Hook Analyser Project

Project Home — www.hookanalyser.com
Author — Beenu Arora (www.beenuarora.com)

Email — beenudel1986 @gmail.com

Description: Hook Analyser is a freeware project, started in 2011, to analyse an application during the run-
time. The project can be potentially useful in analysing malwares (static and run time), and for performing
application crash analysis.

The following sections break down the features (and functionality) of the Hook Analyser, and attempts to
answer ‘How-to’ and ‘so-what’ queries.

Application UI — Significant updates have been performed on the latest release (v 2.2) to make it more verbose.

Helcome to HookAnaluwser Interactive Mode

Spawn and Hook to Application

Hook to a specific running process
Perform quick Static Malware Analysis
Application crash analysis

Pleaze enter vour choice [1-2/3-41 :

1. Spawn and Hook to Application

This feature allows analyst to spawn an application, and hook into it. Module flow is as following—
a. PE validation
b. Quick static malware analysis.
c. Other options (such as pattern search or dump all)
d. Type of hooking (Automatic, Smart or manual)
e. Spawn and hook
Currently, there are three types of hooking being supported —

e Automatic — The tool will parse the application import tables, and based upon that will hook into
specified APIs.

e Manual — On this, the tool will ask end-user for each API, if it needs to be hooked.

e Smart — This is essentially a subset of automatic hooking however, excludes uninteresting APIs.

Once an application is specified, the tool will perform a quick static analysis to identify any anomalies or
malware traces. Refer to the section 4 for detailed information.

P
Doing initial statlc analysis on the flle

Analysing if valid PE file

Ualid PE File

File Size : 284 KB

Verifying CRC from file

CRC ZSeensz fine

Verifying timestamp from file

Timestamps seens fine

Image Base :© Bx188000AAL

Address Of Entry Point: Bx1BBAL

Mumber of RUA and Sizesz: 16

Subsystem: IMAGE_SUBSYSTEHM_WINDOWS_GUI
Searching for TLS entries..

Mo TLE entries identified

Found Entry Point at section: .text
Entry point in known section. Seems fine
Identifying Suspicious section
SUSPICIOUE
tion Mame: IMAGE_SECTION_HEADER Entropy 7.20453591583

[IMAGE_SECTION_HEADER]
BxB Mame = .data2
Bx8 Misc: Bx218BA
Bx8 Misc_PhysicalAddress: Bx218B6
Bx8 Misc_UirtualSize: Bx2183BA
BxC UirtualAddress: Bx70068
Bx1@ SizeOfRawData: Bx21A88
Bx14 PointerToRauwData: Bx32008
Bx18 PointerToRelocations: BxA
Bx1C PointerToLinenumbhers: BxB
Bx28 MNumbherOfRelocations: BxA
Bx22 HumberOfLinenumbers: BxB
Bx24 Characteristics: BxCANAAA4A

Executahle iz Debug aware
Executable is exception aware
Executable can hook to kevyhoard
Executable could change DEP setting. This is suspicious
Executabhle could spawn a new process
Executable is potentially anti—debuy aware
Extracting file information from executahle
LegalCopyright ——
InternalMame ——-— OOBEBHLN ESE
Filelersion —— 5.1.2688.55%12 (xpsp.8860413-2111>
CompanyMame ———
ProductName —— Microsoft Windows
ProductlUersion —— 5.1.2680.5512
FileDescription —— Windows O0BE
OriginalFilename ——- OOBEBALM.EXE
Found Anti UM Trick in the executable
MD5 checkzum of the executabhle is :164b52398a16852a0413f769557hBA445
Extracting strings from the executable...

Hlnduws/E
...%0

ISP »x1x8
-8

Hinduwszﬂ
-..»8
ISP »x1x8

FileDescription

Windows O0OO0BE

Filelersion

5.1.260A0.5512 (xpsp.@A8A413-2111>

InternalHame

OOBEBALN.EXE

LegalCopyright

OriginalFilename

OOBEBALN.EXE

ProductMName

Microsoft

Windows

ProductlUersion

5.1.2668A.5512

UarFilelnfo

Translation

L4{4{0bsolete>>

REFFEFFELFFEFFELFE CHD2942xAJCyuf1HE 3ab18xalrsL2im?ynZz pS6a5jhl3 Kno7hdv jLyGuhG
oBgr4diJESFL G3il1Cljd=1FlefCEf7?22IhH6babidLuweAEJAkHZb1 tgh CoGutoyuSekB8jnpiEvl
Hz Ing5xB8d vyj?DzKAuMB4JAmwlf BHKGu3S5x Ij2gLo4fijg PhdApb6SctHwlEuvwzdt zkM31Ggs6F35
ocyguSElgbugHJprd3MGzxo I Kf gBm74oJkuwe 26t rdnSgSwiAgK4AEMeaAb383vJ9nLklgCngl 2evig
MmB41z1 bKwu3LFC4uHhzFmvyxlzwttIShlctyMJac58tsAHH 1er2FrfMopgShYgHyruyDeCtkbh51CuA
bkH?GCEzE31jGFberIrfB AxFIB7obJzx78 j4F62Apl xfAuyM68785C4dbiKCf aLle J7 Fhgwoy2x? jdx
idecmbZHgw2 29 xgem2 GhFHwiHCwdwdBluaZ2iME 7tmfof bFdLvobhf 7tiGofclkgdeveDEpyphuLBoxzre
hGJKEpdH fgAkim8hS Ygty2?eskd4JMuzh8?CoC ?FcxGbCSaBpf duj?d4CrmxxJe4B2GEAEen?uf =
giBxtzKbh iJCjuwsAGriFDZ2o?Md1iFfDIBC4AtnnuHoEL?GDtaBHMwHE? yu? wkuJghf jeEJmidbHI kLG
fClur6z?LylbodEofcx486kxL2bhxLypjbmbEpajchdmdAradJAvKjGdJaDAhunyEanb GkuBodEzb kv K
ElelKjlixoDjrpgkgmlC?5M?hrdel1=259KuS uS59rkuyl ?GkeHE1MBBszkpyE2uZ2CpK2gBuAlvuzrp F1
uGjMgGinJEMJlsdch52uirdsqud4B8nHiM4JCjGe iHCBDuB 2dzpdpltABtrzyKzcof kKImA6?a49 j8hi]

Once static analysis is performed, the tool allows analyst to perform one of the following —

e List APIs — The option is used to list API calls only, and this doesn’t display buffer data (on stack or
heap).

e Pattern search — The option allow searching for patterns or ‘strings’ in memory after application is
spawned and hooked.

e Dump all — The option will list API calls and output data from respective buffer (stack or heap).

Once the above option is selected, analyst can chose type of hooking and proceed (as described above)

[#] Select options : 1 <{default.list calls?> ., pipattern search? ., d <dump all>
C1l/p-d>? Choice :1
[#] Hooking mode 7 Automatic <a>» or Manuwal <m>» or Smart (527 Choice <a-ms s>

[#]1 Seems everything is »unning file
[#] Lawnching the executahle. Press ENTER to continue

Sample malware analysis demonstration —http://www.youtube.com/watch?v=sdnRP9oweT4

Note — This video was created using Hook Analyser 1.4 (the old version).

2. Hook to a specific running process

The option allows analyst to hook to a running (active) process. The program flow is —
a. List all running process
b. Identify the running process executable path.
¢. Perform quick static malware analysis on executable (fetched from process executable path)
d. Other options (such as pattern search or dump all)
e. Type of hooking (Automatic, Smart or manual)

f. Hook and continue the process

Hook to a specific »unning process
Perform guick Static Malware Analysis
Application crash analysis

Please enter your choice [1-2-3-4]1 :2
Listing all active processes
Sysztem Idle Process

CSPSS .exe
winlogon.exe
seprvices .exe

vmacthlp.exe
suchost . exe
suchost . exe
suchost . exe
suchost .exe
suchost .exe
spoolsv.exe
MDM.EXE
untoolsd.exe
UMUpgradeHe lper . exe
TPAutoConnSvc .exe
alg.exe
wecntfy.exe
explorer.exe
UMuareTray_exe
UMuarellser.exe
ctfmon.exe

132 — notepad++_exe

3484 — chrome.exe

2788 — rundll32.exe

12 — cmd.exe

2716 — HookAnalyser2 .2 _exe
2552 — HookfAnalyser2 .2 _exe
628 — uwmiprvse.exe

[-1 Enter the process id =

http://www.youtube.com/watch?v=sdnRP90weT4

Enter the process id - 4832

Hooking to spawned process

Identifying process path for process 4832

Process path is :c:-sprogram filessgoogleschromesapplicationschrome.exe
Analysing if valid PE file

Ualid PE File

File Siz=e : 1242 KB

Verifying CRC from file

CRC Seems fine

Verifying timestamp from file
Timestamps seems fine

Image Base - Bx4@00HAL

Address Of Entry Point: Bx7EABGL
Mumber of RUA and Sizes: 16

Refer to the section 1 for the rest of the module flow description.

3. Perform quick static malware analysis

This module is one of the most interesting and useful module of Hook Analyser, which performs scanning on
PE or Widows executables to identify potential malware traces.

This module has inherited lot of feature from malware analyser project (www.malwareanalyser.com).

Currently this module perform the following —

a.

b.

PE file validation

CRC and timestamps validation

PE properties such as Image Base, Entry point, sections, subsystem

TLS entry detection.

Entry point verification (if falls in suspicious section)

Suspicious entry point detection

Signature trace (extended from malware analyser project), such as Anti VM aware, debug aware,
keyboard hook aware etc. This particular function searches for more than 20 unique malware
behaviours (using 100’s of signature).

Online search of MD5 (of executable) on Threat Expert.

String dump (ASCII)

Executable file information

...and more.

Refer to the figure 2 for sample screenshot.

4. Application crash analysis

This module enables exploit researcher and/or application developer to analyse memory content when an
application crashes.

This module essentially displays data in different memory register (such as EIP).

Application crash analysis video demonstration — http://www.youtube.com/watch?v=msYo7pPsu6A

http://www.youtube.com/watch?v=msYo7pPsu6A

