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Abstract—Credit card fraud detection (CCFD) is a critical
application of Machine Learning (ML) in the financial sector,
where accurately identifying fraudulent transactions is essential
for mitigating financial losses. ML models have demonstrated
their effectiveness in fraud detection task, in particular with the
tabular dataset. While adversarial attacks have been extensively
studied in computer vision and deep learning, their impacts on
the ML models, particularly those trained on CCFD tabular
datasets, remains largely unexplored. These latent vulnerabilities
pose significant threats to the security and stability of the
financial industry, especially in high-value transactions where
losses could be substantial. To address this gap, in this paper,
we present a holistic framework that investigate the robustness
of CCFD ML model against adversarial perturbations under
different circumstances. Specifically, the gradient-based attack
methods are incorporated into the tabular credit card transaction
data in both black- and white-box adversarial attacks settings.
Our findings confirm that tabular data is also susceptible to subtle
perturbations, highlighting the need for heightened awareness
among financial technology practitioners regarding ML model
security and trustworthiness. Furthermore, the experiments by
transferring adversarial samples from gradient-based attack
method to non-gradient-based models also verify our findings.
Our results demonstrate that such attacks remain effective,
emphasizing the necessity of developing robust defenses for
CCFD algorithms.

Index Terms—Adversarial Attacks, Credit Card Fraud Detec-
tion (CCFD), Tabular Data, Transferability, Financial Services

I. INTRODUCTION

We are witnessing the widespread adoption of machine
learning (ML) in financial services, which have revolutionized
the areas of fraud detection, risk assessment, and anti-money
laundering (AML). To date, these financial services have
heavily relied on traditional ML models such as decision
trees, logistic regression, and ensemble learning techniques.
As a critical application of ML in financial security ser-
vices, credit card fraud detection (CCFD) is an important
use case which enables real-time identification of fraudulent
transactions and enhancing fraud prevention strategies. Since
financial institutions are now heavily relying on these ML-
driven risk assessment, anomaly detection, and fraud detection
systems, ensuring their robustness against adversarial threats
has become a pressing concern [|1f].

On the other hand, existing studies have demonstrated vul-
nerabilities in ML models trained on image data, in particular

by introducing imperceptible perturbations to input data to
deceive ML models. These attacks will generally leverage
the structured nature of visual features to craft adversarial
examples [2]. Many of the works focus on computer vi-
sion concerning these adversarial attacks, however it remains
underexplored in finance service application such as CCFD
which generally utilize tabular datasets. For tabular data,
which is commonly used in financial applications, presents
unique challenges due to its discrete, heterogeneous feature
distributions and domain-specific constraints [3]]. This lack
of research poses a significant security risk, as financial
institutions widely deploy ML-based fraud detection models
without fully understanding their vulnerabilities to adversarial
manipulation. Statistical reports highlight that credit card fraud
caused an estimated loss of £574.2 million in the United
Kingdom in 2020 alone [4].The extent to which established
adversarial attack methods can be applied to ML models
trained on tabular data for financial decision-making remains
unclear, leaving a critical gap in securing ML-based fraud
detection systems.

To address this gap, this paper first examines the security
of the most commonly used gradient-based ML models in the
CCFD domain. We employ gradient-based attack algorithms
to generate adversarial samples and investigate their impacts
on fraud detection performance. To highlight broader security
threats beyond traditional gradient-based architectures and
uncover additional attack vectors, we investigate whether the
adversarial samples can also mislead a non-gradient-based
ML model. This investigation reveals critical vulnerabilities
in CCFD models, demonstrating that ML models trained on
tabular data are susceptible to both black-box and transfer
adversarial attacks. Our findings highlight the urgent need for
robust defense mechanisms to enhance the security of ML-
based fraud detection systems.

In summary, this paper makes following key contributions:

e We present a holistic framework for transferable ad-

versarial attacks, in particular for CCFD. Our objective
is to investigate the underlying issue whereby subtle
perturbations to input samples can mislead ML models in
the context of fraud detection. To this end, we evaluate
a gradient-based model, revealing that tabular data may
serve as a susceptible attack surface for adversaries.

(Sec /)


https://arxiv.org/abs/2508.14699v1

e We perform a comprehensive evaluation of the pro-
posed framework using real-world credit card transaction
datasets. Furthermore, we evaluate the effectiveness of
the adversarial samples on unseen ML models, which
shares entirely different model architecture and training
process. In this paper, we consider a non-gradient-based
ML model to assess the transferability of the adversarial
attacks. With the collected results based on the attack suc-
cess rate, our work demonstrates that adversarial samples
generated in a white-box setting can successfully transfer
to a structurally different model while maintaining high
attack efficacy. (Sec[[V)

o Through the framework, we provide empirical insights
about the security vulnerabilities of CCFD models, re-
vealing their susceptibility to adversarial attacks, includ-
ing black-box and transfer attacks. Our findings highlight
the urgent need to strengthen the security of financial
fraud detection systems and develop more robust defenses
against adversarial threats. (Sec[V)

The remainder of this paper is structured as follows: Section
[] reviews related work. Section [IT]] introduces the techniques
used in our proposed framework. Section details the ex-
perimental setup. Section [V| presents the experimental results
and provides an in-depth analysis of their implications. Finally,
Section concludes the paper and outlines potential future
research directions.

II. LITERATURE REVIEW

Credit card fraud detection (CCFD) is a prominent appli-
cation of machine learning (ML) in financial security, where
traditional rule-based systems have been increasingly replaced
by supervised models such as logistic regression, Naive Bayes,
KNN, random forests, and SVM for improved detection
performance [5]-[7]. Deep neural networks have also been
adopted to further enhance detection accuracy [8]. However,
these models mainly focus on classification performance,
while their robustness against adversarial threats remains
underexplored [9]]. Adversarial attacks—crafted perturbations
designed to mislead model predictions—have been extensively
studied in image-based domains using methods like the Fast
Gradient Sign Method (FGSM), Projected Gradient Descent
(PGD), and Carlini & Wagner attacks [[L0]-[12]]. However their
adaptation to tabular data, especially in CCFD, poses unique
challenges due to the discrete and heterogeneous nature of
features [3]]. Although some works have examined adversarial
risks in CCFD, they largely concentrate on deep learning
under white-box assumptions [[13]], [[14], and penetration test-
ing appears insufficient against such threats [[15]. Meanwhile,
commonly deployed traditional models like logistic regression
and random forest—still favored in fraud detection for their
simplicity and efficiency—have received little attention in this
context [16]]. Moreover, the feasibility of applying transferable
adversarial attacks in black-box settings for financial services
remains unvalidated, forming the core research gap this work
aims to address.

ITII. PROPOSED FRAMEWORK

The objective of this work is to investigate the security of
machine learning (ML) models in credit card fraud detection
(CCFD) within the financial sector. Given that this field
remains relatively nascent, existing research on its security vul-
nerabilities is still limited. CCFD based on ML algorithms is
typically formulated as a binary classification problem, where
transactions are classified as either legitimate or fraudulent
(e.g., credit card skimming) based on extracted features such as
transaction time, transaction amount, frequency, and type. ML
models will make these classifications using a predefined de-
cision threshold. For adversarial threats, if an attacker obtains
knowledge of a model’s decision boundary or the inherent
architecture and parameters, they can exploit this information
by introducing small, strategically crafted perturbations along
the gradient direction. These adversarial perturbations can alter
fraud probabilities just enough to shift a fraudulent transaction
below the classification threshold, causing a misclassification
as a legitimate transaction.

In this section, we will first present the overall framework
to generate the adversarial samples following by the design
of white-box and black-box adversarial attacks. As shown in
Fig. [I] we first introduce an adversarial attack method, which
is the Fast Gradient Sign Method (FGSM), to generate the
adversarial samples for a gradient-based ML model. The goal
is to evaluate whether adversarial attacks remain effective
in the context of CCFD, particularly for tabular dataset. To
further investigate potential attack vectors in this domain, we
extract adversarial samples that successfully bypass detection
in the first stage and utilize them as attack inputs against a
non-gradient-based ML model. This step examines whether
transferable attacks can compromise CCFD systems even
when the target model’s internal structure and parameters are
entirely unknown.

Through this framework, we aim to uncover vulnerabilities
in both ML algorithms and the underlying tabular data used
in fraud detection. Our findings emphasize the necessity of
integrating security measures into the development and de-
ployment of ML-based fraud detection models in the financial
sector to mitigate adversarial threats.

A. Machine learning models in our Framework

1) Gradient-based ML: Most of the gradient-based ML
models rely on gradient descent and its variants to optimize
the model parameters. For CCFD, logistic regression (LR) is
a widely used gradient-based ML algorithm that estimates the
probability of an event occurring based on input features [[17]—
[19]. Unlike linear regression, which models a continuous
output, LR applies the logistic function to map predictions
to probabilities within the range of 0 and 1 [20]. The logistic
function is defined as:

1

Logit(m) = 7o

(D

where 7 represents the linear combination of input features
and model parameters.
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Fig. 1. The overall framework of FGSM-based adversarial attack on credit card fraud detection models

The model parameters are optimized using maximum like-
lihood estimation (MLE) to minimize classification error.
Once trained, LR predicts probabilities, and classification is
performed by assigning labels based on a threshold (e.g.,
m > 0.5 is classified as class 1, otherwise class 0) [@]
The sigmoid function, which characterizes LR, ensures that
predictions are bounded within the probability range.

2) Non-gradient-based ML: A different type of ML model
will be non-gradient-based models, which have entirely dif-
ferent architectures and training processes when compared
to their gradient-based counterparts. These models generally
select features and categorizes based on criteria like Gini
impurity or entropy information. An example model is random
forest (RF), which is an ensemble learning algorithm designed
for classification and regression tasks. It constructs multiple
decision trees, each trained on randomly selected subsets of
the dataset and feature space [21]]. The randomness in RF is
introduced through a process known as bootstrap aggregation
(bagging), where different samples of the training data are
used to build individual trees.

For classification tasks, RF determines the final prediction
by applying a majority voting scheme across all decision
trees. In regression tasks, it computes the average prediction
from all trees. The introduction of randomness at both the
data sampling and feature selection levels enhances model
generalization and mitigates the risk of overfitting [22]].

B. Adversarial attack techniques in our framework

While numerous adversarial attack techniques exist in the
literature, this work focuses on transferable adversarial attacks
in the context of CCFD. To achieve this, we employ the
FGSM as the primary attack technique. FGSM, introduced by
Goodfellow et al. , demonstrates the vulnerability of ML

models to adversarial perturbations. It generates adversarial
examples by computing the gradient of the loss function with
respect to the input data and applying a small perturbation in
the direction of the gradient:

n = e-sign(VeJ(0,z,y)) ()
where ¢ is a small perturbation factor, 6 represents the model
parameters, x is the input, y is the target label, and J(0,x,y)
is the loss function.

The perturbed adversarial example is computed as:

zr=x+n=x+¢-sign(VyJ(0,z,9)) 3)

where x* represents the generated adversarial sample. By

leveraging the model’s gradient, FGSM efficiently alters input

features to deceive the classifier while maintaining minimal
perceptual changes.

IV. EXPERIMENTS

A. Dataset

We use a publicly available credit card transaction dataset
from Kaggle [23]], containing 284,807 transactions from Euro-
pean cardholders over two days in 2013. The dataset is highly
imbalanced, with only 0.17% (492) labeled as fraudulent,
reflecting real-world conditions. To preserve confidentiality,
features were anonymized using PCA, resulting in variables
V1-V28, while ‘Time‘ and ‘Amount‘ were retained. To ad-
dress class imbalance, we apply the SMOTE technique
to oversample fraudulent cases. The dataset is split into 80%
training and 20% testing using stratified sampling to maintain
class distribution.



B. Evaluation Metrics

To comprehensively evaluate model performance on the
imbalanced credit card fraud detection (CCFD) task, we
report standard metrics including Accuracy, Precision, and
Recall. Accuracy reflects overall prediction correctness, while
Precision and Recall capture the model’s ability to correctly
identify fraud cases and minimize false negatives. In addition,
we introduce the Transferability Rate to assess how well
adversarial samples generated from one model can mislead
another:

Transferability Rate — Misclassified Samples in Target Model

Total Adversarial Samples

This metric is crucial for evaluating security risks in multi-
classifier fraud detection scenarios.

C. Experimental Design

We adopt logistic regression (LR) as the baseline model
due to its high interpretability and relevance in financial fraud
detection. Its reliance on gradient-based optimization makes
it vulnerable to adversarial attacks such as the Fast Gradient
Sign Method (FGSM). The model is implemented using the
scikit-learn library [25] and serves as the primary attack target.

To evaluate model robustness, FGSM attacks are applied us-
ing the Adversarial Robustness Toolbox (ART) [26] in a white-
box setting with full access to model gradients. Adversarial
perturbations target correctly classified fraudulent transactions
in the test set, aiming to flip them to non-fraudulent labels
through minimal input changes.

To assess transferability, we test whether adversarial ex-
amples crafted for LR can mislead a non-gradient-based
model—random forest (RF)—trained on the same dataset
with an 80/20 stratified split. This transfer-based black-box
attack reveals cross-model vulnerabilities and highlights the
broader risks of adversarial examples across heterogeneous
fraud detection systems.

V. RESULTS AND ANALYSIS

We present Fast Gradient Sign Method (FGSM) attack
results on a Logistic Regression (LR) model for credit card
fraud detection (CCFD), analyzing recall degradation under
varying e and the transferability of adversarial samples to a
non-gradient-based model (Random Forest).

A. Baseline Model Performance

To establish a reference point for evaluating the impact of
adversarial attacks, we first trained and evaluated a LR model
on the Kaggle CCFD dataset. The evaluation metrics for the
baseline model are as follows in Table I :

TABLE I
MODEL EVALUATION METRICS
Metric Value
Accuracy 0.99
Precision 0.17
Recall 0.92

The high recall value indicates that the model effectively
detects fraudulent transactions under normal conditions. How-
ever, the relatively low precision suggests that the model
produces a significant number of false positives, a trade-off
that is acceptable given the priority of recall in fraud detection.

B. Impact of FGSM on Logistic Regression

To assess the vulnerability of the LR model to adversarial
attacks, we generated adversarial samples using FGSM, target-
ing fraudulent transactions that were correctly classified in the
test set. The e value was set to 2.2, and the generated adver-
sarial samples were used in place of their benign counterparts.
The model’s performance on the adversarial test set is shown
below in Table

TABLE II
MODEL EVALUATION METRICS
Metric Value
Accuracy 0.99
Precision 0.11
Recall 0.56

Compared to the original recall of 0.92, the recall dropped
significantly, indicating that nearly 40% of fraudulent trans-
actions were misclassified as non-fraudulent. This significant
reduction in fraud detection capability underscores the security
risk posed by adversarial attacks, highlighting the need for
robust defense mechanisms in CCFD systems.

C. Effect of Epsilon on Model Robustness

To analyze how different adversarial perturbation magni-
tudes affect model performance, we varied the ¢ value and
observed its impact on recall. The results are plotted in Fig.

Recall vs Epsilon (eps)

—®— Recall

0 1 2 3 4 5
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Fig. 2. Effect of increasing adversarial perturbations (¢) on model recall,
showing degradation trends and eventual stabilization.

From Fig. [2| we observe the following trends:

o At € = 0, the recall is 0.92, indicating correct detection
of 92% of fraudulent transactions without adversarial
perturbation.

e As € increases, recall steadily decreases, showing the
increasing effectiveness of the FGSM attack.

e When € = 2.2, recall drops to 0.56, meaning that nearly
half of the fraudulent transactions are misclassified.



e For € > 2.2, recall stabilizes at 0.56, suggesting that
increasing perturbation magnitude beyond this point does
not further degrade model performance.

This saturation effect implies that FGSM has a maxi-
mum attack effectiveness threshold, beyond which further
perturbations do not introduce additional vulnerability. One
possible explanation is that as perturbations increase, they
may push fraudulent samples too far from their original
distribution, making them unrealistic and potentially easier
to detect through anomaly detection mechanisms. Addition-
ally, excessive perturbations could move samples beyond the
model’s decision boundary in a way that no longer affects
classification, leading to diminishing returns in attack effec-
tiveness.

D. Analysis of Feature Perturbations

To better understand the effect of adversarial perturbations
on individual features, we analyzed the original and adver-
sarial values of a selected successfully perturbed fraudulent
transaction. Table [ITI] presents the perturbation details.

TABLE III
ADVERSARIAL PERTURBATION ANALYSIS FOR A SUCCESSFULLY
MISCLASSIFIED FRAUDULENT SAMPLE.

Feature | Before (Original) | After (Adversarial) | Perturbation
Time 48884.0 48886.2 2.2
Vi -2.13905056 -4.3390503 -2.19999974
V2 1.39436766 -0.8056323 -2.19999996
V3 -0.612034895 -2.8120348 -2.19999991
V4 1.04932706 -1.1506729 -2.19999996
V5 -1.16210191 -3.3621018 -2.19999989
V6 -0.768219363 1.4317807 2.20000006
\%i -1.99723740 0.20276256 2.19999996
V8 0.574996543 2.7749965 2.19999996
\C -0.980831776 1.2191682 2.19999998
V10 -2.49561925 -0.2956193 2.19999995
Vi1 2.55558915 0.3555892 -2.19999995
Vi2 -3.53043627 -1.3304362 2.20000007
A\2K) -1.01623382 1.1837661 2.19999992
Vi4 -3.45519658 -1.2551966 2.19999998
V15 -0.056363864 2.1436367 2.20000009
V16 -2.46773703 -0.26773703 2.2
V17 -7.14032597 -4.940326 2.19999997
Vi8 -1.27128002 0.92871994 2.19999996
V19 -0.00172192354 -2.201722 -2.20000008
V20 0.0254265126 2.2254264 2.19999989
V21 0.696954881 -1.5030451 -2.19999998
V22 0.740003045 -1.4599969 -2.19999995
V23 -0.155115249 -2.3551152 -2.19999995
V24 -0.0506074461 -2.2506075 -2.20000005
V25 0.268368293 -1.9316317 -2.19999999
V26 -0.469432841 1.7305672 2.20000004
V27 -0.405813768 -2.6058137 -2.19999993
V28 -0.152170847 -2.352171 -2.20000015

Amount 19.73 17.53 2.2

Key observations from Table |lII| reveal the behavior of the

model under adversarial manipulation:

e The PCA-transformed features (V1-V28) exhibit consis-
tent perturbations of approximately £2.2, which are suffi-
cient to mislead the logistic regression model. Since these
features are derived from principal component analysis,
even small changes can significantly alter the encoded
representations.

e Named features such as Time and Amount remain
nearly unchanged, indicating that adversarial perturba-
tions target abstract feature spaces rather than raw trans-
action details.

o These findings highlight the model’s sensitivity to trans-
formed inputs and underscore the importance of consid-
ering adversarial robustness during the preprocessing and
feature engineering stages in fraud detection pipelines.

E. Transferability of Adversarial Samples

To further evaluate the impact of adversarial samples, we
test their ability to transfer to another classification model.
Specifically, we assess whether the adversarial samples gener-
ated using the FGSM attack on the logistic regression model
can also deceive a non-gradient-based model such as Random
Forest (RF).

1) Baseline RF Model Performance: An RF classifier was
trained on the same dataset as the LR model, following the
same 80/20 train-test split. The baseline performance of RF
on benign test samples is reported below in Table

TABLE IV
MODEL EVALUATION METRICS
Metric Value
Accuracy 1.00
Precision 1.00
Recall 0.95
TABLE V

CONFUSION MATRIX FOR BASELINE RANDOM FOREST MODEL BEFORE
ADVERSARIAL ATTACK.

Actual Predicted: Non-fraud | Predicted: Fraud
Non-fraud 56861 5
Fraud 0 96

As shown in Table |V} RF achieves near-perfect performance
in fraud detection under normal conditions.

2) Adversarial Sample Transferability Experiment: To ex-
amine the robustness of RF against adversarial samples, we
applied the adversarial test set generated using FGSM on the
LR model to the trained RF model. The results are as follows
in Table [VIt

TABLE VI
ADVERSARIAL ATTACK RESULTS
Metric Value
Successful attacks 34
Failed attacks 2
Transferability success rate 94%

The high success rate (94%) indicates that adversarial
perturbations crafted for a gradient-based model like LR can
still significantly degrade the performance of a non-gradient-
based model such as RF. This demonstrates that adversarial
attacks are not limited to models that rely on gradients, but
can also transfer across different types of classifiers.



3) Analysis of Transferability: Several factors contribute to
the high transferability of adversarial samples:

o Feature-space perturbations: Even though RF does not
use gradients, it relies on feature importance for clas-
sification. Perturbations introduced by FGSM may shift
the decision boundary for critical features, leading to
misclassification.

o Shared decision boundaries: Both LR and RF models
were trained on the same dataset, meaning they may learn
similar decision boundaries. This increases the likelihood
that adversarial perturbations effective for LR also impact
RFE

o Structural limitations of ensemble models: While RF
benefits from bagging and feature randomness, it remains
susceptible to adversarial perturbations that systemati-
cally alter the input distribution, leading to incorrect
classifications.

These results highlight the broader security risks of ad-
versarial attacks in real-world fraud detection systems. Even
when an organization deploys multiple classifiers to improve
robustness, transferability can still expose all models to ad-
versarial threats. Future research should explore adversarial
training techniques and other defense mechanisms to mitigate
these risks.

VI. CONCLUSION

In this paper, we have examined the vulnerability of credit
card fraud detection (CCFD) models to adversarial attacks,
demonstrating that adversarial samples generated via Fast
Gradient Sign Method (FGSM) significantly degrade model
performance. In particular, logistic regression model’s recall
dropped from 92% to 56%, and these perturbations exhibited
a 94% transferability rate to a non-gradient-based Random
Forest model, underscoring the broader security risks posed
by adversarial attacks in financial applications.

While various adversarial defense mechanisms have been
proposed—such as adversarial training, feature regularization,
and ensemble defenses [10]—most of these methods have
been developed for non-tabular datasets. Gradient obfusca-
tion methods aim to prevent attackers from exploiting model
gradients [27], while input preprocessing techniques such as
noise filtering and data compression attempt to mitigate the
impact of adversarial perturbations [28].Their applicability to
CCFD models remains largely unexplored. Future work should
focus on adapting adversarial defenses for machine learning
(ML) models on tabular datasets, evaluating their effectiveness
across diverse financial datasets, and exploring hybrid defense
strategies that integrate multiple mitigation techniques.

In conclusion, adversarial attacks present a systemic security
risk to ML-based fraud detection, extending beyond gradient-
based models. Developing robust, domain-specific adversarial
defenses is crucial to ensuring the trustworthiness and re-
silience of financial fraud detection systems.

ACKNOWLEDGEMENT

The first author conducted this work at Constantinople
Operating Company Pty Ltd (Constantinople), as part of a
funded research collaboration with The University of Sydney.
The authors would like to thank Constantinople for their
support of this work.

REFERENCES

[1] D. Lunghi, A. Simitsis, O. Caelen, and G. Bontempi, “Adversarial
learning in real-world fraud detection: Challenges and perspectives,”
arXiv, vol. 2307.01390, 2023. [Online]. Available: https://doi.org/10.
48550/arXiv.2307.01390

[2] N. Akhtar, A. Mian, N. Kardan, and M. Shah, “Advances in adversarial
attacks and defenses in computer vision: A survey,” IEEE Access, vol. 9,
pp. 155161-155 196, 2021.

[3] F. Cartella, O. Anunciacao, Y. Funabiki, D. Yamaguchi, T. Akishita, and
O. Elshocht, “Adversarial attacks for tabular data: Application to fraud
detection and imbalanced data,” arXiv preprint arXiv:2101.08030, 2021.

[4] S. Xuan, G. Liu, Z. Li, L. Zheng, S. Wang, and C. Jiang, “Random
forest for credit card fraud detection,” in 2018 IEEE 15th International
Conference on Networking, Sensing and Control (ICNSC), 2018, pp.
1-6.

[5] A. Ali, S. Abd Razak, S. H. Othman, T. A. E. Eisa, A. Al-Dhagm,
M. Nasser, T. Elhassan, H. Elshafie, and A. Saif, “Financial fraud
detection based on machine learning: a systematic literature review,”
Applied Sciences, vol. 12, no. 19, p. 9637, 2022.

[6] D. Varmedja, M. Karanovic, S. Sladojevic, M. Arsenovic, and A. An-
derla, “Credit card fraud detection - machine learning methods,” in
2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH),
2019, pp. 1-5.

[7]1 S. Kumar, V. K. Gunjan, M. D. Ansari, and R. Pathak, “Credit card
fraud detection using support vector machine,” in Proceedings of the
2nd International Conference on Recent Trends in Machine Learning,
10T, Smart Cities and Applications: ICMISC 2021. Springer, 2022, pp.
27-37.

[8] R. Ashaand S. K. KR, “Credit card fraud detection using artificial neural
network,” Global Transitions Proceedings, vol. 2, no. 1, pp. 35-41, 2021.

[9] F. V. Jedrzejewski, L. Thode, J. Fischbach, T. Gorschek, D. Mendez, and
N. Lavesson, “Adversarial machine learning in industry: A systematic
literature review,” Computers & Security, p. 103988, 2024.

[10] L. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” 2015. [Online]. Available: https:
/larxiv.org/abs/1412.6572

[11] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” 2019. [Online].
Available: https://arxiv.org/abs/1706.06083

[12] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” 2017. [Online]. Available: https://arxiv.org/abs/1608.04644

[13] A. Agarwal and N. K. Ratha, “Black-box adversarial entry in finance
through credit card fraud detection.” in CIKM Workshops, 2021.

[14] Y. Zhou, M. Kantarcioglu, B. Thuraisingham, and B. Xi, “Adversarial
support vector machine learning,” in Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2012, pp. 1059-1067.

[15] D. Lunghi, A. Simitsis, and G. Bontempi, “Assessing adversarial attacks
in real-world fraud detection,” in 2024 IEEE International Conference
on Web Services (ICWS). 1EEE, 2024, pp. 27-34.

[16] P. Tiwari, S. Mehta, N. Sakhuja, J. Kumar, and A. K. Singh, “Credit
card fraud detection using machine learning: a study,” arXiv preprint
arXiv:2108.10005, 2021.

[17] T. Wang and Y. Zhao, “Credit card fraud detection using logistic
regression,” in 2022 International Conference on Big Data, Information
and Computer Network (BDICN), 2022, pp. 301-305.

[18] A. Mahajan, V. S. Baghel, and R. Jayaraman, “Credit card fraud
detection using logistic regression with imbalanced dataset,” in 2023
10th international conference on computing for sustainable global
development (iNDIACom). 1EEE, 2023, pp. 339-342.

[19] M. V. Krishna and J. Praveenchandar, “Comparative analysis of credit
card fraud detection using logistic regression with random forest towards
an increase in accuracy of prediction,” in 2022 International Conference
on Edge Computing and Applications (ICECAA). 1EEE, 2022, pp.
1097-1101.


https://doi.org/10.48550/arXiv.2307.01390
https://doi.org/10.48550/arXiv.2307.01390
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1608.04644

[20]
[21]
[22]
[23]

[24]

[25]

M. P. LaValley, “Logistic regression,” Circulation, vol. 117, no. 18, pp.
2395-2399, 2008.

L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5-32,
2001.

S. J. Rigatti, “Random forest,” Journal of Insurance Medicine, vol. 47,
pp. 31-39, 2017.

M. L. G. ULB, “Credit card fraud detection,” n.d. [Online]. Available:
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud/data

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, p. 321-357, Jun. 2002.
[Online]. Available: http://dx.doi.org/10.1613/jair.953

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,

[26]

(27]

(28]

J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in python,” Journal of
Machine Learning Research, vol. 12, pp. 2825-2830, 2011. [Online].
Available: https://jmlr.org/papers/v12/pedregosal 1a.html!

M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba,
V. Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig, I. M. Molloy, and
B. Edwards, “Adversarial robustness toolbox v1.0.0,” 2019. [Online].
Available: https://arxiv.org/abs/1807.01069

F. Tramer, A. Kurakin, N. Papernot, 1. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
arXiv preprint, vol. arXiv:1705.07204, 2017.

G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the
effect of jpg compression on adversarial images,” arXiv preprint, vol.
arXiv:1608.00853, 2016.


https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud/data
http://dx.doi.org/10.1613/jair.953
https://jmlr.org/papers/v12/pedregosa11a.html
https://arxiv.org/abs/1807.01069

	Introduction
	Literature Review
	PROPOSED FRAMEWORK
	Machine learning models in our Framework
	Gradient-based ML
	Non-gradient-based ML

	Adversarial attack techniques in our framework

	Experiments
	Dataset
	Evaluation Metrics
	Experimental Design

	Results and Analysis
	Baseline Model Performance
	Impact of FGSM on Logistic Regression
	Effect of Epsilon on Model Robustness
	Analysis of Feature Perturbations
	Transferability of Adversarial Samples
	Baseline RF Model Performance
	Adversarial Sample Transferability Experiment
	Analysis of Transferability


	Conclusion
	References

