
Page 1 of 22

Hardware Involved Software Attacks

Jeff Forristal

jeff.forristal@intel.com

Abstract

Computer security vulnerabilities involving hardware are under-represented within the

security industry. With a growing number of attackers, malware, and researchers

moving beyond pure software attack scenarios and into scenarios incorporating a

hardware element, it is important to start laying a foundation on how to understand,

characterize, and defend against these types of hybrid attacks. This paper introduces

and details a starting taxonomy of security attacks called hardware involved software

attacks, in an effort to further security community awareness of hardware security and

its role in upholding the security of the PC platform.

Page 2 of 22

Table of Contents
Preface .. 3

PC System Stack: Setting the Stage ... 3

Focus on the Hardware Layer ... 5

Forced Migration Down the Stack .. 6

Hardware Background .. 7

How Hardware Facilitates Security Attacks .. 8

Obtaining Hardware Access .. 8

Taxonomy of Hardware Involved Software Attacks ... 9

Inappropriate General Access to Hardware.. 10

Unexpected Consequences of Specific Hardware Function ... 11

Hardware Reflected Injection ... 11

Interference with Hardware Privilege Access Enforcement ... 13

Access By a Parallel Executing Entity .. 13

External Control of a Hardware Device .. 14

Incorrect Hardware Use .. 14

Where to Go From Here ... 15

Appendix A – Publicized Hardware Vulnerabilities ... 15

CVE List of Hardware Involved Software Vulnerabilities .. 16

Page 3 of 22

Preface
The goal of this paper is to start seeding PC platform hardware security concepts and discussions into

the broader security community, and to start laying a foundational understanding that can be leveraged

if/when hardware security topics start coming to the forefront of public security concern. Many of

these concepts are already established and recognized in hardware-centric private forums (within

hardware, BIOS, and OS vendors, etc.), so it is a matter of expanding the audience of these concepts. I

hope to instigate the security community to start including hardware-specific elements and

accommodations into the established security understanding and practices. This will, in turn, naturally

lead to a unified view & management of security risk found within a PC platform without distinction for

software elements vs. hardware elements.

PC System Stack: Setting the Stage
The basic PC computer system can be represented as an abstracted stack of components (software

applications, software operating system, and hardware platform) as depicted in Figure 1. This

abstracted stack follows a privilege hierarchy starting with the least privilege at the top (software

applications), progressing down to the most privilege at the bottom (hardware platform). The privilege

hierarchy generally implies that operational control of any particular layer grants it operational control

of all layers above it; thus, a security compromise of a lower layer is also a security compromise of the

higher layers.

Community1 publicized security vulnerability models (e.g. CVSSi, CWEii) and attack characterizations (e.g.

CAPECiii) recognize many “software attacking software” scenarios. The three most commonly

recognized scenarios include a software application attacking a peer software application (horizontal

attack path illustrated in Figure 2), an unprivileged software application directly attacking higher-

privileged OS software elements (vertical attack path illustrated in Figure 2), and a remote party directly

attacking any software elements (both unprivileged and privileged) of the system (Figure 3).

Figure 1 - Generic PC Stack

Figure 2 - Local Software Attacks

Figure 3 - Remote Attacks

This depiction is missing a notable privileged software layer present on typical PC systems: BIOSiv. Early

stages of the PC system boot cycle depend upon BIOS software operation; eventually the BIOS hands

control over to the OS. The BIOS may also utilize a SMMv capability to expose BIOS-privileged services to

an OS during OS runtime. Due to the responsibilities BIOS has to bring up and manage the platform

hardware, SMM/BIOS has higher privileges than the OS. From a depiction standpoint, SMM/BIOS does

1
 “Community” herein refers to the world security community & security industry

Page 4 of 22

logically sit between the OS and the hardware at times, but at other times the OS can (and does) directly

access the hardware. Thus SMM/BIOS is depicted as a partial software layer between the software OS

and the hardware (Figure 4). The community does recognize attack scenarios of any lesser-privileged

software element conducting direct attacks against SMM/BIOS software (Figure 5). Public examples of

BIOS vulnerabilities are few, but they do exist [e.g. CVE-2008-0706, CVE-2008-7096, CVE-2010-0560,

etc.]2. Remote attacks against BIOS/SMM software are generally not considered because BIOS/SMM

software (in practice) only exposes associated entry points locally to the system and not in a remotely-

accessible manner3.

Figure 4 - PC Stack Including BIOS

Figure 5 - Elaborated Attack Paths

We can carry forward the depiction of the PC stack with consideration for the additional dynamics of a

virtualized environment running with a VMMvi implemented as a type-1 hypervisor4. Conceptually this

just involves adding another software layer of appropriate privilege, and accounting for more peer

software applications at the top end of the stack and the boundaries of a virtual machine (Figure 6).

Community recognized software attack scenarios introduced in this model include remote attacks

against the software hypervisor layer, and “VM escapes” out of the VM into the software hypervisor

layer or peer VM software elements (Figure 7).

Figure 6 - Virtualized PC Stack

Figure 7 - Elaborated Attack Paths

2
 Descriptions for all referenced CVE identifiers are available in Appendix A

3
 Notwithstanding some infrequent situations, such as PXE boot, where BIOS could implement a TCP/IP stack and

thus expose remote entry points
4
 Type-1 hypervisor runs below OS, whereas type-2 runs above OS

Page 5 of 22

We could continue to evolve our depiction of the PC stack as desired, getting into more granular

breakouts of certain software layer elements and inclusion of other less-common privilege hierarchy

adjustments (e.g. Intel TXTvii, Xen-style privilege domains). Many of the layers already featured also have

granular nuances and sub-layers that are not immediately evident from the depictions. However, the

evolution would just continue the already illustrated process of adding more layers, along with adding

more software attack paths between those layers. The current level of depiction is foundationally

adequate for moving this discussion forward.

Focus on the Hardware Layer
In all of the depictions thus far, it should be noticed that none of the illustrated attack paths involve the

hardware layer. That’s because software vulnerabilities are the current topic target, i.e. the final

vulnerability/weakness needs to occur in a software element, and the implications of the vulnerability

becoming realized would impact the operation of that software layer. If we were depicting attacks

against the hardware layer, they would generally be represented as shown in Figure 8. The Pentium

F00Fviii [CVE-1999-1476], Cyrix comaix [CVE-1999-0403], and AMD K6 code segment escape crash [CVE-

1999-1442] bugs could be considered instances of hardware attacks since unprivileged software

applications could trigger one of those bugs and cause the system to hang—a functional effect that is

not meant to be had by unprivileged software. That results in a denial of service, which is an availability

concernx.

Figure 8 - Attacks Against Hardware

It is fair to say that the security community does recognize the potential for attacks against hardware;

however there are a couple of practical nuances that complicate the depth of that recognition. First is

the overall lack of (detailed) publicized instances of hardware vulnerabilities/attacks. Out of 48,000

entries in CVE, my research uncovered 86 entries that reasonably represented hardware attacks in a PC

system (see Appendix A for the list and what “reasonably represented” means). It is hard to develop

practical terminology and classification taxonomies when instances of the items to classify are

exceptionally rare. That rarity also makes the investment to formally document, characterize, or

address those instances, in an industry-wide manner, a questionable value proposition—why spend

resources to address something on such a broad scale that has (historically) had an extremely low rate

of occurrence?

Page 6 of 22

The second nuance relates to how asset valuation of the PC stack is viewed in an operational security

paradigm. I often ask various industry colleagues “once you have root5, where would you go from

there?” I have never received an answer that even remotely resembled “go deeper in the stack” to

target lower layers of higher privilege. I believe that is because, on a practical operational value scale,

full control of the OS (or hypervisor, in the case of virtualized environments) typically provides sufficient

privilege to control the highest valued assets the system is perceived to offer. This is a fair perception,

because that is often the case—there are few valuable assets (with widespread appeal) wholly

contained in hardware that are not already accessible to the lower software layers. There is no need to

go lower, because you already have control of everything worth controlling.

Forced Migration Down the Stack
There is heavy investment, represented by the security community & computing industry, into public

awareness of software security issues and the need for software security. Terms like “anti-virus” and

“firewall” have recognition even in non-technical communities. Numerous hacking and software

security book titles can be found in the computer/technology section of your nearby book store.

Security risk management and risk reduction best practices are being incorporated into industry

processes and legal governance. Organizations like MITRE and NIST have taken charge to catalogue and

represent the historical record of security weaknesses and vulnerabilities.

All of this investment is making an impact. Albeit it may be hard to see the impact, because the increase

in security posture of key software areas may be drown out by the sheer volume of new insecure apps

flooding the market elsewhere. But make no mistake: key security-sensitive software areas, such as

operating systems, network services, web browsers, and virtualization hypervisors, are typically at a

much better security posture now than they were in years pastxi. It takes more investment on behalf of

an attacker to find and realize a security exploit against select targets compared to the lesser level of

investment in previous generations to achieve the same net effectxii.

This means low-investment security vulnerabilities (i.e. the “low-hanging fruit”) are quickly disappearing

(or have already disappeared) in the key software areas frequented by attackers. This will require

attackers to increase their investment and start seeking the medium-investment security vulnerabilities;

in turn the supply of those will eventually dwindle, requiring an increase in investment by attackers if

they still wish to continue.

Alternatively, attackers can turn their attention to alternate, less-frequented areas where low-

investment security vulnerability opportunities may still be plentiful. Given that all the layers at and

above the OS are slowly increasing in security posture and are heavily frequented by attackers, this

foreshadows a forced migration into lower layers. In other words, as the upper layers run out of

security vulnerabilities and/or become more secure, we can expect a natural progression to look for

5
 A Unix reference to denote the highest user privilege available on the system; equivalent to Administrator on

Windows

Page 7 of 22

security vulnerability opportunities at the lower layers of the PC stack6, which are recognized to be

under-represented and under-explored.

Hardware Background
As previously stated, the security community has strong recognition and investment into the

characterization, prevention, and overall understanding of software vulnerabilities and “software

attacking software” attack models. As researchersxiii and attackersxiv are turning their attention to

attacks including hardware elements, the realization is that hardware-involved attack scenarios are

under-represented in the community’s current knowledge pool—particularly in terminology, attack

characterization, and defense/mitigation guidance.

Let’s start with some hardware specific concept definitions. Generally speaking, the base platform is all

the hardware that composes the stack, along with the necessary management software (i.e. BIOS/SMM)

that is tightly coupled to that specific hardware in order to achieve fundamental system operation.

Hardware is itself an overly generalized term; it can be used to refer to the CPU, memory, peripherals, or

other elements of the platform. The “hardness” of hardware has also been subject to softening over the

years; many hardware components feature firmware capabilities that bring new attack vectors and

implications to the PC ecosystem. Since firmware is software running in a highly specific and

constrained hardware execution environment, it’s possible the firmware is subject to some of the

traditional software security weaknesses7.

Overall the hardware layer can be depicted as shown in Figure 9.

Figure 9 - Platform & Hardware Layer

6
 One colleague proposed attackers are turning their attention to operational infrastructure components instead

(e.g. DNS providers, SSL cert authorities); however, I characterize that as staying within the mid-level software
layers of the PC stack while just switching to a different PC. Since it’s still software, it’s still subject to the slowly
increasing security posture of software at large.
7
 Attacks against firmware can be rolled into attacks against hardware, which is not the scope of this paper

Page 8 of 22

How Hardware Facilitates Security Attacks
The entire PC platform operation relies on the orchestration of multiple hardware elements in order to

achieve the platform operational goals. Each piece of hardware brings something different to the party,

and the security relevance of that piece of hardware depends upon its overall native role in the PC

platform. For example:

 The hardware may have direct capabilities to affect a critical system resource (e.g. DMAxv to

system/software memory)

 The hardware may have indirect sideband access to a resource (e.g. PCI cards typically have

access to an SMBusxvi segment)

 The hardware may store arbitrary software executable code that can be automatically invoked

(e.g. HDD or USB drive; PCI device option ROM)

 The hardware may proxy data from an untrusted external source (e.g. NICsxvii, Wifi radios)

Obtaining Hardware Access
Since we are looking at hardware-involved security attacks on software, we need to characterize how an

attacker will first obtain necessary access to the hardware to achieve the intermediary step of the

attack.

Hardware access can be realized in a number of ways:

 Mistakenly passed through by a higher privilege software layer.

A higher-privileged software layer may attempt to provide a controlled or limited access to

hardware, but wind up being overly-permissive; or the hardware it allowed access to has

additional, unrecognized functionality. In other situations, the hardware access functionality

provided by the privileged software layer may be a remnant of non-production debugging

needs, etc.

 Explicitly passed through by a higher privilege software layer.

Many hardware devices exist with intent they be accessible and utilized by the local user, who

typically is running in the application privilege layer. Graphics is a great example: GPGPU

workloads, DirectX shaders, and OpenCL kernels originate at the app layers and are passed

through to the graphics hardware for GPGPU interpretation & execution. Elsewhere, user-mode

driver frameworks, particular in the USB device arena, allow flexibility by the OS to offload select

arbitrary device handling to user-mode applications. In all of these situations, the OS layer is

allowing access to a select portion of hardware to facilitate the management & use of that

hardware by the application layer.

 Explicitly provided by hardware architectural intent.

Hardware assisted virtualization technologies like Intel VT-x, AMD-V, EPTxviii, VT-dxix/AMD-

Vi/IOMMUxx, and SR-IOVxxi facilitate direct hardware access (e.g. access by VM guests in a

virtualized environment, to the benefit of the hypervisor). These technologies get leveraged in

Page 9 of 22

VMM product features such as Xen PCI passthroughxxii, Xen VGA passthroughxxiii, and VMWare

VMDirectPath I/Oxxiv. Similarly but on a more conceptual level, application (ring 3xxv) software is

allowed to directly execute many instructions on the CPU without OS (ring 0) involvement.

Overall a VMM or OS may utilize hardware architecture to provide bounded access to less-

privileged software in a controlled manner; the assumption is that it is safe to do so.

 The attacker is already deemed to have access.

Particular to SMM/BIOS software layer, SMM is simply not in a strong architectural position to

gate all hardware access by the software layer above it; therefore it must always operate with

consideration that system resources are shared with a potentially untrusted or compromised

OS/hypervisor layer. Hardware assisted virtualization technologies also provide hypervisors

with the ability to only intercept a subset of hardware access and CPU instructions originating

from a VM guest; certain VM guest hardware operations simply do not have a corresponding

VMM trap/exit available for the hypervisor to leverage8.

 The attacker is physically proximate to the system.

 Physical possession or access to a PC system allows for various hardware tampering attacks

(e.g. Evil Maidxxvi, cold bootxxvii, hardware keylogger) and use of externally exposed hardware

capabilities (e.g. Firewire DMA). Physical proximity is sufficient for attacks using radio hardware

(e.g. Wifi, LTE/Wimax, Bluetooth, GSM/cellular) as the entry point into the system. Looking

beyond PCs for a moment, the community already has seen many instances of embedded

system “jailbreakingxxviii” and game console hacks where physical access to the device was

leveraged to achieve a software advantage of some sort.

Taxonomy of Hardware Involved Software Attacks
The driving purpose of this paper is to present a starting taxonomy of attacks dubbed hardware-involved

software attacks. An attack fitting into the hardware-involved software attack class will generally:

 Originate in a lower-privileged software/layer or be remote/physically proximate

 Leverage or depend upon an operation of hardware

 Achieve a vulnerability in a higher-privileged software/layer or a peer in current software/layer

A locally originated hardware-involved software attack is depicted in Figure 10, while a remote or

physically proximate attack is depicted in Figure 11.

8
 Hypervisors can address this via other means (as seen in hypervisors that inspect every guest instruction), but

those generally start moving outside the capability realm of what the hardware assisted virtualization technologies
are aiming to provide.

Page 10 of 22

Figure 10 - Local Hardware Involved Software Attack

Figure 11 – Remote & Physically Proximate Hardware

Involved Software Attack

The following sections detail different hardware-involved attack scenarios, along with publicly

documented examples that illustrate the attack.

Inappropriate General Access to Hardware
This attack scenario is where a higher-privileged software layer (i.e. OS or hypervisor) incorrectly grants

or proxies general hardware access to a lower-privileged software layer. This allows the lower-

privileged software to utilize general hardware access methods to cause a security vulnerability. This

can also be characterized as a hardware access enforcement failure by the OS/hypervisor; sometimes

this is referred to as a “confused deputy” attackxxix. General hardware access mechanisms include

MMIO, port IO, MSR, and PCI configuration space access. In certain situations access to hardware-

consumed data structures in normal memory may be relevant—but the extent of that memory access,

and its relevance to hardware involvement, may need to be qualified/reviewed since it is already

recognized that giving lower-privileged software access to arbitrary system memory is an immediate

vulnerability that doesn’t require any hardware involvement.

Examples [CVE-2005-0204], [CVE-2007-5633], [CVE-2007-5761], [CVE-2010-1592] involve instances

where privileged OS elements (kernel, drivers) exposed general-purpose hardware access (e.g. MSR,

port IO, etc.) to unprivileged applications. Reconfiguration of the MSRs/IO by the application layer could

be done to realize a compromise of the OS software layer. For example, writing a new value to the

SYSENTER_EIP MSR would effectively allow the application to provide an arbitrary memory address that

gets invoked with ring 0 privileges upon the next SYSENTER instruction execution.

In certain cases, the OS/hypervisor layer may allow general purpose hardware access subject to a

whitelist or blacklist access control mechanism. IO permission bit maps are a perfect example. In such

cases the OS/hypervisor layer is not offering unfettered hardware access; yet a failure to correctly

define the blacklist/whitelist may still result in this attack scenario.

There are other miscellaneous examples such as [CVE-2001-1578].

Page 11 of 22

Unexpected Consequences of Specific Hardware Function
The attack preconditions start with a higher-privileged software layer (i.e. OS or hypervisor) granting or

proxying specific, limited hardware access to hardware for a lower-privileged software layer data. This

is done under the presumption that only particular hardware functionality is exposed, and access to that

specific hardware functionality is not believed to harbor any security concerns. The attack then

leverages an unknown or unrecognized consequence to that hardware access that was not originally

considered when making the decision to allow access.

Example [CVE-2011-1898] involves the use of DMA to generate MSI interrupts, which was leveraged

from within a VM to compromise the Xen hypervisor software layer. Examples [CVE-2007-3532], [CVE-

2011-1016] involve instances where OS drivers gave applications access to specific device hardware

functions (such as a graphics card), and that device hardware had capabilities that could be leveraged to

compromise the OS software layer.

Generally speaking, this attack includes all situations where a privileged software layer provides access

to a DMA-capable hardware device (i.e. any PCI peripheral), in such a way the unprivileged software

layer can influence the DMA operations of that device. Use of IOMMU technologies, on platforms

where it is available, may mitigate the attack.

The widespread public community discussion over WebGLxxx also fits into this attack profile. Microsoft

Security Research & Defense published a positionxxxi that indicated the severe risks of taking remotely-

originated graphics content and providing it to the graphics pipeline:

“As WebGL vulnerabilities are uncovered, they will not always manifest in the WebGL API itself. The problems

may exist in the various OEM and system components delivered by IHV’s.” (Microsoft, 2011)

In particular, their perception is that both graphics software and hardware do not have a sufficient

security posture to afford them being directly exposed to low-privilege remote third parties.

While Microsoft was speaking in general terms, there are WebGL vulnerabilities already publicly known

that serve as an example. [CVE-2011-2367] is a vulnerability where access to graphics GPU hardware by

a least-privileged remote party results in the exposure of GPU memory contents from previous

workloads; that same vulnerability can also lead to an availability issue (crash).

Hardware Reflected Injection
A hardware reflected injection attack is when the attacking application originates particular malicious

data, and that data traverses (without modification) through the higher-privileged software stack layers

and into the hardware for storage; later, a privileged software layer (such as driver in the OS)

receives/retrieves the malicious data from the hardware, and immediately operates upon, interprets, or

otherwise uses the malicious data in an insecure manner leading to a security vulnerability. Hardware

reflected injection attacks have more opportunities for success against a software target that implicitly

trusts data coming from the hardware. Potential hardware storage areas include CPU MSRs, CPU

Page 12 of 22

registers, BIOS data structures in memory, platform hardware volatile and non-volatile storage areas,

and peripheral hardware registers (port IO, MMIO).

A (fictitious yet conceptually demonstrative) example would be manipulating BIOS configuration values

saved in platform RTC/CMOS storage area, to cause a security vulnerability in BIOS when BIOS

uses/interprets those values upon next system (re)start.

There are three characterized variants to hardware reflected injection attacks.

Variant #1: This attack variant resembles a traditional software second-order injection style attackxxxii.

Namely the value retrieved from the hardware is used in an integer operation (resulting in an integer

overflow or signed integer issue), a memory buffer operation (resulting in a buffer overflow), etc. The

key difference from a traditional software second-order injection is the storage source of the malicious

data is explicitly provided by the hardware.

Alexandre Gazet’s 2011 presentationxxxiii at Recon security conference discloses a scenario where the

firmware of a KBC can be updated, which in turn will feed a malicious value back to SMM and cause a

buffer overflow. The example is a bit more complex than a simple value, but ultimately it showcases the

variant. Another related public example, [CVE-2010-4530], details an integer handling issue in a

privileged software driver, triggered by a value retrieved from a hardware peripheral (in this case, a

smartcard reader). In a situation where local software on the host can provide/set/configure (in the

smartcard hardware) the particular value responsible for the vulnerability, it would lead to an exact

embodiment of this attack variant.

Variant #2: The next attack variant focuses on situations where there is a unique interpretation of the

hardware value in some security-sensitive operation, leading to a vulnerability. These attacks generally

don’t result in a typically recognized software weakness such as a buffer overflow or integer handling

issue; instead, they are contextual to a particular hardware circumstance and may relate more to

improper software logic design than to programmatic implementation errors.

One public example of this is [CVE-2009-4419], which is a disclosed attack involving untrusted software

manipulating the MCHBAR hardware register; the register value is then utilized by trusted software and

acted upon in a manner that prevents VT-d protection from properly being applied, leaving the system

at risk.

Other examples include [CVE-2007-5906].

Variant #3: This attack variant addresses specific Hardware Reflected Injection attack instances that

involve updating blobs of data stored in hardware, where those blobs are later treated as executable

software code and executed with increased privilege.

A public example is the Mebromi malwarexxxiv, which included a malicious OptionROM executable code

blob that it installed into BIOS platform flash (hardware) storage. Upon system (re)start, BIOS will

execute, with BIOS privileges, all hardware peripheral OptionROM code blobs—including the malicious

Page 13 of 22

blob installed by Mebromi. Mebromi used the OptionROM to achieve pre-OS code execution and

persist the malware infection.

Another general example would be writing malicious code to a hard drive MBR through direct hardware

means. Software security threat models already include a characterization of an application trying to

update critical system areas of a file system in order to affect a privilege escalation; this approach is

typically thwarted by file system-based logical access control semantics. For a hardware reflected

injection attack involving an MBR update, the attacker would need to use more direct hardware access

mechanisms to cause the MBR update, rather than utilizing the typical OS file system driver stack.

Access routes could include direct access to ACHIxxxv hardware control registers, or utilizing ATA

hardware command pass-through capabilities offered by the OSxxxvi.

Interference with Hardware Privilege Access Enforcement
This attack is typically targeted to the hypervisor layer (or emulation software), and involves scenarios

where a less-privileged software layer can cause the hypervisor to perform a hardware operation (e.g.

instruction execution) or access that would normally be unavailable to that less-privileged software layer

due to hardware privilege enforcement, but the hardware will now allow it since it is done with

hypervisor privileges.

Examples [CVE-2009-1542], [CVE-2010-0298] involve instances where a hypervisor passed through a

privileged instruction from a VM guest application (ring 3) layer without recognizing it was a privileged

instruction that should only be executable by the VM guest OS (ring 0) layer; this effectively creates a

privilege escalation vulnerability within the VM.

Access By a Parallel Executing Entity
The PC platform has many components that are executing operations in parallel/independent manner.

Some components, like the CPU, further feature parallel execution capabilities represented by having

multiple CPU cores and additional hardware-assisted threads (e.g. Hyper-Threadingxxxvii).

The PC platform also features many shared resources—memory in particular is a good example. If a

trusted software security agent needs to operate on memory, it may be necessary to ensure all other

parallel executing entities (both software & hardware) are temporarily blocked, shut down, or otherwise

prevented from interfering with the security sensitive operations occurring on that shared resource—i.e.

quiescexxxviii all executing entities. This behavior can be witnessed in many places, such as CPU-

supported rendezvous of all CPU threads and cores for certain SMM operations, or the use of PCI bridge

device standard BME bitxxxix to control peripheral access to system memory.

An attack is possible if the performer of a security-sensitive operation doesn’t account for a parallel

executing entity having the ability to monitor or interfere with that operation. Example [CVE-2010-

0306] involves some tricks by the less-privileged software layer (in an SMP environment) to utilize a

Page 14 of 22

parallel executing thread to switch instructions of the other thread in-flight from an unprivileged

instruction to a privileged instruction without the hypervisor noticing. Vulnerability [CVE-2005-0109]

involves using one CPU thread to monitor memory cache misses of another thread in order to recover

information such as cryptographic keys.

External Control of a Hardware Device
Maliciously behaving hardware devices may be able to affect the security of the system; the key is when

and how they become malicious. We’ve been focusing on attacks originating from software on the

system that is the target for the attack—however this attack scenario recognizes that it may be less-

privileged attacks originating external to the system.

One public example is [CVE-2011-3215], which involves the use of DMA over a Firewire port, allowing

any device connected to Firewire to read and write system memory. Generally this device would begin

in a malicious state and be connected to the system to explicitly perform an attack; however we want to

recognize that an already connected, innocuous Firewire device may offer firmware re-programmability

which, when reprogrammed by a malicious local software agent, would put the device into a malicious

state without any external involvement and bring this attack to fruition.

The same goes for less-privilege software reprogramming of keyboard firmware ([CVE-2009-2834]) or

reprogramming other devices to look like keyboards ([CVE-2011-0640], [CVE-2011-0639], [CVE-2011-

0638]). A reprogrammed keyboard could be leveraged across a system restart to emulate user

interaction by hitting keystrokes that affect BIOS configuration changes.

Attacks over radio hardware ([CVE-2010-3832], [CVE-2009-0282], [CVE-2006-5972]) can also resemble

this attack scenario. Other miscellaneous examples include [CVE-2010-4530].

Incorrect Hardware Use
This is a bit of a catch-all attack scenario to address usage and configuration errors by privileged

software layers to utilize hardware in a manner that will create an appropriate secure & privileged

enforced environment.

One example is [CVE-2006-1056+, where AMD CPUs don’t implement FXSAVE/FXRSTOR in the same way

Intel CPUs do; Linux kernels didn’t recognize the discrepancy (despite it being documented), and that

lead to a leak of floating point data between processes.

Other miscellaneous examples of this attack include [CVE-2006-0744], [CVE-2005-1764], [CVE-2004-

0812], [CVE-2010-2938], [CVE-2006-7215].

Page 15 of 22

Where to Go From Here
Hardware involved software attacks are not a fancy speculation; as seen by the indicated examples, they

are already being publicly witnessed in the community at increasing rate. Yet despite publicly seeing

attack examples, the attacks are not characterized and described with a consistent terminology, nor is

there any publicly available guidance for how to operationally reduce or pro-actively address these types

of attacks. There are public knowledge gaps in everything from secure software developer guidance,

hardware implementation security best practices, operational system monitoring capabilities for attacks

(IDS/IPS/AV), and system forensics support for investigation into software attacks involving hardware.

I hope this paper serves as a call-to-arms to initiate efforts to address these knowledge gaps. I

presented a starting, high-level taxonomy of hardware-involved software attacks, which can be built

upon and used to create and align defensive capabilities to address the indicated attacks, and grow the

community knowledge base regarding hardware security.

Appendix A – Publicized Hardware Vulnerabilities
To support this paper, I conducted research regarding known (public) hardware security vulnerabilities.

I chose to use the Common Vulnerability Enumerationxl (CVE) dictionary of publicly known information

security vulnerabilities and exposures. It represents the most comprehensive collection of known

security problems—over 48,000 at the time of this writing.

Doing a manual review of all 48,000 entries would represent an effort beyond what I could afford, so I

opted to first filter candidate entries based on keyword searches for common and related hardware

security terms the CVE writers would typically include, and then manually reviewed the filtered results

for final applicability. Overall this resulted in my manual review of a few thousand entries, many of

which were redundant between keywords.

Since one discussion topic of this paper is to identify the lack of established terminology to characterize

hardware security attacks, it’s reasonable to wonder whether a keyword search would be fruitful at all

given a lack of consistent terms to search for. Hardware bugs may be mis-characterized as software

bugs, or vaguely described in non-hardware terms. In order to compensate for this, I opted to cast a

wide net and also include keyword searches for specific vendor/product/technology names that have

strong hardware relationships. I purposefully tried to search for and review every vulnerability involving

a hardware driver, OS kernel, or VMM since those components traditionally have high amounts of

interaction with hardware.

The keywords I used for preliminary filtering of entries, in no particular order:

mmio, iopl, vmm, registers, pci, dma, instruction, mchbar, vtd, iommu, msr, hypervisor, smm,

bios, processor, uefi, amd, .sys, ahci, webgl, webcl, opencl, gpu, shader, hyper-v, nvidia, radeon,

insyde, phoenix, xen, hardware, usb, aware, cmos, motherboard, driver, i2c, cpu, peripheral,

intel, smbus, physical memory, microcontroller, firewire, chipset, keyboard, acpi, cpuid

Page 16 of 22

After searching for the above keywords, I then manually reviewed the result set to further determine

applicability.

Overall, 86 entries were identified. The full list of identified entries is included below. In some cases,

the CVE entry description directly indicates hardware relevance; in other cases, I had to review

supporting resources/advisory details, software patch diffs, etc. to confirm the hardware involvement.

There were many suspicious entries of “unknown attack vectors” leading to “unknown impact”

mentioned in components that normally facilitate hardware access (e.g. kernels, drivers); I tried to make

reasonable determinations on whether or not to include the entry based on where the vulnerability was

manifested, but overall some entries were discarded simply because there just wasn’t enough

information available to make even an educated guess. The list below may not be perfect, and certainly

there may be items missing from the list—but the challenge to produce a conclusive list supports this

paper’s position that better recognition and vulnerability characterization are needed before we have

the opportunity to produce an accurate list.

Additional CVE entry meta data, including official vendor advisories and any known mitigation/fix

information (where applicable), is available by reviewing the full CVE entry data via CVE search sites such

as http://web.nvd.nist.gov/; only the description of the CVE entry is included in the list below for quick

reference.

CVE List of Hardware Involved Software Vulnerabilities
CVE-1999-0728 A Windows NT user can disable the keyboard or mouse by directly calling the IOCTLs which control them.

CVE-1999-1442 Bug in AMD K6 processor on Linux 2.0.x and 2.1.x kernels allows local users to cause a denial of service
(crash) via a particular sequence of instructions, possibly related to accessing addresses outside of
segments.

CVE-1999-1482 SVGAlib zgv 3.0-7 and earlier allows local users to gain root access via a privilege leak of the iopl(3)
privileges to child processes.

CVE-2000-0946 Compaq Easy Access Keyboard software 1.3 does not properly disable access to custom buttons when the
screen is locked, which could allow an attacker to gain privileges or execute programs without
authorization.

CVE-2001-0659 Buffer overflow in IrDA driver providing infrared data exchange on Windows 2000 allows attackers who are
physically close to the machine to cause a denial of service (reboot) via a malformed IrDA packet.

CVE-2001-1273 The "mxcsr P4" vulnerability in the Linux kernel before 2.2.17-14, when running on certain Intel CPUs,
allows local users to cause a denial of service (system halt).

CVE-2001-1347 Windows 2000 allows local users to cause a denial of service and possibly gain privileges by setting a
hardware breakpoint that is handled using global debug registers, which could cause other processes to
terminate due to an exception, and allow hijacking of resources such as named pipes.

CVE-2001-1578 Unknown vulnerability in SCO OpenServer 5.0.6 and earlier allows local users to modify critical information
such as certain CPU registers and segment descriptors.

CVE-2002-1125 FreeBSD port programs that use libkvm for FreeBSD 4.6.2-RELEASE and earlier, including (1) asmon, (2)
ascpu, (3) bubblemon, (4) wmmon, and (5) wmnet2, leave open file descriptors for /dev/mem and
/dev/kmem, which allows local users to read kernel memory.

CVE-2002-1722 Logitech iTouch keyboards allows attackers with physical access to the system to bypass the screen locking
function and execute user-defined commands that have been assigned to a button.

CVE-2002-2127 Integrity Protection Driver (IPD) 1.2 and earlier blocks access to \Device\PhysicalMemory by its name,
which could allow local privileged processes to overwrite kernel memory by accessing the device through a
symlink.

CVE-2003-0248 The mxcsr code in Linux kernel 2.4 allows attackers to modify CPU state registers via a malformed address.

CVE-2003-1233 Pedestal Software Integrity Protection Driver (IPD) 1.3 and earlier allows privileged attackers, such as
rootkits, to bypass file access restrictions to the Windows kernel by using the NtCreateSymbolicLinkObject

http://web.nvd.nist.gov/

Page 17 of 22

function to create a symbolic link to (1) \Device\PhysicalMemory or (2) to a drive letter using the subst
command.

CVE-2004-0812 Unknown vulnerability in the Linux kernel before 2.4.23, on the AMD AMD64 and Intel EM64T
architectures, associated with "setting up TSS limits," allows local users to cause a denial of service (crash)
and possibly execute arbitrary code.

CVE-2004-1017 Multiple "overflows" in the io_edgeport driver for Linux kernel 2.4.x have unknown impact and unknown
attack vectors.

CVE-2004-1038 A design error in the IEEE1394 specification allows attackers with physical access to a device to read and
write to sensitive memory using a modified FireWire/IEEE 1394 client, thus bypassing intended restrictions
that would normally require greater degrees of physical access to exploit. NOTE: this was reported in 2008
to affect Windows Vista, but some Linux-based operating systems have protection mechanisms against this
attack.

CVE-2004-1056 Direct Rendering Manager (DRM) driver in Linux kernel 2.6 does not properly check the DMA lock, which
could allow remote attackers or local users to cause a denial of service (X Server crash) and possibly modify
the video output.

CVE-2005-0109 Hyper-Threading technology, as used in FreeBSD and other operating systems that are run on Intel Pentium
and other processors, allows local users to use a malicious thread to create covert channels, monitor the
execution of other threads, and obtain sensitive information such as cryptographic keys, via a timing attack
on memory cache misses.

CVE-2005-0204 Linux kernel before 2.6.9, when running on the AMD64 and Intel EM64T architectures, allows local users to
write to privileged IO ports via the OUTS instruction.

CVE-2005-1036 FreeBSD 5.x to 5.4 on AMD64 does not properly initialize the IO permission bitmap used to allow user
access to certain hardware, which allows local users to bypass intended access restrictions to cause a denial
of service, obtain sensitive information, and possibly gain privileges.

CVE-2005-1399 FreeBSD 4.6 to 4.11 and 5.x to 5.4 uses insecure default permissions for the /dev/iir device, which allows
local users to execute restricted ioctl calls to read or modify data on hardware that is controlled by the iir
driver.

CVE-2005-1764 Linux 2.6.11 on 64-bit x86 (x86_64) platforms does not use a guard page for the 47-bit address page to
protect against an AMD K8 bug, which allows local users to cause a denial of service.

CVE-2005-2388 Buffer overflow in a certain USB driver, as used on Microsoft Windows, allows attackers to execute
arbitrary code.

CVE-2005-2890 SecureOL VE2 1.05.1008 does not properly restrict public access to physical memory, which allows local
users to bypass intended restrictions and gain access to the secured environment via direct access to the
PhysicalMemory device.

CVE-2006-0744 Linux kernel before 2.6.16.5 does not properly handle uncanonical return addresses on Intel EM64T CPUs,
which reports an exception in the SYSRET instead of the next instruction, which causes the kernel exception
handler to run on the user stack with the wrong GS.

CVE-2006-1056 The Linux kernel before 2.6.16.9 and the FreeBSD kernel, when running on AMD64 and other 7th and 8th
generation AuthenticAMD processors, only save/restore the FOP, FIP, and FDP x87 registers in
FXSAVE/FXRSTOR when an exception is pending, which allows one process to determine portions of the
state of floating point instructions of other processes, which can be leveraged to obtain sensitive
information such as cryptographic keys. NOTE: this is the documented behavior of AMD64 processors, but
it is inconsistent with Intel processers in a security-relevant fashion that was not addressed by the kernels.

CVE-2006-1368 Buffer overflow in the USB Gadget RNDIS implementation in the Linux kernel before 2.6.16 allows remote
attackers to cause a denial of service (kmalloc'd memory corruption) via a remote NDIS response to
OID_GEN_SUPPORTED_LIST, which causes memory to be allocated for the reply data but not the reply
structure.

CVE-2006-2147 resmgrd in resmgr for SUSE Linux and other distributions does not properly handle when access to a USB
device is granted by using "usb:<bus>,<dev>" notation, which grants access to all USB devices and allows
local users to bypass intended restrictions. NOTE: this is a different vulnerability than CVE-2005-4788.

CVE-2006-2935 The dvd_read_bca function in the DVD handling code in drivers/cdrom/cdrom.c in Linux kernel 2.2.16, and
later versions, assigns the wrong value to a length variable, which allows local users to execute arbitrary
code via a crafted USB Storage device that triggers a buffer overflow.

CVE-2006-2936 The ftdi_sio driver (usb/serial/ftdi_sio.c) in Linux kernel 2.6.x up to 2.6.17, and possibly later versions,
allows local users to cause a denial of service (memory consumption) by writing more data to the serial port
than the hardware can handle, which causes the data to be queued.

CVE-2006-3146 The TOSRFBD.SYS driver for Toshiba Bluetooth Stack 4.00.29 and earlier on Windows allows remote
attackers to cause a denial of service (reboot) via a L2CAP echo request that triggers an out-of-bounds

Page 18 of 22

memory access, similar to "Ping o' Death" and as demonstrated by BlueSmack. NOTE: this issue was
originally reported for 4.00.23.

CVE-2006-3507 Multiple stack-based buffer overflows in the AirPort wireless driver on Apple Mac OS X 10.3.9 and 10.4.7
allow physically proximate attackers to execute arbitrary code by injecting crafted frames into a wireless
network.

CVE-2006-3508 Heap-based buffer overflow in the AirPort wireless driver on Apple Mac OS X 10.4.7 allows physically
proximate attackers to cause a denial of service (crash), gain privileges, and execute arbitrary code via a
crafted frame that is not properly handled during scan cache updates.

CVE-2006-5405 Unspecified vulnerability in Toshiba Bluetooth wireless device driver 3.x and 4 through 4.00.35, as used in
multiple products, allows physically proximate attackers to cause a denial of service (crash), corrupt
memory, and possibly execute arbitrary code via crafted Bluetooth packets.

CVE-2006-5710 The Airport driver for certain Orinoco based Airport cards in Darwin kernel 8.8.0 in Apple Mac OS X 10.4.8,
and possibly other versions, allows remote attackers to execute arbitrary code via an 802.11 probe
response frame without any valid information element (IE) fields after the header, which triggers a heap-
based buffer overflow.

CVE-2006-5972 Stack-based buffer overflow in WG111v2.SYS in NetGear WG111v2 wireless adapter (USB) allows remote
attackers to execute arbitrary code via a long 802.11 beacon request.

CVE-2006-6059 Buffer overflow in MA521nd5.SYS driver 5.148.724.2003 for NetGear MA521 PCMCIA adapter allows
remote attackers to execute arbitrary code via (1) beacon or (2) probe 802.11 frame responses with an long
supported rates information element. NOTE: this issue was reported as a "memory corruption" error, but
the associated exploit code suggests that it is a buffer overflow.

CVE-2006-6106 Multiple buffer overflows in the cmtp_recv_interopmsg function in the Bluetooth driver
(net/bluetooth/cmtp/capi.c) in the Linux kernel 2.4.22 up to 2.4.33.4 and 2.6.2 before 2.6.18.6, and
2.6.19.x, allow remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via
CAPI messages with a large value for the length of the (1) manu (manufacturer) or (2) serial (serial number)
field.

CVE-2006-6125 Heap-based buffer overflow in the wireless driver (WG311ND5.SYS) 2.3.1.10 for NetGear WG311v1 wireless
adapter allows remote attackers to execute arbitrary code via an 802.11 management frame with a long
SSID.

CVE-2006-6651 Race condition in W29N51.SYS in the Intel 2200BG wireless driver 9.0.3.9 allows remote attackers to cause
memory corruption and execute arbitrary code via a series of crafted beacon frames. NOTE: some details
are obtained solely from third party information.

CVE-2006-6730 OpenBSD and NetBSD permit usermode code to kill the display server and write to the X.Org /dev/xf86
device, which allows local users with root privileges to reduce securelevel by replacing the System
Management Mode (SMM) handler via a write to an SMRAM address within /dev/xf86 (aka the video card
memory-mapped I/O range), and then launching the new handler via a System Management Interrupt
(SMI), as demonstrated by a write to Programmed I/O port 0xB2.

CVE-2006-7215 The Intel Core 2 Extreme processor X6800 and Core 2 Duo desktop processor E6000 and E4000 incorrectly
set the memory page Access (A) bit for a page in certain circumstances involving proximity of the code
segment limit to the end of a code page, which has unknown impact and attack vectors on certain
operating systems other than OpenBSD, aka AI90.

CVE-2007-0933 Buffer overflow in the wireless driver 6.0.0.18 for D-Link DWL-G650+ (Rev. A1) on Windows XP allows
remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via a beacon frame
with a long TIM Information Element.

CVE-2007-1876 VMware Workstation before 5.5.4, when running a 64-bit Windows guest on a 64-bit host, allows local
users to "corrupt the virtual machine's register context" by debugging a local program and stepping into a
"syscall instruction."

CVE-2007-2455 Parallels allows local users to cause a denial of service (virtual machine abort) via (1) certain INT
instructions, as demonstrated by INT 0xAA; (2) an IRET instruction when an invalid address is at the top of
the stack; (3) a malformed MOVNTI instruction, as demonstrated by using a register as a destination; or a
write operation to (4) SEGR6 or (5) SEGR7.

CVE-2007-2927 Unspecified vulnerability in Atheros 802.11 a/b/g wireless adapter drivers before 5.3.0.35, and 6.x before
6.0.3.67, on Windows allows remote attackers to cause a denial of service via a crafted 802.11 management
frame.

CVE-2007-3532 NVIDIA drivers (nvidia-drivers) before 1.0.7185, 1.0.9639, and 100.14.11, as used in Gentoo Linux and
possibly other distributions, creates /dev/nvidia* device files with insecure permissions, which allows local
users to modify video card settings, cause a denial of service (crash or physical video card damage), and
obtain sensitive information.

Page 19 of 22

CVE-2007-3850 The eHCA driver in Linux kernel 2.6 before 2.6.22, when running on PowerPC, does not properly map
userspace resources, which allows local users to read portions of physical address space.

CVE-2007-3851 The drm/i915 component in the Linux kernel before 2.6.22.2, when used with i965G and later chipsets,
allows local users with access to an X11 session and Direct Rendering Manager (DRM) to write to arbitrary
memory locations and gain privileges via a crafted batchbuffer.

CVE-2007-4315 The AMD ATI atidsmxx.sys 3.0.502.0 driver on Windows Vista allows local users to bypass the driver signing
policy, write to arbitrary kernel memory locations, and thereby gain privileges via unspecified vectors, as
demonstrated by "Purple Pill".

CVE-2007-5633 Speedfan.sys in Alfredo Milani Comparetti SpeedFan 4.33, when used on Microsoft Windows Vista x64,
allows local users to read or write arbitrary MSRs, and gain privileges and load unsigned drivers, via the (1)
IOCTL_RDMSR 0x9C402438 and (2) IOCTL_WRMSR 0x9C40243C IOCTLs to \Device\speedfan, as
demonstrated by an IOCTL_WRMSR action on MSR_LSTAR.

CVE-2007-5761 The NantSys device 5.0.0.115 in Motorola netOctopus 5.1.2 build 1011 has weak permissions for the
\\.\NantSys device interface (nantsys.sys), which allows local users to gain privileges or cause a denial of
service (system crash), as demonstrated by modifying the SYSENTER_EIP_MSR CPU Model Specific Register
(MSR) value.

CVE-2007-5906 Xen 3.1.1 allows virtual guest system users to cause a denial of service (hypervisor crash) by using a debug
register (DR7) to set certain breakpoints.

CVE-2007-6207 Xen 3.x, possibly before 3.1.2, when running on IA64 systems, does not check the RID value for mov_to_rr,
which allows a VTi domain to read memory of other domains.

CVE-2007-6416 The copy_to_user function in the PAL emulation functionality for Xen 3.1.2 and earlier, when running on
ia64 systems, allows HVM guest users to access arbitrary physical memory by triggering certain mapping
operations.

CVE-2008-0211 Unspecified vulnerability in the BIOS F.04 through F.11 for the HP Compaq Business Notebook PC allows
local users to cause a denial of service via unspecified vectors.

CVE-2008-0706 Unspecified vulnerability in the BIOS F.26 and earlier for the HP Compaq Notebook PC allows physically
proximate attackers to obtain privileged access via unspecified vectors, possibly involving an authentication
bypass of the power-on password.

CVE-2008-4218 Multiple integer overflows in the kernel in Apple Mac OS X before 10.5.6 on Intel platforms allow local users
to gain privileges via a crafted call to (1) i386_set_ldt or (2) i386_get_ldt.

CVE-2008-4917 Unspecified vulnerability in VMware Workstation 5.5.8 and earlier, and 6.0.5 and earlier 6.x versions;
VMware Player 1.0.8 and earlier, and 2.0.5 and earlier 2.x versions; VMware Server 1.0.9 and earlier;
VMware ESXi 3.5; and VMware ESX 3.0.2 through 3.5 allows guest OS users to have an unknown impact by
sending the virtual hardware a request that triggers an arbitrary physical-memory write operation, leading
to memory corruption.

CVE-2008-4992 The SPARC hypervisor in Sun System Firmware 6.6.3 through 6.6.5 and 7.1.3 through 7.1.3.e on UltraSPARC
T1, T2, and T2+ processors allows logical domain users to access memory in other logical domains via
unknown vectors.

CVE-2008-7096 Intel Desktop and Intel Mobile Boards with BIOS firmware DQ35JO, DQ35MP, DP35DP, DG33FB, DG33BU,
DG33TL, MGM965TW, D945GCPE, and DX38BT allows local administrators with ring 0 privileges to gain
additional privileges and modify code that is running in System Management Mode, or access hypervisory
memory as demonstrated at Black Hat 2008 by accessing certain remapping registers in Xen 3.3.

CVE-2009-0061 Unspecified vulnerability in the Wireless LAN Controller (WLC) TSEC driver in the Cisco 4400 WLC, Cisco
Catalyst 6500 and 7600 Wireless Services Module (WiSM), and Cisco Catalyst 3750 Integrated Wireless LAN
Controller with software 4.x before 4.2.176.0 and 5.x before 5.1 allows remote attackers to cause a denial
of service (device crash or hang) via unknown IP packets.

CVE-2009-0066 Multiple unspecified vulnerabilities in Intel system software for Trusted Execution Technology (TXT) allow
attackers to bypass intended loader integrity protections, as demonstrated by exploitation of tboot. NOTE:
as of 20090107, the only disclosure is a vague pre-advisory with no actionable information. However,
because it is from a well-known researcher, it is being assigned a CVE identifier for tracking purposes.

CVE-2009-0282 Integer overflow in Ralink Technology USB wireless adapter (RT73) 3.08 for Windows, and other wireless
card drivers including rt2400, rt2500, rt2570, and rt61, allows remote attackers to cause a denial of service
(crash) and possibly execute arbitrary code via a Probe Request packet with a long SSID, possibly related to
an integer signedness error.

CVE-2009-1385 Integer underflow in the e1000_clean_rx_irq function in drivers/net/e1000/e1000_main.c in the e1000
driver in the Linux kernel before 2.6.30-rc8, the e1000e driver in the Linux kernel, and Intel Wired Ethernet
(aka e1000) before 7.5.5 allows remote attackers to cause a denial of service (panic) via a crafted frame
size.

Page 20 of 22

CVE-2009-1389 Buffer overflow in the RTL8169 NIC driver (drivers/net/r8169.c) in the Linux kernel before 2.6.30 allows
remote attackers to cause a denial of service (kernel memory corruption and crash) via a long packet.

CVE-2009-1542 The Virtual Machine Monitor (VMM) in Microsoft Virtual PC 2004 SP1, 2007, and 2007 SP1, and Microsoft
Virtual Server 2005 R2 SP1, does not enforce CPU privilege-level requirements for all machine instructions,
which allows guest OS users to execute arbitrary kernel-mode code and gain privileges within the guest OS
via a crafted application, aka "Virtual PC and Virtual Server Privileged Instruction Decoding Vulnerability."

CVE-2009-2715 Sun VirtualBox 2.2 through 3.0.2 r49928 allows guest OS users to cause a denial of service (Linux host OS
reboot) via a sysenter instruction.

CVE-2009-2834 IOKit in Apple Mac OS X before 10.6.2 allows local users to modify the firmware of a (1) USB or (2)
Bluetooth keyboard via unspecified vectors.

CVE-2009-3638 Integer overflow in the kvm_dev_ioctl_get_supported_cpuid function in arch/x86/kvm/x86.c in the KVM
subsystem in the Linux kernel before 2.6.31.4 allows local users to have an unspecified impact via a
KVM_GET_SUPPORTED_CPUID request to the kvm_arch_dev_ioctl function.

CVE-2009-4005 The collect_rx_frame function in drivers/isdn/hisax/hfc_usb.c in the Linux kernel before 2.6.32-rc7 allows
attackers to have an unspecified impact via a crafted HDLC packet that arrives over ISDN and triggers a
buffer under-read.

CVE-2009-4419 Intel Q35, GM45, PM45 Express, Q45, and Q43 Express chipsets in the SINIT Authenticated Code Module
(ACM), which allows local users to bypass the Trusted Execution Technology protection mechanism and
gain privileges by modifying the MCHBAR register to point to an attacker-controlled region, which prevents
the SENTER instruction from properly applying VT-d protection while an MLE is being loaded.

CVE-2010-0298 The x86 emulator in KVM 83 does not use the Current Privilege Level (CPL) and I/O Privilege Level (IOPL) in
determining the memory access available to CPL3 code, which allows guest OS users to cause a denial of
service (guest OS crash) or gain privileges on the guest OS by leveraging access to a (1) IO port or (2) MMIO
region, a related issue to CVE-2010-0306.

CVE-2010-0306 The x86 emulator in KVM 83, when a guest is configured for Symmetric Multiprocessing (SMP), does not
use the Current Privilege Level (CPL) and I/O Privilege Level (IOPL) to restrict instruction execution, which
allows guest OS users to cause a denial of service (guest OS crash) or gain privileges on the guest OS by
leveraging access to a (1) IO port or (2) MMIO region, and replacing an instruction in between emulator
entry and instruction fetch, a related issue to CVE-2010-0298.

CVE-2010-0419 The x86 emulator in KVM 83, when a guest is configured for Symmetric Multiprocessing (SMP), does not
properly restrict writing of segment selectors to segment registers, which might allow guest OS users to
cause a denial of service (guest OS crash) or gain privileges on the guest OS by leveraging access to a (1) IO
port or (2) MMIO region, and replacing an instruction in between emulator entry and instruction fetch.

CVE-2010-0560 Unspecified vulnerability in the BIOS in Intel Desktop Board DB, DG, DH, DP, and DQ Series allows local
administrators to execute arbitrary code in System Management Mode (SSM) via unknown attack vectors.

CVE-2010-1085 The azx_position_ok function in hda_intel.c in Linux kernel 2.6.33-rc4 and earlier, when running on the
AMD780V chip set, allows context-dependent attackers to cause a denial of service (crash) via unknown
manipulations that trigger a divide-by-zero error.

CVE-2010-1592 sandra.sys 15.18.1.1 and earlier in the Sandra Device Driver in SiSoftware Sandra 16.10.2010.1 and earlier
allows local users to gain privileges or cause a denial of service (system crash) via unspecified vectors
involving "Model-Specific Registers."

CVE-2010-2938 arch/x86/hvm/vmx/vmcs.c in the virtual-machine control structure (VMCS) implementation in the Linux
kernel 2.6.18 on Red Hat Enterprise Linux (RHEL) 5, when an Intel platform without Extended Page Tables
(EPT) functionality is used, accesses VMCS fields without verifying hardware support for these fields, which
allows local users to cause a denial of service (host OS crash) by requesting a VMCS dump for a fully
virtualized Xen guest.

CVE-2010-2963 drivers/media/video/v4l2-compat-ioctl32.c in the Video4Linux (V4L) implementation in the Linux kernel
before 2.6.36 on 64-bit platforms does not validate the destination of a memory copy operation, which
allows local users to write to arbitrary kernel memory locations, and consequently gain privileges, via a
VIDIOCSTUNER ioctl call on a /dev/video device, followed by a VIDIOCSMICROCODE ioctl call on this device.

CVE-2010-3448 drivers/platform/x86/thinkpad_acpi.c in the Linux kernel before 2.6.34 on ThinkPad devices, when the
X.Org X server is used, does not properly restrict access to the video output control state, which allows local
users to cause a denial of service (system hang) via a (1) read or (2) write operation.

CVE-2010-3832 Heap-based buffer overflow in the GSM mobility management implementation in Telephony in Apple iOS
before 4.2 on the iPhone and iPad allows remote attackers to execute arbitrary code on the baseband
processor via a crafted Temporary Mobile Subscriber Identity (TMSI) field.

CVE-2011-1016 The Radeon GPU drivers in the Linux kernel before 2.6.38-rc5 do not properly validate data related to the
AA resolve registers, which allows local users to write to arbitrary memory locations associated with (1)

Page 21 of 22

Video RAM (aka VRAM) or (2) the Graphics Translation Table (GTT) via crafted values.

CVE-2011-1898 Xen 4.1 before 4.1.1 and 4.0 before 4.0.2, when using PCI passthrough on Intel VT-d chipsets that do not
have interrupt remapping, allows guest OS users to gain host OS privileges by "using DMA to generate MSI
interrupts by writing to the interrupt injection registers."

CVE-2011-2367 The WebGL implementation in Mozilla Firefox 4.x through 4.0.1 does not properly restrict read operations,
which allows remote attackers to obtain sensitive information from GPU memory associated with an
arbitrary process, or cause a denial of service (application crash), via unspecified vectors.

CVE-2011-3215 The kernel in Apple Mac OS X before 10.7.2 does not properly prevent FireWire DMA in the absence of a
login, which allows physically proximate attackers to bypass intended access restrictions and discover a
password by making a DMA request in the (1) loginwindow, (2) boot, or (3) shutdown state.

i
 Common Vulnerability Scoring System; http://www.first.org/cvss
ii
 Common Weakness Enumeration; http://cwe.mitre.org/

iii
 Common Attack Pattern Enumeration and Classification; http://capec.mitre.org/index.html

iv
 Basic Input Output System; http://en.wikipedia.org/wiki/BIOS

v
 System Management Mode; http://en.wikipedia.org/wiki/System_Management_Mode

vi
 Virtual Machine Manager; http://en.wikipedia.org/wiki/Hypervisor

vii
 Trusted Execution Technology; http://en.wikipedia.org/wiki/Trusted_Execution_Technology

viii
 http://en.wikipedia.org/wiki/Pentium_F00F_bug

ix
 http://en.wikipedia.org/wiki/Cyrix_coma_bug

x
 CIA: Confidentiality, Availability, Integrity; http://en.wikipedia.org/wiki/Information_security

xi
 http://cansecwest.com/csw11/Showing%20How%20Security%20Has%20Improved%20-

%20Kaminski,%20Cecchetti,%20Eddington.pptx
xii

 “Hacking into Macs is so much easier” *than Windows+; http://www.zdnet.com/blog/security/questions-for-
pwn2own-hacker-charlie-miller/2941
xiii

 E.g. http://www.invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
xiv

 E.g. http://en.wikipedia.org/wiki/Stuxnet
xv

 Direct Memory Access; http://en.wikipedia.org/wiki/Direct_memory_access
xvi

 System Management Bus; http://en.wikipedia.org/wiki/System_Management_Bus
xvii

 Network Interface Card/Controller; http://en.wikipedia.org/wiki/Network_interface_controller
xviii

 http://en.wikipedia.org/wiki/Extended_Page_Table
xix

 http://www.intel.com/technology/itj/2006/v10i3/2-io/5-platform-hardware-support.htm
xx

 http://en.wikipedia.org/wiki/IOMMU
xxi

 http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
xxii

 http://wiki.xen.org/xenwiki/XenPCIpassthrough
xxiii

 http://wiki.xen.org/xenwiki/XenVGAPassthrough
xxiv

 http://kb.vmware.com/kb/1010789
xxv

 Ring 3 & ring 0; http://en.wikipedia.org/wiki/Ring_(computer_security)
xxvi

 http://theinvisiblethings.blogspot.com/2009/01/why-do-i-miss-microsoft-bitlocker.html
xxvii

 http://en.wikipedia.org/wiki/Cold_boot_attack
xxviii

 http://en.wikipedia.org/wiki/Jailbreak
xxix

 http://en.wikipedia.org/wiki/Confused_deputy_problem
xxx

 http://en.wikipedia.org/wiki/WebGL
xxxi

 http://blogs.technet.com/b/srd/archive/2011/06/16/webgl-considered-harmful.aspx
xxxii

 http://www.windowsecurity.com/whitepapers/Advanced-Code-Injection.html
xxxiii

 http://esec-lab.sogeti.com/dotclear/public/publications/11-recon-stickyfingers_slides.pdf
xxxiv

 http://blog.webroot.com/2011/09/13/mebromi-the-first-bios-rootkit-in-the-wild/
xxxv

 http://en.wikipedia.org/wiki/Advanced_Host_Controller_Interface
xxxvi

 http://msdn.microsoft.com/en-us/library/windows/hardware/ff559309(v=vs.85).aspx
xxxvii

 http://en.wikipedia.org/wiki/Hyper-threading
xxxviii

 http://en.wikipedia.org/wiki/Quiesce

http://www.first.org/cvss
http://cwe.mitre.org/
http://capec.mitre.org/index.html
http://en.wikipedia.org/wiki/BIOS
http://en.wikipedia.org/wiki/System_Management_Mode
http://en.wikipedia.org/wiki/Hypervisor
http://en.wikipedia.org/wiki/Trusted_Execution_Technology
http://en.wikipedia.org/wiki/Pentium_F00F_bug
http://en.wikipedia.org/wiki/Cyrix_coma_bug
http://en.wikipedia.org/wiki/Information_security
http://cansecwest.com/csw11/Showing%20How%20Security%20Has%20Improved%20-%20Kaminski,%20Cecchetti,%20Eddington.pptx
http://cansecwest.com/csw11/Showing%20How%20Security%20Has%20Improved%20-%20Kaminski,%20Cecchetti,%20Eddington.pptx
http://www.zdnet.com/blog/security/questions-for-pwn2own-hacker-charlie-miller/2941
http://www.zdnet.com/blog/security/questions-for-pwn2own-hacker-charlie-miller/2941
http://www.invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
http://en.wikipedia.org/wiki/Stuxnet
http://en.wikipedia.org/wiki/Direct_memory_access
http://en.wikipedia.org/wiki/System_Management_Bus
http://en.wikipedia.org/wiki/Network_interface_controller
http://en.wikipedia.org/wiki/Extended_Page_Table
http://www.intel.com/technology/itj/2006/v10i3/2-io/5-platform-hardware-support.htm
http://en.wikipedia.org/wiki/IOMMU
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://wiki.xen.org/xenwiki/XenPCIpassthrough
http://wiki.xen.org/xenwiki/XenVGAPassthrough
http://kb.vmware.com/kb/1010789
http://en.wikipedia.org/wiki/Ring_(computer_security)
http://theinvisiblethings.blogspot.com/2009/01/why-do-i-miss-microsoft-bitlocker.html
http://en.wikipedia.org/wiki/Cold_boot_attack
http://en.wikipedia.org/wiki/Jailbreak
http://en.wikipedia.org/wiki/Confused_deputy_problem
http://en.wikipedia.org/wiki/WebGL
http://blogs.technet.com/b/srd/archive/2011/06/16/webgl-considered-harmful.aspx
http://www.windowsecurity.com/whitepapers/Advanced-Code-Injection.html
http://esec-lab.sogeti.com/dotclear/public/publications/11-recon-stickyfingers_slides.pdf
http://blog.webroot.com/2011/09/13/mebromi-the-first-bios-rootkit-in-the-wild/
http://en.wikipedia.org/wiki/Advanced_Host_Controller_Interface
http://msdn.microsoft.com/en-us/library/windows/hardware/ff559309(v=vs.85).aspx
http://en.wikipedia.org/wiki/Hyper-threading
http://en.wikipedia.org/wiki/Quiesce

Page 22 of 22

xxxix

 Bus Master Enable; http://en.wikipedia.org/wiki/Bus_mastering
xl
 http://cve.mitre.org/

http://en.wikipedia.org/wiki/Bus_mastering
http://cve.mitre.org/

