
NodeShield: Runtime Enforcement of Security-Enhanced SBOMs
for Node.js

Eric Cornelissen
ericco@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

Musard Balliu
musard@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

ABSTRACT
The software supply chain is an increasingly common attack vector
for malicious actors. The Node.js ecosystem has been subject to
a wide array of attacks, likely due to its size and prevalence. To
counter such attacks, the research community and practitioners
have proposed a range of static and dynamic mechanisms, including
process- and language-level sandboxing, permission systems, and
taint tracking. Drawing on valuable insight from these works, this
paper studies a runtime protection mechanism for (the supply chain
of) Node.js applications with the ambitious goals of compatibility,
automation, minimal overhead, and policy conciseness.

Specifically, we design, implement and evaluate NodeShield, a
protection mechanism for Node.js that enforces an application’s
dependency hierarchy and controls access to system resources at
runtime. We leverage the up-and-coming SBOM standard as the
source of truth for the dependency hierarchy of the application,
thus preventing components from stealthily abusing undeclared
components. We propose to enhance the SBOM with a notion of
capabilities that represents a set of related system resources a com-
ponent may access. Our proposed SBOM extension, the Capability
Bill of Materials or CBOM, records the required capabilities of each
component, providing valuable insight into the potential privileged
behavior. NodeShield enforces the SBOM and CBOM at runtime via
code outlining (as opposed to inlining) with no modifications to the
original code or Node.js runtime, thus preventing unexpected, po-
tentially malicious behavior. Our evaluation shows that NodeShield
can prevent over 98% out of 67 known supply chain attacks while
incurring minimal overhead on servers at less than 1ms per request.
We achieve this while maintaining broad compatibility with vanilla
Node.js and a concise policy language that consists of at most 7
entries per dependency.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
Web Security, Supply Chain Security, Node.js, SBOM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’25, October 13–17, 2025, Taipai, Taiwan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Eric Cornelissen andMusard Balliu. 2025. NodeShield: Runtime Enforcement
of Security-Enhanced SBOMs for Node.js. In Proceedings of ACM SIGSAC
Conference on Computer and Communications Security (CCS’25). ACM, New
York, NY, USA, 15 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Prominent attacks such as SolarWinds, Log4Shell, and XZ Utils
have brought software supply chain security to a top priority for
both the academic community and industry practitioners. A recent
approach to help mitigate security risks has been the introduction
of the Software Bill of Materials (SBOM), a machine-readable in-
ventory of the ingredients of a software application, including the
components, their metadata, and their internal relationships. While
the effectiveness of SBOMs is still subject to debate [46], the commu-
nity agrees that they increase software transparency, contributing
as a reactive measure to identify one-day vulnerabilities, e.g., in
applications using vulnerable components. This paper envisions an
enhancement of SBOMs with capabilities (a list of sensitive APIs
that components use), dubbed CBOM, and takes it a step further
by enforcing these capabilities at runtime, thus making CBOM and
SBOM a proactive measure against supply chain attacks.

Node.js and its npm ecosystem of software components, or pack-
ages, have been a particularly attractive target for supply chain
attacks [28, 35, 44]. Beyond the security challenges of JavaScript,
this is facilitated by a culture encouraging the use of many packages
and automatic dependency updates. Research shows that a single
package trusts on average 79 other third-party packages, relying
on code published by 40 maintainers [64]. This creates an invisible
attack surface, where a single compromise has widespread conse-
quences [29, 32, 41, 42, 52]. To further exacerbate the risks, Node.js
applications typically run with full access to system resources,
which third-party packages inherit. In this context, a security sys-
tem specifically designed for the Node.js supply chain is crucial.
By enforcing the SBOM hierarchy and the CBOM capabilities on
package behavior—such as restricting access to files, network, or
processes—we can significantly reduce the risk of malicious updates
while enhancing transparency and control within the ecosystem.

NodeShield [24] contributes with the design and implementa-
tion of a practical open-source system that focuses on the supply
chain of Node.js applications, while ensuring Node.js compatibility,
automation, minimal overhead, policy conciseness, and robustness
to attacks. To the best of our knowledge, there is no system that
meets all these goals. As shown in our evaluation (Section 5), re-
lated works on lightweight permission systems for Node.js [31, 45]
show limitations with regards to compatibility, policies, and attack
robustness. Finer-grained approaches such as language-level sand-
boxing [7, 15, 26, 59, 60] and taint analysis [16, 19, 47, 49, 51, 56]

ar
X

iv
:2

50
8.

13
75

0v
1

 [
cs

.C
R

]
 1

9
A

ug
 2

02
5

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://arxiv.org/abs/2508.13750v1

CCS’25, October 13–17, 2025, Taipai, Taiwan Cornelissen, Eric and Balliu, Musard

protect against more attacks at the expense of performance over-
head, false positives, automation, and policy conciseness.

At the heart of NodeShield lies a non-intrusive package-level in-
strumentation, called outlining, that enforces the SBOM and CBOM
policies at runtime, with no modifications to the original code or
Node.js runtime.We achieve this by a principled design and security
analysis that considers access to system resources and enforcement
bypasses. In particular, we develop a novel lexical scoping-based
approach that reduces the impact of bypassing the enforcement
and provides support for both legacy and modern Node.js modules,
CommonJS and ESModules. Through a methodological analysis
of Node.js APIs and related systems, we propose seven security-
sensitive capabilities for the CBOM, thus creating a concise policy
language. NodeShield enforces these capabilities through a compre-
hensive coverage of three avenues: built-in modules, global vari-
ables, and native bindings. Moreover, it supports automated policy
generation along with features that facilitate CBOM presentation
at different granularity levels to aid adoption for developers.

To evaluate the effectiveness of NodeShield, we contribute with
a benchmark of 67 known supply chain attacks and show that it can
prevent 98.51% of them. We further find that NodeShield is effective
at reducing the impact of arbitrary code execution vulnerabilities by
detecting 87.50% of the exploits from SecBench.js [18]. Our perfor-
mance evaluation on long-lived applications shows a response time
overhead of less than 1ms and a throughput reduction of up to 360
requests per second.We also find that NodeShield is broadly compat-
ible with software written for Node.js, despite some incompatible
coding patterns being used in practice. We evaluate the mainte-
nance effort of CBOMs to find that application developers need to
review less than 1 capability per dependency update on average,
and between 0 and 13 capabilities for new dependencies. Our ro-
bustness analysis against sandbox bypasses shows that NodeShield
prevents all attacks within our threat model. Finally, our evaluation
concludes with an end-to-end analysis of the infamous attack on
Copay [41], showing the usefulness of NodeShield in preventing
the attack. In summary, we offer the following contributions:
• The first Node.js runtime protection tool that comprehensively
protects both CommonJS and ESModules-based source code.

• A novel technique to contain Node.js sandbox breakouts, provid-
ing better guarantees than related work on malware protection.

• An SBOM extension to capture the privileges required by supply
chains components at the granularity of packages.

• A comprehensive evaluation of effectiveness, performance, com-
patibility, maintainability, and robustness to attacks.

NodeShield and all experiments are available at https://github.com/
KTH-LangSec/nodeshield.

2 PRELIMINARIES
Node.js Node.js is a JavaScript runtime intended for server-side
applications built on the V8 engine from the Chromium browsers
extended with APIs for access to system resources. Node.js sup-
ports to module systems: CommonJS and ESModules. The former
leveraging legacy JavaScript features to establish namespaces and
supports importing modules using the require (or import) func-
tion. The latter is a new format with native namespacing and syntax
for importing and exporting modules (besides the import function).

Node.js applications rely on third-party dependencies, or pack-
ages. Packages are usually distributed via a registry (e.g., npmjs.com)
and managed by a package manager (e.g., npm or yarn). Direct de-
pendencies of an application are stored in the manifest file with,
optionally, all dependencies listed in a lockfile (package.json and
package-lock.json resp. for npm). Node.js uses the node_modules
directory to store and access third-party packages. Packages can be
reused by name through the require function (require("vm") in
CommonJS), import syntax (import vm from "vm" in ESModules),
or import function (import("vm") in both).
System interface Node.js provides access to system resources in
two avenues. First, the Node.js built-in modules provide APIs to
interact with the underlying system (e.g., the fsmodule). These can
be imported like other packages. Second, Node.js extends the list
of global variables with built-in objects, APIs, and properties that
provide system access (e.g., the process global). Either way, this
interface is enabled by bindings between the JavaScript world and
underlying C++ codebase, which are accessible directly through
the (undocumented) process.binding function.
Code evaluation There are two main APIs for dynamic code
evaluation in Node.js. First, the eval function (and friends, like
new Function) allow for basic dynamic code evaluation [5]. A
call to eval evaluates a string as JavaScript in the current lexical
scope. Use of require or import with eval is possible, but the
ESModules import and export syntax is not.

Secondly, Node.js provides a built-in module for code evalu-
ation called vm. This module offers an API for evaluating both
CommonJS and ESModules JavaScript in a new V8 context while
allowing object sharing between contexts. A V8 context is an sep-
arate interpreter context within an interpreter process, allowing
multiple contexts to share JavaScript objects within the same pro-
cess. Each V8 context, including the top-level context created when
a Node.js application starts, can be configured independently.
SBOM A Software Bill Of Materials (SBOM) is a document that lists
all the components used in a software artifact. For each component
it may include various pieces of information ranging from check-
sums to licensing information. Additionally, a good SBOM includes
the dependency hierarchy of all components, specifying which com-
ponents each one uses. There exist two widely-used specifications
for SBOMs, SPDX and CycloneDX, along with myriad of automated
tooling to generate SBOMs for software artifacts.

3 OVERVIEW
This section provides a high-level overview of the research problem
and solution. It also discusses the threat model and the proposed
usage of capabilities as a security enhancement of SBOMs.

3.1 Challenges and Solution Overview

The problem We use the example of the rate-map package to
illustrate our research problem. This is a very simple benign package
that maps number in the range of [0,1] to a new value with a
given range. It is written using a combination of CommonJS and
ESModules. The benign version v1.0.2 of rate-map depends on one
other package, append-type, and implements a single function in
JavaScript with no Node.js-specific functionality (line 4 in Listing 1).

https://github.com/KTH-LangSec/nodeshield
https://github.com/KTH-LangSec/nodeshield

NodeShield: Runtime Enforcement of Security-Enhanced SBOMs for Node.js CCS’25, October 13–17, 2025, Taipai, Taiwan

1 const px = require.resolve(Buffer.from ([100, 108, 45,

116, 97, 114]/*=dl-tar*/).toString ());

2 const fs = require("fs");

3 fs.writeFileSync(px, fs.readFileSync(px, "utf8").

replace(a, b));

4 module.exports = function rateMap(val , start , end)

{... return start + val * (end - start)}

Listing 1: Simplified rate-mapmalware.

Listing 1 shows the compromised version v1.0.3 breaking the
functionality of the purescript-installer package which used
rate-map among its dependencies [32, 53]. The malicious version
adds an explicit dependency on the package terser to its package
manifest (not shown). However, it does not use terser, instead
it covertly resolves the package dl-tar at runtime (line 1). This
behavior hinders supply chain transparency andmay be challenging
to detect due to the use of obfuscation. Thus, our first challenge
is to identify and enforce the expected dependency hierarchy of
applications, and detect usage of packages outside this hierarchy.

Secondly, the malicious version introduces the use of Node.js’s
fs module (line 2), which grants access to privileged file system
APIs (line 3). Unfortunately, the current use of Node.js and npm (or
similar) provides no insight into the use of privileged APIs. Thus,
our second challenge is to identify and enforce the expected use of
access to privileged resources on the supply chain of applications.

The attack combines these two malicious changes to modify the
implementation of the dl-tar package at runtime. The attacker’s
goal is to cause a denial of service, e.g., on the installation of the
PureScript application. As highlighted, the attack can be detected at
two stages: when an unexpected third-party dependency is resolved
or when a new privileged API was adopted by the package.
Our solution To address this problem we aim to design a system
that protects against software supply chain attacks as illustrated in
Figure 1. At a high level this is achieved by 1) enforcing the applica-
tion dependency hierarchy according to its SBOM and 2) enforcing
restrictions on the use of privileged APIs per dependency—modeled
as “capabilities”—covered in detail in Section 4.2. This is enhanced
by a principled design and security analysis, 3) applying hardening
techniques to prevent bypassing our enforcement, as discussed in
Section 4.3, and a thorough empirical evaluation, cf. Section 5.

NodeShield builds on related work on runtime hardening for soft-
ware supply chain attacks in JavaScript [7, 31, 45, 60] and language-
level JavaScript sandboxing [15, 59]. In particular, we extend these
techniques to support ESModules and propose a novel lexical
scoping-based approach that reduces the impact of sandbox break-
outs. The result is a system that hardens against supply chain
attacks and bridges the existing gap with JavaScript sandboxes.

In practical terms, NodeShield enforces the dependency hierar-
chy by controlling what a package is allowed to import. This is
achieved by trapping and validating all import attempts (covering
require, import, and import syntax) on a per-dependency basis.
For rate-map, NodeShield would have prevented the covert import
of dl-tar, as represented by the crossed-out line from 𝐷𝐷 to 𝐷𝐺 .

The enforcement of capabilities is achieved through a compre-
hensive coverage of three separate avenues: built-in modules, global
variables, and native bindings. First, the use of privileged built-in

built-in globals eval

N
od

e.
js

O
S

N
od

eS
hi
el
d

P

/

DA DB

 Capability enforcement

file system network ...

DC DD DE

\

DF DG

SB
O

M
 e

nf
or

ce
m

en
t

Pr
og

ra
m

Figure 1: Overview and Threat Model of NodeShield.

modules is controlled in the same way as the dependency hierarchy.
Second, access to global variables is controlled by adapting the vm
module to create package-specific global namespaces. Lastly, ac-
cess to bindings is controlled by overriding the process.binding
API. In the case of rate-map, NodeShield would have caught the
newly introduced use of fs. In Figure 1, this is represented by the
crossed-out line from 𝐷𝐹 to the Node.js built-in modules.

Finally, NodeShield is hardened using primordials [23], null
prototypes, object freezing, and lexical scoping. This prevents appli-
cation code from manipulating the policy and achieving anything
by breaking out of its vm context.

3.2 Threat Model
Our threat model focuses on server-side applications that use un-
trusted third-party dependencies and run on top of the Node.js
JavaScript runtime, as illustrated by the highlighted squares in Fig-
ure 1. The attacker can control an arbitrary set of packages in the
dependency hierarchy of an application (which includes its transi-
tive dependencies). We assume that Node.js, the package manager
(e.g., npm or yarn), the package registry (e.g., npm), the SBOM gen-
erator, and the supply chain of NodeShield are not compromised.
Since application dependencies may be openly malicious, develop-
ers are expected to review all capabilities. This can be a significant
upfront investment for pre-existing apps, but Section 5.4 shows it
is manageable as a continuous task.

The goal of the attacker, based on empirically-observed behavior
of real JavaScript malware [44], is to break the confidentiality or
integrity of the system on which the application runs by using capa-
bilities outside the set granted to attacker-controlled dependencies.

We consider the act of providing any data or reference to a de-
pendency as entrusting that dependency tree with it, including
capability-bearing references. The justification for this setup is that
developers use dependencies to perform actions on their behalf on
the provided data using any capabilities granted. We note that the
global namespace of the application is considered as an intentional
interface between program components, and is therefore left unpro-
tected. The implication is that malicious code could exploit gadgets

CCS’25, October 13–17, 2025, Taipai, Taiwan Cornelissen, Eric and Balliu, Musard

through this avenue, such as through prototype pollution [50]. We
further motivate this decision in Section 4.3.

3.3 Enhancing SBOM with Capabilities
Akey goal for NodeShield is to provide a simple and comprehensible
policy language for developers, while effectively and efficiently
preventing malware in the software supply chain. To this end,
we argue that an enhancement of SBOM with a Capability Bill
of Materials (CBOM), at the granularity of packages, strikes the
right balances between these requirements, as witnessed by our
evaluation in Section 4. We use the term “capability” to refer to a
group of related privileged operations.

We determine the set of capabilities through a comprehensive
review of existing proposals across different ecosystems. Specif-
ically, we use the following methodology: First, we collect a set
of potential capabilities from related work in the area of supply
chain security [31, 34] and related tooling (Node.js’ and Deno’s
permission system [8, 27], Capslock [3], and Cackle [2]). Then we
filter this set of potential capabilities by omitting those unrelated
to supply chain attacks according to the SAP supply chain attack
tree [35], Socket.dev supply chain alerts [10], and the OpenSSF
metrics and data workgroup’s OSE threat model [11].

From this analysis, we settle for a list of 7 capabilities listed
below. Table 1 provides an overview of the mapping from capability
to modules, global variables, and bindings.
• The addon capability represents the ability of a dependency to
load native code. This is included because native code can bypass
our enforcement, enabling misuse of other capabilities.

• The code capability represents the ability to dynamically evaluate
code. While dynamic code is subject to the other capabilities, this
capability enables explicit control, thus facilitatingmanual review
and defense in depth.

• The command capability represents the ability to run a command
as subprocess. Subprocesses can bypass our enforcement, en-
abling the potential use of any other capability.

• The crypto capability controls usage of cryptography-related
functionality. This is included because of obfuscation and ran-
somware attacks utilizing cryptography.

• The file-system capability represents all access to the file sys-
tem. This is included because malicious packages may read sen-
sitive data, e.g., cryptographic material, from the file system.

• The network capability represents all access to the network. This
is included because malicious packages may exfiltrate sensitive
data or fetch malicious code or commands from a remote server.

• The system capability represents all access to system and en-
vironment information. Malicious packages may read sensitive
data, e.g., authentication tokens, from the environment variables.

4 NODESHIELD
This section details the design and implementation of NodeShield [24].
Figure 2 present an overview of NodeShield’s architecture andwork-
flow. NodeShield takes as input the source code of an application
(including own and dependencies’ source code), the application’s
SBOM (including the hierarchy of dependencies), and (optionally)
the application’s CBOM. From this it automatically creates a clone
of the original project which supports runtime enforcement of the

SBOM and CBOM. As an intermediate step, it creates a module-
granular policy representation of the SBOM and CBOM, for both
the application and every (transitive) dependency. If no CBOM
is provided, NodeShield infers it statically—as described in Sec-
tion 4.4—before policy creation. The policy specifies what each
module is allowed to import—files, third-party packages, built-in
modules—what global variables it is allowed to access, and what
bindings it is allowed to use.

To enforce the policy at runtime, NodeShield extends (but does
not modify) the original source code on a per-file basis such that the
file’s code is evaluated in a vm context that enforces the policy of the
module to which the file belongs. In contrast to inlining, we dub this
process outlining and describe it in Section 4.1. The enforcement
uses unmodified Node.js and vm APIs (Section 4.2) and is hardened
to prevent policy manipulation and bypasses (Section 4.3).

4.1 Outlining
To enforce the SBOM and CBOM at runtime, NodeShield outlines
the original source code within enforcement code. The details of
the enforcement are discussed in Section 4.2, here we present the
transformation of the original source code to the outlined one. As
a basis, the outlining starts by creating a clone of the original
application project. This clone only covers JavaScript source code
files, JSON files, and native extensions. Other files in the project are
accounted for by setting the working directory of the final program
and rewriting paths present in Node.js APIs as part of the outlining.
The cloned project can be run using vanilla Node.js.

The outlining procedure targets all JavaScript source code files,
while JSON files and native extensions remain unchanged. In par-
ticular, the original source code is moved into a (multi-line) string
that will be evaluated using vm. Prior to evaluation, NodeShield
cleans up and prepares the host context (i.e., the top-level Node.js
context) and the guest context (i.e., the vm context evaluating the
original source code). Listing 2 shows the outlining process.

First, before any untrusted code is evaluated, the cloned project
obtains references to primordials (line 2, more on this in Section 4.3)
and privileged global variables (as defined in Table 1) which are
also removed from the global namespace (line 3). Both need to
happen only once. Next, for every CommonJS file, references to
the CommonJS variables (exports, module, require, __dirname,
__filename) must also be obtained and removed from the global
namespace (line 4).

Then, it initializes an allowlist I for importing as the combination
of 1) the JavaScript and JSON files in the module (line 6), 2) the
packages that are listed as its direct dependencies in the SBOM
(line 5), 3) the non-privileged built-in modules (line 8)—spanning
all built-in modules not declared in Table 1—and 4) the allowed built-
in modules in accordance with the CBOM, following the mapping
of Table 1 (line 9). The resulting list (line 10) is used when importing
(line 26 and 27) or requiring (line 21) to determine if the specified
identifier is allowed by the policy.

Next, the allowlist B of bindings is initialized as the combination
of 1) the non-privileged bindings (line 12)—spanning all bindings
not declared in Table 1—and 2) the allowed bindings in accordance
with the CBOM, following the mapping of Table 1 (line 13). The

NodeShield: Runtime Enforcement of Security-Enhanced SBOMs for Node.js CCS’25, October 13–17, 2025, Taipai, Taiwan

Capability Modules Global Variables Bindings
addon *.node
code node:vm eval, Function

command node:child_process, node:worker_threads spawn, spawn_sync
crypto node:crypto Crypto, crypto, CryptoKey,

SubtleCrypto
crypto

file-system node:fs, node:fs/promises
network node:net, node:http, node:http2, node:https,

node:dns, node:/promises, node:tls, node:dgram
fetch

system node:os, node:process process
Table 1: Capability mapping to modules, global variables, and binding. Built-in module names are listed as node:* but are also accessible without the node: prefix.

1 INPUT: module , SBOM , CBOM

2 once(capture primordials)

3 once(capture and unbind sensitive global variables)

4 if (cjs) capture and unbind CJS global variables

5
6 Ia = files in module

7 Ib = packages according to SBOM

8 Ic = allowed -by-default built -in modules

9 Id = privileged built -in modules according to CBOM

10 I = [...Ia, ...Ib, ...Ic, ...Id]

11
12 Ba = allowed -by-default bindings

13 Bb = privileged bindings according to CBOM

14 B = [...Ba, ...Bb]

15 process.binding = (s) => if (s in B) process.binding(

s) else halt

16
17 Ga = allowed -by-default global variables

18 Gb = privileged global variables according to CBOM

19 G = {...Ga, ...Gb}

20 if (cjs) {

21 G.require = (s) => if (s in I) import(s) else halt

22 ... other CJS variables

23 }

24
25 C = vm.NewContext(G, {

26 import: (s) => if (s in I) import(s) else halt })

27 vm.Link((s) => if (s in I) import(s) else halt)

28 vm.Eval('<original source code >', C)

Listing 2: Outlining Process of NodeShield.

resulting list (line 14) is used when accessing bindings through the
process object (line 15).

Next, the global namespace G for the guest context is initialized
as the combination of 1) all non-privileged global variables (line
17)—spanning all global variables not declared in Table 1, 2) the
allowed global variables in accordance with the CBOM, following
the mapping of Table 1 (line 18), and, for CommonJS, 3) the Com-
monJS-specific variables (line 21-22). The latter are not provided
as-is, instead require is modified to check against the import al-
lowlist and to present an empty module cache (which otherwise
grants direct access to all previously loaded modules). Moreover,
module, __dirname, and __filename are modified to reflect the
original source code file paths.

Finally, the context for vm is initialized (line 25-26) and the source
code evaluated with vm using this context (line 28). With the outlin-
ing process applied to all JavaScript files in the project, the policy

NodeShield
CBOM

Application +
Supply Chain

SBOM

Policy
generation

CBOM
extending

Capability
inference Outlining Cloned

project

Node.js

Violations

Program
output

Policy

Figure 2: Architecture and Workflow of NodeShield.

enforcement is encoded directly into the program, which can now
be executed safely as a regular Node.js application.
Example For Listing 1, Listing 2 would concretely instantiate with
the code on line 28; Ia as [index.js, package.json], Ib as [append-
type, terser], Ic as [assert, console, etc.], and Id as [] (line 6-9); Bb
as [] (line 12-13); Ga as [atob, console, etc.] and Gb as [] (line 17-18).
These lists are the policy at runtime—derived directly from the
SBOM and CBOM—e.g., requiring fs (line 2, Listing 1) is disallowed
on line 21 because it is not in the allowlist I.

4.2 Enforcement
NodeShield implements the policy enforcement by managing the
global namespace per module, intercepting any import attempts by
the program, controlling dynamic code evaluation, and managing
bindings access. This is achieved by utilizing only mechanisms pro-
vided by Node.js and the vm API, with no modifications to Node.js.
Global variables To manage the global namespace of all modules,
we define specialized sets of global variables (line 17-19, Listing 2)
and utilize the option to specify a “context” object when using vm
(line 25, Listing 2). By default, only standard JavaScript built-ins (e.g.,
Object or Error) are available. Specifying a context object allows
for extending and overriding the namespace through the properties
of the context object which are accessible as plain identifiers in
the evaluated script. Thus, by omitting capability-bearing global
variables that the current module should not have access to we can
prevent it from using that capability.

Because we control the creation of all modules, we can control
their global variables as specified in the CBOM. The set of global
variables made available to each module starts from the set of all
global variables in the host context, excluding capability-bearing

CCS’25, October 13–17, 2025, Taipai, Taiwan Cornelissen, Eric and Balliu, Musard

global variables (line 17, Listing 2). This set is extended with the
allowed capability-bearing global variables of themodule, according
to the CBOM (line 18, Listing 2).

Imports To comprehensively intercept all import attempts we
need to cover all three import options: require for CommonJS,
import declarations for ESModules, and the import function for
both. The require function must be provided through the global
namespace (line 21, Listing 2), following the above description. As
such, we can intercept all calls to require. For import declarations
vm requires an implementation of a resolution algorithm through
its link API when instantiating a (ESModules) module (line 27,
Listing 2). Hence, we intercept all uses of the import syntax. Finally,
for the import function towork, vm also requires an implementation
of a resolution algorithm through the importModuleDynamically
API (line 26, Listing 2) when instantiating either a (CommonJS)
script or (ESModules) module. As a result, we also intercept all
uses of the import function.

A fourth consideration is the built-in module named module
which has a createRequire function. This function can be used
to create a new require function which could bypass our enforce-
ment. Because accessing this function requires importing module,
following the previous paragraph, we can intercept all attempts to
import module. We leverage this to return a modified module inter-
face where the createRequire function creates require functions
that perform the import policy check.

Given our ability to intercept all import attempts by the applica-
tion, we can enforce dependency imports according to the SBOM
by allowing an import if the specifier matches that of a listed depen-
dency. Similarly, we can enforce the CBOM by allowing imports
of capability-bearing built-in modules only if the corresponding
capability is granted. Additionally, the import is allowed if it is for a
file within the current package or an unprivileged built-in module.

Code evaluation To manage the ability of modules to dynamically
evaluate code we use the codeGeneration option of the vmmodule.
This option tells vmwhether or not to allow dynamic text- orWASM-
based code evaluation. Disabling the former disables eval (and
related), while disabling the latter disables the functionality of the
WebAssembly object. In both cases, use of these APIs results in an
immediate error when called.

Since we control the creation of all modules, we can control the
dynamic code evaluation capability for every module in accordance
with the CBOM. Observe that even though vm can be used to create
a new context where dynamic code evaluation is possible (in fact,
NodeShield relies on this fact), the ability to import vm is guarded by
the same capability as dynamic code evaluation, meaning it cannot
be used to escalate capabilities.

Bindings To manage the binding accessible to each module we
need to manage the behavior of process.binding. The process
object is accessible both as a global variable (named process) and
an import (as (node:)process). As described, we control access to
both global variables and imports. Hence, we override the binding
function on the process object (line 15, Listing 2) on a per-module
basis with an implementation that restricts access to capability-
bearing bindings in accordance with the CBOM.

Enforcement modes NodeShield supports 3 enforcement modes.
First, in logmode it will log policy violations, along with the violat-
ing module, but otherwise continue as usual - thus not preventing
the violation. Second, in throw mode violations will result in an
error being thrown. This provides an option for the program to con-
tinue in spite of the limitation imposed on it. Lastly, the exitmode
will result in an immediate program exit upon the first violation.

4.3 Security Analysis
We presents, given our explicit assumptions, a security analysis of
NodeShield through the lens of attack scenarios that aim to bypass
the enforcement and argue for its robustness against these attacks.
The robustness is further evaluated empirically in Section 5.3.

The enforcement as described in Section 4.2 is comprehensive in
that it covers all avenues through which Node.js code can use third-
party libraries or access capability-bearing APIs. However, Node.js
has several features related to meta-programming and dynamic
code evaluation that could allow advanced malware to bypass the
enforcement. For example, a naive implementation of the enforce-
ment could be bypassed by monkey patching, e.g., the prototype of
JavaScript built-ins such as Object or Array. Moreover, attacker
can perform cross-V8-context code evaluation to achieve privilege
escalation when evaluating in a more privileged context.
Assumptions The security of NodeShield is predicated on the fol-
lowing assumptions on JavaScript, Node.js, and the vmmodule. First,
dynamic code evaluation in JavaScript is limited to accessing only
variables from the current scope—per the language specification [5].
Second, the only three ways to load modules in Node.js are the
require function (in CommonJS), the import syntax (in ESMod-
ules), and the import function (both)—per the Node.js docs [22].
Third, we assume the vmmodule 1) traps all uses of both the import
syntax and function, 2) can prevent use of dynamic code evalua-
tion APIs and 3) provides a fresh, pure JavaScript context without
Node.js-specific built-ins or implicit access to variables from the
context in which it is instantiated—the former two are supported
by the Node.js docs [22] while we empirically validate the latter.
Shared global namespaceWithout separation of the global names-
pace between the host and guest code, the guest code could manip-
ulate the behavior of the host by changing built-ins or performing
prototype pollution. Rather than trying to contain the guest code,
we write the host using techniques that prevent such influence. In
particular, we leverage primordials, null prototypes, and object
freezing.

First, we use primordials (line 2, Listing 2), a concept borrowed
from Node.js [23]. Primordials are a set of function references ob-
tained before any untrusted code is run such that untrusted code
cannot manipulate these references. For example, our policy en-
forcement for imports needs to check if the import specifier is
present in the allowlist of imports. We implement it as a JavaScript
array with the goal of using l.includes(s) to check if the spec-
ifier s is allowed to be imported. However, the guest code could
override Array.prototype.includes to always return true, inval-
idating import-based policy enforcement. To prevent this attack,
we obtain a primordial reference to the includes function1 and use

1as Function.prototype.call.bind(Array.prototype.includes). Used as
includes(allowlist, specifier).

NodeShield: Runtime Enforcement of Security-Enhanced SBOMs for Node.js CCS’25, October 13–17, 2025, Taipai, Taiwan

it instead. Additionally, as a defense-in-depth strategy, we leverage
null prototype and object freezing. The use of null prototype
avoids prototype pollution gadgets in our implementation, while
object freezing avoids manipulating in-memory policy objects.

This prevents exploitation of the host through the global names-
pace, but not other (more privileged) guests. Indeed, changes to the
globalThis object or standard object prototypes could be used by
the attacker to trigger gadgets [25] in other guests. The reasoning
for this gap is twofold. First, modifications in the global namespace
happen in benign use cases such as polyfills, which we do not want
to break. Second, known defenses against this type of attack, e.g.,
object freezing, can be implemented at the application level in a way
that is compatible with such benign use cases (which we cannot do
in NodeShield).
Host-context eval The use of vm introduces the possibility of
dynamic code evaluation in the host’s context, potentially allowing
malicious code to bypass the policy enforcement. We propose a
novel technique based on lexical scoping of variables to mitigate
privilege escalation in this manner. In particular we prune sensitive
global variables (i.e., those from Table 1 plus all CommonJS specific
global variables) from the global namespace of the host context,
capturing them as local variables instead and deleteing them from
the globalThis object afterwards (line 3-4, Listing 2).

This relies on the observation that cross-context code evalua-
tion does not allow the evaluator to access local variables of the
evaluatee. Thus by pruning sensitive global variables the evaluatee
does not gain additional capabilities by evaluation code in the host
context.
Cross-V8-context eval A similar situation may occur when dy-
namic code is evaluated in another (more privileged) guest context.
Here too, rather than trying to prevent cross-V8-context code eval-
uation, we use the same scoping-based technique to prevent such
evaluation from enabling privilege escalation.

To achieve this we create one-time-accessible global variables
which are bound to a local variable in the guest context through an
inserted a preamble. To create a one-time-accessible global variable
we define a property with a getter that deletes itself.
1 Object.defineProperty(G, "fetch$2eb2a5", {

2 configurable: true , get() {

3 delete G["fetch$2eb2a5"]; return fetch } })

The inserted preamble binds the one-time-accessible global vari-
ables to the correct local names.
1 { let fetch = fetch$2eb2a5 // preamble

2 { fetch("http :// example.com") }} // original code

From the perspective of the guest, accessing this local variable
behaves just like the original global variable. But, because it is a local
variable, it is not accessible in cross-V8-context code evaluation.
Neither is the original global variable because accessing it removed
it from the context’s global namespace.

For CommonJS, we wrap the guest code in a block statement
which in turn is wrapped in a block statement containing a (let)
binding of the sensitive global variables to local variables, like
the example (this approach prevents syntax errors due to re-used
identifiers). For ESModules, we cannot wrap the entire guest code
in any kind of block statement (because imports and exports must
be at the top level) so we instead insert a top level statement that

EnforcedProgram
Cap(p;a;b;c;d;e)

Dep A
Cap(a;c;d)

Dep B
Cap(b;e)

Dep C
Cap(c)

Dep D
Cap(d)

Dep E
Cap(e)

Program
Cap(p)

Dep A
Cap(a)

Dep B
Cap(b)

Dep C
Cap(c)

Dep D
Cap(d)

Dep E
Cap(e)

Presented

Figure 3: Presented vs Enforced Policy in NodeShield.

(let) binds sensitive global variables to local variables. To avoid
syntax errors due to duplicate identifiers, ESModules code is parsed
to determine and omit top-level names that are already defined.2

4.4 Capability Inference and Presentation
In the absence of a CBOM a set of capabilities needs to be deter-
mined. NodeShield offers two strategies with different benefits and
drawbacks. First, capabilities can be inferred dynamically by run-
ning the application using an incomplete CBOM. From the observed
violations, gaps in the CBOM can be filled in. However, this risks
running malware without restrictions. Second, capabilities can be
inferred statically. This is imprecise given the challenges of ana-
lyzing JavaScript code, but is safer because no untrusted code is
run.
Static inference To statically infer the capabilities, all source code
must be analyzed looking for imports of Node.js built-in mod-
ules, imports of addons, use of capability-bearing global variables,
and use of capability-bearing bindings. For the prototype imple-
mentation of NodeShield we use regular expressions to match for
importing or requireing built-in modules and the presence of the
word “fetch”, “eval”, and “process”. This is imprecise but largely
sufficient for the purposes of our evaluation. In particular, it may
falsely grant capabilities if, e.g., these patterns occur in a string, or
miss capabilities if, e.g., they are used dynamically only.
Dynamic inference To dynamically infer capabilities, the appli-
cation must be run in log mode, or iteratively in exit mode, to
capture all policy violations. The policy violations can be inspected
for capability-related violations, based on which the CBOM can be
created or extended. Because of our use of the codeGeneration
option, log mode cannot infer usage of the code capability, requir-
ing exit mode to be used instead. The prototype implementation
of NodeShield does not provide an automated mechanism to cre-
ate/update the CBOM in this way.
Enforced vs. presented Capabilities are enforced at a module-
granular level, meaning if dependency 𝐷1 requires the capability
𝐶1 it receives the ability to use exactly and only that capability.
When we introduce 𝐷2, requiring some capability 𝐶2 (≠ 𝐶1), as a
dependency of 𝐷1 a potential confused deputy problem arises: 𝐷1
can use 𝐷2 (in accordance with SBOM enforcement) to exercise
capability𝐶2 (in violationwith the CBOMenforcement).We address
this by separating the enforced (as described) and presented view of
the CBOM, as illustrated in Figure 3.

2In both cases, adding this preamble accounts for file “headers” such as shebangs and
"use strict";.

CCS’25, October 13–17, 2025, Taipai, Taiwan Cornelissen, Eric and Balliu, Musard

The presented view aims to resolve the confused deputy prob-
lem (arising from the dependency hierarchy) at the moment the
human reviews the CBOM while maintaining least-privilege en-
forcement at runtime (a motivating example for this can be found
in Section 5.2). In particular, NodeShield users are presented a view
of the dependency in which it will be granted the capabilities it
needs itself as well as the capabilities of all its transitive dependen-
cies. This leaves no deputies with extra capabilities accessible to a
malicious dependency for it to confuse.

For the example above, the enforced view of 𝐷1 is {𝐶1} while the
presented view is {𝐶1,𝐶2}. This is because the code of𝐷1 itself only
requires 𝐶1 to function correctly—hence there is no need to grant
it additional capabilities at runtime—while the overall behavior of
the code comprising 𝐷1 (i.e., including 𝐷2) requires both𝐶1 and𝐶2
to function correctly.

5 EVALUATION
This section presents the evaluation of NodeShield [24], answering
the following research questions:
RQ1. Is NodeShield effective at preventing software supply chain

attacks?
RQ2. Is NodeShield effective at reducing the attack surface of de-

pendencies?
RQ3. Is NodeShield robust against sandbox breakouts?
RQ4. What is the level of effort required to maintain a CBOM?
RQ5. What is the cost of using NodeShield compared to Node.js?

We compare NodeShield to related work [31, 45] on these ques-
tions. The tool from [31] is not available in a working state, hence
we omit it. The Npm Dependency Guardian (ndg) tool [45] is avail-
able and we compare with it in RQ1, 2, 3, and 5.

Experimental setup. All experiments were conducted on a desk-
top system with an AMD Ryzen™ 7 3700X × 16 processor and
32 GB of RAM. For each experiment, the setup and supporting
material is available in the artifact, except for the malicious code
samples which are only made available upon request. All SBOMs
were generated using the npm sbom utility.

5.1 RQ1: Effectiveness against Malware
To evaluate the effectiveness of NodeShield against software supply
chain attacks we run known malicious npm packages and observe
whether the attack can be stopped. In particular, we investigate
whether the attack is detected by NodeShield through either SBOM
or CBOM enforcement, and compare to ndg [45].

We compile a list of knownmalicious packages from priorwork [28,
33, 34, 44] and gray literature [57, 62]. We obtain samples of the
malicious code from [28, 44] as well as Socket (https://socket.dev/).
In total, we collect the names of 2,179 known malicious packages
(with one or more version) with samples available for (at least one
malicious version of) 2,101 packages. Out of this, we exclude 407
unlabeled packages, 49 web platform attacks, 4 denial of service
attacks, 2 malicious npm test commands, 2 unpublished packages,
1 that is not itself malicious, and 1 that is not designed for Node.js.
This leaves 1,594 packages labeled as install-time and 41 packages
labeled as runtime attacks.

Package SBOM CBOM ndg [45]
conventional-changelog
event-stream
node-ipc
rate-map

Table 2: Overview of using NodeShield and ndg with malicious updates. A
means it is prevented using that enforcement alone, means it is not.

First, we consider the 41 packages with a runtime attack. These
can be split into two categories, malicious updates (n=4) and ma-
licious packages (n=37). For this experiment we create a program
that imports (and uses, if necessary) the malicious package. For
malicious updates we run the program with NodeShield using an
SBOM generated for the program using the malicious package ver-
sion and a statically inferred CBOM (Section 4.4) for the program
using the previous benign package version (extended with inferred
capabilities for new transitive dependencies of the malicious ver-
sion). Similarly, we test ndg with an inferred policy for the benign
version updated to include new dependencies from the malicious
version. The results are summarized in Table 2.

For malicious packages we run the program with NodeShield
using an SBOM generated for the program with the malicious
package version and using 1) a statically inferred CBOM for the
program using the malicious package version, and separately 2) a
CBOM that grants the malicious package no capabilities. For ndg
we run with the inferred policy only, assuming the results of test 2
apply to ndg too. The results are summarized in Table 3.

Second, we consider 5 packages with an install-time attack. We
restrict ourselves to 5 out of 1,594 samples, matching coverage
of related work [31, 45], because the evaluation requires manual
setup to run the scripts explicitly (as opposed to implicitly through
npm hooks). Further, we note that installation scripts are not limited
to JavaScript code and we advocate instead for mechanisms along
the lines of Latch [63] or LavaMoat’s [7] @lavamoat/allow-scripts
tool which provide more comprehensive defenses against install-
time attacks.

All 5 packages are malicious updates. For this experiment we
create a program that runs the install time script with NodeShield
using an SBOM generated for the program using the malicious
package version and using 1) a statically inferred CBOM for the
program using the previous benign package version, and separately
2) a statically inferred CBOM for the program using the previous
benign package version where the package is stripped of all non-
install-time code. For ndg we run the same two experiments with
inferred policies. The results are summarized in Table 4.
ResultsWe evaluate NodeShield against 67 malware samples (46
malicious packages). The results show that our approach works
best for malicious updates and can work for malicious packages
provided developers review the capabilities before adopting a new
dependency. We find that SBOM enforcement by itself is rarely suf-
ficient to prevent known attacks, but is occasionally necessary (e.g.,
fast-requests). The results confirm the benefits of the CBOM in
addition to the SBOM. In response to RQ1, we find that NodeShield
could have prevented 98.51% (66/67) of evaluated known supply
chain attacks. In contrast, ndg [45] could have prevented 83.58%

https://socket.dev/

NodeShield: Runtime Enforcement of Security-Enhanced SBOMs for Node.js CCS’25, October 13–17, 2025, Taipai, Taiwan

Package SBOM CBOM ndg [45]
@roku-web-core/ajax (2x)
alicon
bb-builder
bitcionjslib (2x) ✗

bitcoisnj-lib (2x) ✗

botbait (3x)
chalc
colorsss (2x)
colors_express
commender
component-emiter
discord-fix
discord-lofy
discord-selfbot-v14
discord-vilao
discord.js-user
discordi.js (7x)
discordsystem
electron-native-notify
esprime ✗

express-cookies ✗

fast-requests
flatmap-stream
getcookies ✗

headcache
http-proxy-middelware
ikst
jquerry
leetlog (2x)
mendiff
momnet (4x)
monent
npmpubman
prerequests-xcode
random-vo...generator (4x)
seemver
stautses

Table 3: Overview of using NodeShield and ndg with malicious packages.
means it is prevented using that enforcement alone, means it is not.

For CBOM, means it can be prevented if the capabilities for the package are
restricted w.r.t. those inferred. A ✗ means there is a compatibility issue.

(56/67) attacks. The fact that 9 attack are incompatible with ndg
motivates the comprehensive and runtime-agnostic approach of
NodeShield.

The node-ipc attack is not prevented by NodeShield because the
preceding benign version already uses the capabilities (file-system
and network) used in the attack. Compared to related work [31, 45],
our evaluation covers a strict superset of in-scope (i.e., exclud-
ing availability attacks) malicious packages. Furthermore, the per-
mission system of Ferreira et al. [31] only covers the network,
file-system, and command capability3, while NodeShield demon-
strates the need for including the capabilities system and crypto.
3Unfortunately, the prototype of Ferreira et al. is no longer supported, as confirmed
by personal communication, hence an empirical comparison is not possible.

Package SBOM CBOM ndg [45]
eslint-config-eslint
eslint-scope
kraken-api
mariadb ✗

opencv.js ✗
Table 4: Overview of using NodeShield and ndg with malicious install-time
package. means it is prevented using that enforcement alone, means it is
not. For CBOM, means the attack can be prevented if the installation script
has separate capabilities. A ✗ means there is a compatibility issue.

In particular, 10 samples only use one or both of these internally
while relying on third-party modules for further capabilities.

5.2 RQ2: Attack Surface Reduction
To evaluate the reduction of the attack surface we run known
vulnerability exploits on NodeShield, as well as ndg [45] for com-
parison, to see if the exploit is caught. For this evaluation we use
SecBench.js [18] (at commit bc31562), which provides proof of
concept (PoC) exploits for code injection, command injection, path
traversal, prototype pollution, and ReDoS vulnerabilities.

For this experiment, only code injection vulnerabilities arewithin
the scope of NodeShield. In particular, command injection is subject
only to the command capability, path traversal is subject only to the
file-system capability, and prototype pollution and ReDoS are
out of scope. On the other hand, code injection enables the attacker
to leverage further capabilities.

Hence, we take the PoC code injection exploits from SecBench.js
and put each in a separate project that has a dependency on the
vulnerable version of the respective dependency. For NodeShield,
we use a generated SBOM and statically inferred CBOM (Section 4.4,
extended with the code and system capability for the vulnerable
package, if not inferred). Similarly, for ndg we use its inferred policy.

We exclude some cases from our evaluation because: 16 are listed
but have no PoC exploit, 12 cause prototype pollution (which is
outside our threat model), 3 are mislabeled (as code-injection
instead of command-injection), and 1 has an invalid PoC exploit.
During the experiment, the programs are run and we observe if
the exploits are caught as a violation by NodeShield and ndg. The
results are summarized in Table 5.
Results In response to RQ2, we find that NodeShield is effective at
reducing the impact of arbitrary code execution vulnerabilities in
JavaScript. In particular, 87.50% (21/24) of the exploits were detected
by NodeShield. This demonstrates that the reduced attack surface as
a result of capability enforcement is effective at protecting against
the exploitation of code injection vulnerabilities. In contrast, 12/16
(75.00%) of exploit were detected by ndg [45] with 8 of the packages
being incompatible.

All attacks not prevented by NodeShield leverage the capabili-
ties needed by the respective packages. ndg prevents two attacks
NodeShield does not because these access require, which it dis-
allows. However, sandbox breakouts can be used to bypass this
protection (demonstrated by the jsen and mongo-parse attacks).

Moreover, this evaluation highlights the importance of separat-
ing the presented view from the enforced view (Section 4.4). For
example, the exploit for the mobile-icon-resizer package uses

CCS’25, October 13–17, 2025, Taipai, Taiwan Cornelissen, Eric and Balliu, Musard

Package Capability NodeShield ndg [45]
access-policy file-system
cd-messenger file-system
hot-formula-parser command
jsen command
json-ptr command
kmc file-system
m-log file-system ✗

mathjs (2x) command ✗

mixin-pro file-system
mobile-icon-resizer file-system ✗

modjs file-system ✗

modulify file-system
mol-proto file-system
mongo-parse command
mongoosemask file-system
node-extend file-system
node-rules file-system ✗

node-serialize file-system
pixl-class file-system
reduce-css-calc file-system
serialize-to-js command
thenify file-system ✗

underscore file-system ✗
Table 5: Overview of the protection of NodeShield and ndg [45] against arbi-
trary code execution vulnerability exploits from SecBench.js [18]. The capa-
bility column specifies which capability the exploit uses. A means the PoC
exploit is stopped, means it is not. A ✗ means there is a compatibility issue.

the file-system capability. However, some of its transitive depen-
dencies do need this capability. If the presented view was instead
used for enforcement, mobile-icon-resizerwould have received
the capability and the exploit would not have been prevented.

5.3 RQ3: Robustness against Attack
To empirically evaluate the security of our enforcement strategy, as
described in Section 4.3, we collect a benchmark of language-level
JavaScript sandbox breakouts from SandDriller [17]. We test these
on NodeShield, as well as ndg [45] for comparison. We consider
snippets from figures as well as snippets referenced in Table 5 in
SandDriller [17]. We create a separate program to execute each
snippet and adapt them in a way that prevents the capability infer-
ence (Section 4.4) from granting the program the capability it may
be trying to obtain. Some snippets were omitted because they are
not applicable (e.g., they target the browser environment). In total,
we create a benchmark of 27 snippets.

For NodeShield, we run the programs using an SBOM generated
for the program and a statically inferred CBOM. For [45], node-
dependency-guardian (ndg), we run the program under a policy that
disallows everything except access to the global variables Buffer,
console, Error, Object, process, require, and setTimeout. The
results are summarized in Table 6.

Results In response to RQ3, we find that NodeShield can handle all
sandbox breakout techniques in the benchmark except for those that
only achieve prototype pollution (2/29, 6.90%), which is outside our

Index NodeShield ndg [45]
Figure 1 (CVE-2021-23449)
Figure 5
Figure 6
Figure 7
Figure 8
vm2 issue #138
vm2 issue #175
vm2 issue #177
vm2 issue #179
vm2 issue #184
vm2 issue #185
vm2 issue #186
vm2 issue #187
vm2 issue #197
vm2 issue #199
vm2 issue #224
vm2 issue #225
vm2 issue #241
vm2 issue #268
vm2 issue #276
safe-eval issue #5
safe-eval issue #16
safe-eval issue #18
safe-eval issue #19
safe-eval issue #24 (1)
safe-eval issue #24 (2)
Michał Bentkowski (1)
Michał Bentkowski (2)
Michał Bentkowski (3)

Table 6: Overview of the impact of sandbox breakouts from SandDriller [17] on
NodeShield and ndg. A means the breakout fails and a means it succeeds.

threat model. In contrast, 11/29 (37.93%) sandbox breakouts work
on ndg [45], allowing advanced malware to bypass its enforcement.

5.4 RQ4: Maintenance Effort
To get an indication of themaintenance required for usingNodeShield
we evaluate the CBOM size and frequency of CBOM changes. Our
focus is on the CBOM because developers need to put in no (or
little, see Section 5.6) manual effort to use NodeShield.

To evaluate size we consider CBOMs generated across all eval-
uations. For the evaluation of NodeShield we have generated 143
CBOMs. The average CBOM spans 78 dependencies with 64 capa-
bilities total, or 0.82 capability per dependency. We note the relative
size may be an overestimate as RQ1 and RQ2 target packages with
capabilities.

To evaluate change frequency we use 6 git-based server projects,
picked from the evaluations of related work [26, 61], and consider
the 1,000 most recent commits. These are typically server-side
Node.js project and are thus expected to accurately capture real-
world capability change patterns. The experiment ignores commits
for which npm dependency installation or SBOM generation fails
and terminates early if there are fewer commits. The experiment

NodeShield: Runtime Enforcement of Security-Enhanced SBOMs for Node.js CCS’25, October 13–17, 2025, Taipai, Taiwan

Application Total Reviewable Updated
connect 2.42 (58) 1.38 (33) 0.04 (1)
express 2.67 (8) 0.67 (2) 0.33 (1)
fastify 2.22 (20) 1.33 (12) 0.00 (0)
json-server 19.00 (285) 8.53 (128) 0.67 (10)
koa 25.37 (1,598) 12.81 (807) 0.11 (7)
st 3.40 (34) 2.50 (25) 0.50 (5)

Table 7: Overview of the number of capability changes (added, removed, or
updated) per project. A cell reports the average per dependency-changing-
commit and sum of changes across all commit (resp.).

computes the total, “reviewable”, and “updated” number of capabil-
ity changes. Reviewable covers new capabilities of added or updated
dependencies while updated covers only those of updated depen-
dencies. The total is included only for completeness as removed
capabilities entail no maintenance work. The results are in Table 7.
Results In response to RQ4, we find that projects can expect fewer
capabilities than dependencies and that capability updates are in-
frequent. For dependency updates, application developers need
to review less than 1 capability per dependency-changing com-
mit on average. When including new dependencies, this ranges
from 0.67 and 12.81 capabilities per dependency-changing commit,
highlighting the difference in maintenance work between new and
existing dependencies. The variance suggests that careful selection
of dependencies can reduce the review workload. In conclusion,
maintaining a CBOM for an application can help protect against
supply chain attacks at a low overhead. This is in line with findings
of related work [31, 45].

5.5 RQ5: Performance and Compatibility
To estimate the cost of adopting NodeShield for protecting appli-
cations, we evaluate the performance overhead and compatibility
compared to vanilla Node.js. For performance, we evaluate the per-
formance impact in terms of the response overhead and throughput
of long-lived server applications as well as the runtime overhead
of short-lived CLI applications. For compatibility, we report on
observed incompatibilities in NodeShield across all evaluated pack-
ages and applications as well as the false positive rate for violations.
Performance NodeShield’s performance is measured in four ex-
periments: the response time overhead, memory overhead, and
throughput of long-lived server apps, and the runtime overhead of
short-lived CLI apps. The first three scenarios target our use case,
while the last, based on [31], measures startup overhead. We use
inferred SBOMs and CBOMs and run NodeShield in log mode.

The first three experiments consider server frameworks used
in the evaluations of related works [26, 61]. We instantiate server
applications based on the descriptions of these papers and run
these applications with Node.js and NodeShield. First, we measure
the response time overhead as the difference between Node.js and
NodeShield of the average of 5,000 requests. Second, wemeasure the
memory overhead by comparing the memory usage of the server
when running on Node.js against NodeShield. Third, we measure
the throughput (requests per second, RPS) and compare between
Node.js and NodeShield. Specifically, we start by sending 𝑛 parallel
requests and increment if all responses have been received in less

than 1 second. This is repeated until handling 𝑛 requests takes 1
second or more, 5 times in a row. The results are in Table 8.

For the third experiment we use short-lived CLI applications
used in the evaluation of [31]. We run two separate experiments.
First, the applications are run as is with Node.js and NodeShield
and their runtime is compared. Second, the applications are run
following the methodology of [31] with Node.js and NodeShield
and their runtime is compared, providing a common baseline for
comparison, in absence of their tool. The results are in Table 9.
Results The experiments show that NodeShield induces low run-
time overhead but noticeable memory and startup overhead. We
observe a response time overhead of less than 1 ms (0.31%-1.99%)
and we find a throughput reduction of up to 360 requests per second
(0.00%-11.84%). Memory overhead incurred by NodeShield can vary,
ranging from 42.50% to 250.74%. This is due to the use of vm, linking
it to dependency count rather than workload. At 120 dependencies,
json-server suggests a few MBs of memory may be required for
Node.js apps, acceptable for modern server hardware. The startup
overhead may be up to 4× (experiment A), which is because the
vm creation and policy enforcement primarily happen during this
phase (supported by experiment B).
Compatibility In total, the evaluation spans 86 real-world pack-
ages and applications, covering a total of 3,443 transitive packages.
Out of 86, 3 were not compatible, giving a 96.51% compatibility
rate. In contrast, ndg [45] exhibits compatibility issues with 15 out
61 real-world packages and applications tested, giving a 75.41%
compatibility rate. For NodeShield, one incompatibility is due to
the use of an undocumented API (module._compile) and two due
to the use of instanceof Array.
ResultsWe find that NodeShield is broadly compatible with soft-
ware written for Node.js. While incompatible coding patterns are
used in practice, they are infrequent and generally easy to over-
come. We provide a more in-depth discussion about incompatibility
in Section 5.6.
False positive rateWeevaluate the false positive rate of violations—
i.e., how often developers can expect violations that are actually
benign—by running the (assumed) benign applications of the per-
formance evaluation. As ground truth we use the set of accesses
requested at runtime. A false positive is any violation that occurs
(e.g., there is a capability missing from the CBOM). Dually, a true
negative is the lack of a violation when there should not be (e.g., a
capability from the CBOM is being used).

For this evaluation we use generated SBOMs and statically in-
ferred CBOMs. To get the false positives count we run the apps—for
servers sending one request—and count violations reported. Re-
peated violations by the same dependency are ignored. For true
negatives we use an empty CBOM, count the violations reported by
NodeShield, and subtract the number of false positives. Thus, true
negatives (CBOM violation) are an underestimate w.r.t. to false pos-
itives (all violations), leading to a lower bound on the false positive
rate.

The results of this experiment depend on the code covered when
running the applications. To give a sense of the completeness of
these experiments, we measure the code coverage of all applications
in the evaluation. We find an average line coverage of 15.29% (min.
2.95%, max. 38.93%).

CCS’25, October 13–17, 2025, Taipai, Taiwan Cornelissen, Eric and Balliu, Musard

Response Overhead (ms) Throughput (RPS) Memory Overhead (kB)
Server Node.js NodeShield Overhead Node.js NodeShield Reduction Node.js NodeShield Overhead
connect 5.267 5.305 0.72% 8,310 8,150 -1.93% 219,344 334,512 52.51%
express 5.726 5.839 1.99% 3,210 2,830 -11.84% 175,584 363,056 106.77%
fastify 5.364 5.387 0.44% 7,820 7,610 -2.69% 257,168 715,232 178.11%
json-server 8.208 8.314 1.29% 3,410 3,050 -10.56% 175,104 614,160 250.74%
koa 5.217 5.234 0.31% 8,110 7,830 -3.45% 221,696 375,184 69.23%
st 5.392 5.464 1.34% 4,380 4,380 -0.00% 217,440 309,856 42.50%

Table 8: Overview of long-lived server application performance test results. Response overhead is the response-time overhead from the perspective of the client.
Throughput is the number of concurrent requests the server can handle in 1 second. Memory overhead is the additional memory used by NodeShield.

Experiment A (ms) Experiment B (ms)
Application Node.js NodeShield Overhead Node.js NodeShield Overhead
d3-dsv 114.62 212.16 97.54 85.10% 5,052.22 5,126.35 74.13 1.47%
docco 898.86 1,201.85 302.89 33.69% 5,043.12 5,097.70 54.58 1.09%
dot-object 39.90 120.19 80.29 201.25% 5,047.07 5,126.09 79.02 1.57%
dox 52.50 235.45 182.95 348.48% 5,060.85 5.239.37 178.53 3.53%
findup 37.09 88.83 51.74 139.49% 5,041.12 5,093.43 52.31 1.04%
html-minifier 105.51 446.45 340.94 323.13% 5,100.42 5,443.12 342.70 6.72%
js-cfb 73.55 130.16 56.61 76.96% 5,086.08 5,136.81 50.73 1.00%
json-refs 202.15 981.94 779.79 385.75% 5,121.57 5,905.51 783.93 15.31%
json2csv 51.36 123.92 72.57 141.30% 5,042.24 5,119.25 77.00 1.53%
juice 381.43 875.99 494.56 129.66% 5,146.21 5,667.72 521.52 10.13%
metalsmith 144.31 193.65 49.34 34.19% 5,114.55 5,163.68 49.14 0.96%
mocha 140.42 193.78 53.36 38.00% 5,038.53 5,085.31 46.78 0.92%
mockjs 47.96 100.86 52.90 110.31% 1,015,73 3,101.05 2,085.32 205.30%
sails 255.85 1,366.53 1,110.67 434.11% 5,234.75 6,302.20 1,067.45 20.39%
svgicons2svgfont 158.56 280.19 121.63 76.71% 5,055.82 5,161.54 105.71 2.09%
traceur ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

uglify-js 3,406.22 4,500.16 1,093.94 32.12% 5,153.41 5,222.16 68.75 1.33%
xss 55.83 127.71 71.88 128.74% 5,043.40 5,113.82 70.42 1.40%
yaml-front-matter 59.56 167.53 107.97 181.29% 5,038.85 5,091.74 52.89 1.05%

Table 9: Overview of short-lived CLI application performance test results. In experiment A, the application is run as is. In experiment B, the application is run
following the approach of [31]. For both experiments the average of 10 runs is reported. metalsmith and svgicons2svgfont were modified to use Array.isArray
(instead of instanceof Array) for compatibility with NodeShield. A ✗ means there is a compatibility issue.

Results Across the 24 benign applications (covering 994 transitive
dependencies) we observe 387 non-violations (true negatives) and
18 violations (false positives)—7 SBOM and 11 cross-package im-
port violations. Thus, the false positive rate (𝐹𝑃 ÷ (𝐹𝑃 +𝑇𝑁)) of
NodeShield in our evaluation is 4.65%.

5.6 Limitations

Language support NodeShield support most of the JavaScript
language and Node.js environment, empirically supported by the
evaluation in Section 5.5. However, there are three language aspect
with partial support: 1) dynamic type checking, 2) overriding certain
global variables, and 3) undocumented Node.js APIs.

First, the usage of vm creates separate V8 contexts, each with
unique built-in constructors. As a result the instanceof opera-
tor does not work as expected for types instantiable through syn-
tax (e.g., arrays). This limitation can be overcome by using, e.g.,
Array.isArray instead, which is recommended practice [21].

Second, our approach prevents overriding privileged global vari-
ables (from Table 1) in packages with the corresponding capability
(e.g., fetch=42). This is due to the local binding of those variables
in those packages (per Section 4.3). We believe this is uncommon
yet can be overcome by overriding as globalThis.fetch=42.

Third, Node.js provides some APIs that are not documented. If
such APIs are not implemented in NodeShield, code using these
APIs breaks. We only know about module._compile. Covering
such APIs is challenging as their intended functionality is unknown.

Incompleteness Despite our systematic efforts to map all Node.js
APIs to capabilities (see Table 1), we cannot prove that our map-
ping is complete. We cover all documented APIs and some undoc-
umented APIs. We argue this limitation is not fundamental but
rather incidental. In particular, our enforcement approach outlined
in Section 4.2 supports enforcing policies on such APIs, but might
be insufficiently configured.

CapabilitiesWhile our evaluation shows that the enhancement of
SBOM with CBOM is a simple and effective abstraction, there may

NodeShield: Runtime Enforcement of Security-Enhanced SBOMs for Node.js CCS’25, October 13–17, 2025, Taipai, Taiwan

be challenges. First, capability overlap, most notablywith addon and
command, may not be obvious and potentially lead to unexpected
use of resources. Second, capability transfer between components
may not always be desirable. Third, as seen in Section 5.1, when a
privileged malicious packages (e.g., node-ipc) is compromised the
attack can freely use its capabilities. We argue that many packages
will not be privileged, thus NodeShield significantly reduce the
attack surface. Lastly, the need for manual review of capabilities can
be a limiting factor for the security gained from using NodeShield.
SBOMs There are known issues with the accuracy of SBOMs, es-
pecially in the form of missing components. For NodeShield, this
results in legitimate imports not being allowed, thus causing us-
ability rather than security problems. Additionally, not all SBOM
generators capture the dependency hierarchy, eliminating much of
the benefit of SBOM enforcement from NodeShield.

6 MALWARE SPOTLIGHT: COPAYWALLET
To further illustrate the practical benefits of NodeShield we apply it
in a case study of the attack on Copay through event-stream [41].
Copay is a cryptocurrency wallet application build using Node.js
and Electron. In 2018, it was targeted by a supply chain attack. A
dependency of Copay, event-stream, was compromised to include
the malicious dependency flatmap-stream, which contained a
payload that was designed to trigger only when used by Copay.

Copay used event-stream as part of its development processes.
It was present transitively through the use of npm-run-all—a
utility for running multiple npm scripts in a conveniently and
concisely.

copay > npm-run-all > ps-tree > event-stream

In the attack, event-stream imports flatmap-stream which in
turn alters the files of a runtime dependency of Copay. This al-
teration causes Copay to leak account data and private keys of
users with sufficient balance at runtime. If npm-run-all ran on
NodeShield, the attack would be detected during the build of Copay
and no backdoored versions would have been released. As such, we
describe how this attack would have played out if this was the case.

For this purpose we use npm-run-all v4.1.2 (commit ec4d56c)
which, due to version ranges in ps-tree, can depend on both a
benign and malicious version of event-stream. We generate an
SBOM and statically infer a CBOM for both cases. When using the
benign version of event-stream (v3.3.4) the SBOM contains the
above dependency relation and a CBOM with:
1 { "npm -run -all@4 .1.2": ["system", "file -system", "

command"],

2 "ps-tree@1 .2.0": ["system", "command"],

3 "event -stream@3 .3.4": ["system", "file -system"] }

The malicious version of event-stream introduces a new depen-
dency on flatmap-stream through the relation:

npm-run-all > ps-tree > event-stream > flatmap-stream

and, consequently, the CBOM will also have an entry for it (but is
otherwise unchanged):
1 { "flatmap -stream@0 .1.1": ["system"] }

Hence, the difference between the two version comes down to
the addition of the flatmap-stream package—as a dependency of

event-stream—requiring access to the system capability. We run
npm-run-all as a NodeShield-based project, once with v3.3.4 of
event-stream and once with v3.3.6 of event-stream, showing full
compatibility with the original project and preventing the attack
(resp.). This is because at runtime flatmap-stream uses extra ca-
pabilities (crypto, file-system, and network) Interestingly, none
of these are present in the CBOM from static capability inference
because flatmap-stream is obfuscated. If the code was not obfus-
cated, these extra capabilities would appear in the CBOM, signaling
the maintainers of npm-run-all about the change in the capabil-
ities used by its dependencies. Considering the presented view
of its direct dependencies, the update of event-stream adds the
network and crypto capabilities to ps-tree. This is unexpected
for a dependency that (by its own description) “[gets] all children
of a pid”, thus providing a strong indicator to review the update.

In summary, the case study shows that NodeShield would have
prevented the event-stream incident if it was used by npm-run-all
with no manual effort from the maintainers. Moreover, the hypo-
thetical alternative attack (i.e., not obfuscated) would likely have
been caught due to the introduction of two suspicious capabilities
for an existing dependency.

7 RELATEDWORK
We discuss closely-related works and place our contributions in the
broader area of web application security. NodeShield contributes
with a practical open-source system with direct focus on the supply
chain of Node.js applications, while ensuring Node.js compatibility,
automation, minimal overhead, and policy conciseness. To the best
of our knowledge, there is no system that meets these goals.

Permission systems We are not the first to propose a system that
enforces permissions on a dependency-granular level to protect
against supply chain attacks. Prior work by Ferreira et al. [31] and
concurrent (unpublished) work by Ohm et al. [45] propose similar
systems. Our shared goal is to protect against supply chain-based
malware through a system that is broadly compatible with Node.js.

Both Ferreira et al. and Ohm et al. opt to modify the Node.js run-
time to trap on imports and the globalThis object. The former also
uses source code rewriting to add dynamic property access checks.
This hinders adoption because maintaining a security-enhanced
fork is expensive, and while Node.js (and Deno [27]) has introduced
a permission system of its own [8], there is still a gap between
academia and practice (e.g., these permission systems are not de-
pendency aware). In contrast, NodeShield is built withoutmodifying
Node.js thus simplifying adoption and maintenance. Neither related
work supports ESModules, significantly hindering adoption for
modern JavaScript applications. Lastly, neither consider an attacker
that attempts bypass the enforcement, which we address through
lexical scoping of sensitive global variables (see Section 4.3), thus
preventing such attacks as shown in Section 5.3.

The permission system of Ferreira et al. covers a subset of our ca-
pabilities, missing the system and crypto capability we find used
in practice as well as attacks utilizing undeclared dependencies
such as the fast-requests package in Section 5.1. Ohm et al. of-
fer a more granular permission system that gives control over all
imports and global variables. The resulting policy is overly verbose
according to our evaluation.

CCS’25, October 13–17, 2025, Taipai, Taiwan Cornelissen, Eric and Balliu, Musard

From industry, LavaMoat [7] has emerged as a prominent tool
to protect against JavaScript supply chain attacks. It leverage Se-
cure ECMAScript (SES) compartments. For Node.js, it can be used
as a application framework to protect against attacks from or on
third-party packages. It provides stronger security guarantees (e.g.,
protecting against prototype pollution) at the cost of more restric-
tions, requiring code to be written using a subset of JavaScript.
SandboxesMore broadly, various works have looked at sandbox-
ing for Node.js. Trading of compatibility and usability—in terms
of API and policy conciseness—for security. De Groef et al. [26]
present NodeSentry, which uses membranes [12] for policy enforce-
ment through a modified require implementation. Later Vasilakis
et al. [59] introduce BreakApp, separating components using three
isolation tiers (language, process, container) aiming to reduce vul-
nerability impact. They iterate on this with a language-level Read-
Write-Execute-based permission model [60] offering fine-grained
control over all object properties through rewriting-based context-
rebinding. Ahmadpanah et al. [15] present a sandbox library de-
signed for running untrusted code in Trigger-Action platforms.

The above focus primarily on isolation within the Node.js pro-
cess. This leaves native extensions and subprocesses vulnerable for
exploitation. Addressing these gaps, Christou et al. [20] present Bin-
Wrap as a system to sandbox native code extensions along with the
JavaScript itself. Similarly, Abbadini et al. [13] present NatiSand and
Cage4Deno to sandbox native code extensions and subprocesses
(resp.) for JavaScript runtimes using Landlock LSM [6], eBPF [4],
and seccomp [9]. Wang et al. [61] present HODOR, a unified sys-
tem for enforcing least privilege of system call usage in Node.js
applications, including native extensions, using seccomp.

Besides runtime, the npm ecosystem can be subject to install-
time attacks. As shown in Section 5.1, NodeShield can be used if
the script is written in JavaScript, yet installation scripts can be
arbitrary scripts or programs. Wyss et al. [63] propose Latch to
enforce a policy on any install script by leveraging AppArmor [1].
LavaMoat [7] offers tooling to manage installation scripts.
Web Besides server-side JavaScript, there has also been work on
isolating client-side JavaScript. Early attempts, such as Caja, AD-
safe, and FBjs, often relied on filtering or rewriting [39]. Terrace et
al. [58] present js.js, a JavaScript based interpreter to interpret un-
trusted JavaScript safely from JavaScript to achieve isolation. Agten
et al. [14] present JSand, an SES-based sandbox that uses mem-
branes for cross-component object sharing. Stefan et al. [55] suggest
COWL as an extension of Browser security policies with label-based
mandatory access control per script. Mickens [40] present the Pivot
framework for building web applications using iframes as isolation
containers, leveraging post messages as RPC between components.
Malware detectionMany recent works analyze or detect malicious
intent in the supply chain to prevent its spread. Ohm et al. [44]
analyze known malicious packages for patterns and attack vectors.
Ladisa et al. [35] expand with a more extensive literature review and
construct an attack tree covering 107 unique vectors. Similarly, [36]
evaluate the features of package managers to uncover attack vectors
for arbitrary code execution on developer machines.

Fass et al. [30] propose using multiple static analyses combined
with random forest classification to detect malicious JavaScript sam-
ples. Duan et al [28] propose using metadata, static, and dynamic

analysis to detect malicious packages on PyPI, npm, and RubyGems.
Ntousakis et al. [43] extend the work of Vasilakis et al. [60] to detect
malicious packages at runtime. Sejfia and Schäfter [48] use feature-
driven machine learning to detect malicious npm packages. Li et
al. [37] leverage inter-procedural source-to-sink analysis to reduce
false positives in detecting malicious npm and PyPI packages. Liang
et al. [38] focus on detecting malicious install scripts in PyPI pack-
ages, identifying behavioral outliers. Huang et al. [34] proposes the
use of behavior sequences observed in known malicious packages
to detect new malicious packages. Sofaer et al. [54] focuses on de-
tecting malicious updates of packages based on changes in the use
of external APIs, aligning in principle with our CBOM proposal.

8 CONCLUSION
We presented a runtime protection mechanism, NodeShield, against
supply chain attacks on Node.js that is able to defend against 98.51%
of tested real-world supply chain attacks and 87.50% of tested vul-
nerability exploits. NodeShield requires little effort from developers
and incurs low overhead on long-lived applications. Driven by a
novel application of lexical scoping, NodeShield can protect against
more sandbox breakouts than related works.We applied NodeShield
to a case study of the 2018 attack on the Copay application, show-
ing its potential in practice. In future work NodeShield and CBOM
can be applied in different settings with more granular policies,
including other JavaScript runtimes, browsers, or languages.

ACKNOWLEDGMENTS
We thank Daniel Hedin and the anonymous reviewers for their feed-
back. This work was partially supported by the Swedish Foundation
for Strategic Research (SSF), the Swedish Research Council (VR),
and Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.

REFERENCES
[1] AppArmor. https://gitlab.com/apparmor/apparmor. Accessed: 8de2ff3.
[2] Cackle (cargo acl). https://github.com/cackle-rs/cackle. Accessed: 6857d88.
[3] Capslock. https://github.com/google/capslock. Accessed: 93953b6.
[4] eBPF. https://ebpf.io/. Accessed: 2024-09-13.
[5] ECMAScript® 2026 specification. https://tc39.es/ecma262/. Accessed: 2025-04-03.
[6] Landlock. https://docs.kernel.org/security/landlock.html. Accessed: 2024-09-13.
[7] LavaMoat. https://github.com/LavaMoat/LavaMoat. Accessed: a859f9f.
[8] Permissions | Node.js v20.x documentation. https://nodejs.org/docs/latest-v20.x/

api/permissions.html. Accessed: 2025-04-03.
[9] seccomp. https://github.com/seccomp. Accessed: 2024-09-13.
[10] Socket.dev alerts. https://socket.dev/alerts. Accessed: 2024-09-13.
[11] Threats, risks, and mitigations in the open source ecosystem. https://github.com/

ossf/wg-metrics-and-metadata. Accessed: 45ff44b.
[12] Isolating application sub-components with membranes. https://tvcutsem.github.

io/membranes, 2018. Accessed: 2025-03-17.
[13] Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano

Paraboschi. NatiSand: Native code sandboxing for JavaScript runtimes. In
Proceedings of the 26th International Symposium on Research in Attacks, Intrusions
and Defenses, pages 639–653, 2023.

[14] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H Phung, Lieven Desmet,
and Frank Piessens. JSand: complete client-side sandboxing of third-party
JavaScript without browser modifications. In Proceedings of the 28th Annual
Computer Security Applications Conference, pages 1–10, 2012.

[15] Mohammad M Ahmadpanah, Daniel Hedin, Musard Balliu, Lars Eric Olsson, and
Andrei Sabelfeld. SandTrap: Securing JavaScript-driven Trigger-Action Platforms.
In 30th USENIX Security Symposium (USENIX Security 21), pages 2899–2916, 2021.

[16] Mark W. Aldrich, Alexi Turcotte, Matthew Blanco, and Frank Tip. Augur: Dy-
namic taint analysis for asynchronous javascript. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering, ASE’22,
2023.

https://gitlab.com/apparmor/apparmor
https://github.com/cackle-rs/cackle
https://github.com/google/capslock
https://ebpf.io/
https://tc39.es/ecma262/
https://docs.kernel.org/security/landlock.html
https://github.com/LavaMoat/LavaMoat
https://nodejs.org/docs/latest-v20.x/api/permissions.html
https://nodejs.org/docs/latest-v20.x/api/permissions.html
https://github.com/seccomp
https://socket.dev/alerts
https://github.com/ossf/wg-metrics-and-metadata
https://github.com/ossf/wg-metrics-and-metadata
https://tvcutsem.github.io/membranes
https://tvcutsem.github.io/membranes

NodeShield: Runtime Enforcement of Security-Enhanced SBOMs for Node.js CCS’25, October 13–17, 2025, Taipai, Taiwan

[17] Abdullah Alhamdan and Cristian-Alexandru Staicu. SandDriller: A fully-
automated approach for testing language-based JavaScript sandboxes. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 3457–3474, 2023.

[18] Masudul Hasan Masud Bhuiyan, Adithya Srinivas Parthasarathy, Nikos Vasilakis,
Michael Pradel, and Cristian-Alexandru Staicu. SecBench.js: An executable
security benchmark suite for server-side JavaScript. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), pages 1059–1070. IEEE,
2023.

[19] Darion Cassel, Wai Tuck Wong, and Limin Jia. Nodemedic: End-to-end analysis
of node. js vulnerabilities with provenance graphs. In 2023 IEEE 8th European
Symposium on Security and Privacy (EuroS&P), pages 1101–1127. IEEE, 2023.

[20] George Christou, Grigoris Ntousakis, Eric Lahtinen, Sotiris Ioannidis, Vasileios P
Kemerlis, and Nikos Vasilakis. BinWrap: Hybrid protection against native Node.js
add-ons. In Proceedings of the 2023 ACM Asia Conference on Computer and
Communications Security, pages 429–442, 2023.

[21] MDN Contributors. Array.isArray. https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/Array/isArray. Accessed: 2025-03-27.

[22] Node.js Contributors. Node.js v20.19.3 documentation. https://nodejs.org/docs/
latest-v20.x/api/index.html. Accessed: 2025-07-14.

[23] Node.js Contributors. Usage of primordials in core. https://github.com/nodejs/
node/blob/main/doc/contributing/primordials.md. Accessed: 038d829.

[24] Eric Cornelissen and Musard Balliu. NodeShield: Runtime enforcement of
security-enhanced SBOMs for Node.js - artifact. https://zenodo.org/records/
16873448.

[25] Eric Cornelissen, Mikhail Shcherbakov, and Musard Balliu. Ghunter: Universal
prototype pollution gadgets in javascript runtimes. In 33rd USENIX Security
Symposium (USENIX Security 24), pages 3693–3710, 2024.

[26] Willem De Groef, Fabio Massacci, and Frank Piessens. NodeSentry: Least-
privilege library integration for server-side JavaScript. In Proceedings of the
30th Annual Computer Security Applications Conference, pages 446–455, 2014.

[27] Fernando Doglio. Introducing Deno.
[28] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltafor-

maggio, and Wenke Lee. Towards measuring supply chain attacks on package
managers for interpreted languages. 2021.

[29] ESLint. Postmortem for malicious packages published on july 12th, 2018. https:
//eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/. Ac-
cessed: 2025-04-13.

[30] Aurore Fass, Michael Backes, and Ben Stock. Jstap: A static pre-filter for mali-
cious javascript detection. In Proceedings of the 35th Annual Computer Security
Applications Conference, pages 257–269, 2019.

[31] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner. Containing
malicious package updates in npm with a lightweight permission system. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pages
1334–1346. IEEE, 2021.

[32] Harry Garrood. Malicious code in the purescript npm installer. https://harry.
garrood.me/blog/malicious-code-in-purescript-npm-installer/. Accessed: 2025-
04-02.

[33] Dan Geer, Bentz Tozer, and John Speed Meyers. For good measure: Counting
broken links: A quant’s view of software supply chain security. USENIX; Login,
45(4), 2020.

[34] Cheng Huang, Nannan Wang, Ziyan Wang, Siqi Sun, Lingzi Li, Junren Chen,
Qianchong Zhao, Jiaxuan Han, Zhen Yang, and Lei Shi. DONAPI: Malicious npm
packages detector using behavior sequence knowledge mapping. In 33rd USENIX
Security Symposium (USENIX Security 24), pages 3765–3782, 2024.

[35] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. Sok: Taxon-
omy of attacks on open-source software supply chains. In 2023 IEEE Symposium
on Security and Privacy (SP), pages 1509–1526. IEEE, 2023.

[36] Piergiorgio Ladisa, Merve Sahin, Serena Elisa Ponta, Marco Rosa, Matias Martinez,
and Olivier Barais. The hitchhiker’s guide to malicious third-party dependencies.
In Proceedings of the 2023 Workshop on Software Supply Chain Offensive Research
and Ecosystem Defenses, pages 65–74, 2023.

[37] Ningke Li, ShenaoWang, Mingxi Feng, KailongWang, MeizhenWang, and Haoyu
Wang. Malwukong: Towards fast, accurate, and multilingual detection of mali-
cious code poisoning in oss supply chains. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 1993–2005. IEEE,
2023.

[38] Wentao Liang, Xiang Ling, Jingzheng Wu, Tianyue Luo, and Yanjun Wu. A
needle is an outlier in a haystack: Hunting malicious pypi packages with code
clustering. In 2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 307–318. IEEE, 2023.

[39] Sergio Maffeis and Ankur Taly. Language-based isolation of untrusted javascript.
In 2009 22nd IEEE Computer Security Foundations Symposium, pages 77–91. IEEE,
2009.

[40] JamesMickens. Pivot: Fast, synchronous mashup isolation using generator chains.
In 2014 IEEE Symposium on Security and Privacy, pages 261–275. IEEE, 2014.

[41] npm. Details about the event-stream incident. https://blog.npmjs.org/post/
180565383195/details-about-the-event-stream-incident. Accessed: 2025-03-27.

[42] npm. Reported malicious module: getcookies. https://blog.npmjs.org/post/
173526807575/reported-malicious-module-getcookies. Accessed: 2025-04-13.

[43] Grigoris Ntousakis, Sotiris Ioannidis, and Nikos Vasilakis. Detecting third-party
library problems with combined program analysis. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages 2429–2431,
2021.

[44] Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. Backstabber’s
knife collection: A review of open source software supply chain attacks. In De-
tection of Intrusions and Malware, and Vulnerability Assessment: 17th International
Conference, DIMVA 2020, Lisbon, Portugal, June 24–26, 2020, Proceedings 17, pages
23–43. Springer, 2020.

[45] Marc Ohm, Timo Pohl, and Felix Boes. You can run but you can’t hide: Run-
time protection against malicious package updates for Node.js. arXiv preprint
arXiv:2305.19760, 2023.

[46] Hamed Okhravi, Nathan Burow, and Fred B. Schneider. Software bill of materials
as a proactive defense. IEEE Security & Privacy, 23(2):101–106, 2025.

[47] Daniel Schoepe, Musard Balliu, Benjamin C. Pierce, and Andrei Sabelfeld. Explicit
secrecy: A policy for taint tracking. In IEEE European Symposium on Security and
Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016, pages 15–30,
2016.

[48] Adriana Sejfia and Max Schäfer. Practical automated detection of malicious
npm packages. In Proceedings of the 44th International Conference on Software
Engineering, pages 1681–1692, 2022.

[49] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi:
A selective record-replay and dynamic analysis framework for javascript. In
Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’22, 2013.

[50] Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu. Silent spring:
Prototype pollution leads to remote code execution in node.js. In 32nd USENIX
Security Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023.
USENIX Association, 2023.

[51] Mikhail Shcherbakov, Paul Moosbrugger, and Musard Balliu. Unveiling the
invisible: Detection and evaluation of prototype pollution gadgets with dynamic
taint analysis. In Proceedings of the ACM on Web Conference 2024, WWW 2024,
Singapore, May 13-17, 2024, pages 1800–1811, 2024.

[52] Snyk. electron-native-notify malicious package. https://security.snyk.io/vuln/
SNYK-JS-ELECTRONNATIVENOTIFY-174928. Accessed: 2025-04-13.

[53] Snyk. rate-map malicious package. https://security.snyk.io/vuln/SNYK-JS-
RATEMAP-451649. Accessed: 2025-04-02.

[54] Raphael J Sofaer, Yaniv David, Mingqing Kang, Jianjia Yu, Yinzhi Cao, Junfeng
Yang, and Jason Nieh. Rogueone: Detecting rogue updates via differential data-
flow analysis using trust domains. In Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering, pages 1–13, 2024.

[55] Deian Stefan, Edward Z Yang, Petr Marchenko, Alejandro Russo, Dave Herman,
Brad Karp, and David Mazieres. Protecting users by confining JavaScript with
COWL. In 11th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 14), pages 131–146, 2014.

[56] Marius Steffens and Ben Stock. Pmforce: Systematically analyzing postmessage
handlers at scale. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’20, page 493–505, 2020.

[57] CNCF Security TAG. Catalog of supply chain compromises. https://github.com/
cncf/tag-security/blob/06147d5/supply-chain-security/compromises.

[58] Jeff Terrace, Stephen R Beard, and Naga Praveen Kumar Katta. JavaScript in
JavaScript (js.js): Sandboxing third-party scripts. In 3rd USENIX Conference on
Web Application Development (WebApps 12), pages 95–100, 2012.

[59] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André DeHon,
and Jonathan M Smith. BreakApp: Automated, flexible application compartmen-
talization. In NDSS, 2018.

[60] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos
Kallas, Ben Karel, André DeHon, and Michael Pradel. Preventing dynamic library
compromise on node. js via rwx-based privilege reduction. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security, pages
1821–1838, 2021.

[61] WenyaWang, Xingwei Lin, JingyiWang,WangGao, DawuGu,Wei Lv, and Jiashui
Wang. Hodor: Shrinking attack surface on node. js via system call limitation. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, pages 2800–2814, 2023.

[62] OpenSSF Package Analysis WG. OpenSSF package analysis case studies. https:
//github.com/ossf/package-analysis/blob/c4af43d/docs/case_studies.md.

[63] ElizabethWyss, Alexander Wittman, Drew Davidson, and Lorenzo De Carli. Wolf
at the door: Preventing install-time attacks in npm with Latch. In Proceedings
of the 2022 ACM on Asia Conference on Computer and Communications Security,
pages 1139–1153, 2022.

[64] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
Small world with high risks: A study of security threats in the npm ecosystem. In
28th USENIX Security Symposium (USENIX Security 19), pages 995–1010. USENIX
Association, 2019.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/isArray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/isArray
https://nodejs.org/docs/latest-v20.x/api/index.html
https://nodejs.org/docs/latest-v20.x/api/index.html
https://github.com/nodejs/node/blob/main/doc/contributing/primordials.md
https://github.com/nodejs/node/blob/main/doc/contributing/primordials.md
https://zenodo.org/records/16873448
https://zenodo.org/records/16873448
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/
https://harry.garrood.me/blog/malicious-code-in-purescript-npm-installer/
https://harry.garrood.me/blog/malicious-code-in-purescript-npm-installer/
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/post/173526807575/reported-malicious-module-getcookies
https://blog.npmjs.org/post/173526807575/reported-malicious-module-getcookies
https://security.snyk.io/vuln/SNYK-JS-ELECTRONNATIVENOTIFY-174928
https://security.snyk.io/vuln/SNYK-JS-ELECTRONNATIVENOTIFY-174928
https://security.snyk.io/vuln/SNYK-JS-RATEMAP-451649
https://security.snyk.io/vuln/SNYK-JS-RATEMAP-451649
https://github.com/cncf/tag-security/blob/06147d5/supply-chain-security/compromises
https://github.com/cncf/tag-security/blob/06147d5/supply-chain-security/compromises
https://github.com/ossf/package-analysis/blob/c4af43d/docs/case_studies.md
https://github.com/ossf/package-analysis/blob/c4af43d/docs/case_studies.md

	Abstract
	1 Introduction
	2 Preliminaries
	3 Overview
	3.1 Challenges and Solution Overview
	3.2 Threat Model
	3.3 Enhancing SBOM with Capabilities

	4 NodeShield
	4.1 Outlining
	4.2 Enforcement
	4.3 Security Analysis
	4.4 Capability Inference and Presentation

	5 Evaluation
	5.1 RQ1: Effectiveness against Malware
	5.2 RQ2: Attack Surface Reduction
	5.3 RQ3: Robustness against Attack
	5.4 RQ4: Maintenance Effort
	5.5 RQ5: Performance and Compatibility
	5.6 Limitations

	6 Malware Spotlight: Copay Wallet
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

