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Abstract—Security has always been a priority, for re-
searchers, service providers and network operators when it
comes to radio access networks (RAN). One wireless access
approach that has captured attention is blockchain enabled
RAN (B-RAN) due to its secure nature. This research introduces
a framework that integrates blockchain technology into RAN
while also addressing the limitations of state-of-the-art models.
The proposed framework utilizes queuing and Markov chain
theory to model the aspects of B-RAN. An extensive evaluation
of the models performance is provided, including an analysis
of timing factors and a focused assessment of its security as-
pects. The results demonstrate reduced latency and comparable
security making the presented framework suitable for diverse
application scenarios.

Index Terms—Alternative history attack, B-RAN, blockchain,
Markov chain, queuing theory, radio access networks, security,
timing.

I. INTRODUCTION

In the changing world of telecommunications, radio access
networks (RAN) play a pivotal role in facilitating smooth
wireless communication linking countless devices. As RAN
technology progresses it becomes ever more important to
have security and privacy measures, in place to protect
against emerging risks and vulnerabilities [1]–[3]. Security,
in the RAN has always been a focus of interest for net-
work operators, service providers and researchers alike. The
potential risks of access, data breaches and disruptions to
the network can have implications for the confidentiality and
integrity of communications within the RAN [4]. In this
context the integration of technology emerges as a solution
to address these security concerns. Originally designed for
cryptocurrencies blockchain has proven its effectiveness, in
offering decentralized tamper resistant solutions. By being
decentralized blockchain ensures that no single entity con-
trols the network thereby reducing the risks associated with
points of failure and unauthorized access.

This work has received funding from the Smart Networks and Services
Joint Undertaking (SNS JU) under the European Union’s Horizon Europe
research and innovation programme under Grant Agreement No. 101096456
(NANCY).

The use of Blockchain in RAN has been a topic of interest
in the field of telecommunications security [5]. Many studies
have explored how blockchain technology can help address
security challenges in network domains making it an impor-
tant area of research within the broader telecommunications
landscape. In [6], the authors thoroughly investigate the
integration of blockchain into communications and propose a
secure B-RAN framework for 6G networking. They also in-
troduce a framework, for analyzing block structured Markov
processes, which extends existing models to include phase
type service times and transaction arrivals. Markov Chain
(MC) models are commonly used by researchers to study
B-RAN systems as seen in [7], [8]. These studies introduce
a B-RAN architecture, describe its workflow, and establish
a queuing theory-based MC model to characterize system
latency and security in B-RANs.

Furthermore, a common focus on estimating the most
suitable block size has been identified in various recent
works [9]–[12]. Specifically, [9] concentrates on depicting
mining processes and stages of construction, while [10]
describes timers and forks within its latency model. In order
to overcome challenges related to blockchain forking in
generation wireless networks, the authors of [11] introduce a
proposal for block access control. This approach efficiently
manages block transmission enhances transaction throughput
and imposes limitations on requirements. Using a MC model
this study evaluates the performance of a network with block
access control to demonstrate its effectiveness and highlight
any limitations it may have. Similarly, in [12], a MC based
model of blockchain is employed in order to minimize the
impact of latency on system stability through batch service
queueing. This study advocates for the use of the Bianchi
model in evaluating service latency with the aim of gaining
insights, into blockchain network performance and reliability.

This paper explores the different aspects of B-RAN, inves-
tigating how this innovative technology can greatly enhance
security and privacy measures. In order to improve the model-
ing of B-RAN, a departure from the conventional approaches
is proposed. The proposed framework involves creating two
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Fig. 1. Procedural illustration of servicing a UE in B-RAN.

queuing models and a MC model. By implementing a mech-
anism to incorporate the number of transactions in a block as
well as the possibility of rejected transactions, it enhances the
accuracy of conventional B-RAN modeling. As a result, the
timing performance of the model is greatly enhanced while
also maintaining security and privacy in the same levels. This
expansion of conventional B-RAN models aims to examine
and support various scenarios; thus, enhancing its versatility
and ability to address a wider range of potential applications
within RAN.

The remainder of the paper is structured as follows.
Section II serves as an introduction to the architectural and
operational mechanisms of the blockchain, encompassing
queuing models and the MC model. In Section III, a per-
formance evaluation of the model is presented, featuring a
detailed examination of temporal aspects and a dedicated
exploration of the applied attack model. Section IV illustrates
the numerical outcomes derived from the simulation of
the proposed model, coupled with interesting conversations.
Finally, Section V encapsulates the conclusions, synthesizing
the information gleaned from the aforementioned data and
results.

II. MARKOV CHAIN-BASED MODEL

The considered system model, which is presented in Fig. 1,
models the B-RAN by using two queues. The first queue
handles incoming requests that are waiting to be included
into the next blockchain block, while the second manages
the mined blocks that contain confirmed requests, which wait
to be serviced. In more detail, the first queue is structured
according to the principles of an M/M/1 queue. In this
model, the arrival of requests follows a Poisson distribution,
with rate λa, while the processing times of these requests
are governed by memoryless exponential distributions with
rate λb. It should be noted that each individual request is
processed within a discrete block and the system is designed
to handle a maximum of k requests in a single block.
This specification underscores a finite capacity constraint,
setting distinct parameters for the operational dynamics of the
system. Moreover, the second queue is modeled as an M/M/s
queue, where s denotes the maximum number of access
links. Similar to the M/M/1 model, requests enter this queue

following a Poisson distribution, and their processing times
are characterized by memoryless exponential distributions.

Within the context of B-RAN, the comprehensive system
configuration can be modeled through queuing theory, which
can be characterized through Markov processes, aligning
with the methodological insights presented in [4]. This
modeling choice is grounded in the state-of-the-art of B-
RAN approaches, thereby establishing a rigorous analytical
framework. Specifically, the state of the system at any
given moment, t, can be succinctly explicated through the
mathematical expectation operator E[i, j], where i represents
the pending requests awaiting aggregation into a block, and
j corresponds to the requests awaiting to be serviced. The
incorporation of these variables underscores the nuanced
interplay between the queue dynamics, reflecting the essential
stages of pending requests en route to block inclusion and
those poised for immediate service.

As illustrated in Fig. 2, the MC model is characterized by
its current state, denoted as E[i, j] at time t. It encompasses
five distinct states, each representing specific configurations
in the system’s dynamics. The transition from one state to
another occurs within a minimal time interval, denoted as
t+h, where h approaches zero. In more detail, the states of
the MC model are detailed as follows.

• E′[i + 1, j] denotes that a new request is received.
This transition signifies an increment in the count of
pending requests for blockchain aggregation (i), as one
more request joins the existing set. Notably, the count
of requests awaiting immediate service (j) remains
unchanged, reflecting the constraint that only one proce-
dure can occur at any given moment. This event occurs
with a probability denoted as pa = λa · h.

• E′[i − k, j + k] represents the scenario where a block
is being mined. The probability of transitioning to this
state is given by pb = λb · h and depends upon the
variable k, which represents the maximum number of
requests that can be included in a single block. This
transition can be categorized into two distinct cases
depending on the number of pending requests and
the block size. Specifically, if the number of pending
requests, i, is less than or equal to the threshold k, then
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Fig. 2. Markov Chain-based model of B-RAN.

all pending requests are successfully mined, leading to
an increase in the j queue. In this case, the next state
is represented as E′[0, j + k]. On the contrary, if the
number of pending requests exceeds the threshold k,
only a maximum of k requests can be mined, while the
rest of the requests remain pending. The mined requests
contribute to an increase in the j queue.

• E′[i, j − 1] expresses that a request is serviced and
is characterized with a probability pc = λc · h. This
transition signifies a decrement of 1 in the j queue,
reflecting the initiation of service for the respective
block. Importantly, the count of pending requests, i,
remains unchanged, as the commencement of service
pertains solely to the queue of blocks and does not
impact the queue of pending requests.

• E′[i − r, j] denotes that a request is rejected due to
various factors such as authentication issues or resource
scarcity. In this case, r expresses the number of rejected
requests. This transition is governed by a rejection
probability pr = λr · h. Consequently, it leads to a
reduction of r in the count of pending requests, i, as
the block containing the rejected request is disposed of.
Simultaneously, the j queue, reflecting blocks awaiting
service, remains unaffected, underscoring that the re-
jected block did not progress to the stage of mining.

• E′[i, j] is the idle state. The probability of the system to
remain in the same state, pi, equals 1 minus the sum of
all the remaining rates, multiplied by h. This idle state
implies that, at a given moment, the system remains in
its current state without transitioning to any other state.
The probability pi encompasses the combined likelihood
of no new request arrivals, no rejected requests, no
successful mining events and no completed service
operations.

III. PERFORMANCE EVALUATION

This section focuses on developing the analytical frame-
work for evaluating the performance of the MC-based mod-
elling of B-RAN. Specifically, Section III-A provides infor-
mation on the latency that can be achieved by the system,
whilst Section III-B illustrates the security performance of
the system.

A. Latency

The incorporation of two queues within the proposed
framework provides a structured approach to managing
incoming requests and their subsequent processing in
blockchain blocks, while at the same time modelling the
temporal nature of the system. As stated above, the first
M/M/1 queue handles the requests waiting to be included in
blockchain, while and the M/M/s queue models the latency
introduced by service initiation and processing. The two
queues collectively contribute towards the end-to-end delay
within the system.

In the proposed model of B-RAN, the average waiting
time within an M/M/1 queue can be analytically expressed
as in [13]

τ1 =
1

λb − λa
, (1)

where λb represents the service rate and λa denotes the
arrival rate. In parallel, the latency induced by an M/M/s
queue can be evaluated as in [14]

τ2 =
C(s, λa

λc
)

sλc − λa
+

1

λc
, (2)

with the nominator of the first term expressing the Erlang
C formula, which is dependent on parameters such as the
number of simultaneously served users, s, the arrival rate,
λa, and the service rate, λc. Furthermore, the final source
of latency in the confirmation process that is considered in
the present contribution, in which the average latency can be
computed as

τ3 =
N − 1

λb
, (3)

with N representing the number of confirmations and λb

symbolizing the block generation rate.
At this point, we utilize Little’s Law in order to correlate

the average latency with the length of the queue. According
to Little’s Law, the average number of transactions in a stable
system is equal to the arrival rate multiplied by the average
duration it spends in the system. Thus, the expected sojourn
time can be expressed as

τs = τ1 + τ2 + τ3, (4)

and is a quantitative measure of the duration that each service
request remains in the specific states of the system. In other
words, the τs is equal to the combined duration of waiting
time and service time. Therefore, the average latency, τt, of
B-RAN is given by

τt = τs −
1

λc
. (5)

Based on the aforementioned, the latency of the the B-
RAN model can be bound in two respects. Specifically, the
upper bound, capturing the maximum latency the model
may incur, is composed of distinct components. Firstly, it
involves an M/M/1 queue generated by transactions awaiting
inclusion in a block. Additionally, an M/M/s queue accounts
for transactions confirmed by the blockchain yet pending
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Fig. 3. Procedural illustration of an alternate history attack in B-RAN.

servicing. Furthermore, an additional latency factor arises
from the requisite N number of confirmations necessary
for each block. The expression of the upper bound can be
expressed as

Lu =
1

λb − λa
+

C
(
s, λa

λc

)
sλc − λa

+
N − 1

λb
. (6)

On the other hand, the lower bound expresses the minimum
achievable latency within the model. In this scenario, the
temporal aspect is governed by both the duration for a
transaction to enter a block and the required number of
confirmations. The expression for the lower bound is given
by

Ll =
1

λb
+

N − 1

λb
=

N

λb
. (7)

All in all, this concise overview of the timing aspects of
the considered model, underscores the pivotal role of queue
selection in shaping the overall latency characteristics of the
B-RAN framework.

B. Security

When it comes to secure and private communications,
integrating blockchain technology into RAN shows promise
in enhancing security and mitigating cyber threats. The
decentralized and transparent nature of blockchain provides
increased reliability against attacks that could compromise
the integrity of RAN. However, there are still security con-
cerns regarding blockchain that may create vulnerabilities
in the system. One intriguing threat is the alternative his-
tory attack, where malicious entities attempt to manipulate
transaction records within the blockchain network’s history.
This discussion explores the particularities of this attack and
attempts to encapsulate how it can impact the procedures of
B-RAN ultimately affecting its security and reliability.

In the scenario of alternative history attack, which is shown
in Fig. 3, the attacker joins the blockchain during a regular
event. After the official block is mined, the attacker secretly
starts mining an altered fork; thus, creating a malicious
version of the blockchain. The attacker’s mining power, λm,
is determined by the percentage of the attackers computing
power relates to the blockchains mining rate, β. Despite
differences in mining speeds between the two chains, other
activities like request arrivals and service operations remain
unchanged. Once the attacked block receives N confirma-
tions, the attacker initiates a race to catch up through mining.

The attacker assesses how longer or shorter their malicious
chain is compared to the chain. If this difference is below a
threshold, Ng , then the attacker continues mining until the
malicious chain surpasses the length of the official. On the
other hand, if this difference exceeds Ng , the attacker stop
mining; thus, considering the attack unsuccessful. On the
contrary, when the malicious chain becomes longer than the
original, the attack is considered successful.

The probability of a successful alternative history attack
can be influenced by the attacker’s relative mining rate, β,
the needed number of confirmations, N , and the attacker’s
strategy, Ng . The expression of the successful attack proba-
bility is provided in (8) in the beginning of the next page [8].
Successfully mitigating the risk of intrusions requires a grasp
and effective management of the aforementioned variables.

IV. NUMERICAL RESULTS

The purpose of this section is to evaluate the feasibility and
effectiveness of the MC-based modeling of B-RAN that has
been presented in this work. The numerical results provided
emphasize the analytical discoveries and viewpoints about
several pertinent scenarios and design issues. The validity
of the analytical findings presented in this paper has been
extensively verified by Monte Carlo simulations. Finally, this
section is divided in two aspects of B-RAN, namely, timing
performance and attack survivability.

A. Timing performance

In Fig. 4, the average latency of the proposed model and
its conventional counterpart is depicted as a function of
the traffic intensity for different block sizes. Dashed lines
mark the upper and lower boundaries of the average latency,
while three cases are illustrated, namely, the conventional
model and the proposed model with two distinct k values.
All plotted lines converge in low traffic scenarios, which
indicates that, for modest levels of traffic, the two proposed
models exhibit comparable latency profiles. As anticipated,
when the traffic intensity increases, a corresponding rise in la-
tency occurs across all three models. The conventional model
diverges with an upward trajectory, resulting in a noticeable
spike in latency. On the contrary, the proposed models, even
as traffic intensity surges, display a smaller latency increase.
Notably, as traffic attains maximum values, the conventional
model manifests the highest latency, while the proposed
model with a higher block size exhibits the lowest latency.



S(N, β) =

1−
∑N

n=0

(
n+N − 1

n

)(
1

1+β

)N (
β

1+β

)n (
1− βN−n+1

)
if β < 1

1 if β ≥ 1

(8)

Fig. 4. Average latency as a function of the traffic intensity for the proposed
framework.

This behaviour illustrates the superior performance of the
proposed framework compared to the conventional model in
scenarios of increased traffic intensity.

Fig. 5 illustrates a comparison of the average latency of
the proposed framework and its conventional counterpart as
a function of the number of confirmation under different
traffic intensity conditions. It highlights how latency varies
with different N and ρ values, offering an explanation of the
impact of these variable on the system’s performance. In the
figure, three solid lines represent the proposed model, while
three dashed lines display the conventional model. Square
markers mark experimental results for both models in each
scenario. Examining the trajectories of all scenarios reveals
a shared pattern. Specifically, for a low number of N con-
firmations, both models exhibit relatively low latency, which
indicates higher timing efficiency. However, as the number of
confirmations escalate, latency concurrently increases for all
curves. Upon closer inspection, notable distinctions emerge
between the proposed and conventional models. Particularly
in scenarios characterized by low traffic intensities, it is
observed that the two models exhibit similar latency across
the entire range of N values. However, for scenarios char-
acterized by high traffic intensities, the conventional model
consistently exhibits higher latency compared to its proposed
counterpart. This trend illustrates that, under high traffic
conditions, the proposed model consistently achieves lower
latency compared to the conventional model. All in all, this
analysis underscores the efficacy of the proposed model in
optimizing latency performance, especially under conditions
of elevated traffic intensity.

Fig. 5. Average latency with regard to the number of confirmations for
different traffic intensity scenarios.

B. Attack survivability

In Fig. 6, the probability of successful attack is plotted
against the attackers mining power for distinct cases of attack
strategies and block confirmations. An variety of configura-
tions are highlighted through 8 cases of both conventional
and proposed models. Each subcase is characterized by
varying Ng and N values. The figure reveals a convergence
in the performance of both models. For N = 1 in both
conventional and proposed models, they commence around
2 × 10−2. Subsequently, with increasing β values, there is
a corresponding increase in the probability of successful
attacks. Upon reaching β = 1, the probability of a successful
attack approaches 100%. Analogous patterns emerge for
models with N = 3, initiating below 2×10−3 and exhibiting
an upward trajectory with higher β values. Significantly, a
convergence is observed for higher β values, where both
models attain a comparable profile. These findings suggest
a consistent behavioral pattern for both models in diverse
attack scenarios, unaffected by variations in the number of
confirmations or Ng values. Notably, the convergence at
higher β values underscores a robust convergence point,
indicative of a shared vulnerability. The data implies that
the efficacy of security protocols, as measured by successful
attack probabilities, becomes increasingly pronounced at
higher β values, rendering both conventional and proposed
models susceptible to comparable risk thresholds.

V. CONCLUSIONS

In this paper we introduce a framework that aims to model
the integration of blockchain technology in RAN; thus, over-
coming the limitations of traditional models. By conducting
simulations and comparing them with models our proposed



Fig. 6. The likelihood of a successful alternate history attack varies
depending on the attacker’s computational resources, block confirmations,
and chosen attack tactics.

framework not only expands its usability across various
scenarios but also strikes a careful balance between reducing
service latency and maintaining a strong security and privacy
infrastructure. The results of these simulations consistently
show that our framework outperforms conventional models.
This reinforces the effectiveness of our approach in im-
proving the efficiency and versatility of B-RAN. With the
evolving landscape of wireless communication technologies
there is an exciting opportunity to explore synergies with
other cutting edge innovations, like edge computing, artificial
intelligence and 5G networks.
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