurately determine the
platform and specific version of the OS. This pditdly allows a multi-platform future-
proof rootkit to be created.

Whilst using ACPI as a means of persisting a raatkine system BIOS has numerous
advantages for the rootkit writer over "traditichaleans of persistence (that include
storing the rootkit on disk and loading it as aide\driver), there are several
technologies that are designed to mitigate thisahr Both Intel SecureFlash and Phoenix
TrustedCore motherboards prevent the system BIQ8 being overwritten with

unsigned updates. Furthermore, it is relativebyda detect an ACPI rootkit by

disabling ACPI in the CMOS setup program, or bytbrapfrom read-only media that
does not load an ACPI device driver and auditirggAICPI tables located in system
memory (in essence, this is the same cross-viegctieh method that is typically used to
locate a rootkit on disk).

This paper discusses means of persisting a rawikit PCI device containing a flashable
expansion ROM. Previous work in the Trusted Conmmgufield has noted the feasibility

-2.-

Implementing and Detecting a PCI Rootkit John Heasman

of expansion ROM attacks (which is in part the peobthat this field has set out to
solve), however the practicalities of implementsugh attacks has not been discussed in
detail. Furthermore, there is little knowledgehofv to detect and prevent such attacks
on systems that do not contain a Trusted PlatfoimdNe (TPM). Whilst the discussion
mainly focuses on the Microsoft Windows platfortrshiould be noted that the
techniques are equally likely to apply to otherragtiag systems. The following sections
provide a concise overview of PCI, expansion ROM BIOS boot technologies; for
more detailed information the reader is advisechbiasult the relevant specification.

Introduction to the PCI Bus

The Peripheral Component Interconnect (PCl) sptibn, developed by Intel ¢.1990,
describes a computer bus for attaching peripheradgher buses to the motherboard.
PCI devices have become ubiquitous over the Ilfigefi years and a typical system is
likely to contain several, including a graphicsd;a network card and a storage
controller (e.g. a SCSI card). These devices anaected to a bus; PCI buses are
interconnected as follows:

» The host/PCI bridge, often referred to as the NBridge, connects the host
processor bus to the root PCI bus.

» The South Bridge connects the root PCI bus to$#elus, and also typically
incorporates the Interrupt Controller, the IDE cofier, the USB Host Controller
and the DMA Controller.

* The root PCI bus may also contain one or more BAQI bridges.

* In PCI terminology, a “function” is a PCI deviceattperforms a single, self-
contained function, such as a video adapter oalgeort. A single physical PCI
component may actually contain up to eight function

A sample PCI bus from a notebook computer is shiovigure 1. Devices such as
graphics cards quickly approached the data tratigfés of the PCI standard prompting
Intel to release the Accelerated Graphics Port (Asprecification in 1997 and the PCI
Express (PCle) specification in 2002. PCle is seea long term replacement to both
PCIl and AGP, with version 2.0 of the specificatiorbe released in 2007. However,
since the functionality discussed in this pap@&oisimon to PCI, AGP and PCle, the term
“PCI” is used hereafter to refer to any of the paing technologies.

Implementing and Detecting a PCI Rootkit John Heasman

=-4mp 0.0.0 Bridge (8086)3340) - Intel Corporation | 82855PM Host-Hub Interface Bridge
EI“ 0.1.0 Bridge (8086/3341) - Inkel Corporation J 82855PM AGP Bridge
Foe Z 1.0.0 Function (1002j4e50) - ATI Technologies Inc | Mobility Radeon 9700 (M10 MP) (R¥3S50)
=W 0,25, Multi Function Device
Q 0.29.0 Function (8086/24c2) - Intel Corporation | 828010E/DEL/DEM (ICH4TICHS-L/ICH4-M) USE UHCT Controller #1

Q 0.29.2 Function (B086/24c?) - Intel Corporation [8280106/DBL/DEM (ICH4/ICH4-L/TCH4-M) USE UHCI Controller #3
Q 0.29.7 Function {8086/24cd) - Inkel Corporation | §280106/DEL/DEM (ICH4TICH4-L/TCH4-M) USE 2.0 EHCT Controller
[=]-4mp 0.30.0 Bridge (8086/2448) - Intel Corporation | 82801BAMICAMIDEM (ICHZ-M[3-Mi4-M) Hub Interface to PCI Bridge

----- BE# 20,0 Funcktion (14e4/170c) - Broadcom Corp [BCM440x 100Base-Tx Fast Ethernet

=8 2.1.% Multi Function Device

~-4mp 2,1.0 Function (11800476 - Ricoh Co Lkd f RLSc476 CardBus Controller
&g 2,11 Function (1180/552) - Ricoh Co Ltd | RL5c552 IEEE-1394 Cantroller
‘g 2,1,2 Function {1180/822) - Ricoh Ca Ltd [SD Bus Host Adapter
----- B#l 2.3.0 Function (14e4/4320) - Broadcom Corp J BCM4306(77) 502,110 Wireless MIC
-8 0.31. Multi Function Device
~-4@p 0,31.0 Function (5086/24cc) - Intel Corporation [§28010EM (ICH4-M) LPC Interface Bridge
--=3 0.31.1 Function (8086/24ca) - Inkel Carporation | 828010BM (ICH4E-M) Ultra&T A/ 100 EIDE Controller

----- . 0.31.5 Funcktion (5086/24cS) - Intel Corporation | 828010E;DBEL/DBM {ICH4/ICH4-L/ICH4-M) AC'97 Audio Controller

Figure 1: The logical representation of a typie@l bus

The Power On Self Test

When a system is powered, a pre-boot sequence kaswire Power On Self Test

(POST) is performed during which time the syster®8iis typically copied from flash
ROM to system memory. Execution of the system Bl begins to ready the system
for boot. Itis at this point that the PCI busesanned to determine what devices exist. In
order to facilitate the walking of the bus, eacH R@ction implements a set of
configuration registers as defined by the PCI dmation. These can be used to
determine the type of the device (known as thesatasle), the vendor (via the vendor ID
register) and whether the device contains an expafOM (covered in more detail in

the next section). The system BIOS accesses thgsers, located in the PCI
configuration space, via I/O.

Expansion ROMs

Many PCI cards contain an expansion ROM that hatfiitional code required to
initialise the card during execution of the sys®I®S. This code is also responsible for
carrying out the device-specific self-test and hogkequired interrupts. The presence
of an expansion ROM is determined via the ExpanBiGi Base Address Register
within the PCI function’s Configuration Header,sd®wn in Figure 2.

Implementing and Detecting a PCI Rootkit

John Heasman

16 15

Device ID Vendor |D 00h
Status Command 04h
Class Code Revlislen ID | 08h

10h

14h

Base Addrass Registers 18h

1Ch

20h

24h

Cardbus CIS Polnter 28h
Subsystem ID Subsystem Vendor ID 3Ch
Expanslon ROM Base Address 30h
Reserved 34h

Reserved 38h

Max_Lat Min_Gnt ! nEiLru pt ! nlf %r;u bt 3Ch

Figure 2: The PCI Configuration Header

The exact sequence of steps is as follows (taken RCI System Architecture[2]):

* Assign a base address (representing physical systamory) to the register’s
Base Address field

* Enable its decoder by setting bit O in the regigiek
» Set the Memory Space bit in the function’s CommBedister

* Read the first two locations from the base addtesgerify the presence of the
expansion ROM signature (the word ‘AA55h’).

After enumerating the PCI bus and copying expanBiGms to memory, the system
BIOS scans the following regions in order to loczdéd ROMs:

« (0xC0000 - OXC7FFF, on 2KB boundaries for a VGA ROM
*« (0xC8000 - 0xF0000, on 2KB boundaries, for non-VGANRs

It then executes from offset 03h in the ROM, whickypically a short jump to the ROM

-5-

Implementing and Detecting a PCI Rootkit John Heasman

initialisation code required for the card to functicorrectly. It is recommended that the
interested reader download a BIOS update for ahggaggard from the manufacturer’s
website. The download is likely to consist of alttm perform the flash update and a
binary ROM file. Disassembling the ROM as 16-litle from offset 03h should reveal
that the initialisation code installs itself as tlendler for interrupt 10h in the Interrupt
Vector Table (IVT). This is expected since int@trdOh is the VGA interrupt used for
outputting data to the screen.

It is worth noting that the expansion ROM doesmetessarily hold x86 code nor does it
have to contain a single ROM image. The code figd@ within the ROM data structure
within the image specifies the presence of x86 aydepenBoot interpretive code
(documented in the Open Firmware standard).

The expansion ROM is stored on either an EPRONhane commonly on an EEPROM.
EPROMSs require that the chip is removed from thd ead erased via exposing it to
strong ultraviolet light before it can be reprograed. EEPROMSs, however, can be
erased electrically, in-circuit, thus the card neetlbe removed from the system and can
be re-flashed from the operating system.

Re-flashing a PCI Expansion ROM

Vendors of newer PCI cards often provide tools taat be used to flash the card from
within Windows (provided the user has administmiivivilege). Tools exist for older
cards but these often require that the user bdat DOS boot disk. Running the tool
under the Windows Virtual DOS Machine Subsystem\{(BM) is unlikely to work for
reasons discussed shortly. Tools that can bemdardVindows typically install a device
driver that uses the Plug'n'Play Manager's IRP_MUNERY_INTERFACE and
IRP_MN_READ_CONFIG/IRP_MN_WRITE_CONFIG requestscafl HalGetBusData
on Windows 2000 and earlier (this function has sgbently been made obsolete).
Analysis of the IRP_MN_WRITE_CONFIG request revahbst ultimately I/O is
performed to re-flash the card.

By default, only restricted 1/0 can be performeshiruser-mode since normal processes
operate with an 1/O privilege level (IOPL) of zerdhis explains why running DOS-
based tools to re-flash PCI cards under NTVDM dua#svork - the process is unable to
perform unrestricted I/O. It is in fact possibdeetievate a process to an IOPL of three on
Windows, permitting unrestricted 1/0 from user-mode order to perform this, the user
must have the SeTcbPrivilege and call the undoctedddative API function,
NtSetinformationProcess with a process informatiass of ProcessUserModelOPL.
Once the user can perform unrestricted 1/O, theyprdentially re-flash the card without
having to load a driver.

This raises the possibility of (1) a remote atthekt yields LocalSystem privilege (such
as the server service vulnerability patched in tp8éS06-040) being used to deploy a

Implementing and Detecting a PCI Rootkit John Heasman

malicious expansion ROM, (2) a browser exploitt.tifdhe user is running under the
administrative context, obtains SeTcbPrivilege esflashes a card.

Cards that contain an EPROM are not at risk fromote attacks that re-flash the
expansion ROM since these require the chip to m@ved from the card and erased by
exposing it to a strong ultraviolet light. EPROB®uId potentially be abused if an
attacker has physical access to a system; alteehatin attacker could pre-infect a card
if they know that it will be put in a specific sgsh.

Subverting the NT Kernel from an Expansion ROM

A re-flashed expansion ROM permits the rootkit @rito execute code during the POST
(as the system BIOS executes the ROM initializatiote), after the POST and whenever
a hooked real mode interrupt is called. Howeventolling the operating system from
this point is not necessarily a trivial task. Afidulty noted by the authors of
BootRoot[3], a proof-of-concept boot sector rootitten by Derek Soeder and Ryan
Permeh, is that when the initial code executes HitePOST, no part of the operating
system has been loaded, and that during boot, $st&@t-up brings about dramatic
changes in system state (such as switching fromiti@al mode to 32-bit protected
mode) during which control must be maintained (deast “scheduled to re-activate”).
BootRoot hooks interrupt 13h, the interrupt thatvyides the low level disk services in
order to patch the operating system loader sattkian patches key operating system
files such as device drivers.

It is possible to analyse the interrupts calledrdyWindows boot using Bochs, the open
source x86 emulator[4]. Bochs contains an integraebugger allowing the user to set a
breakpoint on CPU mode switches as well as theuioecof interrupts. It was noted

that relatively late during the Windows boot, imtgat 10h is called. Further analysis
revealed that this occurred though a kernel exp@886CallBios, whose prototype is
given below:

NTSTATUS NTAPI Ke386Cal | Bi os(ULONG, PCONTEXT)

When this function is called, the operating sysigin 32-bit protected mode, yet the
first parameter represents the real mode intetoupe called via the IVT. In order to
carry out the interrupt, this function thereforeuks in a transition to Virtual 8086 mode,
also called virtual real mode or VM86. The auttetermined that by hooking interrupt
10h via an expansion ROM, it is possible to expliadetect the call from VM86 mode
Ke386CallBios and subsequently locate and modifykernel structures such that when
the operating system returns to protected modéyamnpattacker code is executed with
kernel privilege from the expansion ROM. This cedeld be used to subvert the kernel
directly or bootstrap another rootkit component.

Implementing and Detecting a PCI Rootkit John Heasman

It should be noted that there are likely severaéomeans of obtaining code execution in
the operating system, given the ability to execwige during POST, immediately after
POST, and when a specific real mode interruptlieda

A Pre-Boot Means of Updating a Rootkit

Rootkits typically require some means of commumicatvith a remote host, either to
allow the controller to modify runtime settingstorretrieve data of importance. Indeed,
the rootkit deployed on the infected host may @agve to bootstrap a rootkit that is
loaded via network. This was the approach dematestrby BootRoot, which patched
the network driver so that it executed code diyeatlt of specially crafted Ethernet
frames. This approach is likely to require annimediate period of building up the code
since it is unlikely that the entire rootkit coddd fitted into a single Ethernet frame.
From the rootkit writer's perspective, the probleith a rootkit that updates itself via
conventional means of communication such as Trah&pspatch Interface (TDI, the
network abstraction layer presented by the NT Kgrigethat the detection surface
expands significantly. Personal firewalls thatrape at the

Network Driver Interface Specification (NDIS) lewgbuld be expected to trap this kind
of communication unless the rootkit itself manipetaNDIS (e.g. as is the case with
Joanna Rutkowska’s Deepdoor[5]).

As an alternative to updating once the operatirsgesy has loaded, communication with
the network card could be performed pre-boot duexgcution of expansion ROM
initialisation code. This would require low levalowledge of the network card in order
to send and receive frames as well as a barebomsmentation of a network stack.
Depending on the card, this may not be especiéfigult. Simple 16-bit real mode code
to perform this for cards based on the NE2000 §ipation is readily available on the
Internet, for example.

Introduction to PXE

PXE is the Preboot Environment developed by Irégbart of the "Wired for
Management" initiative. The most recent versiothef PXE specification is version 2.1,
released in September 1999. PXE is commonly useithé following scenarios:

* Remote new system setup; the client machine dowslaaNetwork Bootstrap
Program (NBP) that automatically or interactivesyyrées out installation of a new
operating system.

* Remote emergency boot; the client machine downldagostic tool or
framework when a hardware or software componel#t fegeventing normal boot.

Implementing and Detecting a PCI Rootkit John Heasman

* Remote network boot; the client machine may beigets a diskless workstation,
in which case PXE can be used to load an NBP tlegexjuently loads the entire
operating system over the network.

PXE is built on industry standard protocols sucif@®/IP, DHCP and TFTP. In an
environment that is PXE-enabled, the client semdisiéial DHCP discover packet
containing the PXE client extensions tag. ThelteguDHCP offer will contain the PXE
server extensions tag, providing the client with R address of the PXE server. The
client is then able to retrieve the specified NB&®MTP. This is obviously a simplified
description of PXE; in reality there are numeroX&Related DHCP tags. For further
details the reader should consult the PXE spetifica

PXE is implemented as x86 code within an expanBioi. The PXE ROM provides a
set of API services corresponding to the layersttwiive in the OSI reference model. In
addition, the PXE ROM contains "base code", whagresents the actual PXE program
that is executed when network boot is initiatethe PXE APIs consist of:

* Pre-boot API; the pre-boot API provides functiohafor initialising the UNDI
ROM, described below, and starting execution otlmasle.

» Trivial File Transport Protocol (TFTP) API; the TPTAPI provides, as one
would expect, a set of functions for transferringrmage into memory via TFTP.
Functions include "TFTP OPEN", "TFTP CLOSE", "TFREAD",
"TFTP/MTFTP READ FILE", and "TFTP GET FILE SIZE".

» User Datagram Protocol (UDP) API; this API provideset of function to send
and receive UDP packets consisting of "UDP OPENDP CLOSE", "UDP
READ" and "UDP WRITE".

» Universal Network Driver Interface (UNDI) API; ThéNDI API is the lowest
level PXE API, and is responsible for communicatwvith the card (i.e.
performing the required 1/0) in order to send aeckive network frames. This
part of the PXE ROM is therefore likely to be netiwoard specific. The other
APIs build on this in order to present useful segsgito the base code.

Later implementations of PXE often consist of acddexpansion ROMSs rather than a
monolithic ROM as is commonly found in old implentetions. This has the advantage
of allowing specific parts of the PXE implementatio be separated so that multiple
devices can implement PXE without a linear incread®OM storage requirements. It
also has the advantage of allowing other componsuath as the system BIOS, to make
use of specific part of the PXE API set, such aDUNh order to perform its own pre-
boot network communication. For the sake of byg¥ttis paper uses the term "PXE
ROM" to mean to set of all PXE related ROMs presenthe system.

If a PXE ROM is present on the network card ohia $ystem BIOS, network boot can
be selected as an Initial Program Load (IPL). BH@S Boot Specification[6] details the

-9-

Implementing and Detecting a PCI Rootkit John Heasman

structures that an expansion ROM must containderathat the device is considered as
an IPL and added to the IPL table. The user setbetIPL priority from the boot
sequence screen within the BIOS Setup programyraardically during POST by
pressing a specific hotkey key. The weaknesslinthBt makes it open to abuse is
support for the legacy cards that do not implentieatrequired IPL structures. The BIOS
Boot Specification states that:

"If a Legacy card’s option ROM code hooks INT 18hm its initialization call it
controls the boot process.”

Thus all a rogue option ROM is required to do idesrto be assured of gaining control of
initial execution after the POST, is to ensure thaboks interrupt 19h (and that prior to
leaving POST, a legitimate legacy ROM present esifstem has not inserted its own
hook).

Abusing PXE

With modifications to the base code, or by supgyafternate base code altogether, it is
possible to subvert PXE in order to carry out alpwet update of a rootkit. Firstly, the
rootkit's expansion ROM must hook interrupt 19fdescribed above, storing the existing
address so that the normal boot sequence can tiedcant post-update. Next, the PXE
ROMs should be initialised and the rootkit baseecsldould be executed. This uses the
PXE APIs to obtain an IP address and contact tbtkitccontroller; the response from the
rootkit controller indicates the presence of anaipd The update is downloaded via
TFTP and stored in memory, or re-flashed directiymthe appropriate card. The base
code can implement features designed to reducehtdmeces of detection, such as request
masking (out-bound requests are disguised as D3¢Bgduled updates based on the real
time clock, and compression and encryption of datda from the rootkit controller to the
client. Thus in the rootkit deployment phase,dttacker will seek to either replace the
PXE ROM (containing the modified base code), ove the new base code in another
expansion ROM. If the attacker elects to replaeesRXE ROM entirely, they may
choose to replace it with a modified version of dhiginal ROM, or a ROM created by a
tool such as Etherboot[7].

Etherboot is open source network boot ROM creabohthat supports a huge number of
network cards and actually goes beyond the reqeinsrof the PXE specification to
implement APIs that provide TCP and HTTP servidéss feasible that an attacker may
attempt to re-flash a network card with an entiregyv Etherboot ROM since on a stable
system the user is unlikely to regularly select RasEhe IPL, and therefore will not
notice the difference (assuming Etherboot has beatified to operate with stealth, i.e.
by not outputting to the screen).

-10 -

Implementing and Detecting a PCI Rootkit John Heasman

Detection Using Off-The-Shelf Tools

Whilst researching expansion ROM attacks, the autremted several proof-of-concept
rootkits based directly on the techniques describelis paper; these were tested on a
popular model of graphics card. In attemptingeétedt such rootkits, one should
remember that expansion ROMs are first copiedsgtem memory, and that the code
they contain is executed by the system processothe rootkit does not use the
processor on the graphic card, nor does it use meamthe PCI card that cannot be
accessed from kernel mode. Thus in detecting tkitdbat has been persisted on a PCI
card, the first step should be to detect how tla¢kibhas subverted the kernel (e.g. the
hooks it has in place and the kernel structureastmodified). There are many Windows
rootkit detection tools that operate a variety iffiedent approaches; consequently, they
often complement each other when hunting rootkétdist of popular rootkit detection
tools may be found at the Anti-Rootkit website[8].

Auditing Expansion ROMs

The ROM can be retrieved from system memory, anftbe card itself. In order to carry
out an audit, both should be retrieved. It isutnatommon for these to differ in size and
content - the PCI specification elaborates thafrilimlisation code can be discarded, and
that the ROM located in system memory can ressadfiin order to conserve space.
Expansion ROMs can be retrieved from user-modéiiredows 2003 SP1 via the
\device\PhysicalMemory device, that can be openedead access by administrators.
From Windows 2003 SP1, access to \device\Physigaldfig has been prevented from
user-mode.

In order to retrieve the ROM from the card itsélfs necessary to follow the sequence of
steps discussed earlier. This is likely only tddsesible from kernel mode since a region
of physical memory must be allocated prior to eimgihe Memory Space bit in the
function’s Command Register.

Having obtained the ROMs from system memory ancténd itself, these should be
compared to known good ROMs obtained from venddrsites. Ideally, vendors should
carry downloads of all previously released ROMs #air corresponding hashes
however, a brief survey suggested that majorityesty only link to the most recent
ROMs.

If the ROM differs from a known good ROM, it shoudd investigated in the same
manner that malware is analysed. The followingaaibrs suggest that the ROM may
contain malicious functionality:

* The class code within the ROM data structure do¢snatch that returned by the
PCI configuration register within the device’s agufation header. This

-11 -

Implementing and Detecting a PCI Rootkit John Heasman

indicates that a ROM has been placed on the démiceon-device related
purposes.

* The ROM hooks or calls interrupts not typically@sated with the functionality
of the card (e.g. whilst the PXE ROM is likely tontain interrupt 10h calls in
order to display output to screen, it is extremetlikely to hook interrupt 10h
itself).

* The ROM hooks interrupt 19h. This may be indicawf a legacy ROM that
does not implement the required IPL data strucfures may indicate the
presence of malicious code that requires contreketution after the POST.

e The presence of 32-bit code. If the code typ&@&ROM data structure indicates
x86, the expansion ROM is expected to contain 16elail mode code, at least for
the initialisation code. Some ROMs such as thesegated by Etherboot contain
32-bit protected mode code, however upon disasgeoma can clearly follow
switches between real mode and protected mode.prEsence of isolated 32-bit
code that is seemingly not accessed by any ottt icothe ROM should be
treated as suspicious.

» Operating system specific references. Evidens@rofgs or 32-bit addresses that
lie within common NT kernel modules should be cdased indicative of a
rootkit.

» Code that appears to be heavily obfuscated. nibtisincommon for a ROM to
contain compressed code that is decompressed duitiadjsation, however the
presence of code that is heavily obfuscated arfidulifto follow in a
disassembler should be treated as suspicious.

Preventative Measures

General rootkit prevention steps typically invohesping the system and all third party
software fully patched as well as running a perkbreavall and anti-virus software. As
an additional step, the user can write protecfithevare of certain PCI cards via a
physical switch or jumper, as can be seen in Fi§ure

-12 -

Implementing and Detecting a PCI Rootkit John Heasman

L

Figure 3: A PCI card that has BIOS protect switch

The author has noted that newer cards seem natvtothis ability, perhaps because of
the additional cost, or perhaps because user fekdihdicated it was inconvenient or
redundant. Furthermore, the author is not awaengfPCl cards that require a signed
firmware update. Though support for this wouldr@ase the complexity and therefore
the cost of a PCI device, it is an improvement thaitild potentially stop the techniques
discussed in this paper outright.

Anti-virus software could also potentially monitmalls to NtSetinformationProcess, to
prevent applications from changing their IOPL (tpusventing them from re-flashing the
card without loading a driver), although the impaicblocking all calls to this function is
unclear and if a single call is permitted, user-mmathlware with the appropriate
privilege could simply inject code into the relev@anocess.

The Impact of a Trusted Platform Module

The Trusted Platform Module is a microcontrolleattetores secured information and
provides facilities for generation of cryptograpkéeys as well as signing, verification,
encryption and decryption. One role of the TPNbiprovide the functionality required
to implement a secure bootstrap. During the seooogstrap, the core root of trust
measurement (CRTM), also known as BIOS Boot Bloekifies the integrity of the
system BIOS. The expansion ROMs present on dewvitdise system are then hashed
and compared against known good values storeckiRlditform Configuration Registers
(PCRs). The sequence of PCR checks is illustiatétjure 4 (taken from Hendricks
and van Doorn[9]).

Implemented correctly, the secure bootstrap babkdatie TPM prevents the rootkit
persistence mechanism presented in this paper.

-13-

Implementing and Detecting a PCI Rootkit John Heasman

T PCR[15]
~—

/ \ PCR[14]
Opcrsz’itmg iSys‘[cm \ g PCR[13]

pecific: \ £
Device Drivers, AN . e
Applications, etc. \\ PCR[11]
\ PCR[10]
— \ PCRI[9]
T 9 PCR[8]
G rcki

u 1 /
/ Boot Loader \ \\ - l\\‘ PCR[6]
\ /* "_“*-___;: PCR[5]
=) / Option ROM \: PCRJ[4]

R Conhgurallon PCRI3

/Optlon ROMS\F \ o / 3]
\ T e PCR[2]
— __———— PCR[1]

/ Hardware \\ a / \
onfiguration / (PCR[0]

\ Configuration / ([BIOS

Figure 4: Sequence of PCR checks

The Feasibility of Malware Adoption

During the presentation of the author's ACPI redeahe question of malware adoption
of BIOS rootkit techniques was discussed. It esdlithor’s belief that the objective of
most malware writers (such as those who target $eoexploits as a means of deploying
key loggers etc.) is to infect as many system asipte, whilst the objective of a rootkit
writer is to infect a small set of systems for aa@fic purpose. The former therefore
writes code that will run on most configurationsilstithe latter is able to utilise the
specific configuration of the target systems. ihalware writer wished to use BIOS
rootkit techniques, the set of machines that tbeile would operate on successfully
would likely decrease substantially. It is possitiiat malware could be designed to
operate as it does currently, only using thesenigcies if a known hardware
configuration is recognised, however increasingbpipears to be driven by economic
factors. Whilst enough people do not regularlylagpcurity patches to Windows and
do not run anti-virus software, there is little imdnmate need for malware authors to turn
to these techniques as a means of a deeper consgretifia user detects the malware
and removes it, there are plenty more unsuspetanggts on the Internet.

-14 -

Implementing and Detecting a PCI Rootkit John Heasman

Conclusions

This paper has demonstrated that the PCI deviaesdar a viable means of persisting a
rootkit on a system that does not contain a TPMil&%many new notebooks and
desktop systems contain a TPM, it will take sevgealrs before their usage becomes
widespread. Until then, developers of tasks tleaffiopm deep system analysis, such
rootkit detection and digital forensics, should géyse attention to flashable devices.

References

[1] John Heasman: Implementing and Detecting aR&ootkit, presented at BlackHat
Federal, 2006.

[2] Tom Shanley and Don Anderson: PCI System Aedfture, MindShare Inc., 1999.
[3] Derek Soeder and Ryan Permeh: eEye BootRoesepted at BlackHat USA, 2005.

[4] Bochs IA-32 Emulator Projecthttp://bochs.sourceforge.net/

[5] Joanna Rutkowska: Rootkits vs. Stealth by Bedilalware, presented at BlackHat
Federal, 2006.

[6] BIOS Boot Specification, version 1.01:
http://www.phoenix.com/NR/rdonlyres/56 E38DE2-3E6F43-835F-
B4A53726ABED/0/specsbbs101.pdf

[7] Etherboot: Open Source PXE implementation,
http://www.etherboot.org/wiki/index.php

[8] Anti-Rootkit Software - Detection, Removal &dRection:
http://www.antirootkit.com/software/index.htm

[9] James Hendricks and Leendert van Doorn: SdBaogstrap is Not Enough: Shoring
up the Trusted Computing Base, Proceedings of lieith SIGOPS European
Workshop, ACM SIGOPS, Leuven, Belgium, Septemb@420

Acknowledgements

The author would like to thank his colleagues at3$Gftware for their suggestions and
support.

-15 -

