
Breaking the links: Exploiting the linker

Tim Brown

June 29, 2011

<mailto:timb@nth-dimension.org.uk>
<http://www.nth-dimension.org.uk/> / <http://www.machine.org.uk/>

Abstract

The recent discussion relating to insecure library loading on the Microsoft Windows platform
provoked a significant amount of debate as to whether GNU/Linux and UNIX variants could
be vulnerable to similar attacks. Whilst the general consensus of the Slashdot herd appeared
to be that this was just another example of Microsoft doing things wrong, I felt this was unfair
and responded with a blog post[1] that sought to highlight an example of where POSIX style
linkers get things wrong. Based on the feedback I received to that post, I decided to investigate
the issue a little further. This paper is an amalgamation of what I learnt. As such it contains
my own research, the discoveries of others and POSIX lore.

Contents

1 Technical Details 2
1.1 What is the linker? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The link editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 The runtime linker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The linker attack surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 The process of linking and executing . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 issetugid() and friends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Real world exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 The runtime linker as an interpreter . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 The empty library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 SIGSEGV’ing for 12 years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.4 What’s in your RPATH? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.5 Debian makes me sad :( . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.6 If an environment variables is set but you don’t trust it, is it still there? . . . 11
1.3.7 Reflections on Trusting Trust revisited . . . . . . . . . . . . . . . . . . . . . . 12
1.3.8 Mapping NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Auditing scripts, binaries and source . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.1 Other linkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Changes 14

1

mailto:timb@nth-dimension.org.uk
http://www.nth-dimension.org.uk/
http://www.machine.org.uk/


List of Tables

1 Environmental attack surface for Solaris, Debian GNU/Linux and FreeBSD runtime
linker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

List of Figures

1 Process flow for runtime linker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Technical Details

1.1 What is the linker?

The linker is a program that takes one or more objects generated by a compiler and combines them
into a single executable program. On GNU/Linux and UNIX variants, linking generally consists of
two stages, one during compilation and one at runtime.

1.1.1 The link editor

When a program comprises multiple object files, the link editor (often referred to as ld) combines
these files into an executable program, resolving the dependencies as it goes along. Link editors can
take objects from a collection called a library. Unless a static binary has been requested, link editors
do not include the whole library in the output. Rather, they include its symbols (references from
the other object files or libraries), as a guide to the runtime linker which will need to be resolved
when the binary is executed.

1.1.2 The runtime linker

The runtime linker (generally known as ld.so) is actually a special loader that resolves the external
dependencies (in the form of symbols) for a given executable prior to execution. It then maps access
to the libraries that implement these functions in order to allow successful execution. As we will see
below the way the runtime linker functions can vary significantly even between ostensibly similar
platforms.

1.2 The linker attack surface

1.2.1 The process of linking and executing

In order to execute a binary, the runtime linker must resolve any dependencies to ensure that
externally referenced functions are available within the excecuted binaries process space.
Firstly they look at the hints built into the binary being called. These hints take the form of the
DT_RPATH and DT_RUNPATH ELF headers which consist of colon separated lists of directories that
the linker should examine when looking for libraries. The linker will typically check whether the
process is setUID or not in order to determine whether macros such as $ORIGIN (which points at
the binaries own path) should be expanded or not.
In the event that a binary does not have these ELF headers or the linker is unable to resolve
all dependencies using the hinted directories, it will then examine environment variables such as
LD_LIBRARY_PATH. As with the expansion of $ORIGIN care should be taken when the process is
setUID as if the linker were to trust LD_LIBRARY_PATH in such a case then it could be manipulated
into loading malicious libraries at the behest of the calling user.
If the linker is still unable to find a dependancy, then the system’s default configuration (in the form
of the library cache (ld.so.cache on Debian GNU/Linux)) is consulted before the linker finally
tries the hardcoded directories /lib and /usr/lib.

2



In general terms, runtime linkers implement the following flow in resolving dependencies.

Figure 1: Process flow for runtime linker

Environment

/lib:/usr/lib

Files

DT_RPATH

issetuid()

issetuid()

/lib:/usr/lib

Environment

Files

DT_RPATH

issetuid()

issetuid()

Solaris 10

Debian GNU/Linux (eglibc)

/lib:/usr/lib

Files

Environment

issetuid()

DT_RPATH issetuid()

FreeBSD 8.1

3



You’ll notice in 1 that certain nodes have been coloured green and red. Whilst I’ll explain the
reasons for this in more detail later in the paper, nodes that are red contain potential weaknesses
that may be exploited by manipulating various facets of the linker attack surface.

1.2.2 Environment

Linkers have a long history of being attacked via environment variables. As you can see below they
vary significantly in terms of which environment variables each supports and only a small core of
them are present in two or more linkers:

Table 1: Environmental attack surface for Solaris, Debian
GNU/Linux and FreeBSD runtime linker

Linker Stage Solaris 10 Debian GNU/Linux 6.0 (eglibc) FreeBSD 8.1
ld LD RUN PATH
ld. so LD LIBRARY PATH1 LD LIBRARY PATH1 LD LIBRARY PATH

LD PRELOAD17 LD PRELOAD1 LD PRELOAD
LD TRACE LOADED
OBJECTS

LD TRACE LOADED
OBJECTS

LD BIND NOW7 LD BIND NOW LD BIND NOW
LD BIND NOT
LD AOUT LIBRARY
PATH1

LD AOUT
PRELOAD1

LD NOWARN
LD WARN
LD KEEPDIR
LD ORIGIN PATH
LD SHOW AUXV
LD HWCAP MASK
LD USE LOAD BIAS
LD POINTER
GUARD
LD TRACE PRE-
LINKING

LD DEBUG127 LD DEBUG12

LD DEBUG OUT-
PUT27

LD DEBUG OUT-
PUT12

LD VERBOSE
LD PROFILE37 LD PROFILE13

LD PROFILE OUT-
PUT37

LD PROFILE OUT-
PUT13

LD ASSUME KER-
NEL

LD AUDIT7 LD AUDIT4

LD CONFIG7

LD DEMANGLE7

LD FLAGS7

LD LOADFLTR7

LD NOAUDIT7

LD NOAUXFLTR7

LD NOCONFIG7

Continued on next page. . .

4



Linker Stage Solaris 10 Debian GNU/Linux 6.0 (eglibc) FreeBSD 8.1
LD NODIRCONFIG7

LD NODIRECT7

LD NOENVCONFIG7

LD NOLAZYLOAD7

LD NOOBJALTER7

LD NOVERSION7

LD ORIGIN7

LD SIGNAL7

LD DUMP REL
POST
LD DUMP REL PRE
LD LIBMAP
LD LIBMAP DIS-
ABLE
LD ELF HINTS
PATH
LD TRACE LOADED
OBJECTS ALL
LD TRACE LOADED
OBJECTS FMT1
LD TRACE LOADED
OBJECTS FMT2
LD TRACE LOADED
OBJECTS PROG-
NAME
LD UTRACE

Of course there are a whole raft of other variables[2] that can affect the linker but these are the ones
supported by ld and ld.so directly.

1.2.3 Files

In addition to the environment variables listed above, runtime linkers normally have default config-
urations which they will fall back on when the variables aren’t set. The pertinant files are listed
below with notes where necessary:

Solaris 10:

• /var/ld/ld.config

• /var/ld/64/ld.config

These are typically generated using crle.

Debian GNU/Linux 6.0 (eglibc):

1Cleared on setUID/SetGID execution
2Writes to $0.$$
3Writes to /var/tmp/<libraryname> or $LD PROFILE OUTPUT/<libraryname> (Solaris) or

$LD PROFILE OUTPUT (Debian GNU/Linux (eglibc))
4Exploited on glibc by Tavis Ormandy: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-CVE-2010-3847

and http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3856
532-bit versions take the form LD 32 . . .
6Exploited by Nikolaos Rangos (Kingcope): http://lists.freebsd.org/pipermail/freebsd-announce/

2009-December/001289.html
732-bit versions take the form . . . 32 and 64-bit versions take the form . . . 64

5

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-CVE-2010-3847
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3856
http://lists.freebsd.org/pipermail/freebsd-announce/2009-December/001289.html
http://lists.freebsd.org/pipermail/freebsd-announce/2009-December/001289.html


• /etc/ld.so.cache

This is typically generated from /etc/ld.so.conf and updated when ldconfig is executed, for
example as part of the installation of packages.

• /etc/ld.so.preload

• /etc/ld.so.nohwcap

• /etc/suid-debug

Whilst this isn’t documented in the man page for ld.so when present it changes how binaries
with the setUID bit set are executed.

FreeBSD 8.1:

• /var/run/ld-elf.so.hints

• /var/run/ld-elf32.so.hints

• /etc/libmap.conf

• /etc/libmap32.conf

1.2.4 issetugid() and friends

So how does the runtime linker determine whether it should trust user supplied input such the various
LD_... environment variables. Well it depends, for the most part all runtime linkers examine the
real and effective UID of the process, if these are different then the process is considered tainted
and user supplied input will be ignored. That’s the theory, but in practice it isn’t quite that clear
cut. Whilst all the linkers I’ve looked at make this check, it does need to be applied every time the
runtime linker considers an environment variable and as Tavis pointed out, it only takes one case
where the check is missed before you’re in a whole world of pain. Although eglibc does tear down
the LD_... environment variables, it only does this after it has processed them, so if there’s a bug
in the ld.so this may still be exploitable.
Another factor worth considering is the fact that the GNU/Linux world is moving away from the
use of a simple setUID bit on executable to request a change of privileges. In the last month or so,
I’ve started to see discussions on oss-security regarding replacing the setUID bit with file system
capabilities[3]. Whilst allowing privilege changes using this mechanism should allow the privileges
to be set in a far more granular manner, it will require significant changes to how processes gain
and drop privileges, something we’re likely to see exploited in due course.

1.3 Real world exploitation

1.3.1 The runtime linker as an interpreter

Imagine a situation in which you’ve by one means or another managed to get command execution
as a non-privileged user and you’re looking for a way to elevate your privileges to the root user. You
notice that the kernel is unpatched against a known vulnerability but you can’t create executable
files (for example that pre-compiled version of the exploit you were playing with in your lab last
week). This is a real world problem, and one that the runtime linker can help you with. You see,
the runtime linker is actually an interpreter, albeit one geared for binaries:

user@host:~$ cp /usr/bin/id .

user@host:~$ chmod a-x id

user@host:~$ ls -la id

-rw-r--r-- 1 user user 32176 Oct 30 13:55 id

user@host:~$ ./id

6



bash: ./id: Permission denied

user@host:~$ /lib/ld-linux-x86-64.so.2 ./id

uid=1000(user) gid=1000(user) groups=1000(user),20(dialout),24(cdrom),25(floppy),29(audio),

44(video),46(plugdev),50(staff),116(lpadmin)

As you can see here, I’ve taken the id binary and removed its execute bits. Whilst it can’t be run
directly since the execute bits have been removed, the runtime linker (in this case the 64-bit version
of eglibc’s runtime linker) can still load and execute it without a problem.
So why does this work? Well, taking a look at the permissions on the runtime linker we’ll start to
see why:

lrwxrwxrwx 1 root root 12 Sep 16 12:03 /lib/ld-linux-x86-64.so.2 -> ld-2.11.2.so

-rwxr-xr-x 1 root root 128744 Sep 15 02:31 /lib/ld-2.11.2.so

You can see that ld-2.11.2.so has execute bits set. The fact is that the runtime linker is just
another executable file, albeit one we rarely call directly. Indeed, on most GNU/Linux variants, the
ldd binary is normally implemented as a shell script wrapper around it:

# This is the ‘ldd’ command, which lists what shared libraries are

# used by given dynamically-linked executables. It works by invoking the

# run-time dynamic linker as a command and setting the environment

# variable LD_TRACE_LOADED_OBJECTS to a non-empty value.

As pointed out by @taviso and @stealth, it’s worth highlighting that the Linux kernel’s behaviour
with regard to noexec is different from the norm. Mounting the file system with noexec actively
prevents the kernel mmap()’ing the pages with execute permissions. However from a general hard-
ening perspective, if you’re mounting devices with noexec then you should also ensure that the
runtime linker can’t be executed either.

1.3.2 The empty library

So there’s been a lot of fuss over the last couple of months about the Microsoft Insecure Library
Loading Could Allow Remote Code Execution[4] vulnerability. Whilst it’s fair to say that the
GNU/Linux dynamic linker doesn’t by default include . in its path and you’ll very rarely see it
listed in ld.so.conf and friends, there are some corner cases.
GNU/Linux and POSIX style linkers makes use of a variable called LD_LIBRARY_PATH which is
consulted when a binary is executed and which takes precedence over the OS default as set in
ld.so.conf. Consider the following script:

#!/bin/sh

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/app/lib

app start

What happens if LD_LIBRARY_PATH isn’t set prior to the script being executed? Well, in that case,
the app binary is executed with a library path of :/path/to/app/lib. This may seem perfectly
satisfactory, but here’s the rub. When the GNU/Linux dynamic linker sees a path with an empty
directory specification such as :/valid/path, /valid/path: or /valid::/path, it treats the empty
element as $PWD. This could lead to a library being loaded from the users current working directory
which might be exploitable. Go back to the shell script snippet above and consider what would

7



happen if that was the init script for a privileged process. An administrator needs to stop and start
it but he works in a security aware environment and only has access to the init script via the sudo
command. So off he goes:

user@host:~$ sudo /etc/init.d/app

Sudo by default won’t change your working directory when it executes a command as another user
which means that LD_LIBRARY_PATH will end up pointing at the unprivileged user’s own directory.
What that means is that the GNU/Linux dynamic linker will attempt to load any library depen-
dencies firstly from there.
Since I wrote my blog post highlighting this corner case, a number of real world examples have come
to light:

• http://osvdb.org/show/osvdb/69641 - Mozilla Firefox

• http://osvdb.org/show/osvdb/70716 - Sun OpenOffice.org

• http://osvdb.org/search?search%5Bvuln_title%5D=LD_LIBRARY_PATH&search%5Btext_type%

5D=alltext - and many more...

So how can you set LD_LIBRARY_PATH safely? Well obviously you can check whether it is set before
you append to it, but the following also seems to work quite nicely:

export LD_LIBRARY_PATH="${LD_LIBRARY_PATH:+$LD_LIBRARY_PATH:}/path/to/app"

It’s worth noting too that Debian (at least) are looking to fix[5] the underlying cause.

1.3.3 SIGSEGV’ing for 12 years

Whilst I was fuzzing the various runtime linkers, I came across a number of cases where I could
cause my test binary to crash by manipulating the various LD_... environment variables. One such
case was on Solaris 10 where setting LD_PRELOAD as follows:

user@host:~$ LD_PRELOAD=: su -

leads to a segmentation fault.
The same bug appeared to affect both setUID and normal binaries and yields the following when
when the core dump is examined with gdb:

Core was generated by ‘./test’.

Program terminated with signal 11, Segmentation fault.

#0 0xfefcfc71 in ?? ()

(gdb) x/1i $eip

0xfefcfc71: movsbl (%esi),%ecx

(gdb) info reg esi ecx

esi 0x0 0

ecx 0x0 0

8

http://osvdb.org/show/osvdb/69641
http://osvdb.org/show/osvdb/70716
http://osvdb.org/search?search%5Bvuln_title%5D=LD_LIBRARY_PATH&search%5Btext_type%5D=alltext
http://osvdb.org/search?search%5Bvuln_title%5D=LD_LIBRARY_PATH&search%5Btext_type%5D=alltext


which sadly is a NULL pointer dereference inside ld.so.1.
A similar bug was reported publicly[6] in 2005, but according to Sun this one is different. For what
it’s worth, it’s been present since Solaris 8 and affects up to and including the last public release of
OpenSolaris.
Sun have assigned issue number 7001523 to this issue.
Further discussions with Sun indicates that this is extremely unlikely to be exploitable since map-
pings made using mmap() are not preserved during an exec. This rules out the possibility of mapping
address zero and then exec()’ing another binary with LD_PRELOAD set.

1.3.4 What’s in your RPATH?

I’ve already spoken in this paper on one such case where the runtime linker can be tricked into using
malicious libraries using the LD_LIBRARY_PATH environment variable but there’s actually another
more interesting case which I’d like to discuss.
If you examine the linker attack surface table above you’ll notice that I mention an environment
variable LD_RUN_PATH which affects the link editor. By setting this (or indeed the -rpath flag) it is
possible to hardset additonal locations where the runtime linker should look when resolving external
dependencies. On GNU/Linux at least, when the DT_RPATH or DT_RUNPATH exists within the ELF
headers of a binary then these will be honoured first when looking for shared libraries. Additionally,
the keyword $ORIGIN within this header is expanded to be the path of the directory where the object
is found, while both . and the empty directory specification are honoured, even for binaries with
the setUID bit set. From an attackers pespective, setUID binaries with DT_RPATH are particularly
nice, since we can make use of hard links to manipulate the runtime linker into using an $ORIGIN

which we can control.
By way of a comparison, Solaris and FreeBSD appears to ignore $ORIGIN for setUID binaries and
Debian patched the $ORIGIN issues with libc6 2.11.2-7.
Note that Solaris has another problem relating to DT_RPATH which I’ll discuss later.
For reference, I took a quick look at three third party applications installed on my test machine,
EMC VMware Server, IBM DB2 Express Edition and Oracle XE and found a number of interesting
values had been set during the compilation of included binaries DT_RPATH ELF headers.
Firstly let’s take a look at Oracle XE. On 10.2.0 I identified that a number of binaries that have
DT_RPATH ELF headers that reference $ORIGIN however these aren’t generally exploitable as the
binaries concerned are likely to be executed from their installed location and since none of the
binaries have the setUID flag set. There was however one interesting case where the osdbagrp

binary references a fixed, non existent location:

host:/usr/lib/oracle/xe/app/oracle/product/10.2.0/server/bin# readelf -d osdbagrp | grep RPATH

0x0000000f (RPATH) Library rpath: [/ade/aime1_hrel10/oracle/lib]

In the event that an attacker could leverage another bug to create and or write to the /ade/aime1_hrel10/oracle/lib
directory or parent then it may be possible subvert the execution flow whenever this binary is called.
Likewise EMC VMware Server 2.0.2 and VMware Workstation 7.1.3 suffers from a similar flaw:

host:/usr/local/bin# readelf -d vmrun | grep RPATH

0x000000000000000f (RPATH) Library rpath: [/build/mts/release/

bora-203138/bora/build/release-x64/apps/vixWrapper]

It’s worth noting that to perform such an attack would likely require an administrator to be manip-
ulated, both to create the directory with weak permissions and to execute the vulnerable binary.
So we’ve seen two examples of applications that have minor flaws, how about something useful.
Well, as my final example, I looked at IBM DB2 Express Edition 9.7. Like the previous examples

9



we’ve seen, DB2 suffers from having binaries that have the DT_RPATH set to non-existant directories
but in this case there are some other more interesting flaws. Firstly, one of the binaries affected is
run by root on system start from inittab:

host:~# tail -1 /etc/inittab

fmc:2345:respawn:/opt/ibm/db2/V9.7/bin/db2fmcd #DB2 Fault Monitor Coordinator

host:~# readelf -d /opt/ibm/db2/V9.7/bin/db2fmcd | grep RPATH

0x000000000000000f (RPATH) Library rpath: [/DoNotCreateThisPath_marker1

.*chglibpath:/opt/ibm/db2/V9.7/lib64:/opt/ibm/db2/V9.7/lib64/N/icc/osslib:

/opt/ibm/db2/V9.7/lib64/C/icc/osslib:/opt/ibm/db2/V9.7/lib64/N/icc/icclib:

/opt/ibm/db2/V9.7/lib64/C/icc/icclib:/ :/ :/ :/ :/ :/ ]

But there’s more:

host:~# readelf -d /opt/ibm/db2/V9.7/bin/db2rspgn | grep RPATH

0x000000000000000f (RPATH) Library rpath: [.:/DoNotCreateThisPath_marker1

.*chglibpath:/opt/ibm/db2/V9.7/lib64:/opt/ibm/db2/V9.7/lib64/N/icc/osslib:

/opt/ibm/db2/V9.7/lib64/C/icc/osslib:/opt/ibm/db2/V9.7/lib64/N/icc/icclib:

/opt/ibm/db2/V9.7/lib64/C/icc/icclib:/ :/ :/ :/ :/ :/ ]

As you can see, in this case, the value for the DT_RPATH ELF header includes ., the current working
directory which makes exploitation a little easier.
Of course, what we really need is a setUID binary that suffers from such a flaw, and IBM in
their wisdom were happy to oblige. Consider the following binary installed as part of IBM Tivoli
Monitoring for Databases: DB2 Agent:

user@host:~$ ls -la /opt/ibm/db2/V9.7/itma/tmaitm6/lx8266/bin/kbbacf1

-rwsr-xr-x 1 root root 8558 Oct 6 22:11 /opt/ibm/db2/V9.7/itma/tmaitm6/lx8266/bin/kbbacf1

user@host:~$ readelf -d /opt/ibm/db2/V9.7/itma/tmaitm6/lx8266/bin/kbbacf1 | grep RPATH

0x000000000000000f (RPATH) Library rpath: [/opt/IBM/ITM/tmaitm6/links/

lnxx86x6-l23-g34/lib:.:./lib:../lib]

As you can see, as with the previous case of db2rspgn, the value for the DT_RPATH ELF header
includes ., but in this case kbbacf1 is setUID root. Such a case can be exploited like so:

user@host:~$ ./tmb-vs-ibm-db2

PoC exploit for IBM DB2 DT_RPATH privesc.

(c) Tim Brown, 2011

<mailto:timb@nth-dimension.org.uk>

<http://www.nth-dimension.org.uk/> / <http://www.machine.org.uk/>

Constructing bad_libkbb.so...

Have a root shell...

uid=0(root) gid=1000(user) groups=0(root),20(dialout),24(cdrom),25(floppy),27(sudo),29(audio),44(video),46(plugdev),50(staff),116(lpadmin),1000(user)

#

Oracle has assigned issue number 10319062 to the issue with Oracle XE 10.2.0. Whilst they do not
plan to issue a patch (XE is an unsupported product), they have confirmed that the affected binary
was not intended to be shipped and will be removing it from future releases. In the case of VMware

10



Server, EMC’s security team confirmed the issue and requested that disclosure was delayed whilst
a review of other product lines was performed. Whilst EMC do not intend to issue a patch for
VMware Server (again an unsupported product) their review identified that VMware Workstation
suffered from the same flaw and in this case a patch will be issued. IBM failed to respond.

1.3.5 Debian makes me sad :(

On Debian GNU/Linux hosts, the runtime linker cache (ld.so.cache) is generated from the contents
of /etc/ld.so.conf.d/* (/etc/ld.so.conf just includes the contents of this directory). One of the
files included is /usr/local/lib which is writable by the staff group. This sounds useful but there
is a problem. The library search path order generated in the cache is such that dependencies are likely
to be resolved before the runtime linker gets as far as looking at libraries under /usr/local/lib.
Because of this I began looking for ways to control the order in which the standard libraries are
searched and in doing so I stumbled across the LD_ASSUME_KERNEL variable which can be set for
the excution of any binary including those that have the setUID bit set. The eglibc man page for
ld.so[7] states that:

Every DSO (Dynamic Shared Object, aka shared library) can tell the dynamic linker in
glibc which minimum OS ABI version is needed. The information about the minimum
OS ABI version is encoded in a ELF note section usually named .note.ABI-tag. This
is used to determine which library to load when multiple version of the same library
is installed on the system. The LD_ASSUME_KERNEL environment variable overrides the
kernel version used by the dynamic linker to determine which library to load.

By creating a copy of libc.so.6 under /usr/local/lib with an earlier ABI version and setting
the LD_ASSUME_KERNEL environment variable to the same version, any user in the staff group can
cause binaries with the setUID bit set to use our copy like so:

user@host:~$ ./test

uid=1000,euid=0,gid=1000,egid=0

user@host:~$ LD_ASSUME_KERNEL=1.1.1 ./test

./test: error while loading shared libraries: libc.so.6: cannot open shared object file:

No such file or directory

user@host:~$ cp libc.so.6 /usr/local/lib/

user@host:~$ LD_ASSUME_KERNEL=1.1.1 ./test

uid=1000,euid=0,gid=1000,egid=0

It’s worth noting a couple of things about the above attack. Firstly, I had to hexedit the library after
compilation to change the change the value of its .note.ABI-tag and secondly that after copying
libc.so.6 into /usr/local/lib, I had to force ldconfig to be executed to update the runtime
linker cache. In the real world you’d need to wait for an updated package to call it on your behalf
during installation.
Since I orginally wrote this section of the paper, I’ve been doing some further research and it appears
that I actually got this wrong[8], it is not required to set LD_ASSUME_KERNEL in order for this to
be exploited as the cache generated by ldconfig appears to be constructed in reverse alphabetical
order and therefore /usr/local/lib is checked before /usr/lib.

1.3.6 If an environment variables is set but you don’t trust it, is it still there?

Having seen how eglibc’s runtime linker can be manipulated, there will no doubt be a number of
people cracking jokes about long haired hippies so I figured I’d take a look how FreeBSD’s runtime
linker compares. The FreeBSD man page for ld.so[9] seems to indicate that it clears the vast
majority of linker related environment variables when it is used to execute but I decided to hook up
my fuzzer to make sure it didn’t do anything daft.

11



It seems that whilst it ignores the vast majority of them when resolving runtime dependencies,
unlike eglibc used by Debian GNU/Linux, it doesn’t actually unset[10] them in unsetenv which
means they’re inheritable by all processes spawned by the setUID binaries. Having a look at the
code responsible, it seems to use issetugid()[11] to determine whether to trust the environment
variables. So far so good right? Well, not exactly, if the setUID binary sets the processes real user
ID based on the effective ID. This appears to untaint the running setUID process to a degree where
the runtime linker will trust the inherited linker specific environment variables including those such
as LD_PRELOAD which can be used to modify the execution flow. Further testing appeared to show
that the Solaris linker was subject to the same attack.
Whilst I haven’t found any cases of setUID binaries that are exploitable in this manner, it does show
the difference that subtleties in a linker implementation can make.

1.3.7 Reflections on Trusting Trust revisited

A long time ago, Ken Thompson published a rather interesting paper entitled Reflections on Trusting
Trust[12] which discussed the fact that you can’t trust code you didn’t write yourself (whether you
can trust your own code is another matter ;)) in which he discussed the idea of writing a compiler
which would introduce vulnerabilities when used to compile arbitrary code. Moreover in his example,
it would reintroduce this trojan horse if it detected that it was being used to recompile its own source.
He theorised that this could go undetected for a significant amount of time due to peoples inherent
trust of the compiler. In the process of writing this paper, I found a great example of such a compiler,
although I would like to think that in the case I identified that it wasn’t Ken’s doing.
The premise of the bug I spotted is such. On Solaris, the issetugid() equivalent known as
security() is used by ld.so.1 to set a flag on execution (RT_FL_SECURE) which the linker later uses
to determine whether to trust certain LD_... environment variables. Whilst fuzzing the runtime
linker, I notice that my test setUID binary appeared to continue to trust certain variables. I was able
to call my binary with various LD_AUDIT and LD_PRELOAD variables and see the referenced libraries
load. Corner case 1 was that the referenced library appeared to be loaded if it was in /usr/lib

and not /usr/lib/secure as referenced in Sun’s own documentation. The second corner case was
that I couldn’t reproduce the effect with any of Sun’s own setUID binaries just with binaries I com-
piled myself. Anyway, after much head scratching I realised that gcc as distributed by Sun sets a
DT_RPATH ELF header on every binary it creates, and having dug into the code in some detail that
ld.so.1 will quite happily trust[13] (see is_path_secure()) this ELF header even when a setUID
binary is being executed. So why does this remind me of Ken’s paper? Well, for much of the time I
was scratching my head, I hadn’t even considered the compiler as the villain of the piece, I’d trusted
it to be trustworthy.
So I guess, for most of you the question becomes is it exploitable? The answer sadly appears to be
no, at least not in most cases. To exploit this bug you need two things to have occurred. Firstly
you need a setUID binary compiled using the Sun supplied gcc and secondly you need a library that
can be passed via LD_AUDIT or LD_PRELOAD with a viable constructor or deconstructor. Those of
you that are familiar with Tavis’s second linker bug will doubtless recognise the second requirement
but try as I might I couldn’t find any libraries under /usr/lib etc that had useful functions with
this attribute defined, at least not on a default Solaris install.
Sun have assigned issue number 7001536 to this issue and have fixed it in GCC 4.3.2.

1.3.8 Mapping NULL

Strange as it may seem, whilst the GNU/Linux world has finally moved to prevent userland processed
from mmap()’ing NULL, this is not the case on Solaris where it can still be mapped. More strangely
still, Sun actually provide a library which maps 0, with the following rationale (taken from the man
page for ld.so.1[14]:

The user compatibility library /usr/lib/0@0.so.1 provides a mechanism that establishes a
value of 0 at location 0. Some applications exist that erroneously assume a null character
pointer should be treated the same as a pointer to a null string. A segmentation violation

12



occurs in these applications when a null character pointer is accessed. If this library is
added to such an application at runtime using LD PRELOAD, the library provides an
environment that is sympathetic to this errant behavior. However, the user compatibility
library is intended neither to enable the generation of such applications, nor to endorse
this particular programming practice.
In many cases, the presence of /usr/lib/0@0.so.1 is benign, and it can be pre-loaded
into programs that do not require it. However, there are exceptions. Some applications,
such as the JVM (Java Virtual Machine), require that a segmentation violation be gen-
erated from a null pointer access. Applications such as the JVM should not preload
/usr/lib/0@0.so—.

1.4 Auditing scripts, binaries and source

1.4.1 Scripts

To check for unsafe concatenation in shell scripts that could lead to empty directory specifications,
you can create your own libc.so in your home directory and then wait for scripts to fail like so:

touch ./libc.so.6 && sudo ...

Whilst I’d being playing with privately, it’s also fair to mention that @kees cook also mentioned this
approach on Twitter.
Additionally as described in 1.3.2, you can look for constructs such as:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/app/lib

1.4.2 Binaries

With binaries you should firstly check the values of any DT_RPATH and DT_RUNPATH ELF headers
within the binaries using one of the following commands:

• objdump -x ...

• readelf -a ...

• scanelf (from PaX)

• elfdump (from Sun)

Secondly, as was seen in 1.3.6, you should be wary of any setUID binaries that depend on setuid()

and which execute further processes without unsetting any inherited environment variables.

1.4.3 Source

Finally, if you’re lucky enough to have the source, keep any eye out for the following patterns which
will lead to the unsafe ELF headers previously described.
You should look to identify any build scripts, Makefiles or similar which honour the LD_RUN_PATH

environment variable.
As well as watching out for badly written build scripts you should also look at how gcc and the link
editor themselves are called. The following command patters can be problematic.

• gcc -Wl,-R,...

• ld [-rpath-rpath-link]=...—

13



• ld -R ...

As I’ve already shown with scripts, the presence of . or the empty directory specification of the
DT_RPATH or DT_RUNPATH ELF headers, or in flags being used by gcc during the build process could
allow libraries to be loaded from the current working directory however you should also be mindful
of $ORIGIN macros or hard coded directory specications.

1.5 Further research

1.5.1 Other linkers

Through out the process of writing this paper, I’ve only really looked at 3 platforms, Solaris, FreeBSD
and Debian GNU/Linux in any depth. To anyone with an understanding of the UNIX family tree,
it should be obvious that there are a number of other POSIX style linkers to explore. Indeed, in
the course of writing this paper my attention was drawn to the QNX Neutrino RTOS which RIM
are using as the base for their new BlackBerry tablet devices. This has a runtime linker which is
capable of loading ELF binaries in which I discovered a flaw which allows the execution flow of
setUID binaries to be manipulated.

Some other targets I’d like to examine include:

• Mac OS X

• AIX

• OpenBSD

RIM have assigned PR84526 to the linker flaw in Neutrino.

2 Changes

29th June 2011 Another update with a number of redactions removed
4th January 2011 Updated feedback from Sun/Oracle and EMC. Sun/Oracle okay disclosure

of all 3 bugs, EMC confirm VMware Workstation also affected
30th January 2011 Added RIM reference for QNX Neutrino RTOS issue reported on 16th

December 2010 and added feedback from Sun on LD_PRELOAD bug
5th January 2011 Further bug fixes
16th December 2010 Bug fixes from oss-security
15th December 2010 Initial public presentation at CRESTCon 2010 -, public release of paper on

web site and via oss-security mailing list
12th December 2010 Added Sun/Oracle references, Reflections on Trusting Trust revisited, Map-

ping NULL and other misc bug fixes
9th December 2010 Redacted specific vulnerabilities until vendor patches have been released,

also added details of linking process
24th November 2010 IBM and EMC contacted regarding DB2 Express Edition and VMware

Server
15th November 2010 Sun/Oracle contacted regarding Solaris 10 and Oracle XE
12th November 2010 Incorporated feedback including details on issetugid(),

/etc/suid-debug, file system capabilities, noexec, references and
other misc bug fixes. Also added details of LD_PRELOAD=: bug

8th November 2010 Initial external peer review, thanks @stealth and @taviso

14



References

[1] http://www.nth-dimension.org.uk/blog.php?id=87

[2] http://www.scratchbox.org/documentation/general/tutorials/glibcenv.html

[3] http://www.openwall.com/lists/oss-security/2010/11/08/3

[4] http://www.microsoft.com/technet/security/advisory/2269637.mspx

[5] http://www.openwall.com/lists/oss-security/2010/09/29/1

[6] http://www.securityfocus.com/archive/1/403575/30/0/threaded

[7] http://manpages.ubuntu.com/manpages/lucid/man8/ldo.so.8.html

[8] http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=504516

[9] http://www.freebsd.org/cgi/man.cgi?query=ld.so

[10] http://svn.freebsd.org/viewvc/base/head/lib/libc/stdlib/getenv.c

[11] http://svn.freebsd.org/viewvc/base/head/libexec/rtld-elf/rtld.c

[12] http://cm.bell-labs.com/who/ken/trust.html

[13] http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/cmd/sgs/

rtld/common/paths.c

[14] http://docs.sun.com/app/docs/doc/819-2239/ld.so.1-1?a=view

15

http://www.nth-dimension.org.uk/blog.php?id=87
http://www.scratchbox.org/documentation/general/tutorials/glibcenv.html
http://www.openwall.com/lists/oss-security/2010/11/08/3
http://www.microsoft.com/technet/security/advisory/2269637.mspx
http://www.openwall.com/lists/oss-security/2010/09/29/1
http://www.securityfocus.com/archive/1/403575/30/0/threaded
http://manpages.ubuntu.com/manpages/lucid/man8/ldo.so.8.html
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=504516
http://www.freebsd.org/cgi/man.cgi?query=ld.so
http://svn.freebsd.org/viewvc/base/head/lib/libc/stdlib/getenv.c
http://svn.freebsd.org/viewvc/base/head/libexec/rtld-elf/rtld.c
http://cm.bell-labs.com/who/ken/trust.html
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/cmd/sgs/rtld/common/paths.c
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/cmd/sgs/rtld/common/paths.c
http://docs.sun.com/app/docs/doc/819-2239/ld.so.1-1?a=view

	Technical Details
	What is the linker?
	The link editor
	The runtime linker

	The linker attack surface
	The process of linking and executing
	Environment
	Files
	issetugid() and friends

	Real world exploitation
	The runtime linker as an interpreter
	The empty library
	SIGSEGV'ing for 12 years
	What's in your RPATH?
	Debian makes me sad :(
	If an environment variables is set but you don't trust it, is it still there?
	Reflections on Trusting Trust revisited
	Mapping NULL

	Auditing scripts, binaries and source
	Scripts
	Binaries
	Source

	Further research
	Other linkers


	Changes

