arXiv:2508.14261v1 [cs.CR] 19 Aug 2025

SaMOSA: Sandbox for Malware Orchestration and Side-Channel
Analysis

Meet Udeshi

m.udeshi@nyu.edu
NYU Tandon School of Engineering
Brookyln, NY, USA

Ramesh Karri
rkarri@nyu.edu
NYU Tandon School of Engineering
Brookyln, NY, USA

ABSTRACT

Cyber-attacks on operational technology (OT) and cyber-physical
systems (CPS) have increased tremendously in recent years with
the proliferation of malware targeting Linux-based embedded de-
vices of OT and CPS systems. Comprehensive malware detection
requires dynamic analysis of execution behavior in addition to static
analysis of binaries. Safe execution of malware in a manner that
captures relevant behaviors via side-channels requires a sandbox
environment. Existing Linux sandboxes are built for specific tasks,
only capture one or two side-channels, and do not offer customiza-
tion for different analysis tasks. We present the SaMOSA Linux
sandbox that allows emulation of Linux malwares while capturing
time-synchronized side-channels from four sources. SaMOSA addi-
tionally provides emulation of network services via FakeNet, and
allows orchestration and customization of the sandbox environ-
ment via pipeline hooks. In comparison to existing Linux sandboxes,
SaMOSA captures more side-channels namely system calls, net-
work activity, disk activity, and hardware performance counters. It
supports three architectures predominantly used in OT and CPS
namely x86-64, ARM64, and PowerPC 64. SaMOSA fills a gap in
Linux malware analysis by providing a modular and customizable
sandbox framework that can be adapted for many malware analy-
sis tasks. We present three case studies of three different malware
families to demonstrate the advantages of SaMOSA.

CCS CONCEPTS

« Security and privacy — Malware and its mitigation; Virtu-
alization and security; Distributed systems security.

KEYWORDS

Linux Sandbox, Malware Analysis, Malware Emulation, Operational
Technology, Side Channels

1 INTRODUCTION

The proliferation of embedded computers connected to the internet
has grown immensely with the modernization of operational tech-
nology (OT) and cyber-physical systems (CPS). Majority of these
run a Linux operating system (OS) on ARM, PowerPC or x86 archi-
tectures [2, 7]. In effect, malwares targetted towards Linux-based
embedded devices have seen a proportional spike. While malware
analysis has long focused on Windows due to widespread adoption

Venkata Sai Charan Putrevu
v.putrevu@nyu.edu
NYU Tandon School of Engineering
Brookyln, NY, USA

Prashanth Krishnamurthy
prashanth krishnamurthy@nyu.edu
NYU Tandon School of Engineering

Brookyln, NY, USA

Farshad Khorrami

khorrami@nyu.edu
NYU Tandon School of Engineering
Brookyln, NY, USA

and higher prevalence of attacks, analysis of Linux binaries is ex-
tremely important for OT and CPS security, so that malwares are
detected before they cause lasting damage. While static analysis
can reveal known malwares based on code signatures, an unseen
malware’s intentions become more apparent during execution, thus
requiring dynamic analysis of execution behavior. Dynamic analysis
of malware involves analysis of its execution trace captured via dif-
ferent side-channel sources such as system calls (syscall), hardware
performance counters (HPC), network activity, and disk activity
[10, 24]. Many approaches use statistical and machine learning
based methods to detect anomalous execution behavior [1]. While
methods focused on embedded devices of OT and CPS primar-
ily use microarchitectural side-channels such as HPC [14, 26, 27],
some incorporate multiple sources simultaneously for more elabo-
rate detection [28]. For dynamic analysis, safe execution of binaries
requires a sandbox environment where a malware is sufficiently iso-
lated so that it cannot affect important systems, yet it is provided all
capabilities to perform malicious actions. Additionally, the sandbox
should capture all relevant information about the binary’s execu-
tion such that any malicious behavior is meaningfully tracked and
can be detected. We present the SaMOSA sandbox that is tailored
for Linux malware analysis, supports multiple processor architec-
tures popular in OT and CPS, captures multiple side-channels for
in-depth analysis, provides pipeline hooks for custom orchestration
of the sandbox environment, and automates the end-to-end execu-
tion pipeline. Alrawi et al. [3] studied malware sandboxes of the
last 20 years and proposed sandbox design guidelines in which they
outlined that the sandbox should rely on emulation or virtualiza-
tion, be modular and customizable, perform monitoring outside the
sandbox environment as much as possible, provide a realistic OS
along with an emulated network environment to trigger malware
behavior, and collect monitoring data from multiple components
for comparative analysis. SaMOSA is designed in line with these
guidelines. The contributions of this paper are threefold:

(1) The SaMOSA sandbox for automated malware emulation
and analysis on Linux for x86, ARM, and PowerPC

(2) Orchestration framework to run user-defined commands
and scripts via pipeline hooks, providing versatility and
customization for different malware analysis

(3) Capturing four time-synchronized side-channels (system
calls, hardware performance counters, network activity,
disk activity) for deep insights into malware behavior

https://arxiv.org/abs/2508.14261v1

Meet Udeshi, Venkata Sai Charan Putrevu, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami

2 RELATED WORK

Table 1: Comparison of existing Linux sandboxes

AEE

= =

- E . . © m =

§E % § § 2 x £

S 52335 5 %

2 £ %3 &%

Sandbox S zZ T A & 2z 6
Limon [17] X v X x v x X
F-Sanbox [18] X v X x v X X
Detux [12] o/ X X /X X
Padawan [10] /X X v /X
ELFEN [13] /X X /X X
LiSa [25] o/ X X /X X
SaMOSA (ours) v v Vv V V V V/

Several sandboxes have been developed for binary analysis.
Cuckoo Sandbox [11] and its open-source successor CAPE Sandbox
[6] are widely used for Windows, however they do not support
Linux binaries and require complex, time-consuming configura-
tion. To address this gap, several Linux sandboxes were developed.
Limon [17] and Detux [12] are Python-based sandboxes for emu-
lating Linux malwares. However, their scripts and VM images are
out-dated, posing challenges in updating to latest OS and software
needed to analyze recent malware. F-sandbox [18], derived from
Firmadyne [8] and Detux frameworks, is specifically designed for
ELF malware targeting MIPS architecture. Padawan sandbox [10]
performs static analysis via binary disassembly and employs QEMU
for sandboxing and dynamic analysis with support for multiple ar-
chitectures. It captures low-level kernel and userspace events via
SystemTap. However, Padawan is closed-source and not publicly
available, posing similar challenges in updating to latest software.
LiSa Sandbox[25] and ELFEN [13] are recent fully automated Linux
malware analysis platforms, supporting static analysis via strings
and YARA signatures and dynamic analysis via QEMU emulation.
LiSa also captures system calls via SystemTap and additionally
captures network activity from inside the sandbox, while ELFEN
relies on eBPF filters. Both LiSa and ELFEN use buildroot-based
custom-compiled OS images that provide a minimal Linux environ-
ment which may not represent a full-featured OS environment like
Ubuntu. Also, using SystemTap or eBPF for capturing system calls
and events requires implementing custom filters for specific events
which is more suitable for debugging specific issues rather than
capturing comprehensive system information for malware analysis.

Although these sandboxes target Linux, they are limited in the
environments they provide and the execution traces they capture.
To address these limitations, we developed a Linux sandbox that
fully automates the binary execution pipeline and captures granular
time series based execution trace information regarding system
calls, hardware performance counters, network access, and disk
activity. Table 1 provides a comprehensive feature comparison with
related sandboxes.

3 IMPLEMENTATION

SaMOSA incorporates the following components: virtual machine
(VM) emulation using QEMU [21]; network emulation using Fak-
eNet [15] and capture using tcpdump; system call capture using
sysdig [23] running inside the sandbox; hardware performance
counter (HPC) measurements of the QEMU process using perf;
and, disk access measurements via QEMU tracing. Figure 1 shows
an overview of SaMOSA with three stages: orchestration, execution,
and analysis. Orchestration involves setting up and configuring the
sandbox environment by selecting specific VM image to boot up,
providing configuration options for execution, and adding pipeline
hooks with custom scripts and commands. The orchestration stage
allows the user to customize the SaAMOSA sandbox as desired for
particular malware. Next, the execution stage boots up the VM, sets
up all monitoring utilities, initiates the desired network configura-
tion, and executes the binary. The execution stage is end-to-end
automated and does not require user involvement. Finally, the anal-
ysis stage collects the time synchronized side-channel data along
with the VM snapshot into a directory for easy post-processing. For
this paper, we perform minimal post-processing and analysis, how-
ever we ensure to capture rich data so that it can support advanced
analysis to provide deep insights.

3.1 Sandbox VM Configuration

The sandbox operates inside a virtual machine (VM) emulated us-
ing the QEMU multi-architecture emulator [21]. QEMU supports
multiple architectures popular in OT and CPS systems like x86,
ARM, and PowerPC. We operate QEMU in full-system emulation
mode to run an entire OS instead of single binaries. Unlike existing
sandboxes, we install the popular OSes like Ubuntu or Debian on
the VM instead of building a custom minimal OS. This provides
a realistic environment in the sandbox that reflects real-world se-
tups. SaMOSA’s architecture support also depends on Sysdig and
filesystem device availability. We support three architectures with
SaMOSA: x86-64, ARM64, and PowerPCé64 little endian (PPC64LE).
We built VM images pre-installed with Ubuntu 20.04 for x86-64
and ARM64. We used a pre-built Debain Trixie QEMU image for
PPC64LE!. We installed the Sysdig prebuilt packages for x86-64
and ARM64, and compiled it from source code for PPC64LE as no
pre-built package was available. We could not use Ubuntu 20.04
for PPC64LE as Sysdig compilation failed due to a kernel version
incompatibility, so we chose the Debian image.

For x86-64, we run QEMU with kernel virtualization (KVM) so
it runs on the host CPU. We attach a NVMe disk device that traces
reads and writes with a logical block address. For ARM64, we run
the virt machine with a Cortex A72 CPU to mimic the hardware of
a Raspberry Pi. As NVMe is not supported, we attach a virtio block
device that traces reads and writes with a sector address instead.
For PPC64LE, we run the P-series machine with the Power9 CPU,
and attach a NVMe disk device. For each architecture, the VMs are
booted with 4GB RAM and 4 cores.

3.2 Network Configuration and FakeNet

We create a network bridge interface along with a subordinate tap
interface on the host for the sandbox to isolate it’s network traffic

'PPC64LE image is from https://people.debian.org/~gio/dqib/.

https://people.debian.org/~gio/dqib/

SaMOSA: Sandbox for Malware Orchestration and Side-Channel Analysis

Orchestration Execution

VM image Sandbox VM t

Bridge

FakeNet :
docker |°f '

- Network [->

Analysis

VM snapshot Time-sync side-channels

Néi&voﬂ r;cap

HPC

Syscall scap

Disk | QEMU Emulation

HPC counts

Disk activity

Figure 1: Overview of the SaMOSA sandbox. SaMOSA involves three stages: orchestration where the user configures hooks to
customize the sandbox environment, execution which executes the binary while collecting side-channels, and analysis where
the time-synchronized data is post-processed and plotted to observe correlations across multiple side-channels.

from the internet. The FakeNet tool intercepts and redirects all
network traffic according to configurable rules, emulating internet
services such as DNS or HTTP servers. We invoke FakeNet inside
a separate Docker container running on the host so that it does not
interfere with host network interfaces. The Docker container is con-
nected to the sandbox bridge, and the QEMU process is connected
to the sandbox tap. This allows FakeNet to intercept and manage all
sandbox traffic. FakeNet responds to intercepted network requests
from the sandbox with a generally positive reply (e.g., providing a
fake HTML page to an HTTP request of any URL). This emulation
enables interesting malware behaviors in case they require network
interaction with command-and-control (C2) servers to begin oper-
ations. In cases where internet access is required for a particular
malware, we do not invoke FakeNet and instead setup Network
Address Translation (NAT) for the sandbox bridge via IP tables on
the host. This is necessary when malwares download additional
payloads from the internet for further execution (e.g., cryptominer
bots download mining software from public websites like GitHub).

3.3 Side-channel Monitoring

Syscalls: System calls reveal important information about how
the binary interacts with the OS. We use sysdig [23] to capture
OS-wide system calls during binary execution. sysdig is executed
inside the VM, just before the binary, and stopped after the elapsed
execution time. It stores syscalls in a capture file that is copied out
after execution.

HPC measurement: HPC measurements capture low-level exe-
cution patterns such as cache usage, branch mispredictions, and
CPU activity. We capture HPC measurements using the perf tool
directly of the host QEMU process that emulates the sandbox. This
is advantageous over capturing HPC within the sandbox as host-
side HPC provides low-level hardware measurements reflecting the
resource usage of the entire sandbox. In contrast, collecting HPC
measurements from within the emulated system can be unreliable,
particularly when testing malware that actively evades monitoring
by disabling or tampering with system measurement tools.
Network activity: Network activity is captured via tcpdump on
the sandbox tap interface so that it records all sandbox activity
in either the FakeNet or the NAT configuration. As the VMs have
been assigned static IPs, this allows us to determine the direction
of packets into and out of the sandbox during post-processing.

Disk activity: Measuring disk activity can reveal malicious behav-
ior like reading, rewriting, and renaming multiple files typical of
ransomware, or writing logs or caches typical of crypto-miners.
We leverage QEMU’s built-in tracing infrastructure to monitor disk
activity. We trace read/write events on the emulated NVMe and
virtio block partitions, which captures logical blocks accessed. By
using QEMU’s tracing at the hypervisor layer, we avoid overloading
the sandbox with disk activity monitoring agents, thus reducing the
chance of detection or interference. Additionally, QEMU’s traces
record host-side timestamps, allowing time synchronization with
other side-channels.

3.4 Orchestration and Customization

SaMOSA is modular and customizable to allow configuration of
user-specified commands triggered via hooks in the sandbox exe-
cution pipeline. We define four hook points as follows: “Pre Setup”
before the VM is setup and booted, “Pre Run” before measurement
starts and the binary is executed, “Post Run” after binary is halted
and measurement has stopped, “Post Shutdown” after the VM is
shutdown. The “Pre Setup” and “Post Shutdown” hooks can only be
run on the host, whereas “Pre Run” and “Post Run” hooks can be
run either on the host or inside the sandbox. The hooks can be used
to create files, perform setup steps, install additional packages, or
customize the environment. In this manner, the execution pipeline
can be tailored to certain malware, for example, by setting certain
environment variables or modifying the firewall configuration in
the sandbox before execution. This makes the sandbox framework
versatile and extensible for different kinds of malware analysis.

3.5 Execution Pipeline

Figure 2 shows the step-by-step execution pipeline of the sandbox.
When the sandbox is triggered, first the “Pre Setup” hooks are
triggered. Then, a VM snapshot image is cloned from one of the
pre-installed images depending on architecture and OS, and booted
with QEMU. Disk tracing is enabled via QEMU tracing options.
Once the VM boots up, the binary is copied into the sandbox via a
secure shell copy operation (scp). Then, the “Pre Run” hooks are
triggered. FakeNet is launched inside a Docker container on the
host and connected to the sandbox bridge. HPC capture is initialized
on the QEMU process using perf. Sysdig is triggered inside the
sandbox and it writes to a temporary RAM partition so that it does

Meet Udeshi, Venkata Sai Charan Putrevu, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami

.Datg flow VM image Start Sandbox
EXSC flow -

v clone Pre Setup
Hooks

Snapshot |- Boot VM

Start disk tracing |-------- :

VM booted

Start FakeNet E :
Lol
Start HPC g
L—————> StartSysdig | |2
: gl = 11
© > [Execute Binary| :
3| X
>E o]
......... 5l 8 a3
o T
> £ |Halt Execution
g g
Stop FakeNet =
<«——— Stop Sysdig 2
Stop HPC AN
I @
i

Execution

Data Stop disk tracing

Figure 2: SaMOSA execution pipeline. Each step along with
the user-specified custom hooks run automatically to start
the sandbox, initiate side-channel monitors, execute the bi-
nary, and collect the side-channel data.

not interfere with disk activity. Then, the binary is executed. After
the configured execution time elapses, the binary is halted. The
“Execute Binary” and “Halt Execution” steps record timestamps,
so that measurements outside these timestamps can be discarded
during post-processing analysis. Subsequently, Sysdig, HPC, and
FakeNet are terminated. The “Post Run” hooks are triggered. Finally,
the syscall capture files and program output files of the binary are
copied from the VM to the host and the VM is shut down, after
which the “Post Shutdown” hooks are triggered. The pipeline is
automated end-to-end, so no user interaction is required to execute
the binary, start the components, or collect the measurements.

3.6 Analysis

The framework collects execution data and places it in a direc-
tory for post-processing. Appendix A.1 lists details of the captured
data. The captured data contains a full picture of the entire sandbox
execution so that it can support any kind of malware analysis. Auto-
mated malware detection algorithms rely on statistical or machine
learning methods that require aggregation of the data into a time
series. Whereas, deep manual analysis can involve inspecting pack-
ets and syscalls for specific information such as IP address, HTTP

URLs, or program arguments. For this paper, we aggregate the mea-
surements to display time series plots of activity to demonstrate
the advantages of capturing multiple synchronized side-channels.

Section 4 shows plots generated using our analysis. The HPC
measurements do not require further aggregation and the counts
are plot versus time directly. The disk activity is displayed as a
scatter plot where each point is plot as the logical block address
versus time, with different colors for reads and writes. Alternately,
we can aggregate the activity to plot access speed in bytes per
second or similar. Syscalls are also displayed using a scatter plot of
syscall type versus time. In this manner, we get a linear scatter plot
per syscall type showing when that syscall was triggered. Network
activity is aggregated as transmit (TX) and recieve (RX) speed in
kilobytes per second by accumulating the packet sizes in a one
millisecond window. More advanced network activity analysis is
possible by aggregating traffic per IP address and port.

4 CASE STUDIES

We present three case studies of real-world malwares from different
families. We demonstrate SaMOSA’s advantages with examples of
how orchestration helps to customize the sandbox and how the
time-synchronized side-channels reveal correlations and provide a
deeper understanding of malware behavior.

4.1 GonnaCry Ransomware

GonnaCry? is an open-source ransomware variant based on the
WannaCry ransomware [5, 9] and targetted for Linux OT systems.
It is implemented in Python and compiled as a packed binary con-
taining the Python interpreter library along with python bytecode.
GonnaCry encrypts files using 256-bit AES, secures the AES keys
using 2048-bit RSA, and “shred”s the original files on disk by over-
writing with random data to make recovery difficult. We compiled
GonnaCry on a seperate PPC64LE system and executed it with our
PPC64LE sandbox. To provide the ransomware with a variety of
files for encryption, we orchestrated the sandbox by triggering a
custom file generation script at the “Pre Run” stage. The script ran-
domly generated several files with popular document extensions
such as “doc”, “txt”, “pdf”, “ppt”, etc.

Figure 3 shows the execution activity of GonnaCry running on
PPC64LE. We display the HPC values, disk activity, and 15 of the
most frequent system calls. We do not display network activity as
there is none. The HPC values show high memory load activity
in terms of data translation look-aside buffer (dTLB) loads and L1
data cache loads, along with high memory store activity. The HPC
activity by itself indicates heavy disk access which is also seen in the
disk activity plot. Additionally, the addressing in the disk activity
plot reveal that the same logical blocks are being read and written,
indicating that many files were overwritten. We also see continuous
use of many syscalls for file reading and writing (“read”, “write”,
“llseek”, “close”, “openat”) in addition to “getrandom”, hinting at
heavy encryption activity. Certain syscalls are only present at the
start, such as “statx”, “readlinkat”, and “getdents64” which are used
for listing folder contents. Correlating behaviors across multiple
side-channels provides deeper context into GonnaCry’s behavior

Zhttps://github.com/tarcisio-marinho/GonnaCry

https://github.com/tarcisio-marinho/GonnaCry

SaMOSA: Sandbox for Malware Orchestration and Side-Channel Analysis

s le8 HPC activity
== branch == |1D$ load == L1 D$ store == dTLB miss
6 == branch miss == L1D$ miss == dTLB load == mem store
v
E
s
[¢]
o
T
!
r T T . . T T .
le7 Disk activity e read e write
| o Sl Rebeee s LR AT |
s ormec Xty
g 1 T ¥ e —-77 4“,, R & 7___~——;-w- o —;- —_ - L]
é ° 0o ange °0% ¢ ° O @ eCE) e TR
3 0-p SEsE GEBURE® . . 8 o o wenes e (wmmesmm
T T T T
Syscalls
O Pe-e
Qac‘\?ﬁ e g L 4 » »- LA LA a2 B0 »-
AL AN b cumse eun
« g\ﬁge oo @
WU —pe— SENDS - G SN
%
5&33)(, e
ad\\g\c‘;«t 7] S-S -G
g(@(\'\og S
5 \\9265‘ —joamn
S
e@%&a’fe 4 Pes—
W = T T T T
® 0 30 60 90 120 150

Time (s)

Figure 3: Execution plot of the GonnaCry ransomware on
PPC64LE showing HPC, disk activity, and top 15 syscalls.

where it searches and enumerates files at the start, then proceeds
with encryption.

4.2 CHAOS Remote Access Trojan

le7 Disk activity e read e write
a L1 CRLLd L T o
I .
g 1 4 _ amon & a . aa o esax® _ _ R
© |.ﬂ.‘mw. oFoc oo “Toodcl o0 1!.. o §oVe o To8
o
9 LI e o
L) . « . . o0
ﬁo_ﬂi!, N . . % sefs 2 .
T T T T T T T T T
Syscalls
o ARIEN-SNNE- SN
\N(\"‘S\ B it Sty bt st
\0‘.\\\ S e eme woaSe W o e
‘QV\(\ PO HNO- O HD-N—E »-"- AED—0—RED—O— -
e‘“"(- Emeene HEHOs " @ sm e oman o we
é‘%‘e\\\gé B e N T e S
e x
,}Q«dga;\%— *—4-SIMOBO —w—& -0 ——4E—40mED 40— &
1\
B;K;&g* - o » @ o
£ o
o &
K.‘f@;
"'\309'&
Qe,‘\ T T T T T T T T T
3375 Network activity
— TX m— RX
Q
g
1
[
o
aQ
@
£
<
o
H
=
9]
z
L Al ‘l AA
T T T T T T
0 30 60 90 120 150 180 210 240 270 300

Time (s)

Figure 4: Execution of the CHAOS RAT on x86-64 showing
disk activity, top 15 syscalls, and network activity.

CHAOS? is a Golang-based open-source remote access tool with
comprehensive capabilities for remote administration of Windows
and Linux systems. Recently, CHAOS has been used as a remote
access trojan (RAT) for data exfiltration and deploying cryptominer
bots [16, 19] as it provides a command-and-control (C2) server
along with capabilities to execute system commands and exfiltrate
files. Appendix A.2 elaborates the functionality of CHAOS.

We executed the CHAOS RAT on our x86-64 sandbox. We utilized
SaMOSA’s orchestration feature to setup the remote C2 server and
trigger an interaction script to communicate with the RAT via
the server. The C2 server was started before the VM boots at the
“Pre Setup” stage and the interaction script was triggered before
execution at the “Pre Run” stage. The interaction script performed
various actions such as browsing folders, creating a new user with
administrator (sudo) permissions, downloading files and system
logs. Figure 4 shows the execution activity. There is not much HPC
activity as the RAT is a passive process that waits for commands
from the C2 server. Syscalls such as “futex”, “nanosleep”, “tgkill”,
and “signaldeliver” indicate that the process uses multithreading
and sleeps frequently while waiting for commands. At 20 seconds,
we can see interesting correlations such as heavy HPC activity,
network activity, and disk activity at lower addresses. We analyzed
the syscalls near these timestamps to reveal processes that read
password files, created a new user, modified group permissions, and
changed passwords. Each of these involve reads and writes to lower
block addresses corresponding to system files containing user and
group information. In this manner, time-synchronized side-channel
activity helped identify activity hotspots for deeper analysis.

The activity from 30 to 180 seconds involved downloading sev-
eral files from the user directory. We see correlation across the
heavy network transfers, multiple reads in the disk activity, and
HPC spikes. Similarly, the activity from 195 to 230 seconds shows
reads at lower addresses, indicating that the C2 server is download-
ing system files. After that, we only see regular network activity
every 15 seconds, indicating a status or heartbeat signal to keep
the RAT connection alive. Identifying these hotspots helps during
network analysis to find files that the RAT exfiltrated or injected.

4.3 Kinsing Cryptominer

Kinsing is a cryptomining malware family that has actively tar-
geted Linux OT systems [22] by forming a botnet, spreading later-
ally across the network, installing rootkits [20, 24], and deploying
cryptocurrency miners. We executed the Kinsing payload in our
ARM64 sandbox. We utilized SaMOSA’s orchestration to re-enable
the SSH service that Kinsing disables so that we could extract in-
formation from the sandbox, triggered at the “POST RUN” stage.
Initially, we ran the payload using FakeNet to emulate the internet
services. FakeNet captured the list of C2 IP addresses and URLs
accessed by Kinsing to reveal the additional payloads that were
downloaded. Figure 6 shows the access logs that list the C2 server
IP address (78.153.XX.XX, 80.64.XX.XX) and the HTTP requests for
kinsing_aarché64, libsystem. so, and ce. sh.

Even though FakeNet captured the HTTP requests, it only pro-
vided fake payloads so we did not observe any further activity.
Based on these insights, we triggered Kinsing again using the NAT

Shttps://github.com/tiagorlampert/CHAOS

https://github.com/tiagorlampert/CHAOS

Meet Udeshi, Venkata Sai Charan Putrevu, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami

le8 HPC activity
== branch == L1D$ load == L1 D$ store =— dTLB miss
» 7:5 7 == branch miss == L1D$ miss == dTLB load == mem store
E
S 5.0
O
o
I 25
0.0 ——
" " Disk activity ' 's read o write
g 1.0 () e 00 e_ L] ..-l.. o e | _ L] o 1 (] e (] e__ o a0 o a aumbD e e L] (] el e L]
e . 1) L ve . L) v v e v L L] v
kel L] .. L] L] L] L] L L] L] L L] L]
‘505 he o ob o o0 hammpese o6 fooe ofoame of ccee
x v 0 . . O . O
<}
)
Syscalls
«%] § x) . . oy =
\(\\‘\\L% RIS S0 & M G SIS S WHEE WIS & S S GEIS & & 0 OB ® > o o o
(ea%\«\zg ~|mmennes- *®- -
‘)\e',& EBNE G- 6 B0 G0 6 66 0 e G0 - I -
(\’o‘%‘b:d -
AN -
O I“"'o‘ -
o?g’(()\%?\ B o T ———— e b — e B¢ CHOENEDEDS G5 SHED S VENENEING GO 4 O S
Nt ﬁetworﬁ activiﬁ I I
z °1000
@
é — TX s RX
o 125 1
G)
8
@ 0 T T T T T T
240 270 300 330 360 390 420 450 480 510 540 570 600

T
0 30 60 90 120 150 180 210

Time (s)

Figure 5: Execution plot of the Kinsing cryptominer on ARM64 showing HPC, disk activity, top 10 syscalls, and network activity.

[HTTPListener890]
[HTTPListener80]
[HTTPListener890]
[HTTPListener80]

GET /kinsing_aarch64 HTTP/1.1
Host: 78.153.XX.XX
User-Agent: curl/7.68.0
Accept: */%*

[HTTPListener890]
[HTTPListener80]
[HTTPListener8o]
[HTTPListener80]

GET /libsystem.so HTTP/1.1
Host: 78.153.XX.XX
User-Agent: curl/7.68.0
Accept: */*

[HTTPListener8o]
[HTTPListener890]
[HTTPListener80]
[HTTPListener890]
[HTTPListener890]

GET /ce.sh HTTP/1.1

User-Agent: Wget/1.20.3 (linux-gnu)
Accept: */%*

Host: 80.64.XX.XX

Connection: Keep-Alive

Figure 6: Kinsing C2 server accesses captured by FakeNet.

so that it could download the correct payloads. Figure 5 shows
the execution activity. From 100 to 120 seconds, it downloaded the
ARM64-specific Kinsing payload and 1ibsystem. so as previously
seen in the FakeNet logs. 1libsystem. so is a stealthy rootkit al-
lowing Kinsing to modify system behavior and hide its presence.
Between 260 to 270 seconds, it contacted retrieved secondary pay-
loads from additional IPs (185.154.XX.XX, 31.184.XX.XX) as seen in
network activity. The malware behavior changed with full internet
access as it successfully downloaded the initial payloads. At 270
seconds, it initiated cryptocurrency mining evident via the heavy
HPC activity, notably spikes in memory stores, branch operations,
and data translation look-aside buffer (dATLB) loads. We observed
a bump in network traffic at 430 seconds along with subsequent
disk write activity. Deeper packet analysis revealed that Kinsing
downloaded a script cron. sh from 78.153.XX.XX which eliminates

competing malware and establishes persistence. This behavior dif-
fers from the one seen with FakeNet where it accessed another
script ce. sh. After mining started, we also observed periodic net-
work activity related to seed hash and blob number exchanges along
with heartbeat signals reflecting ongoing botnet communication
and health monitoring. In this manner, SaMOSA helped analyze
the Kinsing cryptominer in-depth, first via FakeNet and then with
internet access via NAT to reveal interesting malicious behavior
correlated across multiple side-channels.

5 CONCLUSION

In this work, we presented SaMOSA, a Linux sandbox framework
designed to facilitate comprehensive malware analysis on Linux
systems. SaMOSA supports full-system emulation across multi-
ple architectures (x86-64, ARM64, PPC64LE) and captures time-
synchronized execution data across four key side-channels (system
calls, hardware performance counters, disk activity, and network
traffic). SaMOSA offers extensive insights into malware behavior
via the time-synchronized side-channels to aid in dynamic malware
analysis. Its modular design, support for orchestration via custom
pipeline hooks, and provision of real-world operating systems like
Ubuntu and Debian make it adaptable for a wide range of malware
analysis tasks. We present case studies of ransomware, remote ac-
cess trojans, and cryptomining bots to demonstrated how analysis
of time-synchronized side-channels offers deep insight into mal-
ware behavior. SaMOSA bridges a critical gap in Linux malware
analysis by offering a customizable, end-to-end automated, and
multi-architecture platform, laying the groundwork for malware
detection and threat intelligence for Linux OT and CPS systems.

SaMOSA: Sandbox for Malware Orchestration and Side-Channel Analysis

ACKNOWLEDGMENTS

This work was supported in part by the DOE NETL grants DE-
CR0000051 and DE-CR0000017, and the NSF SaTC grant 2039615.

REFERENCES

[1] Amr S Abed, T Charles Clancy, and David S Levy. 2015. Applying bag of system
calls for anomalous behavior detection of applications in linux containers. In
2015 IEEE globecom workshops (GC Wkshps). IEEE, 1-5.

[2] Mohannad Alhanahnah, Qicheng Lin, Qiben Yan, Ning Zhang, and Zhenxiang
Chen. 2018. Efficient signature generation for classifying cross-architecture IoT
malware. In IEEE Conference on Communications and Network Security (CNS).

[3] Omar Alrawi, Miuyin Yong Wong, Athanasios Avgetidis, Kevin Valakuzhy, Bo-
ladji Vinny Adjibi, Konstantinos Karakatsanis, Mustaque Ahamad, Doug Blough,
Fabian Monrose, and Manos Antonakakis. 2024. SoK: An Essential Guide For
Using Malware Sandboxes In Security Applications: Challenges, Pitfalls, and
Lessons Learned. arXiv:2403.16304 [cs.CR] https://arxiv.org/abs/2403.16304

[4] AQUASEC. [n.d.]. Kinsing V2. https://www.aquasec.com/blog/threat-alert-
kinsing-malware-container-vulnerability/. Accessed: 2025-06-07.

[5] Jano Bermudes. 2023. Mitigating cyber risks in industrial control sys-

tems. www.marsh.com/en/industries/manufacturing/insights/mitigating-cyber-

risks-in-industrial-control-systems.html Accessed: 2025-06-07.

] CAPE. [n.d.]. CAPE Sanbox. https://github.com/kevoreilly/CAPEv2.

[7] J. Carrillo-Mondéjar, J.L. Martinez, and G. Suarez-Tangil. 2020. Characterizing
Linux-based malware: Findings and recent trends. Future Generation Computer
Systems 110 (2020), 267-281. https://doi.org/10.1016/j.future.2020.04.031

[8] Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. 2016. To-
wards automated dynamic analysis for linux-based embedded firmware.. In
Networked and Distributed Systems Security (NDSS).

[9] Qian Chen and Robert A. Bridges. 2017. Automated Behavioral Analysis of
Malware: A Case Study of WannaCry Ransomware. In 2017 16th IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA). 454-460.
https://doi.org/10.1109/ICMLA.2017.0-119

[10] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.
2018. Understanding linux malware. In 2018 IEEE symposium on security and
privacy (SP). IEEE, 161-175.

[11] Cuckoo. [n.d.]. Cuckoo Sandbox. https://github.com/cuckoosandbox/cuckoo.

[12] Detux. [n.d.]. Detux Sandbox. https://github.com/detuxsandbox/detux.

[13] ELFEN. [n.d.]. ELFEN Sandbox. https://github.com/nikhilh-20/ELFEN.

[14] Prashanth Krishnamurthy, Ali Rasteh, Ramesh Karri, and Farshad Khorrami. 2024.
Tracking Real-time Anomalies in Cyber-Physical Systems Through Dynamic
Behavioral Analysis. arXiv:2406.12438 [eess.SY] https://arxiv.org/abs/2406.12438

[15] Mandiant. [n.d.]. FakeNet-NG. https://github.com/mandiant/flare-fakenet-ng.

[16] Alessandro Mascellino. 2022. Chaos RAT Used to Enhance Linux Cryptomining
Attacks. https://www.infosecurity-magazine.com/news/chaos-rat-used-linux-
cryptominingva/ Accessed: 2025-06-07.

[17] K. A. Monnappa. 2015. Automating Linux Malware Analysis Using Limon
Sandbox. BlackHat Europe. https://www.blackhat.com/docs/eu-15/materials/eu-
15-KA- Automating-Linux-Malware- Analysis- Using-Limon-Sandbox.pdf

[18] Tran Nghi Phu, Kien Hoang Dang, Dung Ngo Quoc, Nguyen Tho Dai, and

Nguyen Ngoc Binh. 2019. A novel framework to classify malware in MIPS

architecture-based IoT devices. Security and Communication Networks 2019, 1

(2019), 4073940.

Santiago Pontiroli, Gabor Molnar, and Kirill Antonenko. 2025. From open-source

to open threat: Tracking Chaos RAT’s evolution. https://www.acronis.com/en-

us/cyber-protection-center/posts/from-open-source-to-open-threat-tracking-

chaos-rats-evolution/ Accessed: 2025-06-07.

[20] Venkata Sai Charan Putrevu, Subhasis Mukhopadhyay, Subhajit Manna, Nanda
Rani, Ansh Vaid, Hrushikesh Chunduri, Mohan Anand Putrevu, and Sandeep
Shukla. 2024. Adapt: Adaptive camouflage based deception orchestration for
trapping advanced persistent threats. Digital Threats: Research and Practice 5, 3
(2024), 1-35.

[21] QEMU. [n.d.]. QEMU Emulator. https://www.qemu.org/docs/master/about/
index.html.

[22] Redcanary. 2025. Kinsing Saltstack. https://redcanary.com/blog/threat-
intelligence/kinsing-malware-citrix-saltstack/. Accessed: 2025-06-07.

[23] Sysdig. [n.d.]. Sysdig. https://github.com/draios/sysdig.

[24] Meet Udeshi, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami.
2025. Tamper-Proof Network Traffic Measurements on a NIC for Intrusion
Detection. IEEE Transactions on Network and Service Management 22, 2 (2025),
2214-2224. https://doi.org/10.1109/TNSM.2024.3512180

[25] Daniel Uhricek. 2020. Lisa — multiplatform linux sandbox for analyzing IoT

malware.

Xueyang Wang, Sek Chai, Michael Isnardi, Sehoon Lim, and Ramesh Karri. 2016.

Hardware Performance Counter-Based Malware Identification and Detection

with Adaptive Compressive Sensing. ACM Trans. Archit. Code Optim. 13, 1,

=
X0

[26

Article 3 (March 2016), 23 pages. https://doi.org/10.1145/2857055

Xueyang Wang, Charalambos Konstantinou, Michail Maniatakos, Ramesh Karri,
Serena Lee, Patricia Robison, Paul Stergiou, and Steve Kim. 2016. Malicious
firmware detection with hardware performance counters. IEEE Transactions on
Multi-Scale Computing Systems 2, 3 (2016), 160-173.

Luxin Zheng, Jian Zhang, Faxin Lin, and Xiangyi Wang. 2023. Feature-Fusion-
Based Abnormal-Behavior-Detection Method in Virtualization Environment.
Electronics 12, 16 (2023). https://doi.org/10.3390/electronics12163386

[27

[28

A APPENDIX
A.1 Analysis Data

SaMOSA captures time-synchronized side-channel data for analysis.
The following data are captured and placed in the run directory for
post-processing and analysis:

(1) Network packet capture (pcap) file that can be parsed with
tcpdump or Wireshark

(2) Syscalls as a system capture (scap) file that can be parsed
by sysdig

(3) HPC measurements as comma seperated values (CSV) where
each row contains a timestamp and readings of each HPC
counter that was recorded

(4) Disk activity log of timestamped events indicating filesys-
tem read or write along with logical block number

(5) FakeNet generated HTML report and log file containing all
intercepted requests and responses

(6) Terminal output of the binary (stdout and stderr)

(7) VM snapshot image that was booted using QEMU which

can be used for forensic analysis

VM output log containing boot up and shutdown messages,

and commands executed

(9) JSON file containing run details such as timestamps, binary
name, command line arguments, QEMU boot command,
and pipeline hooks

@®

=

A.2 CHAOS RAT Functionality

The CHAOS RAT payload is injected typically via phishing or mali-
cious diagnostic utilities. Upon execution, CHAOS RAT establishes
a connection to a remote command-and-control (C2) server using
hardcoded JSON Web Tokens and custom port configurations. It fin-
gerprints the host by collecting system metadata such as hostname,
MAC address, IP address, and OS version, and supports interactive
command execution via reverse shell. The RAT’s core functional-
ity includes uploading, downloading, and deleting files, enumer-
ating directories, capturing screenshots, and issuing system-level
commands such as shutdown and reboot. These features enable
an attacker to maintain long-term access and exfiltrate sensitive
data from compromised Linux machines. Additionally, the tool’s
open-source nature allows threat actors to obfuscate configurations,
encode communication channels, and evade detection through cus-
tom payloads. Golang’s versatile compilation allows CHAOS to be
built for various architectures and operating systems.

A.3 Kinsing Botnet Functionality

It typically exploits SSH and FTP vulnerabilities to gain unautho-
rized access and forms a botnet to spread laterally by scanning for
additional vulnerable systems. It deploys Monero cryptocurrency
miners, establishes persistence by creating scheduled tasks (cron

https://arxiv.org/abs/2403.16304
https://arxiv.org/abs/2403.16304
https://www.aquasec.com/blog/threat-alert-kinsing-malware-container-vulnerability/
https://www.aquasec.com/blog/threat-alert-kinsing-malware-container-vulnerability/
www.marsh.com/en/industries/manufacturing/insights/mitigating-cyber-risks-in-industrial-control-systems.html
www.marsh.com/en/industries/manufacturing/insights/mitigating-cyber-risks-in-industrial-control-systems.html
https://github.com/kevoreilly/CAPEv2
https://doi.org/10.1016/j.future.2020.04.031
https://doi.org/10.1109/ICMLA.2017.0-119
https://github.com/cuckoosandbox/cuckoo
 https://github.com/detuxsandbox/detux
 https://github.com/nikhilh-20/ELFEN
https://arxiv.org/abs/2406.12438
https://arxiv.org/abs/2406.12438
https://github.com/mandiant/flare-fakenet-ng
https://www.infosecurity-magazine.com/news/chaos-rat-used-linux-cryptominingva/
https://www.infosecurity-magazine.com/news/chaos-rat-used-linux-cryptominingva/
https://www.blackhat.com/docs/eu-15/materials/eu-15-KA-Automating-Linux-Malware-Analysis-Using-Limon-Sandbox.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-KA-Automating-Linux-Malware-Analysis-Using-Limon-Sandbox.pdf
https://www.acronis.com/en-us/cyber-protection-center/posts/from-open-source-to-open-threat-tracking-chaos-rats-evolution/
https://www.acronis.com/en-us/cyber-protection-center/posts/from-open-source-to-open-threat-tracking-chaos-rats-evolution/
https://www.acronis.com/en-us/cyber-protection-center/posts/from-open-source-to-open-threat-tracking-chaos-rats-evolution/
https://www.qemu.org/docs/master/about/index.html
https://www.qemu.org/docs/master/about/index.html
https://redcanary.com/blog/threat-intelligence/kinsing-malware-citrix-saltstack/
https://redcanary.com/blog/threat-intelligence/kinsing-malware-citrix-saltstack/
https://github.com/draios/sysdig
https://doi.org/10.1109/TNSM.2024.3512180
https://doi.org/10.1145/2857055
https://doi.org/10.3390/electronics12163386

Meet Udeshi, Venkata Sai Charan Putrevu, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami

jobs), and may even install rootkits [4, 20]. It also demonstrates of its own presence, and disabling system monitoring services such
evasive behavior by removing competing malware, cleaning traces as SSH to make recovery difficult.

	Abstract
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 Sandbox VM Configuration
	3.2 Network Configuration and FakeNet
	3.3 Side-channel Monitoring
	3.4 Orchestration and Customization
	3.5 Execution Pipeline
	3.6 Analysis

	4 Case Studies
	4.1 GonnaCry Ransomware
	4.2 CHAOS Remote Access Trojan
	4.3 Kinsing Cryptominer

	5 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Analysis Data
	A.2 CHAOS RAT Functionality
	A.3 Kinsing Botnet Functionality

