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Abstract—Traditional protocol fuzzing techniques, such as
those employed by AFL-based systems, often lack effectiveness
due to a limited semantic understanding of complex protocol
grammars and rigid seed mutation strategies. Recent works,
such as ChatAFL, have integrated Large Language Models
(LLMs) to guide protocol fuzzing and address these limitations,
pushing protocol fuzzers to wider exploration of the protocol
state space. But ChatAFL still faces issues like unreliable output,
LLM hallucinations, and assumptions of LLM knowledge about
protocol specifications. This paper introduces MultiFuzz, a novel
dense retrieval-based multi-agent system designed to overcome
these limitations by integrating semantic-aware context retrieval,
specialized agents, and structured tool-assisted reasoning. Multi-
Fuzz utilizes agentic chunks of protocol documentation (RFC
Documents) to build embeddings in a vector database for a
retrieval-augmented generation (RAG) pipeline, enabling agents
to generate more reliable and structured outputs, enhancing
the fuzzer in mutating protocol messages with enhanced state
coverage and adherence to syntactic constraints. The framework
decomposes the fuzzing process into modular groups of agents
that collaborate through chain-of-thought reasoning to dynami-
cally adapt fuzzing strategies based on the retrieved contextual
knowledge. Experimental evaluations on the Real-Time Stream-
ing Protocol (RTSP) demonstrate that MultiFuzz significantly
improves branch coverage and explores deeper protocol states
and transitions over state-of-the-art (SOTA) fuzzers such as
NSFuzz, AFLNet, and ChatAFL. By combining dense retrieval,
agentic coordination, and language model reasoning, MultiFuzz
establishes a new paradigm in autonomous protocol fuzzing,
offering a scalable and extensible foundation for future research
in intelligent agentic-based fuzzing systems.

Index Terms—Protocol Fuzzing, Network Security, Finite-State
Machine, Reverse Engineering, Large Language Models, Multi-
Agent Systems, Dense Retrieval, Retrieval-Augmented Genera-
tion, Chain-of-Thoughts

I. INTRODUCTION

Network protocols form the backbone of modern communi-
cation systems, yet remain vulnerable to many flaws that can
compromise entire infrastructures’ security. Protocol fuzzing
has long been an effective technique for uncovering these
vulnerabilities through automated test generation, and it has
long been recognized as an effective technique for uncovering
these software vulnerabilities [1]. As network services grow
in complexity and scale, the importance of discovering imple-

mentation flaws, especially in stateful protocols with finite-
state machines (FSMs), increases. Network protocol fuzzing
attempts to systematically test protocol implementations by
generating malformed, unexpected, or semi-valid protocol
messages to identify anomalous behavior. However, traditional
fuzzing methods often struggle with unique protocol chal-
lenges, such as handling complex grammar formats, managing
deep-protocol state transitions, and maintaining valid session
semantics across multi-packet interactions [2].

Recent research highlight multiple directions in the advance-
ment of protocol fuzzing, including state-aware input gen-
eration and automated reverse engineering of undocumented
protocols [3], [4]. Despite these developments, achieving high
coverage and deeper state exploration remains difficult, par-
ticularly for closed-source or proprietary protocols. This has
motivated the integration of more intelligent components into
the fuzzing loop.

The rise of LLMs has opened new avenues for automating
traditionally manual tasks in software engineering. LLMs have
demonstrated strong capabilities in reasoning, code under-
standing, and program synthesis [5], [6]. Their potential in
security applications, including fuzzing, has begun to evolve.
Studies show that LLMs can infer message grammars, generate
valid input sequences, and even simulate stateful behavior
without access to source code [7], [8]. Recent works such as
ChatAFL introduced LLM-guided protocol fuzzing, resulting
in improved protocol state coverage [9]. These developments
highlight LLMs as promising assistants for fuzzing complex,
stateful, and security-critical systems.

In this work, we present MultiFuzz, a multi-agent system
built on top of ChatAFL, designed to enhance network proto-
col fuzzing by unleashing the capabilities of LLMs and dense
retrieval [10]. Inspired by recent advancements in retrieval-
augmented generation and ReAct-based chain-of-thought rea-
soning [11], [12], MultiFuzz is structured around collaborative
agents, each responsible for a specific phase of the ChatAFL
fuzzing pipeline. Unlike traditional fuzzers or single LLM
approaches, MultiFuzz orchestrates tool-augmented agents to
maintain semantic context support and protocol-specific infer-
ence.
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The main contributions of this work are as follows:
• We propose MultiFuzz, a multi-agent system for protocol

fuzzing, integrated with the ChatAFL framework, where
each group of agents is dedicated to a specific subtask and
enhanced with tool integration, vector database context
awareness, and CVE-driven vulnerability knowledge.

• We introduce an agentic-chunking method and embed-
ding strategy for protocol RFC documents, enabling
semantic indexing of protocol knowledge for agent use.

• We integrate dense retrieval into the agent reasoning
process to maintain a protocol-aware context and guide
more effective fuzzing actions.

• We evaluate MultiFuzz on stateful protocol targets, and
the results demonstrate improvements in branch coverage,
number of states explored, and state transitions compared
to SOTA fuzzers such as NSFuzz, AFLNet, and ChatAFL.

Through MultiFuzz, we aim to bridge the gap between
protocol-aware fuzzing needs and the generative coordination
capabilities of modern agentic-AI architecture, allowing more
intelligent and effective protocol fuzzing.

The paper is structured as follows: Section II introduces
background on protocol fuzzing, LLMs, and multi-agent sys-
tems. Section III reviews the related work. Section IV explains
our methodology. Section V explores the research questions,
experiments’ setup, and evaluation metrics. Section VI high-
lights the experimental results. Finally, section VII concludes
the paper and suggests potential directions for future works.

II. BACKGROUND

The following subsections review key concepts and recent
developments in network protocol fuzzing, LLMs, and multi-
agent systems, providing background information for their
integration in modern frameworks.

A. Network Protocol Fuzzing

Protocol fuzzing is a specialized security-testing technique
that targets the finite-state behavior of communication proto-
cols by injecting crafted or mutated packets to uncover flaws. It
relies on intelligently generating seed inputs that exercise dif-
ferent protocol states, since exploring deep protocol behaviors
often exposes hidden vulnerabilities. Network protocol fuzzing
focuses on testing stateful network services by feeding packet
sequences through the protocol’s FSM in the server under
test (SUT). The goal is to traverse unusual protocol paths
and trigger implementation bugs or security flaws. Fuzzers
can be broadly classified by their test case generation strat-
egy. Mutation-based approaches modify existing valid packets
using bit-flipping, arithmetic, block-level, or dictionary-based
transformations [13]. In contrast, generation-based approaches
synthesize packets from protocol specifications or templates.
While mutation methods may struggle with diverse data types
and protocol constraints, generation-based methods often face
difficulties in acquiring or modeling accurate protocol specifi-
cations. Additionally, based on the level of knowledge about
the target system, fuzzing can be categorized into blackbox,
whitebox, and graybox approaches. Blackbox fuzzers operate

without internal knowledge of the protocol implementation,
relying solely on input/output observation. White-box fuzzers
analyze the source code to guide test case generation, while
gray-box fuzzers use lightweight instrumentation as code
coverage feedback to guide mutations more effectively. In
practice, graybox fuzzing offers a balanced trade-off and is
widely used due to limited access to source code in real-world
protocol implementations [14].

B. Large Language Models

LLMs have recently demonstrated powerful capabilities in
generating and reasoning over complex inputs, opening new
opportunities for automation in domains like software testing
and cybersecurity [7], [8]. They are deep transformer-based
neural networks [15], trained on massive text corpora, enabling
them to generate coherent language and perform complex
reasoning [12]. Their rich knowledge and generative power
have been harnessed in many domains. In cybersecurity, LLMs
have shown remarkable utility. For example, ChatPhishDetec-
tor uses an LLM to detect phishing websites [16]. Maklad. Y.
et al demonstrated how LLMs, enhanced by RAG and chain-
of-thought reasoning, can be used to evaluate seed enrichment
tasks and network packet generation [17]. SeedMind explored
the use of LLMs for building fuzzing seed generators [18].
Codamosa highlights the use of LLMs in overcoming cov-
erage plateaus in test generation [19]. LLMs have also been
integrated into automation workflows such as Robotic Process
Automation (RPA) and OCR [20]–[22]. These results highlight
that LLMs, when incorporated intelligently, can enhance the
accuracy and efficiency of automation systems.

C. Multi-Agent Systems

Multi-agent systems consist of multiple autonomous enti-
ties (agents) that interact and collaborate to solve tasks. By
harnessing the diverse capabilities and roles of individual
agents, multi-agent systems can tackle complex problems more
effectively than a single agent could [23]. For example, agents
might divide a workflow so that some gather information,
others perform reasoning, and yet others execute actions.
However, orchestrating agents also introduces challenges like
optimal task allocation, sharing complex context information,
and memory management, which become critical in LLM-
based multi-agent architectures. In security applications, multi-
agent LLM architectures have begun to emerge. A recent
effort has introduced PentestAgent [24], a framework in which
multiple agents collaborate to automate penetration testing
and vulnerability analysis. This demonstrates how multi-agent
systems can decompose a complex task (like pentesting)
into subtasks handled by specialized LLM agents, improving
overall efficiency.

III. RELATED WORK

A. Protocol Fuzzing

Fuzzing has proven to be one of the most effective tech-
niques for vulnerability discovery. Protocol fuzzing, in partic-
ular, poses unique challenges due to its reliance on structured



Fig. 1. High-Level System Architecture of the MultiFuzz Framework, based on AFLNet and ChatAFL

formats and stateful interactions. Existing techniques outlined
earlier in section II, which are blackbox, whitebox, and
graybox fuzzing approaches, offer different trade-offs between
scalability, precision, and required prior knowledge of the
target protocol.

1) Blackbox Fuzzing: Blackbox fuzzers operate without
any internal knowledge of the target and typically rely on
traffic observation or mutation of recorded protocol messages.
Tools like SPIKE and Peach exemplify early blackbox efforts,
relying on manual specification of protocol structures [25].
PULSAR and BBuzz extract message formats from captured
network traffic using protocol reverse engineering techniques
[26], [27]. These methods are simple to deploy but struggle
with exploring deeper protocol states, often failing to maintain
session validity across multi-message interactions.

2) Whitebox Fuzzing: Whitebox fuzzers leverage full ac-
cess to source code or binaries to systematically explore
execution paths. Symbolic execution and taint analysis are
commonly used to analyze input-dependent behaviors. Polar
combines static analysis with dynamic taint tracking to extract
input-related conditions from protocol code [14]. While these
techniques offer fine-grained insight and deeper coverage, their
scalability is limited by path explosion and instrumentation
overhead. Whitebox fuzzers are less commonly used in net-
work protocol contexts due to the complexity of protocol
stacks and message interleaving.

3) Graybox Fuzzing: Graybox fuzzers balance insight and
scalability by utilizing lightweight instrumentation to guide
input mutations. AFL and its extensibles, like AFL++ and
AFLNet, employ coverage feedback to direct test-case gen-
eration [28]–[30]. AFLNet extends AFL to stateful network
protocols by using response codes to infer protocol state

transitions. NSFuzz further improves graybox fuzzing by ex-
tracting program variables associated with state changes to
better synchronize test inputs with protocol logic [31]. These
tools have proven effective on real-world network services and
are the foundation for many modern protocol fuzzers.

B. Large Language Model-assisted Fuzzing

Recent research has explored the integration of LLMs into
fuzzing pipelines. These models offer the ability to generate
syntactically correct and semantically meaningful inputs by
leveraging knowledge learned during pre-training. ChatFuzz
uses OpenAI’s ChatGPT to mutate existing seed inputs, re-
sulting in improved edge coverage compared to AFL++ [32].
ChatAFL constructs message grammars and predicts the next
protocol message using GPT models, achieving significant
gains in state and code coverage over AFLNet and NSFuzz
[9]. MSFuzz extracts abstract syntax trees from the protocol
source code via LLMs to guide syntax-aware mutation [33].
TitanFuzz and FuzzGPT show that LLMs can function as zero-
shot fuzzers for deep learning libraries by generating edge
case inputs and exploiting rare model behaviors without instru-
mentation or prior seeds [34], [35]. These works demonstrate
that LLMs can serve as powerful assistants in automating
grammar extraction, seed generation, and mutation strategies
for protocol fuzzing.

IV. METHODOLOGY

This section details the design of the MultiFuzz framework
and its agent-based workflows. The MultiFuzz framework
APIs are integrated in the ChatAFL framework, on top of
the AFLNet architecture. The whole system architecture can
be shown in Figure 1. MultiFuzz is structured around three



specialized crews of agents: the Grammar Extraction Crew,
the Seed Enrichment Crew, and the Coverage Plateau Crew.
Each crew operates over a shared semantic context retrieved at
inference by a common dense retrieval agent, which retrieves
the agentic chunked embeddings in the vector store. The
workflow begins with preprocessing protocol RFCs, then trans-
forms the content into propositional transformation, followed
by agentic chunking, and finally, collaborative agent reasoning
at inference.

System Prompt for Propositional Transformation

Decompose the RFC documents’ content given into clear and simple text
propositions, ensuring they are interpretable out of context.
Rules to follow:

1) Split compound sentences into simple sentences. Maintain the original
phrasing whenever possible.

2) For any named entity with descriptive information, separate this
information into its own distinct proposition.

3) Decontextualize propositions by adding necessary modifiers and re-
placing pronouns (e.g., ”it”, ”they”, ”this”) with the corresponding full
entities.

4) Preserve the structure and formatting of any network packet example,
protocol message, or code snippet. Do not summarize them.

5) Present the results as a list of strings formatted in JSON.

Example:

Input: ”The DESCRIBE method retrieves the description of a media object, it
accepts application/sdp...”
Expected Output:

{”sentences”: [”The DESCRIBE method retrieves the description...”, ”The
DESCRIBE method accepts application/sdp...”]
}

Fig. 2. System prompt used for propositional transformation of
filtered RFC documents

Sample Document Chunk Post Agentic Chunking

{
”<chunk id>”: {
”title”: ”RTSP Streaming Protocols and Resource Management”,
”summary”: ”This chunk contains information about RTSP controls in stream-
ing protocols, emphasizing session management, RTSP URL semantics, and
transmission methods, while including examples and method functionalities.”,
”propositions”: [
”SETUP starts an RTSP session.”,
”PLAY starts data transmission on a stream allocated via SETUP.”,
”PAUSE does not free server resources.”,
”TEARDOWN causes the RTSP session to cease to exist on the server.”,
”RTSP methods that contribute to state use the Session header field.”,
”The ’rtsp’ scheme requires that commands are issued via a reliable protocol,
specifically TCP.”,
”Lines in RTSP messages are terminated by CRLF.”,
”RTSP methods are idempotent unless otherwise noted.”,
”For the scheme ’rtsp’, a persistent connection is assumed.”,
”...”,
]

}
}

Fig. 3. Sample document chunk after the agentic chunking phase of
text propositions.

A. RFC Documents Preprocessing

We first process the RFC documents, where each RFC is
manually segmented into paragraphs and then passes through a
series of filters to extract technical sections, including stateful
interactions, command formats, and response rules. We define
an RFC as a sequence of paragraphs R = {r1, r2, ..., rn}.

A semantic classifier ffilter maps each paragraph to a boolean
label:

ffilter(ri) =

{
1 if ri is protocol-relevant
0 otherwise

(1)

Only filtered paragraphs R′ = {ri ∈ R | ffilter(ri) = 1} are
retained for downstream chunking and proposition extraction.

B. Propositional Transformation

Once the RFC content has been semantically filtered and
structured into coherent sections using specific delimiters
(###, ---, @@@), the next step in the pipeline is to trans-
form these technical paragraphs into interpretable, context-
independent atomic propositions. To perform this transforma-
tion, we constructed an LLM-powered pipeline. Each filtered
section is first processed using a carefully designed system
prompt, shown in Figure 2. The prompt is executed using the
gpt-4o-mini model with structured output enforced by a JSON
schema. Each chunk of the RFC document is passed through
this pipeline, producing a list of minimal, decontextualized
statements that accurately capture the semantics of the protocol
specification. Formally, for a given input chunk Ci ∈ C where
C is the set of smart RFC chunks, the transformation function
T produces:

T (Ci) = {p1, p2, . . . , pk}, where each pj ∈ P

Here, P denotes the proposition space containing linguis-
tically simple, context-independent units of meaning. As a
result, each paragraph Ci is mapped to a finite set of logically
coherent propositions, and the global proposition set P be-
comes the knowledge substrate for subsequent dense retrieval
and crew-based inference modules. In our experiments on
RFC-2326 (RTSP), this step yielded 445 unique and precise
propositions.

C. Agentic Chunking Module

Following the propositional transformation step, we employ
an intelligent chunking mechanism termed the Agentic Chun-
ker to group semantically similar propositions into cohesive
and operationally meaningful units. This process creates the
foundation for precise retrieval and role-specific agent infer-
ence in later stages of the MultiFuzz framework.

Formally, given a set of propositions P = {p1, p2, . . . , pn}
derived from the RFC document, the goal is to partition
P into a set of non-overlapping semantic chunks Z =
{z1, z2, . . . , zm}, where each zj ⊆ P and

⋃m
j=1 zj = P. The

chunking objective can be viewed as an unsupervised grouping
problem constrained by topic cohesion, guided by an LLM.

The chunking process is agentic in nature: each incoming
proposition pi is evaluated using a prompt-driven LLM flow by
gpt-4o-mini. This LLM first examines the current set of chunk
summaries and determines whether pi semantically aligns with
any existing chunk zj . If alignment is detected, pi is appended
to that chunk. Otherwise, a new chunk is instantiated.

Each chunk zj maintains three evolving elements:



Dense Retrieval Agent

Grammar Extraction Agent

Grammar Formatting Agent Grammar Formatting Tool

Grammar Extraction Crew
Analysis Agent

Vulnerabilities Agent

Coverage Surpassing Agent

CVEs Retrieval Tool

Packet Parsing Tool

Coverage Plateau Crew

Seeds Enricher Agent Seeds Parsing Tool

Seed Enrichment Crew

Fig. 4. Summary of the MultiFuzz’s crews, showing each crew’s internal agents and integrated tools. All three crews share a Dense Retrieval
Agent for semantic context fetching.

• A list of constituent propositions {pk}Kk=1,
• A concise chunk summary sj generated by the LLM.
• A descriptive, technically precise chunk title tj .
The internal logic can be modeled as a two-stage LLM

pipeline:
1) Chunk Selection: Given current chunk outlines and a

new proposition pi, select the most semantically com-
patible chunk zj such that:

zj = argmax
z∈Z

sim(pi, sz)

If max sim < θ, where θ is a system-defined compati-
bility threshold, a new chunk is created.

2) Metadata Refinement: After assignment, the system
regenerates the chunk’s summary sj and title tj using
structured prompt templates conditioned on the current
list of propositions.

The final output is a collection of richly annotated document
objects, each encapsulating a semantic group of RFC-derived
propositions, along with human-readable summaries and titles.
These document objects were then embedded using OpenAI’s
text-embedding-ada-002 model and indexed into a Chroma-
based dense vector database. A sample document object can
be shown in Figure 3.

D. Dense Retrieval Agent

The first common agent in all crews is the dense retrieval
agent. This agent is responsible for querying a Chroma-based
dense vector store populated with semantically grouped RTSP
agentic chunks. It utilizes a Custom RAG Tool, to per-
form approximate nearest neighbor search against the indexed
chunks. The output of this agent is a context-rich corpus of
relevant documents passed to assist all agents with their tasks.

E. Grammar Extraction Crew of Agents

The Grammar Extraction Crew is the first crew of agents
designed to extract structured RTSP client request templates

for ChatAFL. It operates through three agents: a dense retrieval
agent, a grammar extraction agent, and a grammar formatting
agent.

Grammar Extraction Agent: This agent uses the re-
trieved context to produce JSON-formatted RTSP request
templates, where each method (e.g. PLAY, DESCRIBE) maps
to a list of headers containing <<VALUE>> placeholders and
\r\n terminators.

Grammar Formatting Agent: It refines the raw JSON
output into a clean, numbered textual format using the
Grammar Extraction Formatting Tool, making it
easier to parse in the ChatAFL grammar parsing module.

F. Seed Enrichment Crew of Agents
The Seed Enrichment Crew is a two-agent crew designed to

enhance a given sequence of RTSP client requests by inserting
new protocol-compliant packets at semantically correct posi-
tions. This enrichment supports fuzzers by generating deeper,
more state-aware input sequences. The first agent is the dense
retrieval agent, and the second is the seeds enricher agent.

Seeds Enricher Agent: This agent interprets the proto-
col’s FSM and uses retrieved context from the dense retrieval
agent to insert two desired client requests, typically absent
from the original seed into their appropriate positions as
adopted in ChatAFL. It ensures server responses are excluded
and leverages the Seeds Parsing Tool to generate struc-
tured outputs of continuous enriched network packets. These
enriched seeds are structured to be easily parsed by the
ChatAFL parsing module.

G. Coverage Plateau Surpassing Crew of Agents
The Coverage Plateau Surpassing Crew is designed to

help the fuzzer escape stagnation points during test execution,
where no new protocol states or code paths are being explored
as observed in ChatAFL. This crew of agents aims to generate
packets that can trigger new transitions by analyzing commu-
nication history, retrieved context, and optionally exploiting
known CVEs.



Analysis Agent: This agent performs deep context anal-
ysis of the context retrieved from the dense retrieval agent
and the fuzzer’s communication history to construct a detailed
generation prompt. Rather than producing packets directly, it
crafts precise instructions to guide the next agent in generating
a coverage-enhancing input.

Vulnerabilities Agent: To improve the chance of pro-
ducing impactful packets, this agent enriches the genera-
tion prompt with insights from real CVEs, fetched using a
CVEs Retrieval Tool which uses the NVD (National
Vulnerability Database) API to obtain the Live555 server
vulnerabilities [36]. If any vulnerability discovered is relevant
to the current communication context, the prompt is refined
accordingly; otherwise, it is forwarded unchanged.

Coverage Surpassing Agent: Finally, this agent con-
sumes the refined prompt and generates a valid RTSP client
request designed to surpass the coverage plateau. The agent
uses a Packet Parsing Tool to structure the final packet
and log it along with an explanation of its purpose. A
generated sample prompt can be shown in Figure 5.

Sample Prompt to generate Coverage Plateau Packet

”prompt”: {
”To surpass the current coverage plateau, Generate a PAUSE request
that will transition the server from the Playing state to the Ready
state. The PAUSE method should be sent with the appropriate
headers, including CSeq: 5, Session: 000022B8, and the method
set to PAUSE. This will explore the state transition from Playing
to Ready, potentially revealing new server behaviors and increasing
coverage.”
}

Fig. 5. Sample prompt asking the final agent to generate a coverage
plateau surpassing packet

H. Implementation

We have developed MultiFuzz on top of two agentic-AI
frameworks: LangChain [37] and CrewAI [38]. LangChain
provides abstractions for building applications on top of
LLMs. We use the LangChain framework combined with
the Chroma vector store for embedding and indexing. We
utilize it’s features specifically in the RFC processing stage
for RFC document agentic chunking and during the dense
retrieval inference in all agent tasks. CrewAI, on the other
hand, is used to build autonomous multi-agent systems and
provides modular assignment of agents to specific and unique
roles. It supports integration with multiple LLM API providers
and offers native support for tool-assisted workflows, enabling
agents to interact with file systems and vector databases.
We use CrewAI in defining and orchestrating the agents that
compose the MultiFuzz framework. These structured agent
groups, or ”crews”, coordinate within the ChatAFL framework
using event-driven task scheduling augmented with custom
structured tools.

V. EXPERIMENTAL DESIGN AND EVALUATION

We evaluate the proposed MultiFuzz framework by measur-
ing its effectiveness in fuzzing stateful protocol implementa-

tions using a multi-agent-based architecture. Our evaluation
aims to answer the following research questions:

• RQ1: How effective is MultiFuzz in improving branch
coverage and state exploration compared to SOTA proto-
col fuzzers?

• RQ2: How does the multi-agent collaboration strategy
improve over single-LLM approaches such as ChatAFL?

To conduct the evaluation, we test MultiFuzz on the
RTSP protocol implemented by the Live555 media stream-
ing server. RTSP was selected due to its rich stateful be-
havior, complexity in session semantics, and widespread
use in multimedia transmission. It presents non-trivial state
transitions that make it a fitting candidate for state-aware
fuzzing. The framework is powered by Llama-based language
models obtained via the Groq-Cloud API [39], which are:
llama3.3-70b-versatile, deepseek-r1-distill-llama-70b, llama3-
70b-8192, llama-4-scout-17b-16e-instruct, and llama-3.1-8b-
instant, chosen for their reasoning abilities, and long-context
window capacities. Throughout the experimentation process,
we explored different combinations of these models across the
various agent groups in the framework. Tasks such as gram-
mar extraction, seed enrichment, and plateau surpassing were
assigned to different models iteratively until the most effective
model was identified for each specific subtask, optimizing the
overall performance of MultiFuzz.

A. Experiments Setup

To evaluate the fuzzing effectiveness of MultiFuzz, we con-
ducted a 24-hour three fuzzing sessions using our framework
alongside the three SOTA baseline fuzzers: NSFuzz, AFLNet,
and ChatAFL under the same experimental conditions. All
experiments were performed on a local machine running
Ubuntu 24.04.02 LTS, equipped with an Intel Core i5-11300H
processor and 16 GB of RAM. The fuzzers were evaluated
against the RTSP protocol implemented in the Live555 media
streaming server. Each fuzzer was independently executed with
default settings. We measured the effectiveness of each fuzzer
across several key metrics, including unique crashes, state
coverage, branch coverage, and total paths explored. This setup
allows us to assess the relative performance of MultiFuzz in
contrast with existing approaches.

B. Evaluation Metrics

To evaluate MultiFuzz’s fuzzing performance, we adopted
standard coverage-based metrics inspired by existing works
such as AFLNet and ChatAFL:

• Branch Coverage: Number of unique conditional
branches exercised in the code.

• Number of States: Number of FSM states reached and
explored during fuzzing.

• Number of State Transitions: The total count of valid
state transitions triggered within the protocol’s FSM,
reflecting the depth of state space exploration.

We use ProFuzzBench [40] as our benchmarking platform
due to its automated nature in a containerized environment



using Docker and to baseline with the previous SOTA pro-
tocol fuzzers. All experiments were repeated multiple times
to ensure consistency, and results were averaged over time
windows to account for variability in execution. This setup
allows us to rigorously measure MultiFuzz’s capability to
intelligently generate protocol-aware inputs and uncover deep-
state vulnerabilities.

C. Experimental Results of Fuzzing on Code Coverage

Table I presents the branch coverage results, demonstrating
MultiFuzz’s substantial superiority in code coverage metrics.
MultiFuzz achieves an average branch coverage of 2940
branches, representing dramatic improvements of 1.0% over
ChatAFL (2912.67), 2.8% over AFLNet (2860), and 2.3%
over NSFuzz (2807). Although these percentage improvements
may appear modest, the absolute differences are significant in
the context of protocol fuzzing, where each additional branch
represents potential discovery of critical vulnerabilities. The
consistency of MultiFuzz’s performance is particularly note-
worthy, with coverage ranging from 2970 to 2940 branches
across experiments, demonstrating reliable and predictable
performance. In contrast, ChatAFL shows higher variability
(2890-2998 branches), while AFLNet exhibits perfect con-
sistency but at significantly lower coverage levels. NSFuzz
demonstrates the most variability, with coverage ranging from
2795 to 2826 branches.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Results of Fuzzing on State Exploration

Table II and Table III demonstrate that compared to NSFuzz,
AFLNet, and ChatAFL, MultiFuzz achieves superior perfor-
mance in both state transitions and state exploration across all
three experimental runs. In terms of state transitions, Multi-
Fuzz achieves an average of 163.33 transitions, representing
a significant improvement of 2.3% over ChatAFL (159.67),
94.5% over AFLNet (84.0), and 81.2% over NSFuzz (90.33).
The state exploration results further validate MultiFuzz’s effec-
tiveness, with an average of 14.67 states explored compared to
ChatAFL’s 14.33 states, AFLNet’s 10.0 states, and NSFuzz’s
11.7 states. This represents improvements of 2.4%, 46.7%, and
25.4% respectively.

TABLE I: Branch coverage achieved by MultiFuzz and baseline
SOTA fuzzers

Experiment MultiFuzz ChatAFL AFLNet NSFuzz
1 2970 2890 ↑ 2.8% 2850 ↑ 4.2% 2800 ↑ 6.1%
2 2910 2998 ↓ -2.9% 2870 ↑ 1.4% 2795 ↑ 4.1%
3 2940 2850 ↑ 3.2% 2860 ↑ 2.8% 2826 ↑ 4.0%

Average 2940.0 2912.67 ↑ 0.9% 2860.0 ↑ 2.8% 2807.0 ↑ 4.7%

TABLE II: Number of state transitions achieved by MultiFuzz and
baseline SOTA fuzzers

Experiment MultiFuzz ChatAFL AFLNet NSFuzz
1 163 159 ↑ 2.5% 80 ↑ 103.8% 88 ↑ 85.2%
2 165 158 ↑ 4.4% 85 ↑ 94.1% 91 ↑ 81.3%
3 162 162 ↑ 0.0% 87 ↑ 86.2% 92 ↑ 76.1%

Average 163.33 159.67 ↑ 2.3% 84.0 ↑ 94.4% 90.33 ↑ 80.8%

TABLE III: Number of states explored by MultiFuzz and baseline
SOTA fuzzers

Experiment MultiFuzz ChatAFL AFLNet NSFuzz
1 14 14 ↑ 0.0% 9 ↑ 55.6% 12 ↑ 16.7%
2 15 14 ↑ 7.1% 11 ↑ 36.4% 11 ↑ 36.4%
3 15 15 ↑ 0.0% 10 ↑ 50.0% 12 ↑ 25.0%

Average 14.67 14.33 ↑ 2.4% 10.0 ↑ 46.7% 11.7 ↑ 25.4%

B. Observations

The dense retrieval-based multi-agent system of MultiFuzz
enables more systematic state space exploration by leveraging
the agented-chunked and embedded protocol specifications and
coordinated agent interactions. Unlike baseline fuzzers that
rely on conventional feedback-driven exploration, MultiFuzz’s
multi-agent architecture facilitates comprehensive state discov-
ery through intelligent coordination and knowledge sharing
among specialized agents. The results indicate that MultiFuzz’s
dense retrieval mechanism effectively identifies and prioritizes
valuable states that serve as critical transition points within the
protocol state machine. The multi-agent coordination allows
for parallel exploration strategies while maintaining system-
atic coverage of the state space. This approach significantly
outperforms traditional fuzzing methods that rely on random
mutation and single LLM approaches.

VII. CONCLUSION AND FUTURE WORK

Protocol fuzzing continues to be a foundational technique
for uncovering implementation flaws in communication sys-
tems. However, traditional fuzzers often face significant limita-
tions when applied to stateful or proprietary network protocols,
particularly due to difficulties in handling complex message
grammars, managing multi-step state transitions, and main-
taining valid interactions across sessions. We proposed Multi-
Fuzz, a dense retrieval-based multi-agent system designed to
address these limitations by leveraging an agentic-RAG-based
architecture empowered by chain-of-thought reasoning. Our
approach builds upon prior advances in LLM-assisted fuzzing
but distinguishes itself by introducing multi-agent coordination
instead of a single LLM. It proposes agentic-based chunking
of protocol documents and context-aware inference about
protocol specifications and vulnerabilities. These additions
help overcome key challenges in stateful fuzzing, such as
low coverage and stagnation during long-running sessions.
Evaluation across real-world protocol implementations has
shown that MultiFuzz surpasses existing tools such as NSFuzz,
AFLNet, and ChatAFL in terms of state exploration and
branch coverage. These findings bridge the gap between tradi-
tional fuzzing methodologies and recent advances in agentic-
AI, as they open promising opportunities for more effective
and adaptive security testing.

Looking forward, we suggest several paths to extend this
work. Firstly, enhancing automation by tightly integrating re-
verse engineering tools, symbolic analyzers, and traffic parsers
can further streamline the entire pipeline. Lastly, fine-tuning
agent behaviors using domain-specific interaction data could
improve their effectiveness in specialized protocol domains.
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