
ilable at ScienceDirect

Digital Investigation 11 (2014) S3eS12
Contents lists ava
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
In lieu of swap: Analyzing compressed RAM in Mac OS X and
Linux

Golden G. Richard III a, *, Andrew Case b

a Department of Computer Science, University of New Orleans, New Orleans, LA 70148, USA
b Volatility Foundation, New Orleans, LA 70001, USA
Keywords:
Memory analysis
Live forensics
Compressed RAM
Virtual memory
Digital forensics
* Corresponding author.
E-mail addresses: golden@cs.uno.edu (G.G. Richa

(A. Case).

http://dx.doi.org/10.1016/j.diin.2014.05.011
1742-2876/© 2014 Digital Forensics Research Works
a b s t r a c t

The forensics community is increasingly embracing the use of memory analysis to enhance
traditional storage-based forensics techniques, because memory analysis yields a wealth of
information not available on non-volatile storage. Memory analysis involves capture of a
system's physical memory so that the live state of a system can be investigated, including
executing and terminated processes, application data, network connections, and more.
One aspect of memory analysis that remains elusive is investigation of the system's swap
file, which is a backing store for the operating system's virtual memory system. Swap files
are a potentially interesting source of forensic evidence, but traditionally, most swap file
analysis has consisted of string searches and scans for small binary structures, which may
in some cases be revelatory, but are also fraught with provenance issues. Unfortunately,
more sophisticated swap file analysis is complicated by the difficulty of capturing mutually
consistent memory dumps and swap files, the increasing use of swap file encryption, and
other issues. Fortunately, compressed RAM facilities, such as those in Mac OS X Mavericks
and recent versions of the Linux kernel, attempt to reduce or eliminate swapping to disk
through compression. The storage of compressed pages in RAM both increases perfor-
mance and offers an opportunity to gather digital evidence which in the past would have
been swapped out. This paper discusses the difficulty of analyzing swap files in more
detail, the compressed RAM facilities in Mac OS X and Linux, and our new tools for analysis
of compressed RAM. These tools are integrated into the open-source Volatility framework.
© 2014 Digital Forensics Research Workshop. Published by Elsevier Ltd. All rights reserved.
Introduction including information about currently executing processes,
Traditionally, digital forensics has focused primarily on
non-volatile storage devices and involved preservation,
imaging, recovery, and analysis of files stored on hard
drives, removable media, etc. That investigative model
typically embraced a “pull the plug and image” strategy,
which involved powering down forensic targets without
regard for their live state andmaking copies of non-volatile
storage devices for analysis. This resulted in loss of a sig-
nificant amount of potentially actionable digital evidence,
rd), andrew@dfir.org

hop. Published by Elsevier L
live network connections, data in the clipboard, volatile
malware, and other OS and application data structures.
Increasingly, the forensics community has become aware of
the potential for live forensics and memory analysis to
enhance the investigative process, yielding evidence not
available on non-volatile storage. Live forensics typically
involves a survey of a running machine “on-the-spot”,
using a set of statically compiled binaries which are
executed on the target to glean information about its state
and available evidence. These tools are often traditional
systems administration tools, which list running processes,
monitor filesystem activity, capture network traffic,
monitor changes to the Windows registry, and attempt to
td. All rights reserved.

mailto:golden@cs.uno.edu
mailto:andrew@dfir.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2014.05.011&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2014.05.011
http://dx.doi.org/10.1016/j.diin.2014.05.011
http://dx.doi.org/10.1016/j.diin.2014.05.011


Fig. 1. Image file and HTML fragment carved from a Windows swap file.
These are deleted documents “trapped” in the un-sanitized space allocated
by Windows to the swap file.

G.G. Richard III, A. Case / Digital Investigation 11 (2014) S3eS12S4
detect malware, such as keystroke loggers. Memory anal-
ysis typically involves capture of a system's physical
memory (e.g., a RAM dump, acquired via a combination of
software and/or hardware) for later investigation, offline,
using memory analysis tools. Live forensics and memory
analysis are similar in that they both potentially offer a
wealth of data to a forensic investigator that would be
otherwise unavailable. Similarly, they are both potentially
invasive, disturbing the state of a running system to varying
degrees, but memory analysis strives to minimize this
disruption by requiring only that amemory dumping utility
be executed on the system, rather than a number of
evidence-gathering applications. Because of recent
research advances in memory analysis, much of the live
system state observable with live forensics can now be
recreated in the lab from a physical memory dump. One
aspect of memory analysis that remains elusive is investi-
gation of the system's swap file, which is a backing store for
the operating system's virtual memory system. Virtual
memory is discussed in greater detail in Section Memory
analysis for modern virtual memory systems, but briefly,
the swap file is typically stored on disk and contains the
contents of physical memory pages that have been swap-
ped out due to highmemory pressure, essentially, a shortage
of RAM induced by running large numbers of or particularly
memory-hungry applications. The swap file can therefore
contain actionable evidence, but because the swap file can
be large and is stored on slow, non-volatile media,
capturing a mutually consistent copy of both RAM and the
swap file while a system continues to execute is very
challenging.1 There are additional challenges in swap file
analysis, which are discussed in detail in Section Swap files
as a source of evidence, but a new virtual memory
component emerging in modern operating systems, called
compressed RAM or compressed swap, offers an opportunity
to gather digital evidence which in the past would have
been swapped to disk. After providing some additional
background in the following sections on virtual memory
systems and memory analysis, we discuss our newly
developed plugins for the Volatility framework, which
automatically identify and decompress compressed mem-
ory regions in both Mac OS X Mavericks and Linux, making
this data available for analysis. We also discuss the results
of a series of experiments, which offer insight into the
quantity and quality of the additional evidence made
available by our plugins.

Memory analysis for modern virtual memory systems

Virtual memory is an essential component of modern
operating systems, providing a linear address space for
processes and significantly simplifying memory manage-
ment. Operating systems often include a paging mecha-
nism in the virtual memory system, to allow the total size
of the allocated memory regions of executing processes to
exceed the size of physical RAM, by overflowing RAM into a
swap file. Primitive versions of paging have existed since
1 However, in virtualized environments, a virtual machine snapshot
can be generated, which may reduce the level of inconsistency.
the Atlas system in the 1960s (Morris et al., 1967). In this
paper, we focus on operating systems that fully support
paging, although some operating systems, particularly
those for mobile or embedded devices, do support virtual
memory but either do not support paging at all (e.g., QNX)
or support paging but without a swap file, bringing in read-
only pages as necessary from files on non-volatile storage
(e.g., iOS). On modern hardware, virtual memory is
implemented using a combination of hardware and soft-
ware, with most modern CPUs providing hardware support
for virtual to physical address translation and tracking
whether pages are resident in RAM. Access to non-resident
pages results in a page fault, which is handled by the
operating system, triggering one of a number of possible
actions, including allocation or the page being swapped in.

Swapping must be minimized to avoid thrashing
(Denning, 1968a), where pages are continuously moved to
and from the swap file because of a critical shortage of
RAM, and the resultant impact on performance. Part of the
reason that excessive swapping has such a serious impact
on performance is the disparity between disk bandwidth
and memory bandwidth, which differ by orders of magni-
tude. To illustrate this disparity, consider the memory
bandwidth of the high- performance Mac Pro, introduced
by Apple in 2013, which peaks at 60 GB/s. This model also
sports some of the fastest flash storage to date, but storage
bandwidth still peaks at 1.2 GB/s. To maximize perfor-
mance, modern operating systems employ sophisticated



G.G. Richard III, A. Case / Digital Investigation 11 (2014) S3eS12 S5
page replacement algorithms that strive to retain the pages
that comprise the working sets (Denning, 1968b) for active
processes, i.e., the pages that are in active use, in RAM, but
some swapping is still inevitable when memory pressure
increases. Swap files are discussed in more detail in the
following section.
Listing 1. Definition of the swap_crypt_ctx_initialize() function in
the Mac OS X kernel, which creates new encryption keys for the encrypted
swap facility on the first page-out after a reboot.

3 To our knowledge, Harlan Carvey coined the term smearing (Carvey,
Swap files as a source of evidence

Swap files are a potentially interesting source of forensic
evidence, but traditionally, most swap file analysis has
consisted of searches for strings or small binary structures.
Searches of this kind target web page fragments, pass-
words, credit card numbers, IP addresses (Garfinkel, 2013),
etc. In many cases, matches in themselves are revelatory,
but it is virtually impossible to establish the provenance of
data in the swap file without analyzing operating systems
kernel structures in the virtual memory system. First, the
swap file is organized as an unordered collection of raw
memory pages (or segments, which may exceed a page in
size), and discerning even which process generated the
data in the swap file independently of the kernel structures
can't be done in a reliable way. Second, unless specific
measures are taken, such as setting a registry key in
Microsoft Windows,2 the swap file is often not cleared
when a system reboots, which leaves stale information in
the swap file. This means that memory pages swapped out
across (many) reboots may persist, all interleaved in the
swap file. Third, and perhaps most importantly, some
operating systems, such as Microsoft Windows, don't
sanitize disk blocks when they are initially allocated to the
swap file, meaning that data completely unassociated with
virtual memory can be present in the swap file. An example of
this is illustrated in Fig. 1, where file carving using Scalpel
(Richard and Roussev, 2005) against a Windows swap file
recovers an HTML file fragment and JPEG image “trapped”
in the swap file, but unrelated to swapping activity.

An additional complication is the increasing use of
encrypted swap files, to minimize the leakage of volatile,
private information onto non-volatile storage. For example,
in Mac OS X 10.7 and later, swap files are encrypted by
default, regardless of whether File Vault 2 whole disk
encryption is activated. Furthermore, the 128-bit AES keys
for encrypting the swap files are distinct from those used
for disk encryption, and are regenerated automatically
every time the system boots. Consider the function
swap_crypt_ctx_initialize (osfmk/vm/vm_pa-
geout.c) in the Mac OS X Mavericks kernel (Apple, 2013),
illustrated in Listing 1. This function is executed on the first
page out operation after Mavericks is booted, ensuring that
all pages swapped out during the current session will be
encrypted using a new key. Support for encrypted swap is
also available in Windows (for Vista and later), and in
Linux, via the dm-crypt facility, although neither enables
encrypted swap by default.
2 For example, setting the ClearPageFileAtShutdown key in the registry
instructs Windows to clear the swap file on shutdown, aimed at
increasing security at the expense of performance.
Assuming that a dump of physical memory and a copy of
the swap file are available, memory analysis can theoretically
be used to associate swapped out pages in the virtual address
spaces of processes with the owning processes and to deal
with encrypted pages (by retrieving the keys from RAM). In
practice, this doesn't work well, because of memory smear-
ing3duringcapture,where thestateof theprocesspage tables
and kernel structures governing virtual memory are incon-
sistent with the state of the swap file. This occurs because,
except in virtualized environments where a virtual machine
snapshot or virtualmachine introspection (Javaid et al., 2012)
can be used to more consistently capture or introspect both
RAM and the swap file, it is generally very difficult in a
running system to gather both in a consistent fashion
(Kornblum, March 2007; Petroni et al., 2006). To see why,
consider thatwhilecaptureof the swapfile is takingplace, the
system continues to execute, and mappings between pages,
their owners, and locations in the swap file may change,
resulting in significant inconsistency. If the recommended
process of acquiring memory first is taken, then the analyst
will acquire memory using hardware or software, and then
use other software to acquire the swap file. On systems with
moderate to large amounts of RAM, the initial memory
acquisition can take several minutes. During this time the
system is still executing programs and changing swap infor-
mation. By the time both memory is sampled and the swap
file is acquired from disk, it is very likely (and has been
observedby the authors) that thekernel swapdata structures
will point to pages that have since been overwritten. If the
acquisition tool blindly trusts this data then it will read data
not actually associated with the translated virtual address.
For example, it can mean a swapped-out mapping inside of
Internet Explorer (under Windows) points to a swap file
offset on disk that is actually now information from another
2005), referring to inconsistencies in a physical memory dump as a result
of the system continuing to execute during capture. In our view, the term
is also descriptive of the potentially graver inconsistencies that occur
between physical memory and the swap file when simultaneous capture
is attempted.



G.G. Richard III, A. Case / Digital Investigation 11 (2014) S3eS12S6
process. The same issues occur even if an investigator at-
tempts to acquire memory and the swap file from disk at the
same time. Since there is no knownway to programmatically
detect these inconsistencies, swap file analysis is extremely
difficult and furthermore, the validity of any conclusions
based on the analysis is suspect.

The idea of compressing RAM to reduce memory pres-
sure and thereby reduce or eliminate swapping isn't a new
one, with commercial products such as RAM Doubler
appearing around 1995. Academic research in this area is
also well over a decade old (Wilson et al., 1999; Douglis,
1993). Some of the impediments to successful deploy-
ment of early RAM compression schemes were slow pro-
cessors and poor system integration and tuning. The new
compressed RAM facility in Mac OS X Mavericks and
compressed swap facility in Linux, however, take advan-
tage of fast multicore processors and tightly integrate
compressed RAM into their virtual memory systems. By
setting aside a moderate amount of RAM for a component
we'll generically refer to as the compressor (see Section
Analyzing compressed RAM for specific details on the Linux
and Mac OS X implementations) and compressing memory
pages and storing them instead of swapping them to disk,
moderate memory pressure can be accommodated without
swapping. When memory pressure increases beyond a
certain threshold, then pages from RAM (and from the
compressor) can still be swapped to disk.

With proper tools, compressed RAM is far easier to
analyze than swap. Virtual memory smearing is minimized,
Fig. 2. Overview of the Mac OS X virtual memory system, which resides inside the
encapsulates most of the details of page compression/decompression. Adapted from
because RAM can be captured much more quickly than
swap, which resides on slower, non-volatile storage de-
vices. To capitalize on this possibility, we have developed a
set of tools to analyze compressed RAM, automatically
decompressing and integrating compressed pages into the
address spaces of processes under investigation. The next
section provides details on the implementation of com-
pressed RAM in Mac OS X and Linux and discusses our new
analysis tools, which are incorporated into the Volatility
framework (The volatility framework).

Analyzing compressed RAM

The Volatility Framework is a portable, open source
framework for memory forensics, implemented entirely in
Python. Volatility can analyze memory dumps from Linux,
Mac, andWindowssystems, amongothers, inboth32-bit and
64-bit flavors. A variety of memory dump formats are sup-
ported, including raw physical memory dumps, VMware
snapshots, output from the Linux Memory Extractor (Sylve
et al., 2012), and more. Volatility can be used to quickly and
accurately model operating system kernel structures and
handle virtual-to-physical-address translation and it also
includes basic support for reconstructing virtual address
spaces forprocesses, bynotingwhichpages arepresent in the
physical memory dump and which are not (e.g., pages that
have been swapped out). The current release of Volatility
does no processing for swapped out pages, aside fromnoting
their absence. Particularly appealing is Volatility's flexible
Mach portion of the OS X kernel. A new pager, called the compressor pager,
Fig. 8-6 in Singh (2006).



Listing 2. Structure of one segment in the Mac OS X compressor's store.

G.G. Richard III, A. Case / Digital Investigation 11 (2014) S3eS12 S7
plugin system,which allows thedepthof itsmemoryanalysis
capabilities to be expanded with little or no modification to
the core system. More than 150 plugins are currently
available.

To support the analysis of compressed RAM in Volatility
for Mac OS X and Linux, we developed four new plugins:
mac_compressed_swap, mac_dump_maps, linux_com-
pressed_ swap, and linux_dump_maps, in addition to Python
implementations of the necessary decompression tech-
niques. Our goal in developing the plugins is broaden the
scope of Volatility's virtual address space abstractions to
include pages that are compressed (but not swapped out to
disk). This means that any plugin that analyzes the address
space of a process should encounter not only pages that are
present in physical memory (signified by the present bit
being set in the page table entry for the page), but also,
transparently, pages that are currently not present but
compressed. We discuss the implementations of the plu-
gins in the following two sections. Experimental evaluation
of the plugins, as well as performance issues, are discussed
in Section Evaluation.

Compressed RAM in Mac OS X

Mac OS X employs a hybrid kernel, containing both BSD
and Mach components. The virtual memory system is
implemented primarily inside the Mach portion, as illus-
trated in Fig. 2. Each task (process) in Mac OS X has a flat
address space represented in the kernel by a vm_map, which
includes a doubly-linked list of vm_map_entry objects,
accessible via the vm_map_header for the vm_map. Each of
the vm_map_entry objects represents a set of contiguous
memory addresses in the linear address space of the task
and has an associated vm_object. The vm_object man-
agesa setof 4Kpages, identifiedby theiroffset fromthe start
of the object. These pagesmaybe either resident inmemory
or retrievable from a backing store, which might be a file on
disk (in the case of a memory-mapped file) or the swap file,
for pages that have been swapped out, or in Mavericks, via
decompression. A pager is responsible for retrieving pages
that aren't present from the backing store. InMavericks, two
of the most important pagers in terms of memory analysis
are thevnodepager,whichmanagespagesbackedbyafile on
disk (e.g., an executable) and the compressor pager, which
arranges for transparent compression anddecompressionof
pages thatwould otherwise be swapped toor from the swap
file on disk.

One issue that's critical to understanding the imple-
mentation of compressed swap in Mac OS X is while each
vm_map_entry's vm_object representing a range of
pages that can be swapped out has its own associated
(private) pager (namely, an instance of the compressor
pager), there is a single, global compressor_object that
stores all the compressed pages and is actually responsible
for compression and decompression operations. The
compressor is also singly responsible for management of
the compressed pages in its pool of memory, and periodi-
cally compacts the segments storing compressed pages for
more efficient storage. The compressor also monitors
available space for compressed pages and marks segments
that should be swapped out to disk.
Volatility support
As a first step, to test the viability of identifying and

decompressing compressed pages in Mac OS X, we
concentrated solely on investigation of the compressed
page store, which resides in the single, global com-

pressor_object, defined in “osfmk/vm/vm_object.h”.
The management of the compressor_object's storage
and high-level compression and decompression function-
ality is implemented in “vm_compressor.h” and
“vm_compressor.c” (osfmk/vm/), with hand-optimized 64-
bit assembler versions of WKdm compression/decom-
pression implemented in “WKdmDecompress_new.s”,
“WKdmData_new.s”, and “WKdmCompress_new.s”
(osfmk/x64_64/). We analyzed the assembler imple-
mentations ofWKdm, which consist of approximately 1000
lines of 64-bit assembler, and found them to be relatively
similar to the original WKdm implementation described by
Wilson and Kaplan (Wilson et al., 1999).

In order to decompress pages in Python (required by
Volatility), we implemented a Python version of WKdm,
based on the assembler version for compatibility. Next, we
implemented the mac_compressed_swap plugin for Vola-
tility, which extracts the locations of important kernel data
structures related to the compressor from the physical
memory dump, outputs statistics, including the total
amount of memory available, number of compressed pages,
etc. and then analyzes the main compressor store, which
holds compressed pages. Simplifying slightly, this store is
organized as a dynamically allocated array of structures of
type c_segment, depicted in Listing 2. Each of these
c_segment structures tracks information about a collec-
tion of compressed pages, stored in a single contiguous
buffer per segment (accessible via the field c_buffer). A
bitfield in the c_segment tracks a number of important
characteristics of the segment, including whether it's
currently swapped out.



Fig. 3. High level structure of the compressor pager and compressor data
structures, illustrating the internals of the highlighted “pager” in Fig. 2. A
compressor_pager is associated with each vm_map_entry object, which
tracks a set of contiguous pages in the virtual address space of a task,
including the slots for compressed pages. The global compressor object
stores and manages the compressed pages of all tasks.

G.G. Richard III, A. Case / Digital Investigation 11 (2014) S3eS12S8
The locations of pages in the buffer are tracked using a
per-segment 2D array, which identifies the offset into the
c_buffer where the page is stored and the length of the
compressed page. The location of a compressed page in the
compressor is identified by a slot, represented by a
c_slot_mapping structure (illustrated in Listing 3),
which tracks the segment number (s_cseg) and allows
computation of the index into the array of c_segment

structures and a 10-bit index (s_cindx), which is broken
down into two smaller indices (using bit masks) into the 2D
array of page locations for the segment. When a page in the
address space of a process is compressed or decompressed,
the mapping between its address and its location in the
compressor is maintained by the pager associated with the
vm_map_entry containing the page. The point of this is
that the singleton compressor object doesn't track the vir-
tual address or owning process for a compressed page e it
simply operates on slots that track locations of arbitrary
pages in its store. A higher level entity, namely, the pager,
must be able to associate individual pages (by address) with
their storage slots. The data structures responsible for
mapping a virtual address to a compressed page are illus-
trated in Fig. 3.
Listing 3. Structure of the slot mapping structure, which allows the kernel
to track the location of a compressed page.
In contrast to the Linux implementation of compressed
swap, discussed in the next section, Mac OS X swaps out
entire, compressed segments when the compressor runs
low on space.

Our mac_compressed_swap plugin walks the array of
c_segment structures, bounded by the value stored in the
kernel variable c_segment_count, identifying segments
that are present. For each segment marked present, we
iterate over valid indices in the 2D slot array, and compute
the location and length of the corresponding page in the
c_buffer. A “compressed”pagewhose length is exactly 4K
was stored uncompressed, because WKdm compression
failed to reduce its memory footprint e these pages are
simply copied directly into output files for further analysis.
Otherwise, the compressed data is fed into our Python
WKdm decompressor and, if decompression succeeds, the
decompressed page is output. Note that the format of
compressed pages is sufficiently complex that “successful”
decompression of corrupted data is very unlikely e our
implementation of WKdm monitors decompression and
aborts if errors are encountered, substituting a zero page.
Note that this plugin does not attempt to associate decom-
pressed pages with their owning processes e its goal is to
simply dump all compressed swap for further analysis. This
is because provenance information for compressed pages is
not available in the compressor. Associating pages in a
process's address space with their location in the
compressor requires amapping between the page's address
and its slot in the compressor, which is handled by the pager
object for a vm_map_entry object. We undertook that task
in developing themac_dump_maps plugin, discussed next.

Associating compressed data with individual processes
is more complex, and requires a deep understanding of the
entire Mach paging subsystem, which consists of approxi-
mately 70,000 lines of C. Since our preliminary work on
decompression and analysis succeeded, we designed and
implemented a second Volatility plugin, mac_dump_maps,
which models a subset of the Mach VM page e in/decom-
pression code path in Python. Our plugin walks the virtual
address spaces of one or more processes, dumping all
available pages in the address spaces (in order) to an output
file. Ordinarily, Volatility's facilities for dumping process
memory would skip pages that aren't present. Our plugin
interjects a “second chance” for accessing a page's contents
by first determining if the pager for the associated
vm_map_entry is the compressor pager, and if so, querying
the compressor pager to see if the page can be retrieved. If
the page exists in the compressor, then techniques used for
the previous plugin are used to decompress the page and
make it available.

Compressed swap in Linux

Like Mac OS X, Linux (with kernel v3.11þ) now offers a
mechanism for handling memory pressure, called “com-
pressed cache for swap pages” (hereafter, just “compressed
swap”). The purpose of this feature is to allow transparent,
in-memory compression of pages that normally would be
swapped to disk. The use of compressed swap is optional
and can be turned on by enabling the ZSWAP configuration
option. There is also a kernel boot parameter, zswap.en-
abled, that controls whether zswap (compressed swap) will
be used or not.

Frontswap
Frontswap is a generic API that implements compressed

swap. In particular, it manages pages that are being



G.G. Richard III, A. Case / Digital Investigation 11 (2014) S3eS12 S9
swapped out, loading of pages that are being swapped in,
and the registering and unregistering of frontswap back-
ends such as zswap, which is discussed next. Frontswap is
integrated into the kernel via the swap_writepage and
swap_readpage functions. These functions are called as
pages are being written to or read from swap. Normally,
these functions will directly read and write data from disk.
When frontswap is enabled, though, the frontswap opera-
tion is tested before the disk being accessed, as illustrated
in the swap_writepage code in Listing 4.
Listing 4. The swap_writepage() function in the Linux virtual memory
subsystem, which attempts to use the Linux frontswap facility to avoid
writing a page to disk that's targeted for swap-out.

Listing 5. The __frontswap_store() function extracts the type and
offset of a page and then stores it within zswap.
The function swap_writepage first calls try_to_-

free_swap which checks if the page still needs to be kept
within swap storage. If this function returns a non-zero
value, then line 9 executes and calls into the frontswap
facility. If frontswap can handle the page (e.g., compress
and store it), then the goto on line 13 is executed, and the
write to disk on line 15 is never executed. swap_readpage
operates in a similar manner and a page is checked for
existence in the compressed cache before it is searched for
on disk. frontswap_store is a simple wrapper that
checks if frontswap is enabled and if so calls __fronts-

wap_store. This function takes the page structure of the
page to be stored as a parameter and performs the inter-
action with zswap. In order to ask zswap to store the page,
it must be able to tell it the type of the page and its offset
within the swap cache. This information is encoded within
the private member of the associated struct page,
which for swap files points to a swp_entry_t structure. A
swp_entry_t encodes the type and offset of the page
within its val member using bitmasks. The type bitmask
specifies on which swap file the operation occurs, as Linux
supports multiple swap files, and the offset is simply the
offset within the particular file. Once these values are
extracted, the store operation of zswap is called with the
values and the offset of the page is marked as in-use within
the frontswap bitmask. Listing 5 contains a stripped down
version of __frontswap_store that illustrates these
concepts. On lines 2e7 the swp_entry_t structure is
extracted and the type and offset of the page calculated. On
line 8, the store method of zswap is called with these pa-
rameters, and if the store was successful (a return value of
0), then the bit is set within the bitmap. frontswap_load
performs the inverse operation of frontswap_store.
When a page is requested from the compressed swap
cache, frontswap_load extracts the type and offset from
the page structure and then looks up the entry within
zswap, using the load operation.
Zswap
Zswap is an implementation of compressed swap pages

for Linux. It is currently, as of 3.11, in the mainline kernel
and is due for inclusion into new releases of several dis-
tributions. It implements the frontswap API by storing
compressed pages and managing them through use of the
zbud allocator and a tree of compressed pages per swap file.
zbud (mm/zbud.c) is a memory allocator designed for
compressed pages and stores two compressed pageswithin
a single physical page, as well as managing the allocation,
deallocation, and tracking the status of each page.

The per-swap file tree of compressed pages is repre-
sented as a struct zswap_tree. This structure holds a
red-black tree of pages in its rbroot member, and a
pointer to the zbud allocation pool in its pool member.
Each node of the tree is stored as a zswap_entry structure,
which holds the file offset, length of compressed buffer, and
handle of the entry. The handlemember is a pointer to the
compressed data tracked by the tree node.

Of particular importance to memory forensics are the
load and store implementations of zswap. In order to suc-
cessfully find pages within the cache, the store operation
and its associated data structures must be understood.
zswap_frontswap_store is zswap's implementation of
the frontswap store operation and is responsible for a
number of tasks:

1. Compressing a given page
2. Allocating zbud memory to store it
3. Creating and populating a zswap_entry with the

information
4. Storing the zswap_entry within the tree of pages
5. Updating statistical information that can be used to

monitor the overall state of zswap



Fig. 4. : Activity Monitor in Mac OS X Mavericks, illustrating memory
pressure and use of compressed RAM. In this example, a number of Safari
windows are open, resulting in over 1 GB of compression and no swapping
at all.

G.G. Richard III, A. Case / Digital Investigation 11 (2014) S3eS12S10
The default compression algorithm is LZO, which is
implemented in the lzo1x_compress_safe and
lzo1x_decompress_safe functions in the kernel. The
compression algorithm can be changed at boot time
through use of the zswap.compressor kernel parameter.
The current implementation of our plugins only supports
LZO, but adding support for other algorithms would simply
require a Python port of the new decompression algorithm.
Unlike Mac OS X, which utilizes a hand-optimized assem-
bler implementation of WKdm for performance, Linux uses
a straightforward C implementation for all the compression
code we've studied. This makes the addition of new algo-
rithms straightforward.

zswap_frontswap_load is zswap's implementation of
the frontswap loadoperation. This function looksupaspecific
page in the tree and then decompresses it. This is the same
operation thatourVolatility pluginsmustperformwhen they
decompress pages in the compressed swap cache.

Volatility support
Our first Linux plugin is linux_compressed_swap, which

outputs statistical information on the state of frontswap
and zswap and also extracts all compressed pages to disk in
their uncompressed form. The second pluginwe developed
is a completely rewritten version of linux_dump_maps,
which writes memory mappings to disk inclusive of the
decompressed pages.

linux_compressed_swap first gathers information from
zswap and frontswap, such as the global number of com-
pressed pages as well as number of compressed pages for
each swap file. This information is displayed and then the
plugin inspects each swap file's zswap tree and locates
every compressed page. This is accomplished by using the
rbrootmember and traversing the tree. Each tree element
is an rb_node structure that is then converted to a
zswap_entry. From there, the handle and length

members can be used to find the compressed buffer. This
buffer is then passed to the decompression routine and
written to disk.

linux_dump_maps operates by walking the memory
mappings of each process and extracting them to disk.
These mappings can include the executable file, shared li-
braries, stack, heap, and anonymous memory of the pro-
cess. In the current version of Volatility (2.3.1), the code
leverages Volatility's API to find the starting and ending
virtual address of each memory region of a process. It then
walks each region, 4 K bytes at a time. If the page is in RAM
it is written to disk. If the page is not in RAM, then the page
is filled with zeroes andwritten to disk in order tomaintain
alignment and offsets. In our rewrite of this plugin, we
instrument the reading process so that if a page is not found
in RAM, then the compressed swap cache is searched to
locate the page. This checking occurs by first finding the
page table entry (PTE) of the non-present page and
extracting its type and offset. This mimics the operation
performed by zswap_frontswap_load. The offset is then
checked against the frontswap bitmap of page offsets. If the
corresponding bit is set then the page is backed by the
cache. The zswap_entry of the page is then discovered by
walking the tree of pages and finding the node that has the
same offset as the one calculated for the page. This is how
the tree is keyed and guarantees uniqueness of each node.
Once the correct zswap_entry is found, its pages can be
extracted by re-using code that was developed for the
linux_compressed_swap plugin.

Evaluation

In designing, implementing, testing, and evaluating the
potential impact of our tools, we analyzed a number of Mac
OS X and Linux configurations, varying both the total
amount of RAM available and memory pressure. Our con-
cerns were both correct operation and a sense of how the
inclusion (or exclusion) of compressed regions in memory
analysis might affect an investigation, both qualitatively
(evidence available only in the compressed regions) and
quantitatively (how much data is actually compressed). Of
course the quantity and relevance of evidence in com-
pressed RAM will vary on a case-by-case basis, but our
conclusion, based on experience with a large number of
systems with between 2 GB and 32 GB of RAM, is that a
substantial amount of data may be compressed and inac-
cessible to tools that are agnostic to compressed RAM. This
is particularly true of Mac OS X, where compressed RAM is
used aggressively. The Activity Monitor application tracks
memory pressure and provides real-time stats on the
compressor, as illustrated in Fig. 4, where on a systemwith
a modest amount of RAM, almost 1 GB is compressed, with
no swapping at all. Below, we provide results for a Mac and
a Linux case, representative of our experience. Both are for
systems with 2 GB of RAM, running modest workloads. On
average, more data will be compressed on systems with
less RAM, but as we discussed above, we have observed
significant compressor activity even on systems with 32 GB
of RAM, while running realistic workloads.

For our representative Mac case, we targeted a 64-bit
Mac OS X Mavericks system with 2 GB RAM and 124 pro-
cesses executing, and relatively high memory pressure. The
compressed page pool at the moment we dumped RAM
contained approximately 300 MB of data. We reviewed the



G.G. Richard III, A. Case / Digital Investigation 11 (2014) S3eS12 S11
number of compressed pages for each process, and deter-
mined that 21 had no compressed pages at all, 86 had be-
tween 1 and 1000 compressed 4 K pages, 15 processes had
between 1001 and 10,000 compressed pages, and 2 pro-
cesses had more than 20,000 compressed pages.

For our representative Linux case, we targeted a 64-bit
Ubuntu system with 2 GB of RAM, 115 processes
executing, and relatively high memory pressure. We took a
physical memory dump and with our tools, observed that
the compressor held 160 MB of compressed data, 46 pro-
cesses had no compressed pages, 66 had between 1 and
1000 compressed 4 K pages, and the rest between 2000 and
13,000 compressed pages.

In the tests above, the user was browsing (e.g., looking
at images on Flickr), editing several large text documents
(which were not saved on disk), and performing other
routine computing tasks. When we analyzed the com-
pressed portions of the process address spaces, we found
substantial amounts of evidence, including large web page
fragments identifying the pictures being viewed, recover-
able thumbnail images, large chunks of the text documents,
and more. This information would have been inaccessible
without our tools.

One drawback in using the Volatility framework for
compressed RAM analysis is performance, since Python is a
poor choice for computationally intensive operations such
as decompression. On Mac OS X, the compression and
decompression functions are written in optimized, 64-bit
assembler and on Linux, in C. We concentrated on the Mac
OS X implementation of WKdm as a “reality check” for the
performance of our Python implementation. In our evalu-
ation, we consider compression of a 4 K page and subse-
quent decompression as a single “operation”. On a Core i7
the WKdm functions in assembler are capable of >260,000
operations per second. An optimized C implementation is
capable of >142,000 operations per second on the same
system. The Python implementation achieved only 390
operations per second. While memory analysis is an offline
operation, clearly for computationally intensive forensic
analysis, pure Python is a poor choice, despite the other
obvious advantages of implementing Volatility (and other
tools) in Python. Python is currently mandated by Volatility
for portability reasons.

Related work

There has been a substantial amount of high-quality
research in memory analysis since the 2005 DFRWS
memory analysis challenge provided the catalyst for work
in this area. Volatility (The volatility framework) has
emerged as a primary framework for integrating new re-
sults in memory analysis for Linux, Windows, Mac, and
Android systems, but a number of other research efforts
have contributed substantially to the analysis capabilities
that investigators now have at their disposal (Sylve et al.,
2012; Carbone et al., 2009; Dolan-Gavitt et al., 2009;
Schuster, 2006; Carrier, 2006; Adelstein, 2006; Case et al.,
2008, 2010a, 2010b; Van Baar et al., 2008; Dolan-Gavitt,
2007; Vidas, 2007).

Little formal work exists on swap file analysis, due pri-
marily (we suspect) to many of the problems we pointed
out in Section Swap files as a source of evidence. As we
noted there, some of our observations regarding the diffi-
culties related to swap file analysis are due to Kornblum
(Kornblum, March 2007) and Walters (Petroni et al., 2006).
One recent research effort that targets swap file analysis in
conjunction with traditional memory analysis is the work
by Javaid et al., which analyzes process heap behavior to
detect malware and uses virtual machine introspection to
incorporate live swap file analysis (Javaid et al., 2012).

The Linux andMac compressed swap facilities discussed
in this paper are new and to our knowledge, we are the first
researchers to evaluate the forensic value of these facilities
and to present tools capable of analyzing compressed swap.

Conclusions

Whereas swap was previously difficult to integrate into
forensics analysis, the new implementations of in-memory,
compressed swap in Mac OS X and Linux make much of the
data available to investigators using standard memory
acquisition techniques. In this paper we documented the
implementations of compressed swap on both Mac OS X
Mavericks and Linux and described our new open source
tools for decompressing and analyzing compressed mem-
ory regions. The tools, which are integrated into the Vola-
tility framework, allow extraction of all compressed pages
at once and for per-process extraction. The complete
extraction of all pages can be very useful when performing
searches for content like personally identifiable informa-
tion (PII), financial information, or for malware with Yara
signatures. The per-process extraction ensures that as
much information as can be found in memory will be
included in the process memory dumps. Our experiments
suggest that in many circumstances, processing com-
pressed memory will make the difference between the
investigator being able to properly analyze a process (or
not), as a substantial amount of a process's address space
may be compressed. We also illustrated a number of useful
forensics artifacts discovered in compressed pages, in
routine testing, reinforcing our position that analysis of
compressed swap is necessary.

Future work

We expect that compressed RAM will be integrated into
other operating systems, such asMicrosoftWindows, in the
future, based on the positive reviews associated with the
Mac and Linux implementations. Closed source operating
systems will present new challenges, as modeling of sub-
stantial portions of the virtual memory system is necessary
for decompressing memory. Supporting analysis of com-
pressed swap on mobile devices is also part of our future
work. For example, Android 4.4 optionally enables fronts-
wap, and handling compressed swap on ARM-based de-
vices will require updates to Volatility's core functionality
(e.g., the page table entry walking codewill require updates
to support ARM).

Another aspect of our future work is creation of publicly
available memory samples with compression enabled.
When we began this project, there were no publicly avail-
able memory samples that we could use. To support



G.G. Richard III, A. Case / Digital Investigation 11 (2014) S3eS12S12
additional research in this area, we are in the process of
creating memory samples that can be released to the entire
community.

References

Adelstein Frank. Live forensics: diagnosing your system without killing it
first. Commun ACM 2006;49(2):63e6.

Apple. Xnu source code http://www.opensource.apple.com/source/xnu/
xnu-2422.1.72/; 2013.

Carbone Martim, Cui Weidong, Lu Long, Lee Wenke, Peinado Marcus,
Jiang Xuxian. Mapping kernel objects to enable systematic integrity
checking. In: Proceedings of the 16th ACM conference on Computer
and communications security; 2009.

Carrier Brian D. Risks of live digital forensic analysis. Commun ACM 2006;
49(2):56e61.

Carvey Harlan. Origin of the term “smear” in memory analysis http://
seclists.org/incidents/2005/Jun/22; 2005.

Case Andrew, Cristina Andew, Marziale Lodovico, Richard III Golden G,
Roussev Vassil. Face: automated digital evidence discovery and cor-
relation. In: Proceedings of the 8th Annual Digital Forensics Research
Workshop (DFRWS 2008); 2008.

Case A, Marziale L, Richard III Golden G. Dynamic recreation of kernel
data structures for live forensics. In: Proceedings of the 10th Annual
Digital Forensics Research Workshop (DFRWS 2010); 2010.

Case Andrew, Marziale Lodovico, Neckar Chris, Richard III Golden G.
Treasure and tragedy in kmem-cache mining for live forensics
investigation. In: Proceedings of the 10th Annual Digital Forensics
Research Workshop (DFRWS 2010); 2010.

Denning Peter J. Thrashing: its causes and prevention. In: Proceedings of
the 1968 Fall Joint Computer Conference, Part I. ACM; 1968a.
pp. 915e22.

Denning Peter J. The working set model for program behavior. Commun
ACM 1968b;11(5):323e33.

Dolan-Gavitt Brendan. The vad tree: a process-eye view of physical
memory. Digit Investig 2007;4:62e4.

Dolan-Gavitt Brendan, Srivastava Abhinav, Traynor Patrick,
Giffin Jonathon. Robust signatures for kernel data structures. In:
Proceedings of the 16th ACM conference on Computer and commu-
nications security. ACM; 2009. pp. 566e77.

Douglis Fred. The compression cache: using on-line compression to
extend physical memory. In: Proceedings of the USENIX Winter
Conference; 1993. pp. 519e29.

Garfinkel Simson L. Digital media triage with bulk data analysis and bulk
extractor. Comput Secur 2013;32:56e72.

Javaid Salman, Zoranic Aleksander, Ahmed Irfan, Richard III Golden G.
Atomizer: a fast, scalable and lightweight heap analyzer for virtual
machines in a cloud environment. In: Proceedings of the 6th Layered
Assurance Workshop (LAW'12); 2012.

Kornblum Jesse D. Using every part of the buffalo in windows memory
analysis. Digit Investig March 2007;4(1):24e9.

Morris Derrick, Sumner Frank H, Wyld Michael T. An appraisal of the atlas
supervisor. In: Proceedings of the 1967 22nd National Conference,
ACM '67. New York, NY, USA: ACM; 1967. pp. 67e75.

Petroni Jr Nick L, Walters Aaron, Fraser Timothy, Arbaugh William A.
Fatkit: a framework for the extraction and analysis of digital forensic
data from volatile system memory. Digit Investig 2006;3(4):197e210.

Richard III Golden G, Roussev Vassil. Scalpel: a frugal, high performance
file carver. In: Digital Forensics Research Conference (DFRWS 2005);
2005. pp. 71e7.

Schuster Andreas. Searching for processes and threads in microsoft
windows memory dumps. Digit Investig 2006;3:10e6.

Singh Amit. Mac OS X internals: a systems approach. Addison-Wesley
Professional; 2006.

Sylve Joe, Case Andrew, Marziale Lodovico, Richard III Golden G. Acqui-
sition and analysis of volatile memory from android devices. Digit
Investig 2012;8(3):175e84.

The volatility framework: Volatile memory artifact extraction utility
framework. http://www.volatilesystems.com/default/volatility.

Van Baar RB, Alink Wouter, Van Ballegooij AR. Forensic memory analysis:
files mapped in memory. Digit Investig 2008;5:S52e7.

Vidas Timothy. The acquisition and analysis of random access memory. J
Digital Forensic Pract 2007;1(4):315e23.

Wilson Paul R, Kaplan Scott F, Smaragdakis Yannis. The case for com-
pressed caching in virtual memory systems. In: USENIX Annual
Technical Conference, General Track; 1999. pp. 101e16.

http://refhub.elsevier.com/S1742-2876(14)00054-1/sref1
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref1
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref1
http://www.opensource.apple.com/source/xnu/xnu-2422.1.72/
http://www.opensource.apple.com/source/xnu/xnu-2422.1.72/
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref3
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref3
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref3
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref3
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref4
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref4
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref4
http://seclists.org/incidents/2005/Jun/22
http://seclists.org/incidents/2005/Jun/22
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref6
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref6
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref6
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref6
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref7
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref7
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref7
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref8
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref8
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref8
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref8
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref9
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref9
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref9
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref9
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref10
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref10
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref10
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref11
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref11
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref11
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref12
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref12
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref12
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref12
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref12
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref13
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref13
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref13
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref13
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref14
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref14
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref14
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref15
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref15
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref15
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref15
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref16
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref16
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref16
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref17
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref17
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref17
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref17
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref18
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref18
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref18
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref18
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref19
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref19
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref19
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref19
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref20
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref20
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref20
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref21
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref21
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref22
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref22
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref22
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref22
http://www.volatilesystems.com/default/volatility
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref23
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref23
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref23
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref24
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref24
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref24
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref25
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref25
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref25
http://refhub.elsevier.com/S1742-2876(14)00054-1/sref25

	In lieu of swap: Analyzing compressed RAM in Mac OS X and Linux
	Introduction
	Memory analysis for modern virtual memory systems
	Swap files as a source of evidence
	Analyzing compressed RAM
	Compressed RAM in Mac OS X
	Volatility support

	Compressed swap in Linux
	Frontswap
	Zswap
	Volatility support


	Evaluation
	Related work
	Conclusions
	Future work
	References


