

A Short Guide on
ARM Exploitation

Gaurav Kumar (@grvrajora)
Aditya Gupta (@adi1391)

Contents

1. Introduction

a. Introduction to ARM Processors
b. ARM Trustzone
c. ARM vs x86

2. Architecture

a. Modes of Operation
b. Registers
c. Types of registers and their roles
d. ARM Status Registers
e. Functional Diagram of ARM

3. ARM assembly language

a. Data Processing Instructions
b. Arithmetic Instructions
c. Logical instructions
d. Comparison Instructions
e. Memory Access Instructions
f. Conditional Execution
g. Branch Instructions

4. ARM Exploitation

a. Setting up the lab
b. Format string Vulnerability
c. Buffer overflows
d. Ret to Libc
e. Problems in Ret2Libc on ARM
f. Ret2ZP and finding new vectors
g. ROP (Return Oriented Programming)

5. Conclusion and Bibliography

INTRODUCTION TO ARM ARCHITECTURE

ARM or Advanced RISC Machine is a family of Reduced Instruction Set
Computer (RISC) computer processors. According to Wikipedia, It is also
the most widely used 32-bit instruction set architecture. Earlier known as
Acorn RISC Machines, it is designed and licensed by ARM Holdings, a
British company. ARM does not manufacture its own devices, rather sells
its licenses to other manufactures, to develop and modify their ARM
processor as they wish. Some of the major players include Qualcomm,
Samsung, Apple, NVidia, Texas Instruments, Nintendo, Cirrus Logic, and
IBM etc.

For a list of the ARM processor cores and handsets built on them, have a
look at the link
http://en.wikipedia.org/wiki/List_of_applications_of_ARM_cores.

It gives much better performance than its counterparts, both in terms of
efficiency, heat and energy consumption, particularly on embedded
devices and smartphones. ARM comes with a toolkit, which includes an
emulator, assembler, C and C++ compilers, linkers and a symbolic
debugger.

ARM architecture is derived from the old Berkeley RISC, some of whose
features could be seen in ARM today as well, such as a load-store
architecture, fixed length 32-bit instructions and 3-address instruction
formats.

With the development of more recent Cortex-A and Cortex-A50 series, the
performance has taken a leap to an entirely different level. One of the
examples could see in the latest iPhone 5, which uses A6 processors. Also,

ARM processors are being in almost all popular smartphones including
iOS, Android, Windows Phone and Blackberry OS. It is also the processor
used for Samsung Chromebook, and some other Linux distributions.

As a result, ARM processors could be seen today everywhere, be it
smartphones, TVs, EBook Readers and many more embedded devices.

ARM TrustZone

Mobile and other devices running ARM has been the new favorite target

for attackers. The attacks may include malwares, rootkits, trojans and other

infections, which may steal the private information stored in the device.

To combat device, ARM came up with TrustZone, to enable an open yet

secure environment for the users. ARM processors supporting TrustZone

currently include:

i. ARM Cortex-A15

ii. ARM Cortex-A9

iii. ARM Cortex-A8

iv. ARM Cortex-A7

v. ARM Cortex-A5

vi. ARM 1176

The basis of TrustZone is to partition all the SoC’s hardware and software

into two zones: Secure World and Normal World.

Here’s a list of the architecture and the family of processors based:

Architecture Family

ARMv1 ARM1

ARMv2 ARM2, ARM3

ARMv3 ARM6, ARM7

ARMv4 StrongARM, ARM7TDMI,
ARM9TDMI

ARMV5 ARM7EJ, ARM9E, ARM10E, XScale

ARMv6 ARM11, ARM Cortex-M

ARMv7 ARM Cortex-A, ARM Cortex-M,
ARM Cortex-R

ARMv8 ARM Cortex-A50

ARM also supports NX (No Execute) protection, which we’ll be discussing later
on in this paper.

ARM vs. x86

ARM and x86 instruction set architecture differ from each other in a lot

many ways. ARM is much simpler architecture compared to that of x86,

but ensures that it delivers great performance on Embedded systems.

Another notable difference is in the terms of licensing; Intel’s x86

processors can be made and modified solely by Intel, whereas ARM gives

its licenses to other companies (for a nominal fee), to enable development.

We will be discussing more in-depth of x86 vs. ARM exploitation in the

coming sections.

Modes of operation:

ARM supports seven modes of operation:

1. User mode (us): It is the normal ARM program execution state, and is
used for executing most application programs

2. Fast interrupt mode (FIQ): It is used for handling fast interrupts

3. Supervisor mode (svc): It is a protected mode for the operating
system

4. Abort mode (abt): It is entered after a data or instruction prefetch
abort

5. Interrupt mode (IRQ): It is used for general-purpose interrupt
handling

6. System mode (sys): It is the privileged user mode for the operating
system

7. Undefined mode (und): It is entered when an undefined instruction
exception occurs i.e. an undefined instruction is executed.

Of the entire modes user mode (usr) is the only non-privileged mode while
all the others are collectively the privileged mode of the ARM architecture.

Privileged modes are used to service interrupts or exceptions, or to access
protected resources.

System mode (sys) can be entered from another privileged mode by
modifying the mode bit of the Current Program Status Register (CPSR).

On generation of the exception, the processor switches to the privileged

mode, the current value of the PC+4 is saved into the Link register (R14)

of the privileged mode and the current value of CPSR are saved into the

privileged mode’s SPSR. The IRQ interrupts are also disabled and if the

FIQ mode is entered, the FIQ interrupts are also disabled finally the

Program Counter is forced to the exception vector address and processing

of the exception can start. Usually the first action of the exception routine

will be to push some or the entire user registers onto the stack.

 The register organization in different modes is given below

MODE R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

usr R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

fiq R0 R1 R2 R3 R4 R5 R6 R7 R8FIQ R9FIQ R10
FIQ

R11
FIQ

R12
FIQ

R13
FIQ

R14FIQ R15FIQ

svc R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13
SVC

R14SVC R15SVC

abt R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13
ABT

R14ABT R15ABT

irq R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13
IRQ

R14IRQ R15IRQ

und R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13
UND

R14UND R15UND

MODE usr Fiq svc abt irq und
 CPSR CPSR CPSR CPSR CPSR CPSR
 SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

REGISTERS

The main purpose of registers is to speed up the whole execution and

store the temporary small values during the execution of a process.

In total ARM has got 37 registers in all out of which 31 are the normal

registers, from which only 16 are accessible or visible at any one time rest

are used for speeding up the execution process. Apart from the normal

registers there are 6 others, which are the status registers. Some of the

registers are only used in certain modes only.

All the registers in Arm are 32 bit registers.

TYPES OF REGISTERS AND THEIR ROLES

Visible or accessible registers: 16 nos. in total

General purpose:

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Specialized:

R11 Frame pointer (FP)
R12 Intra-procedure register (IP)
R13 Stack pointer (SP)
R14 Link register (LR)
R15 Program counter (PC)

Out of the 16 accessible registers there are 11 general-purpose registers

and 5 special purpose registers, which are assigned specific names.

R11 is the frame pointer and holds the pointer to the current stack frame.

R12 is the Intra-procedure call scratch register used by a subroutine to

store temporary data.

R13 is the stack pointer and holds the pointer to the top of the stack. A

PUSH or POP instruction uses this address to locate the top of the stack

and alters the value of the stack pointer after the execution according to

the layout of the stack in the memory (higher to lower addresses OR lower

to higher addresses). Generally the stack grows from higher to lower

addresses.

R14 is the link register holds the return addresses whenever a subroutine

is called with a branch and link instruction.

R15 is the program counter and holds the address of the next instruction

to be executed.

Apart from the above mentioned special purpose registers, the arguments

of a function are stored in registers r0 to r3. If the number of arguments is

greater than 3 then the excess arguments are stored onto the stack.

ARM STATUS REGISTERS

 The status of the currently operating process in ARM is stored in the

CPSR (Current Program Status Register)

Operating processor status is in the Current Program Status Register
(CPSR). The CPSR holds:
1. Four condition code flags N, Z, C, V (Negative, Zero, Carry and
overflow).

2. One sticky (Q) flag (ARMv5 and above only). This encodes whether
saturation has occurred in saturated arithmetic instructions, or signed
overflow in some specific multiply accumulate instructions.

3. Four GE (Greater than or Equal) flags (ARMv6 and above only). These
encode the following Conditions separately for each operation in parallel
instructions:

• Whether the results of signed operations were non-negative
• Whether unsigned operations produce a carry or a borrow.

4. Two interrupt disable bits, one for each type of interrupt (two in ARMv5
and below).

5. One (A) bit imprecise abort mask (from ARMv6)

6. Five bits that encode the current processor mode.

7. Two bits that encode whether ARM instructions, Thumb instructions, or
Jazelle opcodes are being executed.

8. One bit that controls the endianness of load and store operations
(ARMv6 and above only).

Each exception mode also has a Saved Program Status Register (SPSR),
which holds the CPSR of the task immediately before the exception
occurred. The CPSR and the SPSRs are accessed with special instructions.

The CPSR layout is as given below:

31 …. 28 27 … 24 23 19 16 15 10 9 8 7 6 5 4 3 2 1 0
N S C V Q de J GE [3:0] IT cond_abc E A I F T mode

Condition code flags:
N = Set if a negative result from ALU
Z = Set if a zero result from ALU
C = Set if a carry is there from ALU operation
V = Set if a ALU operation in oVerflowed

Q = Set if a saturation has occurred

J = Set if the processor is in jazelle state

Interrupt disable bits:
I = 1 : Disables IRQ
F= 1 : Disables FIQ

T = Set if the processor in Thumb state
T = 0 if processor in ARM state

Mode bits specify the mode of the processor

New Bits in V6:
GE[3:0] : Used by some SIMD instructions
E : controls the endianness of the load/store
A : disables imprecise data aborts
IT [abcde] for encoding the number of instructions to be conditionally
executed in thumb2 instruction groups

The functional diagram of ARM:

 mCLK

 nWAIT

 nRESET

 nIRQ

 nFIQ

 ALE

 DBE

 VDD

 VSS

nM[4:0]	

A[31:0]	

DATA[31:0]	

DOUT[31:0]	

nMREQ	

nENOUT	

SEQ	

nRW	

ABORT	

nOPC	

nCPI	

CPA	

CPB	

ARM	

mCLK : All the memory timing is defined by MCLK, long access

time can be accommodated by stretching this clock

nWAIT : The nWAIT input allows the timing of bus cycles to be
extended in increments of complete MCLK cycles, when nWAIT is
HIGH on the rising edge of MCLK, a bus cycle completes,
when nWAIT is sampled LOW, the bus cycle is extended by
stretching the low phase of the internal clock. nWAIT must only
change during the LOW phase of MCLK.

 nRESET : It is one of the reset signals of ARM.

 nIRQ : Non-secure interrupt sources are routed to the nIRQ input.

nFIQ : Secure interrupt sources are routed to the nFIQ input.

ALE (Address Latch Enable) : This signal is used to enable the

address latch.

The VDD and VSS pins are to provide power inputs

nENOUT (Not Enable Output) : It is HIGH for input mode and LOW

for output mode.

DBE (Data Bus Enable) : For enabling the bus to carry data.

nMREQ (No Memory Request) : nMREQ is disserted (to '1')
preceding an Internal or coprocessor cycle.

SEQ : Is set to 1 or high when a sequential address fetch is
performed using the value of pc.

nRW (No Read Write) : Indicates the direction of the transfer.
Indicates write cycle when HIGH and read cycle when LOW.

nOPC (No Op-code Fetch) : A LOW signal indicates that the current
data fetched is an opcode.

nCPI (Not Coprocessor instruction) : To indicate whether the current
instruction is for the coprocessor or not.

CPA (Coprocessor Absent) : To indicate whether there is a
coprocessor or not.

CPB (Coprocessor Busy) : To indicate whether the coprocessor is
busy or in an idle state.

ARM ASSEMBLY LANGUAGE

The ARM opcodes are of 32-bit size and are word aligned i.e. their

addresses are divisible by 4 e.g. 0xbeff2cda4, 0xbeff2cda0 etc.

The Program counter bits [1:0] , are always zero since ARM

instructions are always word aligned. However in case of other

instruction sets such as Thumb the instructions are half word aligned.

Data Processing Instructions:

The data processing instructions can be subdivided into certain

categories:

1. Arithmetic instructions

2. Logical instructions

3. Comparison instructions

4. SIMD (Single Instructions Multiple Data) instructions

Arithmetic instructions:

These perform an arithmetic operation on up to two source
operands, and write the result to a destination register. They can
also optionally update the condition code flags, based on the result.

Of the two source operands one is always a register while the other
can have two basic forms, it can be an immediate value or a register
value or a shifted register value. If the operand is a shifted register
then the shift amount can be either an immediate value or the value
of another register

The general arithmetic operations include addition (ADD),
subtraction (SUB), reverse subtraction (RSB), Add with carry (ADC),
subtract with carry (SBC), reverse subtract with carry (RSC).

Syntax:

 Op{cond}{s} Rd, Rs, Operand2

 Where
 Op is one of ADD, SUB, RSB, ADC, SBC, or RSC.
 cond is optional conditional code

 s is the optional suffix, if s specified the condition code flags are
updated on the result of the operation

Rd is the destination register i.e. the register for the result

Rs is the register holding first operand

Operand2 is a flexible second operand

Examples: A few examples for better understanding are given below:

ADD r1,r2,r3 is equivalent to r1=r2+r3

ADDs r1,r2, #120 is equivalent to r1=r2+120 with the condition
flags set according to result

 RSB r5,r5,#120 ; subtracts contents of r5 from 120

 Logical instructions:

 General logical operations include the AND, ORR, EOR and BIC
which perform bitwise AND, Exclusive OR and OR operation on the
value in Rs and operand2. The BIC instruction is used for bit clearing
purpose and performs an AND operation on the bits in Rs with the
complements of the corresponding bits in the operand2.

Syntax:

Op{cond}{s} Rd, Rs, operand2

Where,
Op is one of the ADD, EOR, ORR or BIC instruction

Cond is the optional condition code

S is the optional suffix if s is specified; the condition code flags are
updated on the result of the operation.

Rd is the register for the result or the destination register.

Rs is the register holding the first operand

Operand2 is the flexible second operand.
Example:

AND r3, r2, #0xabcdef00, is equivalent to r3= r2 AND
0xabcdef00

Comparison instructions

It includes two instructions compare (CMP) and compare negative
(CMN)

The instructions compare the value in a register with operand2. They
update the condition flags on the result, but do not update the result
in any register.

Syntax:

op{cond} Rs, operand2

where op is any instruction from CMP or CMN

cond is an optional condition code

Rs is the register holding the first operand

Operand2 is the flexible second operand.

The CMP instruction subtracts the value of operand2 from the value
in Rs and alters the condition flags accordingly with the result
discarded i.e. not stored in any register.

The CMN instruction adds the value of operand2 to the value in Rs
and alters the condition flags accordingly with the result discarded.

These instruction updates the N, Z, C and V flags according to the
results.

Example:

CMP r1,r2;
CMN r1, #120;

SIMD (Single Instructions Multiple Data) instructions:

The SIMD instructions operate on multiple 16 bit or 8 bit values

packed into standard 32-bit general purpose registers. This permits

certain operations to execute quickly without implementing

additional computation units. The mnemonics for having 8 or 16

appended to the base form, indicating the size of data values,

recognizes these instructions operated on. Example UADD8

r0,r1,r2 ; This operation performs a parallel addition of four lanes of

8-bit elements packed into vectors stored in general purpose

registers r1 and r2, and places the result into a vector in register r0.

Memory access instructions:

1. LDR and STR, words and unsigned bytes

Both LDR and STR can have four possible forms:

Zero offset : The value of Rs is used as an address for the transfer.

Syntax: op{cond}{B}{T} Rd , [Rs]

Pre-indexed offset: The offset is applied to the value of Rs before

the data transfer takes place. The result is used as the memory

address for the data transfer.

Syntax: op{cond}{B} Rd, [Rs, offset]{!}

Program relative: The assembler calculates the offset from the pc

according to the value of label.

Syntax: op{cond}{B} Rd, label

Post indexed offset : The value in Rs is used as the memory

address for the transfer. The offset is applied to the value

in Rs after the data transfer takes place.

Syntax: op{cond}{B}{T} Rd, [Rs], offset

Where

op is either LDR(Load Register) or STR(Store Register)

cond is an optional condition code

B is an optional suffix. If B is present, the least significant byte of

Rd is transferred. IF op is LDR, the other byte of Rd is cleared.

Otherwise a 32-bit word is transferred.

T is an optional suffix. If T is present, the memory system treats

the access as though the process was in User mode, even if it is in

a privileged mode. T has no effect in user mode.

Rd is the register to load or save.

Rs is the register on which memory address is based.

Offset is the flexible offset applied to the value in Rs.

Label is the program relative expression. Label must be within

4kb of the current instruction.

! is an optional suffix, if present the address including the offset is

written back to Rs.

2. LDR and STR half words and sign bytes:

These instructions can have four possible forms:

Zero offset: op{cond} type Rd , [Rs]

Pre-indexed offset : op{cond} type Rd, [Rn,
offset]{!}

Program relative: op{cond} type Rd, label

Post-indexed offset : op{cond} type Rd, [Rs], Offset

Here in the above syntaxes we only have one new attribute i.e.

type

Type must be one of:

SH for signed half word (for LDR only)

H for unsigned half word

SB for signed byte (for LDR only)

Label is the program relative expression. Label must be within

255 bytes of the current instruction.

Offset syntax:

Both pre-indexed and post-indexed syntaxes can be either of the

following:

#expr {-} Rs
Where:

- Is the optional minus sign. If – is present the offset is

subtracted from Rs. Otherwise the offset is added to Rs.

Expr is an expression evaluating to an integer in the range -255

and +255.

Rs is the register containing the value to be used as the offset.

3. LDR and STR, halfwords:

Load two consecutive registers and store two consecutive

registers

These instructions can have four possible forms:

Zero offset: op{cond}D Rd , [Rs]

Pre-indexed offset : op{cond}D Rd, [Rn, offset]{!}

Program relative : op{cond}D Rd, label

Post-indexed offset : op{cond}D Rd, [Rs], Offset

Here:

Rd is one of the registers to load or store. The other one is

R(d+1). Rd must be even numbered register and not R14.

Rs is the register in which memory address is based. Rs must not

be the same as Rd or R(d+1) unless the instruction is either zero

offset or pre-indexed without write back.

Label is a program relative expression evaluating to a numeric

value between -252 and +252

4. LDM and STM

Load and store multiple registers. Any combination of registers

R0 to R15 can be transferred.

Syntax: op{cond}mode Rs{!}, reglist{^}

Where:

Op is either LDM or STM

Cond is an optional conditional code.

Mode is any one of the following:

 IA increment address after each transfer.

 IB increment address before each transfer.

 DA decrement address after each transfer

 DB decrement address before each transfer.

 FD full descending stack

 ED empty descending stack

 FA full ascending stack

 EA empty descending stack

Rs is the base register containing the initial address for the

transfer. Rs must not be R15.

Reglist is the list of registers to be loaded or stored, enclosed in

braces. It can also contain register ranges.

^ is an optional suffix. It must not be used in user mode or system

mode. It has two purposes. If op is LDM and reglist contains the

pc i.e. R15, the SPSR is copied into CPSR. This is for returning

from exception handlers. This is used for only exception modes.

Example:

STMFD r13! , {r0,r1-r3,PC}; Push registers including the

stack pointer

LDMFD r13! , { r0, r1-r3, PC}; Pop the register and

return from a subroutine

Conditional Execution:

An optional condition code can be added to almost every ARM

instruction. An instruction with the condition code (cond) is only

executed if the condition code flags in the CPSR meet the

specified condition. The different condition codes are:

Suffix Flags Meaning
EQ Z set Equal
NE Z clear Not equal
CS/HS C set Higher or same (unsigned >=)
CC/LO C clear Lower (unsigned <)
MI N set Negative
PL N clear Positive or zero
VS V set Overflow
VC V clear No overflow
HI C set and Z clear Higher
LS C clear or Z set Lower or same
GE N and V the same Signed >=
LT N and V different Signed <
GT Z clear, and N and V the same Signed >
LE Z set, or N and V different Signed <=
AL Any Always

To make the instruction update the flags you have to include the

S suffix.

ARM Branch instructions:

ARM includes different instruction for branching i.e. to transfer the

control to a subroutine like a call instruction in x86 architecture.

There are different forms of branch instructions available in ARM:

B and BL:

Branch and branch with link

Syntax:

Op{cond} label

Where:

Op is either B or BL

Cond is optional condition code

Label is a program relative expression

The B instruction causes a branch to the label. The BL instruction

copies the address of the next address i.e. the return address into

R14 (LR, Link Register) and then causes the branch to label.

BX:

Branch and optionally exchange instruction set

BX instruction causes a branch to the address in Rs and changes

the mode to Thumb if Bit 0 of Rs is set.

Syntax: BX{cond} , Rs

Here Rs is the register containing the address to branch to.

Bit 0 of Rs is not used as part of address.

If Bit 0 if Rs is set, the instruction sets the T flag in the CPSR , and

the code at the destination is interpreted as thumb code.

If bit 0 of Rs is clear, Bit 1 must not be set

BLX:

Branch with link and optionally exchange instruction set. This

instruction has two alternative forms:

 BLX{cond} Rs : A conditional branch with link to an absolute

address held in a register,

 BLX label: An unconditional branch with link to a program-

relative address

The BLX cannot branch to an address outside the range of 32Mb

of the current instruction.

Till now we have covered almost all general instruction that are

most often used in ARM assembly language.

For more reference to ARM instructions you can visit:

http://infocenter.arm.com/

SETTING UP THE PENTEST LAB

To perform all the exercises in the upcoming sections on the ARM
platform, you could either set up a virtual environment on your system
based on ARM architecture, or you could buy ARM based devices such as
RasberryPi, BeagleBoard, Pandaboard, ARMini, Cubox.

In this section, we will discuss about how to set up a virtual lab
environment for ARM based exploitation.

The first thing needed to set up the environment is to download Qemu .
Qemu is a fast processor emulator, which supports ARM, PowerPC, sparc
and even x86 emulation.

Qemu has two operational modes:

 User Mode Emulation: To launch individual applications, made for one

OS, to run on another OS architecture

 Full System Emulation: To emulate an entirely different OS architecture
on another OS architecture. This will be our targeted lab environment,
to give us full control of the system, including the applications,
debugging and testing.

You can download Qemu from its official website -

http://wiki.qemu.org/Download

Also, make sure that you have all the dependencies installed, before
installing Qemu.

After downloading run the configuration script, to build Qemu for ARM.

$	
 ./configure	
 –target-­‐list=arm-­‐softmm	

$	
 make	
 &&	
 make	
 install	
 	

$	
 qemu-­‐img	
 create	
 ubuntu.img	
 15G	

	

Here we have created a hard disk for our Virtual Environment, assigning it
a 15 GB of disk space. Here we will be using Ubuntu 10.10 for our test
purposes (or any other version of Linux you’re comfortable with)
	

$	
 qemu	
 -­‐hda	
 ubuntu.img	
 -­‐cdrom	
 ubuntu-­‐10.10-­‐desktop-­‐i386.iso	
 -­‐m	

512	
 -­‐boot	
 d	
 	
 	

	

In the above command, we are specifying the hard disk for our VM, with
the -hda option, which we just now created to be ubuntu.img.

-cdrom specifies the CD/DVD or the ISO image we will be using as an
image for VM.

We will be specifying the RAM for our environment using the -m
parameter, in this case to be 512 MB.

Finally, we will be instructing Qemu to load our environment with the
-­‐boot	
 d option. 	

Once installed, you could boot the created virtual environment with the
following command.
	

$qemu	
 -­‐m	
 512	
 -­‐hda	
 ubuntu.img	

	

Once that we have set up the lab, we could now move ahead to the basics
of GDB and exploitation.

A debugger is a program which lets you analyze what is going on inside a
user-specified program while it is in the execution phase, or when it
crashes.

To understand GDB better and its various functionalities, let us first of all
analyze a sample program on the ARM architecture.

/******Simpleprog.c******/

#include	
 <stdio.h>	

	

int	
 main	
 (int	
 argc,	
 char	
 **argv)	
 {	

	

printf	
 (“Hello	
 World”);	

char	
 a;	

	

}	

	

Compile the above program using GCC.

root@debian-­‐armel:~#	
 gcc	
 simpleprog.c	
 -­‐g	
 -­‐o	
 simpleprog	

	

-­‐g	
 is	
 to	
 load	
 the	
 debugging	
 symbols	

-­‐o	
 is	
 to	
 specify	
 the	
 output	
 object	
 file	

To debug this file with GDB, type in

gdb	
 ./simpleprog	

You will be greeted with a (gdb) prompt.

To get the program code, type in list within GDB. It will show you the
underlying code from which the file is compiled.

To run the program within gdb, type in run, followed by any arguments if
needed.

You could also disassemble any library function by typing in disas [function
name].

Also, you could disassemble by specifying the memory address.

Also, you can read the information in any register using x/x $r0 or any
other register you wish to view.

To view the information at a particular memory location, you could type in
x/x *[memory address]

To set the breakpoint, you could either specify the function name or the
memory address where you want to set the breakpoint at.

To view the current status of all the registers, type in info registers, and
it would present you with the list of registers.

To view the stack layout, x/wx $sp
Where w is the number of consecutive double words

You could even view the help in GDB by typing in help.

FORMAT STRING VULNERABILITY
	

A format string vulnerability is a kind of vulnerability in certain C functions,
that due to unescaped user input, could treat the input as commands, and
could lead to arbitrary data write to arbitrary locations, crash the program,
execute commands, get root shell and so on.

Format string vulnerabilities allows an attacker to dump the stack, and thus
place the shell code in a manner, so as after knowing the address, he
would be able to execute it.
	

Here we have taken an example of a very simple program as given in the
figure below which has format string vulnerability, so we can easily
examine the stack by exploiting the vulnerability as shown in the figures
below.

	

Now, as we can see the above program is using a printf function to print
argv[1] to the screen. The prototype of the printf function is given below:

printf(“format strings “, variable names);

Format strings are the ASCIIZ strings used to specify and control the
representation of different variables

eg: printf(“%d”, i); In this case the printf function tells that, convert i
which is an integer to string and display on the screen.

So a format function uses the format string to convert C data types into a
string representation. Format strings control the various aspects of
execution of format function. They also control the number of variables
and representation in output.
The input format string decides the number of arguments to be read off
the stack.
So, in the case of our example if we give our input string as a format string
then the printf function can be deceived and be used to read values of the
stack as shown below.

Our input:
	

We are using %08x instead of %x so as to get properly formatted output
in hexadecimal.
Then, as shown below we can see that we are able to examine the whole
stack and the data stored on the stack

So using the above technique an attacker can examine the whole stack
and steal relevant data such as stack cookies etc. or can see the position of
return addresses and replace them with his own and thus can manipulate
the flow of the program.
	

	

BUFFER OVERFLOW

Buffer is a temporary space of memory used to hold data. Buffer overflow
generally happens when the data written to the buffer is larger than the
size of the buffer, and due to the insufficient bound checking it overflows
the buffer and writes to adjacent memory locations, which could be some
important data or any return addresses etc.

The local variables generally act as buffer variables or buffer.

In buffer overflow, our main aim is to somehow modify the return address,
and take control of the program flow by controlling the link register (LR).

Once we have the control of the return address, we can take the control of
the entire program and make it perform our desired actions.

Here we have a vulnerable program as given in the figure below having a
function named “vulnerable”, which is vulnerable to buffer overflow attack,
as it uses strcpy function to copy buff into the local variable buffer which is
of size 10 bytes.

So, if we input a string of length greater than 10 byes and copy that to
buffer, then we can cause a buffer overflow and write to the adjacent
memory locations.

Our aim here will be to overwrite the return address of the vulnerable
function.

	

	

	

Once you have written the above program in an editor, you can compile it
using gcc as shown below.
	

	

	

After making the object file we can load the file into gdb using the
command as shown below:
	

	

	

Now using the disas command in gdb, we can disassemble the
ShouldNotBeCalled function to get the starting address, which is
0x00008408

We will be using this address to overwrite the return address.
	

	

	

Now, we can also disassemble the main function to see the location of the
return address on the stack. Looking at the dissembled code of the main
function we can figure out that there is a function call to vulnerable
function at the address 0x000084a4 and the return address of this
vulnerable function will be the next instruction only i.e. at location
0x000084a8.
	

	

	

Now, we can run the program in gdb using r command and check the
layout of the stack and eventually see the locations of the return address
and the buffer, which is to be overflown.

So from the figure below we can see that we have given the input
“AAAABBBBCCCC” which can be seen at the stack at memory location
starting from 0xbe8a3bf4 i.e. “414141414242424243434343” where
41, 42, 43 are the ASCII values of A, B and C respectively.

We can also see the return address of the vulnerable function i.e.
0x000084a8 stored at the location 0xbe8a3c04 on the stack.

So our aim now is to frame the input string skillfully to overwrite this return
address to our desired address, which will point to “ShouldNotBeCalled”
function.

	

	

This can be done as shown below. Here we will be using the printf
function to give input to the program so as to give hexadecimal inputs.

As we can see we have given 16 bytes of junk so as to reach our return
address location and then we can place our return address.

Notice that the return address bytes are written in reversed order because
the writing of data follows the little endian format.
	

	

	

Now if we step through the program we can see that we have reached the
“ShouldNotBeCalled” function even though there was no call to that
function as shown below.
	

	

	

	

Return to Libc (Ret2Libc):

Ret2Libc i.e. Return to Libc is the technique used to subvert the non
executable stack prevention.

Libc library is mapped into the memory space of most programs.

As we have seen in Buffer Overflows, once we can corrupt the stack we
can point the return address to a function in the Libc library.

We generally use the system() function in the Libc library which takes
“/bin/sh” as the argument in order to get a shell.

Why Ret to Libc is not possible on ARM :
	

Ret to Libc is generally not possible on ARM, as in x86 architecture the
arguments to a function are passed onto the stack only, while in the case
of ARM processors the arguments to the function should be placed in
registers, which is a problem as we can only overwrite the stack using the
buffer overflow technique and we don’t have any control on the register
values.

So in order to place the arguments into the registers we need to take a
different approach.

We have to first return to a memory location, which contains the code to
load the registers. Once we have loaded the registers with the required
arguments we need to take the control of our program to the desired Libc
function which is system() in our case.

One of such approach was discussed by ‘Zuk’ which he called Ret2ZP
(Return To Zero Prevention) in which he used the code present in the

erand48 Libc function to first load the registers using the ldm instruction
and then direct the control of the program to the system() function.

Overview of the Ret2ZP approach:
	

In the disassembled code of the erand48 function given below, we can
see that there is a ldm instruction at 0x40057330.

The following code can be broken down into the subparts :

i. The LDM instruction can be used to load r0 and r1.

ii. The ADD instruction adds 12 to the sp

iii. The POP instruction then pops a value into LR (Link register)

iv. Finally, We have a BX instruction which causes a branch to the
address currently present in the LR register.

	

	

	

	

	

	

So using the instructions present in the erand48 function, we can exploit
the situation and craft our input string skillfully so as to load the registers
r0, r1 and the LR with the appropriate values.

	

	

	

Explanation of Ret2ZP
	

Here is an example of a simple C program, which we will use to show the
Ret2ZP approach.

First we run the program with a short input in order to see the return
address of the vulnerable function on the stack.

Now, after running the program and looking at the dissembled code of
the main function and the stack we can see the return address of
vulnerable function as shown below:
	

So, our next step now is to replace this return address with a new value,
but the question is what this value should be?

To answer this question we will have to refer the disassembled code of
erand48.

	

	

As we can see in above figure, the disassembled code of erand48
contains ldm, add, pop and bx instructions consecutively as highlighted.

So the problem of loading the r0 with the argument required to call the
system() function can be solved by using the ldm sp, {r0,r1 } instruction
present.

So our next step now is to replace the return address with the address of
the ldm instruction present in the erand48 Libc function i.e. 0x40057330.

Also, We will have to take care of the values that are being loaded into the
r0 and r1 by the ldm instruction.

This could be controlled by overwriting the stack with appropriate values
as the ldm is taking the data from stack only and storing that to R0 and
R1.

In the same manner, we can also control what is being popped into LR .

So, we are first going to replace the return address with the value
0x40057330, then we are going to load the address of “/bin/sh” into R0.

We need not to care about what is loaded in R1 as the system() call only
needs one argument which will be stored in R0.

We would then be popping the address of the system() function
0x4005da2c into LR and the BX LR instruction will cause a branch to the
system() function.

So, our input string to overflow the buffer and overwrite the different
positions on the stack in order to provide appropriate data to load into the
registers and LR should be designed as given below.

	

A	
 B	
 C	
 D	
 E	
 F	
 G	
 H	

	

A: Junk value to reach the return address of the vulnerable function.

B: Any valid address present in the context of the program.

C: Our return address in the errand48 function i.e. the address of the ldm
 Instruction

D: The address of the “/bin/sh” string placed on the stack which we will
be inputting at the end. This value will be loaded into r0.

E: Any junk value, which will be loaded into r1.

F: Any valid address present in the context of the program.

G: The address of the system() function which will be popped into LR

H: “/bin/sh”, the argument to the system() function whose address we
have earlier in the input string.

So, finally our input will look like something as given below:

	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 A	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 B	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 C	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 D	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 E	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 F	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	
 	
 	
 G	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 H	

	

After stepping through the program with the above input we will end up
getting a shell as shown below:
	

	

FINDING YOUR OWN ATTACK VECTORS

Here is another example of exploiting the same situation using a different
approach and another Libc function.

Here we will be using a code piece present in the seed48 Libc function.

We will exploit the same program code, which we had in previous
example:
	

So, first we will have to look at the disassembled code of seed48 and plan
accordingly to design our input string. The disassembled code is given
below:

	

	

As we can see in the assembler dump of seed48, we can see, ADD, POP
and BX instructions consecutively as highlighted above.

We can see that there is an “add r0, r4, #6” instruction, which means r0 =
r4+6, so it can be used to set the value of r0 with appropriate address
which will hold our argument to system() i.e. “/bin/sh”.

But, in order to achieve that we first have to set r4 with a value which is 6
less than the address that contains our string “/bin/sh”. So how are we
going to achieve this?

Firstly, we have to overwrite the return address of the “vulnerable”
function with the address of the pop instruction present in the seed48
function i.e. 0x40057478.

Once we have hit the pop instruction, we have to frame our input string
accordingly in a manner such that the appropriate values are popped into
r4 and lr.

We have already discussed about the value to be popped in r4, (that is 6
less than the address that contains the string /bin/sh)

Now the next instruction we want to hit is the ADD instruction, so the next
value in the input string should be the address of the ADD instruction
which will be popped in to lr i.e 0x40057474.

After setting the r0 using add instruction, the program will then hit the
pop instruction.

This time we don’t care about what is popped into r4 so it can be any junk
value but we have to take care about what is popped into lr which is the
address of the system() Libc function.

Once we have set the input string accordingly we will have our arguments
in the register r0 and can proceed further to make a system call and
eventually getting a shell

So first we can give some random valid input as we did in the previous
example while using erand48 function to examine the stack and see the
position of return address and then accordingly design our input string.
	

	

	

So our input string will look as follows:
	

	

	

	

“AAAABBBBCCCC” is the junk we don’t have to care about

1 : Is some valid memory location in the context of the program.

2: Is the address of the pop instruction in the seed48 function.

3: Is the value to be popped into r4 which is 6 less than the address at
which the argument string “/bin/sh” is present.

4: Is the value to be popped into lr to cause a branch to the add
instruction i.e 0x40057474

5: Could be any junk value which will be popped into r4 again, after that
the control again reaches the pop instruction after executing add.

6 : Is the address of the system() function where we want to branch this
time.

After that we have our string “/bin/sh” whose address is in r0 currently.

So after framing our input string accordingly we can step through the
program and eventually get a shell as shown in the figure below:

Note : In both the examples discussed above, one using the function
errand48 and the other seed48, you may have to take some care about
the address of the “/bin/sh” string on the stack. The problem can be
overcome if you closely examine the stack addressing and how the layout
of the attack is changing with increasing the length of the input string and
don’t forget to turn ASLR off.

echo 0 > /proc/sys/kernel/randomize_va_space
	

	

	

	
 	

	

	

	

	

	

	

ROP (Return Oriented Programming) On ARM :

	

Return Orienting Programming is used for exploitation in order to bypass
the code and data separation mechanism, which is used as a protection
technique. In this protection technique a certain memory area can either
be used to write data to or execute data but not both. In ARM the Execute
Never (XN) bit was introduced in the virtual memory system architecture in
version 6.

The basis on which all ROP exploitation techniques are based is the
Ret2Libc.

Just like the working of ret2libc exploits, in which the attacker redirects
the control flow of the program to other library function in the Libc library
with all the data set on the stack and registers which are required by the
function to be called, In the same way return oriented programming is
performed in which the attacker hijacks the control flow of the program
and returns to a location in the Libc and after several jumps completes the
tasks which he intends to do. In other words, Ret2libc can be viewed as
the simplest ROP.

The parts required to build a Return Oriented Program are called gadgets
or code chunks. These code chunks can be found in the Libc library
functions.

A gadget can be any sequence of instructions, which is located in the
targeted binary and provides a usable operation.

In order to build a program from these gadgets they must be combinable.
They are combinable if they end in an instruction that controlled by the
user alters the control flow i.e. the last instruction of a gadget must be a

free branch instruction so that the attacker can jump to other gadget using
that instruction.

So a gadget should be able to perform some operations as well as, be
able to branch to other locations at the end.

For example as shown below, the highlighted instructions in different
colored boxes can be individual gadgets. Instructions in each box can act
as an individual gadget because they fulfill both the requirements of doing
some operations and having a free branch in the end.
	

	

	

	

	

	

ROP is used for exploitation in very complex situations. A lot of such
gadgets are put together to make a gadget chain, which will set the
registers appropriately and jump to an appropriate function in Libc in the
end.

So, the basic approach of ROP can be shown as below:
	

	

	

	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Using the above shown address we can form a chain of gadgets to finally
call a library function or execute our shell code placed on the stack.

Gadget2	

Some	
 instructions	

Branch	
 to	
 gadget3	

Gadget1	

Some	
 instructions	

Branch	
 to	

gadget2	

GadgetN	

Some	
 instruction	

Branch	
 to	

gadget(N+1)	

CONCLUSION

Due to less resources available on ARM Exploitation, it is not much widely
practiced. But it is surely one of the most interesting areas to work upon
the field of exploitation.

We have written this paper trying out different stuffs, and learning from
the experiences. We hope that it would provide beneficial to anyone
seeking information on ARM Exploitation.

We would love to get any kind of feedback or corrections on our paper, if
any.

You could contact us at the following:

Gaurav Kumar : grv0x00@outlook.com @grvrajora
Aditya Gupta : adi0x90@gmail.com @adi1391
	

	
 	

	

	

	

	

	

	

	

	

	

	

	

REFERENCES

ARM Exploitation : http://www.exploit-db.com/wp-
content/themes/exploit/docs/14548.pdf

Exploiting ARM Systems by Tiger Security http://www.exploit-db.com/wp-
content/themes/exploit/docs/16151.pdf

Return Oriented Programming without Returns :
http://www.cs.jhu.edu/~s/papers/noret_ccs2010/noret_ccs2010.pdf

Popping shell on Android Devices by Zuk - http://media.blackhat.com/bh-
dc-11/Avraham/BlackHat_DC_2011_Avraham-Popping_Android_Devices-
Slides.pdf

Non Executable Stack ARM Exploitation - https://media.blackhat.com/bh-
dc-11/Avraham/BlackHat_DC_2011_Avraham_ARM%20Exploitation-
wp.2.0.pdf

Alphanumeric RISC ARM Shellcode (Good read, if you’re planning to write
shellcodes for ARM) - http://www.phrack.org/issues.html?issue=66&id=12

