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Abstract

Federated Learning (FL) is an emerging distributed machine learning paradigm enabling multiple clients to train a global model
collaboratively without sharing their raw data. While FL enhances data privacy by design, it remains vulnerable to various security
and privacy threats. This survey provides a comprehensive overview of more than 200 papers regarding the state-of-the-art attacks
and defense mechanisms developed to address these challenges, categorizing them into security-enhancing and privacy-preserving
techniques. Security-enhancing methods aim to improve FL robustness against malicious behaviors such as byzantine attacks, poi-
soning, and Sybil attacks. At the same time, privacy-preserving techniques focus on protecting sensitive data through cryptographic
approaches, differential privacy, and secure aggregation. We critically analyze the strengths and limitations of existing methods,
highlight the trade-offs between privacy, security, and model performance, and discuss the implications of non-IID data distributions
on the effectiveness of these defenses. Furthermore, we identify open research challenges and future directions, including the need
for scalable, adaptive, and energy-efficient solutions operating in dynamic and heterogeneous FL environments. Our survey aims to
guide researchers and practitioners in developing robust and privacy-preserving FL systems, fostering advancements safeguarding
collaborative learning frameworks’ integrity and confidentiality.
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1. Introduction

Machine Learning (ML) has revolutionized numerous
fields [1] by enabling computers to learn from data and make
informed decisions without being explicitly programmed for
every scenario. This capability has become increasingly cru-
cial in today’s data-driven world, where the volume, velocity,
and variety of information far exceed human capacity for man-
ual analysis. ML applications span a wide range of industries,
including healthcare [2], finance [3], manufacturing [4], and
entertainment [5]. It offers solutions to previously intractable
problems and opens new frontiers for innovation. As organiza-
tions and researchers seek to leverage the power of ML, they
often face challenges related to data accessibility and privacy
concerns.

Federated Learning (FL) [6] has emerged as a powerful
paradigm enabling multiple clients (local nodes, parties, partic-
ipants) to train ML models collaboratively without sharing raw
data. While FL enhances data privacy, it also introduces unique
security and privacy challenges that do not exist in traditional
centralized learning settings, including vulnerabilities exacer-
bated by non-IID (non-Independent and Identically Distributed)
data, where client datasets exhibit statistical heterogeneity in
label, feature, or quantity distributions. Non-IID data amplifies
security risks such as poisoning attacks, as adversaries can ex-
ploit skewed local updates to manipulate the global model, and
privacy risks like membership inference, where attackers infer

participation of specific data points by exploiting distributional
disparities [7].

The distributed nature of FL makes it vulnerable to vari-
ous types of attacks, including model poisoning, backdoor at-
tacks, adversarial manipulations, data and gradient leakage, and
model update inference, with non-IID conditions further un-
dermining conventional defenses like differential privacy (DP)
and robust aggregation. Addressing these challenges is cru-
cial to ensure the robustness, reliability, and trustworthiness of
FL systems, especially as they become increasingly adopted in
sensitive domains such as healthcare [8, 9], finance [10], and
telecommunications [11], among others.

1.1. Motivation
Our survey seeks to present a comprehensive and intercon-

nected overview of security and privacy in FL. We provide a
cohesive perspective on FL’s security and privacy landscape by
thoroughly examining various factors such as attacks, privacy
issues, and defense strategies. This integrated approach en-
ables a deeper comprehension of how FL security and privacy
components are interrelated and influence each other. Through
synthesizing insights from the field, our work aims to offer a
complete understanding of the current state of FL security and
privacy, helping foster a more detailed and nuanced awareness
of the challenges and possibilities in this area.

Table 1 shows a detailed examination of existing surveys
(found following our literature review process explained in Sec-
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Table 1: Summary of previous Surveys related to privacy and security in FL (✔: Included, ◆: Partially included, ✘: Not included)

Survey Publication
Year

Security
Taxonomy

Privacy
Taxonomy

Security
Attacks/Defenses

Privacy
Attacks/Defenses

Top-tier
venues Frameworks Fields of

Application
Future

Directions

[12] 2024 ◆ ◆ ✔ ✔ ✘ ✔ ◆ ✔
[13] 2024 ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✔
[14] 2023 ◆ ◆ ◆ ◆ ✘ ✘ ✘ ✔
[15] 2023 ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘
[16] 2023 ✘ ✘ ✔ ✘ ✘ ◆ ◆ ✔
[17] 2023 ◆ ✔ ✔ ✔ ✘ ✘ ✘ ✔
[18] 2022 ◆ ✘ ✔ ✘ ✘ ✘ ✘ ◆
[19] 2022 ◆ ◆ ✔ ◆ ✘ ◆ ◆ ✔
[20] 2022 ◆ ✔ ◆ ✔ ✘ ◆ ✘ ◆
[21] 2021 ◆ ◆ ✔ ✔ ✘ ✘ ✘ ✔
[22] 2021 ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✔
[23] 2021 ✔ ✔ ✔ ✔ ✘ ✔ ◆ ✔
[24] 2021 ✘ ✘ ◆ ◆ ✘ ◆ ◆ ✔
[25] 2021 ✘ ✘ ✘ ✔ ✘ ✘ ◆ ◆
[26] 2020 ✘ ✘ ◆ ✔ ✘ ✔ ✘ ✘

Ours 2025 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

tion 1), revealing significant gaps in integrating these topics.
Despite the growing volume of literature, we observe a frag-
mented landscape: most prior surveys treat either privacy or
security in isolation, often listing threats or defenses without
organizing them under a shared conceptual framework. Oth-
ers omit practical concerns like system frameworks, application
domains, or scalability trade-offs. For example, Hu et al. [12]
and Hallaji et al. [13] primarily address security and privacy
attacks/defenses but lack coverage of frameworks and applica-
tion fields. Similarly, Nair et al. [14], and Neto et al. [15] offer
insights into specific areas like security defenses or privacy con-
cerns without integrating these aspects into a broader taxonomy
or discussing future directions. Surveys by Liu et al. [20] and
Gong et al. [18] heavily focus on security attacks but do not
comprehensively address privacy or the application of frame-
works.

We find that:

• Only 1 out of 16 surveys attempt to cover both privacy
and security perspectives.

• Fewer than half provide any structured taxonomy of at-
tacks or defenses.

• Practical dimensions — such as frameworks and real-
world FL applications — are omitted in 12 out of 16 sur-
veys.

• None of the existing surveys unify attacks, defenses, and
system-level concerns into a single integrated view.

This work aims to build upon and extend the valuable re-
search done in previous studies by offering a comprehensive
and systematized approach to threats, defenses, and frame-
works in FL. We present an extensive catalog that consolidates
and expands upon the diverse sets of threats and defenses dis-
cussed in the existing literature, providing a multi-faceted cat-
egorization of attacks and their corresponding solutions. Ad-
ditionally, we examine relevant frameworks, including privacy

and security considerations for FL systems to offer a holistic
view of the FL landscape.

1.2. Contribution
Our survey addresses this gap by thoroughly reviewing FL’s

security and privacy landscape. Table 1 compares our work
with previous surveys, highlighting our study’s unique cover-
age and depth. Our survey distinguishes itself by providing a
holistic approach integrating a broad spectrum of critical areas.
We cover security and privacy taxonomies, security and privacy
attacks/defenses, and include discussions on top-tier venues,
frameworks, and fields of application. By offering this com-
prehensive coverage and systematically describing attacks from
different perspectives, our survey provides a deeper understand-
ing of the various facets of security and privacy in FL. Notably,
our work is among the few that addresses all these aspects in
a unified framework, thereby offering a complete and cohesive
overview for researchers and practitioners.

Specifically, our contributions are as follows:

1. Comprehensive Taxonomies: We provide detailed tax-
onomies of security and privacy threats and the corre-
sponding defense mechanisms in FL. These taxonomies
serve as a structured framework for understanding the di-
verse challenges and solutions in the field.

2. Inclusion of Frameworks and Applications: Our survey
is among the few to cover FL frameworks and real-world
fields of application for FL. This inclusion offers practical
insights into how security and privacy measures are imple-
mented and tested in real-world scenarios.

3. Future Directions and Open Challenges: We identify vital
open challenges and outline promising future directions,
offering valuable guidance for researchers looking to ad-
dress the existing gaps in the literature.

Overall, our survey is distinguished by its broad scope and in-
tegrated approach, making it a valuable resource for researchers
and practitioners seeking a comprehensive understanding of se-
curity and privacy in FL.
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1.3. Relevant Papers Retrieval

Figure 1: PRISMA flow for gathering relevant references

This work conducted a literature review following the
PRISMA methodology [27] to retrieve and comprehensively
analyze FL security and privacy literature. Figure 1 depicts
each stage of the methodology to retrieve the most relevant pa-
pers. The literature review addressed three key research ques-
tions: identifying recent attacks and threats, exploring counter-
measures, and evaluating FL frameworks for real-world appli-
cations. Using six reputable databases (Google Scholar, IEEE
Xplore, PubMed, Scopus, Web of Science), 59 search queries
were employed across three themes: attacks, defenses, and
frameworks (see Table 2). After removing duplicates, 2,002
papers were screened based on keywords, titles, abstracts, and
impact scores, ultimately narrowing the selection to 217 high-
quality papers with an impact score above 5.

Table 2: Example search queries by topic
Topic Example search queries

Attacks
“federated learning attacks”
“federated learning data poisoning”
“federated learning backdoor attacks”

Defenses
“federated learning differential privacy”
“Federated learning secure multiparty computation”
“federated learning homomorphic encryption”

Frameworks
“federated learning frameworks”
“Federated learning flower”
“real-world applications of federated learning”

1.4. Road Map

Figure 2 outlines the structure of this survey. In the Section 2,
we provide the FL background. Section 3 defines the taxonomy
of attacks and defenses for security in FL. Next, in Section 4,
we provide the same for privacy in FL. Section 5 lists the stan-
dardized frameworks for FL. Section 6 showcases the most rele-
vant applications of FL. Then, in Section 7, we provide exciting
future directions. Finally, we conclude in Section 8.

For the reader’s convenience, the acronyms used in this work
are listed in Table 3.

Acronym Description
ADIs Adversarial dominating inputs
AFR Anonymous Free-Rider
ALIE A Little Is Enough attack

AutoGM Auto-Weighted GeoMed
BFT Byzantine Fault Tolerance

C-GANs Cross-Client GANs
CPA Cocktail Party Attack
DDP Dynamic Differential privacy
DFL Decentralized federated learning
DLG Deep leakage from gradients
DP Differential Privacy

E2EGI End-to-End Gradient Inversion Attack
FC Fully connected
FL Federated learning

FOLTR Federated online learning to rank
FR Free-Rider

GAN Generative Adversarial Network
GDPR Data Protection Regulation

GeoMed Geometric Median
GS Gradient stalking

HIPAA Health Insurance Portability and Accountability Act
HE Homomorphic Encryption
IPM Inner Product Manipulation
IoT Internet of Things
LDP Local differential privacy
MAB Adversarial Multi-Armed Bandit

MarMed Marginal Median
MCS Mobile crowdsensing

MeaMed Mean Around Median
MitM Man-in-the-Middle
ML Machine learning

MPC Secure Multiparty Computation
OT Oblivious Transfer

PASS Parameter Audit-based Secure and Fair FL Scheme
PID Privacy-aware and incremental defense

PMIAs Poisoning membership inference attacks
RoFL Robustness of secure FL
SCA Sybil-Based Collusion Attacks
SFL Split Federated Learning
SFR Selfish Free-Rider
SR Systematic review
SS Secret sharing

TFF Tensorflow Federated
VQA Visual question-answering

ZKP-FL Zero-knowledge proof-based FL
ZKPs Zero-knowledge proofs

Table 3: Acronyms employed in this paper
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Section 1:
Introduction

Section 2:
FL Background

Section 3:
Security Attacks & Defenses

Section 4:
Privacy Attacks & Defenses

Section 5:
FL Frameworks

Section 6:
Applications

Section 7:
Future Directions

Section 8:
Conclusion

Figure 2: Overview of the paper structure. Each section builds on previous con-
tent, progressing from foundational concepts to attack and defense taxonomies,
frameworks, applications, and future directions.

2. FL Background

FL [6] is an ML technique for cooperatively training mod-
els on several clients in a decentralized way, preserving data
privacy and ownership for the client/server owner [28]. FL is
hugely advantageous for highly decentralized data, especially
with the growing prevalence of IoT devices for continuously
capturing data and monitoring users’ patterns.

Fig. 3 depicts a high-level view of the framework and how
the clients interact with the central server. IoT devices, institu-
tions (i.e., hospitals, companies, etc.), documents, or vehicles
will collect user data and train a local deep-learning model that
mirrors a previously received global model [29]. Following the
completion of the local training phase, the models collaborate
to train a global model utilizing their updates rather than the
raw data provided by the users. These model updates indicate
changes in the models’ weights during training and do not re-
flect private or personal information about the users.

All clients will send updates to a central server, compiling
and using them to aggregate the global model weights [30].
Once the global model training procedure finishes, each client
will receive a new copy of the updated global model. As a
result, the models will be trained and updated regularly with-
out sharing personal information. Thus, the framework will
enable a decentralized architecture in which models get dis-
tributed among clients without requiring a centralized server to
operate the model and serve users. It will also protect users’ pri-
vacy by processing and analyzing their data on clients without
disclosing it.

The collaborative model training process in FL involves ag-
gregating model updates from multiple decentralized clients
while preserving data privacy. Aggregation algorithms are piv-

Client
Local data   

Client    
Local data   

Client    
Local data   

Client    
Local data   

Local update    

Local update    

Local update    

Local update    

CENTRAL SERVER

Figure 3: FL framework overview

otal in this context, serving as the cornerstone for combining
these distributed updates into a global model. These algorithms
are essential to ensure that the federated model achieves the de-
sired convergence and accuracy while safeguarding the privacy
and security of the individual clients’ data.

FedAvg [6] is the most employed aggregation algorithm that
operates within a client-server architecture, where the server
orchestrates the training process, and the clients conduct lo-
cal training on their data. Each client independently trains the
model using its local data and transmits model updates to the
server. The server aggregates these updates to construct a global
model. FedAvg’s advantages include scalability to accommo-
date a large user base through decentralized training and im-
proved efficiency through the ease of computation in a central-
ized server. However, in FL settings, one should consider chal-
lenges such as client heterogeneity, communication overhead
during update aggregation, and potential network connectivity
limitations.

From a mathematical point of view [6], FL is defined by a
set of K clients, denoted as C1,C2, ...,CK . Each client Ci has its
dataset Di containing features (x) and labels (y) for certain ex-
amples (individuals, samples). FL aims to train a global model
θ in a decentralized manner, where the model parameters are
updated by aggregating the local updates from each client while
keeping the data on the clients. The loss minimized during the
FL process is L(θ) =

∑K
i=1(1/K) ∗ L(θi) where L(θ) is the global

loss function to be minimized and L(θi) is the local loss function
for client Ci. This function quantifies the discrepancy between
the predictions of the global model θ and the ground truth labels
for the samples in client Ci’s datasetDi.

2.1. Types of FL

FL is currently in an active development phase and employs
diverse techniques and methodologies to bring its core tech-
nology into practical implementation. When dealing with a
nascent technology like FL, initially categorizing these tech-
niques and approaches is a pivotal starting point, enabling
a more profound comprehension and exploration beyond the
broader conceptual framework. Depending on data parti-
tion and scalability, FL gets divided into different categories
[19, 23, 31].
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2.1.1. Data Partition
FL systems are commonly categorized based on the data dis-

tribution across the sample and feature spaces. This categoriza-
tion typically divides FL systems into three main types: hori-
zontal FL, vertical FL, and hybrid FL. Each category represents
distinct approaches to handling data distribution in FL scenar-
ios.

Horizontal FL: In horizontal FL, clients share a common
feature space but have limited overlap in the sample space, mak-
ing it suitable for cross-device settings where users collaborate
on a shared task. Local models are trained independently with
consistent architectures, and the global model is updated by av-
eraging local weight updates.

Mathematically, horizontal FL is represented by contem-
plating the same features across clients but with different
examples. For example, suppose clients C1 and C2 have
data on different users for a recommendation system. In
that case, D1 = {(x1, y1), (x2, y2), . . . , (xn1 , yn1 )} with feature
space X and n1 the number of examples of C1, and D2 =

{(x′1, y
′
1), (x′2, y

′
2), . . . , (xn2 , yn2 )} with feature space X and n2 the

number of examples of C2. Here, xi and x′i represent the same
features for different examples [32, 22].

Vertical FL: In vertical FL, datasets from different nodes
share the same or similar sample space but differ in the fea-
ture space. Entity alignment techniques identify overlapping
samples by matching entity descriptions, enabling collabora-
tive training of models like gradient-boosting decision trees.
Privacy-preserving methods align entities across clients, facil-
itating joint gradient training. This approach is often seen in
collaborations between different companies.

Mathematically, vertical FL is represented by considering
the same set of examples across clients but with different fea-
tures. For example, if clients C1 and C2 have data on patients
where C1 has medical records, and C2 has genetic informa-
tion, then D1 = {(x1, y1), (x2, y2), . . . , (xn1 , yn1 )} with feature
space X1 and n1 the number of examples of C1, and D2 =

{(x′1, y
′
1), (x′2, y

′
2), . . . , (xn2 , yn2 )} with feature space X2 and n1 the

number of examples of C2. Here, xi and x′i represent different
feature sets for the same examples [22].

Hybrid FL: In numerous other use cases, while conven-
tional FL systems predominantly concentrate on a single type of
data partition, the data distribution among the clients often ex-
hibits a hybrid combination of horizontal and vertical divisions.
One specific example of this type of FL is Transfer FL [33],
which involves horizontal and vertical data partitioning, mak-
ing it a hybrid approach. The latter allows models to learn from
shared features (vertical) and data from different clients (hori-
zontal) to improve performance and generalization.

Let clients C1 and C2 possess datasets D1 and D2 such that:

D1 =
{
(x(1)

i , y
(1)
i )
}n1
i=1, x(1)

i ∈ X1,

D2 =
{
(x(2)

j , y
(2)
j )
}n2

j=1, x(2)
j ∈ X2,

where X1 and X2 are the feature spaces of C1 and C2, respec-
tively. In Hybrid FL, there exist subsets S shared ⊆ S 1 ∩ S 2
(shared samples) and Xshared ⊆ X1 ∩ X2 (shared features).

2.1.2. Scale of Federation
FL fashion can be classified into two types based on the

extent of federation: cross-silo FL and cross-device FL. The
distinctions between these types revolve around the number of
clients and the volume of data stored within each client.

Cross-silo: The clients are typically organizations or data
centers. A limited number of clients are generally involved,
each with a substantial volume of data and computational re-
sources. For instance, Amazon aims to offer user-item recom-
mendations by leveraging shopping data from many data cen-
ters worldwide [34].

Cross-device: There is typically a more significant number
of clients, each with a comparatively modest amount of data
and computational capacity, often consisting of mobile devices.
Google Keyboard exemplifies a cross-device FL, where the en-
hancement of query suggestions in Google Keyboard can ben-
efit from the application of FL [35].

2.2. Split FL

Split FL (SFL) is a distributed machine learning approach
that utilizes a split model architecture, dividing the model be-
tween clients and a central server. This design enhances pri-
vacy by avoiding raw data sharing and is suitable for resource-
constrained environments due to its distributed computations,
which reduce the burden on individual clients [36, 37]. SFL of-
fers high scalability and efficiency in large-scale distributed se-
tups, but comes with limitations, including slower performance
compared to traditional FL due to its relay-based training pro-
cess and increased communication overhead [38].

In SFL, for a client Ci, the training process proceeds as fol-
lows:

1. Forward Pass: The client computes activations up to the
cut layer ai = fθc (xi) and sends ai to the server.

2. Server Computation: The server completes the forward
pass ŷi = fθs (ai).

3. Backward Pass: The server computes the gradient ∇aiL

and sends it to the client, which then computes ∇θcL =
∇aiL · ∇θc fθc (xi).

The overall optimization objective is:

min
θc,θs

1
K

K∑
i=1

E(x,y)∼Di

[
L
(
fθs ( fθc (x)), y

)]
(1)

2.3. Non-IID Data Impact on FL

In FL, non-IID [39] data refers to data that is not uniformly
distributed across clients, meaning that different clients may
have significantly different data distributions due to factors like
user preferences, geographical location, or client usage pat-
terns. Those disparities arise across three dimensions:

• Label Distribution Skew: Differences in P(y|x) (the con-
ditional probability distribution of labels y given features
x) between clients. For instance, hospitals specializing in
different diseases with imbalanced diagnostic labels.
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• Feature Distribution Skew: Variation in P(x) (the marginal
probability distribution of features x) across clients. For
example, smartphones in different regions capture distinct
visual patterns (e.g., urban vs. rural environments).

• Quantity Skew: Disparities in dataset sizes nk (where n k =
|Dk | denotes the number of samples at client k) among
clients. For example, IoT devices with varying storage ca-
pacities collect unequal data points.

Non-IID data poses serious privacy and security challenges
as it can make models more vulnerable to inference attacks
(e.g., membership and property inference) [40] since adver-
saries can exploit statistical discrepancies to extract sensitive
information about client data. Additionally, non-IID data ex-
acerbates the impact of poisoning attacks [41], where adver-
sarial clients can more effectively manipulate global model up-
dates by injecting biased gradients. On the defense side, tra-
ditional DP and robust aggregation methods, such as median
or trimmed mean-based aggregation, often lose effectiveness in
non-IID settings, as the variability in data distributions can lead
to excessive noise or biased updates. Furthermore, anomaly de-
tection methods [42] that rely on outlier detection may struggle
to distinguish between natural variations due to non-IID data
and actual adversarial behavior.

3. Security in FL

Based on the papers assessed, we propose a taxonomy of FL
security and privacy attacks and defenses (see Fig. 4), providing
a structured framework for understanding this evolving field.
Following such a taxonomy, we describe the main attacks and
defenses for secure FL in this section. For the attacks, we out-
line specific mechanisms, degrees of harm, and specific exam-
ples of manifestations in the real world. At the end of each sub-
section, we provide some lessons learned after analyzing the
papers regarding attacks and defenses for secure FL.

3.1. Security Attacks/Threats
In FL, security attacks and threats involve adversarial strate-

gies to compromise models’ integrity, availability, confidential-
ity, and underlying data. These attacks can be categorized based
on several criteria. In particular, to enhance clarity and reduce
overlaps, we define five key dimensions for categorizing secu-
rity attacks and threats in FL: target specificity, phase affected,
intent, nature of the adversary, and execution style. For target
specificity, targeted attacks aim to disrupt specific system ele-
ments, while untargeted attacks seek to cause general disrup-
tion or degrade overall performance. Phase affected clarifies
whether the disruption happens mainly during model training
(such as poisoning or Sybil attacks) or only becomes relevant
at inference time (like evasion). Furthermore, attacks are cate-
gorized by intent; malicious attacks aim to cause harm, whereas
exploitative attacks seek personal gain without direct harm. Ad-
ditionally, the nature of the adversary plays a crucial role: in-
sider attacks come from within the system, while outsider at-
tacks originate from outside [14]. Finally, execution style clar-
ifies whether the attacker must engage in multiple rounds or

continuous participation to achieve success or can accomplish
the attack in a single, one-shot instance.

This survey categorizes attacks based on their specific nature
and tactics, offering a detailed taxonomy and examining their
impacts on FL systems. To provide a structured overview, we
present a comprehensive overview in Table 4 summarizing var-
ious attack types and categorizing them based on the mentioned
dimensions. Although we define five primary dimensions–tar-
get specificity, phase affected, intent, nature of the adversary,
and execution style–real-world attacks can exhibit traits span-
ning more than one category. For instance, a poisoning attack
might initially appear untargeted but also target a specific class
or region of the data. Likewise, an insider adversary could col-
laborate with outsider entities or extend the attack from train-
ing into inference phases. In Table 4, we classify each attack
according to its most typical or principal form while recogniz-
ing that adversaries can mix methods or adopt hybrid strategies.
The following sections will discuss critical security threats in
FL, detailing their nature, objectives, and potential impacts and
providing examples from the literature.

Fig. 5 shows a clear upward trend in the number of papers
published on various security attacks over time. In 2019 and
2020, very few papers focused on Sybil and GAN-based at-
tacks, respectively. From 2021 onwards, there’s a noticeable
diversification in the types of attacks studied, with a signifi-
cant increase in overall research output. Poisoning attacks have
become increasingly prominent, dominating the research land-
scape, especially in 2023 and 2024. Other attack types like
backdoor, dropout, evasion, and free-riding have emerged in
the later years, indicating an expansion in the scope of secu-
rity research. 2024 shows the highest number of papers across
multiple attack categories, suggesting a growing interest and
concern in security attacks.

3.1.1. Byzantine attacks
A Byzantine attack refers to a broad category of malicious or

faulty behaviors within distributed and FL systems. The term
originates from the Byzantine Generals Problem [43], which
highlights the challenge of achieving consensus in a distributed
network when some clients act unpredictably due to malice or
faults. In FL, these attacks disrupt the learning process, degrade
model performance, or compromise system integrity. For in-
stance, model and data poisoning attacks involve adversaries
injecting harmful updates to skew the global model, as shown in
empirical studies where such attacks significantly increase error
rates [44]. Similarly, Sybil attacks manipulate aggregation by
introducing multiple fake identities, amplifying the attacker’s
influence [45]. Backdoor attacks, on the other hand, secretly al-
ter model behavior for specific inputs, such as embedding trig-
gers that activate malicious outcomes. Real-world examples in-
clude tampering with IoT device models to misclassify secu-
rity threats or injecting biased data in healthcare applications to
compromise diagnostic accuracy. In practical terms, adversaries
can perform Byzantine behaviors by intercepting local gradi-
ent updates and introducing arbitrary deviations before sending
them to the server. Minimal Python scripts can scale or random-
ize these updates, allowing the attacker to bypass naive filters.
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Figure 4: Security and privacy taxonomy for attacks and defenses in FL

Table 4: Categorization of Security Attacks in FL

Attack Type Target Specificity Phase Affected Intent Nature of Adversary Execution Style

Data Poisoning Targeted/Untargeted Training Malicious Insider/Outsider Continuous
Model Poisoning Targeted/Untargeted Training Malicious Insider Continuous
GAN-based Targeted/Untargeted Training Malicious Outsider Continuous
Sybil Targeted/Untargeted Training/Inference Malicious Insider/Outsider Continuous
Backdoor Targeted Training Malicious Insider Continuous
Free Riding Untargeted Training Exploitative Insider Continuous
Jamming Untargeted Training/Inference Disruptive Outsider One-Shot
Evasion Targeted/Untargeted Inference Disruptive Outsider One-Shot
Straggling Untargeted Training/Inference Disruptive Insider Continuous
Dropout Untargeted Training/Inference Disruptive Insider Continuous

Figure 5: Papers related to security attacks over time

Some open-source prototypes demonstrate how two or three
malicious clients can systematically skew the global model.
Moreover, robust aggregation methods (e.g., Bulyan, Krum)
typically detect large outliers but may fail against subtle manip-

ulations. Integrating cryptographic checks (e.g., commitments)
or analyzing multi-round consistency across updates can signif-
icantly reduce the success rate of Byzantine exploits. The fol-
lowing paragraphs explore these attack mechanisms and their
consequences in detail.

Poisoning attacks. Poisoning attacks in FL involve injecting
malicious data or manipulating model updates to compromise
the integrity of the learning process. Such attacks can decrease
overall model performance and allow the attacker to introduce
biases, insert backdoors, or create specific targeted vulnerabili-
ties.

Data poisoning refers to attacks where malicious clients al-
ter their data or model’s parameters sent to the global model
to degrade its performance. Untargeted data poisoning involves
general disruptions, such as adding random noise, random label
flipping, and random input data poisoning, which can cause a
significant drop in model accuracy and robustness. For instance,
an attacker injecting noisy data into medical diagnosis models
can lead to incorrect patient assessments. Targeted data poison-
ing, on the other hand, seeks to cause specific errors or misclas-
sifications, such as targeted label flipping in autonomous driv-
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ing systems, where stop signs are misclassified as speed limits,
posing safety risks. Another way to categorize data poisoning
attacks is based on whether the attacker can modify the labels
of the poisoned data. Clean-label poisoning assumes that at-
tackers cannot change data labels due to integrity constraints
but instead subtly manipulate features, such as modifying im-
age pixels to induce incorrect classifications. These attacks are
especially dangerous in security-sensitive domains like biomet-
ric authentication, where small perturbations in face recognition
models can allow unauthorized access while remaining unde-
tectable by traditional defenses.

In contrast, dirty-label poisoning involves directly manipu-
lating the data labels. In this scenario, the attacker introduces
samples into the training dataset with incorrect labels, mislead-
ing the model during training. Dirty-label poisoning is gen-
erally easier to detect than clean-label poisoning because the
data and its labels’ inconsistencies are more apparent [46]. Ta-
ble 5 provides an overview of data poisoning attacks, catego-
rized by their targeted or untargeted nature and whether they
involve clean or dirty labels. The table includes relevant papers
for each category illustrating key research and findings.

Table 5: Classification of Data Poisoning Attacks
Clean-label Dirty-label

Targeted Targeted data
manipula-
tion [47] [46] [48]

Targeted label flip-
ping [49] [50] [48] [51]

Untargeted Random data ma-
nipulation [48],
Adversarial sam-
ples [52]

Random label-
flipping [53] [48]

Model poisoning involves the deliberate manipulation of
model parameters or updates sent to a central server, targeting
the integrity of the model itself rather than the training data.
This type of attack is particularly effective, often surpassing
data poisoning in impact, especially against systems employing
Byzantine-robust defense mechanisms. Fang et al. [44] demon-
strated that non-directional attacks, which craft local model
parameters to deviate significantly from expected values, can
lead to aggregated updates that degrade global model perfor-
mance. For example, their experiments showed that introduc-
ing perturbations maximized deviation from the typical update
path, resulting in substantial global model errors. Baruch et
al. [54] highlighted that even minimal poisoning–where only
a small fraction of malicious updates is introduced–can by-
pass robust defenses by exploiting gradient variance. This ap-
proach requires limited knowledge of client data and subtly
shifts the mean of aggregated gradients to evade detection.
Real-world implications include attacks on recommendation
systems, where subtle manipulations degrade ranking accuracy
without triggering alarms. Wang et al. [55] extended these find-
ings to federated online learning to rank (FOLTR) systems,
showing that sophisticated poisoning strategies outperform data
poisoning even under robust defenses. They also noted that de-
ploying such defenses without active attacks can degrade sys-

tem performance, underscoring the need for adaptive defenses
that balance security and functionality.

Implementation-wise, data-poisoning attacks often involve
straightforward label manipulation or pixel-level perturbations
in the local dataset. Publicly available code, such as in [44],
shows how a simple gradient-scaling procedure can overpower
benign updates in an aggregation function like FedAvg. Model
poisoning goes a step further, directly adjusting weight tensors
to embed ”invisible triggers”. Defenders typically integrate ro-
bust aggregator pipelines (e.g., Krum or Trimmed Mean, see
Section 3.2) and anomaly monitors that track suspicious gradi-
ent magnitudes or label discrepancies across rounds. Addition-
ally, partial local data checks (for example, removing highly
implausible labels) can disrupt stealthy poisoning attempts be-
fore they aggregate into a global parameter shift.

Generative Adversarial Network-based (GAN) attacks. GANs
have been employed to execute both model and data poison-
ing attacks in FL. In such scenarios, an adversary masquerades
as a benign client and trains a GAN to replicate prototypical
samples from other clients’ datasets. The global model parame-
ters serve as the discriminator’s parameters, enabling the GAN
to produce realistic yet manipulated samples. These samples
are then used to generate poisoning updates, which are scaled
and submitted to the central server [56]. According to Zhang
et al. [57], any internal client can initiate GAN-based poison-
ing attacks. For instance, their PoisonGAN model demonstrated
that even under attack, the global model retained over 80% ac-
curacy on both poisoning and primary tasks [48]. This high-
lights the dual threat of maintaining task performance while
embedding malicious objectives. Real-world implications in-
clude adversaries exploiting GANs to bypass detection mech-
anisms, as seen in cases where vague or noisy poisoned data
undermines anomaly detection systems [58]. These examples
underline the significant harm GAN-based attacks pose, which
compromise FL systems’ integrity and privacy without easily
detectable anomalies. From the implementation perspective, a
GAN-based attack typically involves pairing the server’s global
model (as a discriminator) with a locally trained generator that
refines malicious updates to appear “benign.” Minimal modifi-
cations to PyTorch or TensorFlow scripts let attackers pass gen-
erator outputs as legitimate gradients. Potential defenses could
include incremental offset detection that flags suspiciously con-
sistent gradient distortions and clustering techniques for client
updates with significant divergences.

Sybil attacks. The Sybil attack involves a malicious client cre-
ating multiple fake identities to gain disproportionate influence
or control over the system. While not specifically a poisoning
attack, it can facilitate or amplify poisoning attacks by increas-
ing the number of fake clients that submit malicious or biased
updates [15]. For example, model poisoning attacks using fake
clients can significantly reduce the test accuracy of the global
model, even against classical defenses [59]. Fung et al. [60]
demonstrated this in their experiment where two Sybil nodes
inserted a backdoor, causing 96.2% of digit 1s in the MNIST
dataset to be misclassified as 7s in the final model. This high-
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lights the severe impact even a few Sybils can have on model
integrity. In real-world scenarios, such attacks are particularly
concerning due to their ability to bypass detection mechanisms
by preserving overall model utility [60]. Furthermore, another
study [61] revealed how Sybil nodes could inject backdoor trig-
gers into data, disrupting training processes in FL systems.

Employing Sybil clients can be as simple as registering mul-
tiple “fake” clients that communicate identical or slightly mod-
ified updates, all controlled by one adversary. Code exam-
ples [60] illustrates that only two Sybils can drastically corrupt
a federated model. FoolsGold [60], or other similarity-based
approaches track the cosine distance among client updates,
penalizing suspicious clusters. Some frameworks incorporate
blockchain-based identity management or limit how many new
clients can join per round, raising barriers for mass Sybil in-
filtration. These countermeasures reduce the effectiveness and
stealth of Sybil-based manipulations.

Backdoor attacks. Backdoor attacks are a form of targeted poi-
soning attack in which an adversary deliberately corrupts the
global model, making it perform well on the main task while
exhibiting malicious behavior when triggered by specific con-
ditions, such as a particular label, image modification, or fea-
ture [23]. These attacks are particularly concerning in FL due
to the decentralized nature of training, where malicious updates
can propagate vulnerabilities across the entire system. For ex-
ample, in real-world scenarios like next-word prediction models
used in mobile applications, backdoor triggers could manipu-
late outputs for sensitive contexts, such as political events [62].
Liu et al. [62] demonstrated that backdoor attacks could ac-
celerate FL convergence by crafting local updates that mimic
global data distributions and injecting backdoors during later
stages when benign updates have minimal impact. However,
these attacks face challenges such as detection risks and limited
persistence. Dai et al. [63] addressed these issues by proposing
the Chameleon attack, which uses poisoned datasets and con-
trastive learning to enhance backdoor durability. This method
ensures the backdoor remains effective even after attackers stop
participating, as seen in applications like IoT devices with weak
security measures [63]. Similarly, Zhang et al. [64] highlighted
that fixed backdoor triggers often fail under global training dy-
namics. Their A3FL approach adapts triggers adversarially to
maintain effectiveness in evolving models. These examples un-
derscore the significant harm of backdoor attacks, which can
compromise model integrity and user trust in critical applica-
tions like autonomous vehicles or healthcare systems. Imple-
menting a backdoor often involves a ”trigger pattern” integrated
into a small fraction of the local training set (e.g., a tiny corner
pixel pattern in image classification). Attack scripts typically
swap labels for these trigger-laden inputs and train locally to
ensure the global model learns to misclassify only when the
pattern appears. FLAME [65] and other advanced defenses add
mild noise or rely on ”clean validation” to detect unexpected
performance spikes on specific triggers. Another method is par-
tial neuron pruning, removing neurons that show abnormally
high activation for certain triggers. Adopting these defenses
usually increases training overhead but significantly reduces

successful backdoor injection rates.

3.1.2. Free-Riding
Free-riding occurs when a client benefits from the final ag-

gregated model without contributing to its training due to rea-
sons such as lack of data, privacy concerns, or insufficient com-
putational resources. In the context of Free-Rider (FR) attacks,
these can be categorized into Anonymous Free-Rider (AFR)
and Selfish Free-Rider (SFR) attacks based on the adversary’s
control over private data and computing resources [66]. AFR
attackers, lacking private datasets or computational resources,
typically contribute stochastic Gaussian noise to the central
server, resembling a generic Gaussian attack [67]. This be-
havior undermines model accuracy by introducing noise into
the aggregation process. In contrast, SFR attackers possess pri-
vate data and computational abilities but choose not to con-
tribute these resources. For instance, SFR attackers may em-
ploy advanced strategies like delta weights attacks, generating
gradient updates by subtracting two global models from previ-
ous rounds [68], or submit systematically crafted fake parame-
ters [69]. While delta weights attacks ensure convergence of the
aggregated model, they maintain stealth by mimicking benign
updates [70]. Even simpler methods, such as consistently re-
turning the same global model parameters, can degrade model
performance and reduce fairness in FL [23]. These attacks pose
significant threats in real-world scenarios, especially in sensi-
tive domains like healthcare or finance, where FL’s integrity is
crucial [67]. From an implementation perspective, a free-rider
can bypass local training entirely by returning either unchanged
or random parameters while continuing to download global up-
dates. These minimal modifications exploit the aggregator’s in-
herent trust in each client. PASS [66] and similar auditing ap-
proaches evaluate each client’s historical gradient contributions
against their impact on model improvements. Clients that fail to
provide meaningful updates risk detection or a reduced aggre-
gation weight. These scoring mechanisms discourage free-rid-
ers by linking model benefits to local effort.

3.1.3. Jamming Attacks
Jamming attacks pose a severe security threat in wireless net-

works, particularly decentralized FL (DFL) environments [71].
These attacks involve adversaries emitting interference signals
to disrupt communication between legitimate nodes, hindering
the exchange of critical data such as local model parameters.
For example, in real-world scenarios like airport operations,
jamming has led to significant disruptions in communication
systems, delaying processes and compromising operational effi-
ciency [72]. In blockchain-based decentralized FL, jamming at-
tacks prevent normal miners from receiving necessary data, ex-
cluding them from proof-of-work computations. This gives ma-
licious miners an advantage in controlling the blockchain by in-
creasing the probability of generating a longer malicious block
stream, especially when the number of attackers surpasses nor-
mal miners [73]. Additionally, targeted jamming in decentral-
ized FL can isolate nodes by disrupting key communication
links. This isolation fragments the network, delaying learn-
ing processes and degrading model accuracy due to insufficient
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data exchange [72]. For instance, simulations of such attacks
on multi-hop wireless networks have demonstrated significant
reductions in DFL performance by exploiting vulnerabilities in
connectivity and model sharing [72]. Realistic jamming can be
emulated by imposing network drop rates or forced timeouts in
each training round. Indeed, attackers might saturate specific
channels, delaying or preventing the arrival of local updates to
the server. From the defense perspective, coded computations
(e.g., CodedPaddedFL [74]) or asynchronous protocols allow
partial aggregation even if a subset of updates is lost or late.
Additionally, some FL systems introduce fallback communica-
tion channels to bypass jammed links. These solutions provide
a certain level of robustness to partial network disruption.

3.1.4. Evasion Attacks
Evasion attacks exploit weaknesses in model predictions dur-

ing inference by introducing carefully crafted adversarial in-
puts, such as pixel perturbations, without altering the training
process [75]. For instance, unnoticeable changes to a panda im-
age can cause GoogLeNet to misclassify it as a gibbon with
99.3% confidence [76]. These attacks undermine the reliability
of FL systems by reducing model accuracy and trustworthiness.
In real-world scenarios, evasion attacks can deceive spam filters
or recommendation systems trained via FL, leading to financial
or operational harm [77].

In VFL, Pang et al. [78] demonstrate the susceptibility of
VFL systems to ADIs, which manipulate joint inference out-
comes to prioritize an attacker’s input. They employ gradient-
based methods and grey-box fuzz testing to uncover vulnerabil-
ities in privacy-preserving features, revealing that adversaries
can exploit these to skew results. For example, ADIs could
be used in financial applications to favor fraudulent transac-
tions. To address these threats, Kim et al. [77] analyze inter-
nal evasion attacks across learning methods, showing that per-
sonalized federated adversarial training enhances robustness by
60% compared to standard approaches. This demonstrates that
tailored defenses can mitigate attack impacts even under con-
strained resources, though challenges remain in balancing ac-
curacy and security. To carry out such an attack, malicious en-
tities could leverage adversarial example implementations to
craft feature-level perturbations. Only minor changes to the in-
ference pipeline could be enough to cause misclassifications in
the global model. To mitigate the impact, using personalized
adversarial training [77] allows for retraining on adversarial
variants each round, though at a higher computational cost.

3.1.5. Straggling
Sometimes, due to various factors like limited computing

resources, background processes, memory constraints, or un-
stable wireless communication, certain edge devices, known
as stragglers, might perform significantly slower than others,
thereby deteriorating the FL process. This vulnerability can
also be exploited by adversaries through free-riding attacks,
where malicious clients intentionally delay or avoid computa-
tions to degrade system performance [79]. Waiting for model
updates from these slower clients at each learning step can

slow down model convergence and degrade accuracy. For in-
stance, attackers may inject noise into updates or mimic benign
clients to amplify delays, leading to inefficient resource utiliza-
tion as faster clients idle [80]. Ignoring updates from stragglers
risks model accuracy and client drift – a phenomenon where
local models diverge significantly due to non-identically dis-
tributed data. Real-world manifestations include healthcare FL
systems where malicious clients disrupt timely updates, jeopar-
dizing critical applications like disease prediction. In terms of
implementation, simple modifications in local training scripts
can pause or throttle GPU usage, slowing progress. Therefore,
the design of asynchronous or coded protocols is required to re-
duce reliance on a strict round barrier. If certain clients are re-
peatedly late or absent, they can be down-weighted or removed
from the aggregator’s pipeline. Nonetheless, balancing the fair
inclusion of actual slow clients against malicious stragglers re-
mains a key design challenge in practical FL settings.

3.1.6. Dropout
User dropout in FL refers to the scenario in which some

clients drop out or become inactive during training. This phe-
nomenon can occur due to network issues, client failures, or in-
tentional withdrawal. Honest clients may become demotivated
to engage in the training process if the collaborative frame-
work does not guarantee fairness for all clients [81]. Beyond
these general challenges, dropout can also manifest as an at-
tack, where malicious clients intentionally withdraw at critical
training stages to disrupt the global model’s convergence. Such
targeted dropout attacks can exacerbate biases in the model if
specific clients with unique data distributions are affected, lead-
ing to skewed performance [74]. For instance, in real-world sce-
narios like healthcare applications, the dropout of clients repre-
senting minority populations could result in a poorly perform-
ing model on underrepresented groups. In code, dropout simu-
lates a failure to send updates by skipping the aggregator’s com-
munication calls. Defensive solutions require tracking dropout
patterns over time to determine if certain clients drop out from
training at crucial convergence stages. The integration of partial
reweighting or client selection [82] may reduce the damage,
though guaranteeing fairness if many dropouts occur remains
non-trivial.

We would like to note that while straggling and dropout are
not traditionally categorized as intentional attacks in FL (high-
lighted in gray on the taxonomy of Fig. 4), they represent sig-
nificant challenges that can hinder the overall learning process.
However, it is important to note that these phenomena could
also be exploited by adversaries in a malicious context. An
attacker could deliberately induce straggling by compromising
clients or resources or cause dropout by intentionally withdraw-
ing specific clients to disrupt the training process.

3.2. Security Defenses
This section provides an overview of security mechanisms

designed to enhance the robustness of FL systems against vari-
ous adversarial threats. It highlights key strategies, including ro-
bust aggregation operators, anomaly detection techniques, and
adversarial training.
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3.2.1. Robust Aggregation Operators
FedAvg is one of the most popular algorithms used in FL to

aggregate client model updates. However, several studies have
shown that this method can be sensitive to various types of at-
tacks, including model poisoning attacks, where some clients
might send malicious updates, or data poisoning attacks, where
the data used to train local models is manipulated to bias the
global model [83] [84]. Robust aggregation operators have been
developed to enhance security and defend against such attacks.
These operators are designed to minimize the impact of mali-
cious or noisy updates, thereby improving the resilience of the
FL system.

• Trimmed Mean involves calculating the average of model
updates after removing a specified percentage of the high-
est and lowest values. This method helps mitigate the
impact of outliers but can be circumvented by poisoning
attacks that exploit high empirical variance among client
updates, as demonstrated by ”A Little Is Enough” [85].
This solution also mitigates the reduction in performance
caused by non-IID data by removing extreme values from
clients whose distributions differ significantly from the
rest.

• Median-based algorithms replace the arithmetic mean
with the median of model updates, choosing the value rep-
resenting the distribution’s center. This approach is less
sensitive to extreme values and more resistant to adversar-
ial attacks compared to methods like FedAvg. This ap-
proach also improves the model performance under high
non-IID data since it aims to avoid the influence of highly
different distributions (a.k.a outliers). However, it is vul-
nerable to attacks such as IPM, which can negatively im-
pact the inner product between the true gradient and the
aggregated gradients [85]. GeoMed (Geometric Median)
minimizes the sum of Euclidean distances to all points, of-
fering a central point that is less sensitive to outliers com-
pared to the mean [86]. Its more computation-efficient ver-
sion is called Medoid [84]. GeoMed can tolerate up to
half of the malicious clients and estimate true parameters,
showing convergence properties in gradient descent meth-
ods. However, GeoMed is sensitive to model poisoning
attacks and less robust with imbalanced datasets. To ad-
dress these issues, Li et al. [87] proposed Auto-Weighted
GeoMed (AutoGM), which automatically excludes ex-
treme outliers and re-weights remaining points based on
a user-specified skewness threshold. AutoGM maintains
high performance even with up to 30% of nodes engag-
ing in model poisoning or 50% experiencing data poison-
ing attacks. Marginal Median (MarMed) [84] focuses
on the median of marginal distributions of data points,
filtering out extreme values to provide a stable estimate
of central tendency. This approach, similar in robustness
to the geometric median but with a distinct handling of
data, helps maintain the integrity of the aggregation pro-
cess against adversarial manipulations. Mean Around
Median (MeaMed) [84] is a trimmed average method that

centers calculations around the median, effectively reduc-
ing the impact of outliers and adversarial data. Blending
the strengths of both the mean and median offers a bal-
anced approach to maintaining performance and robust-
ness in distributed learning scenarios vulnerable to Byzan-
tine attacks.

• Krum, introduced by Blanchard et al. [83], selects a
model update vector that is least affected by outliers by
minimizing the sum of squared distances to its n − f clos-
est neighbors, where f is the maximum number of Byzan-
tine workers tolerated. Multi-Krum (or m-Krum) ex-
tends this approach by considering multiple vectors, thus
enhancing robustness by aggregating d parameter vectors
instead of just one. Despite its effectiveness in mitigat-
ing high-severity attacks, Han et al. [88] found that Krum
struggles with RNNs due to variability in local models
caused by sequential data and recurrent structures. Ad-
ditionally, Krum’s reliance on strong assumptions, such as
bounded absolute skewness, may not always be realistic,
and it is vulnerable to newer attacks like IPM and ”A Lit-
tle Is Enough” (ALIE), which exploit empirical variances
between client updates [85].

• Bulyan enhances existing Byzantine-robust aggregation
techniques, such as Krum and GeoMed, by first compress-
ing gradient updates from each client into a more compact
form. This reduces the impact of noise and malicious data.
After compression, Bulyan employs a robust aggregation
technique to combine the compressed updates, focusing on
reliable information while filtering out outliers and adver-
sarial contributions, thereby improving accuracy and re-
silience against Byzantine faults [89].

• Clustering aggregation calculates pairwise cosine dis-
tances between parameter updates and groups clients
based on cosine similarities using agglomerative cluster-
ing with average linkage. While this method shows robust-
ness in some scenarios, it only considers the relative direc-
tions of updates, ignoring their magnitudes. Attackers can
exploit this by amplifying their updates without altering
directions, disrupting model convergence. To address this,
Li et al. [85] proposed ClippedClustering, which applies
norm-based clipping to updates. Updates are scaled if their
norm exceeds a server-determined threshold, set automati-
cally using the median of historical update norms, improv-
ing defenses under IID local datasets. However, Clipped-
Clustering significantly degrades performance with non-
IID datasets, highlighting the need for tailored defense
strategies.

• Zeno [90] scores and ranks updates based on their align-
ment with a reference gradient, filtering out suspicious up-
dates dynamically. Zeno is particularly effective in resist-
ing Byzantine attacks because it relies not solely on tradi-
tional statistical measures like medians or means. Instead,
it actively evaluates the credibility of each update, allow-
ing it to reject harmful contributions dynamically. In con-
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trast to previous work, Zeno++ [91] removes several unre-
alistic restrictions on worker-server communication, now
allowing for fully asynchronous updates from anonymous
workers, for arbitrarily stale worker updates, and for the
possibility of an unbounded number of Byzantine work-
ers.

• Anomaly Detection It employs various statistical and an-
alytical methods to identify events that deviate from ex-
pected behavior, which is crucial for detecting Byzan-
tine attacks. Effective anomaly detection systems require
a normal behavior profile to recognize malicious activ-
ity. Techniques might include clustering to group simi-
lar updates and identify outliers, Euclidean distance met-
rics used in methods like Krum for detecting deviations
in input parameters, Autoencoders that reconstruct data
to flag abnormal updates, and other methods [23]. For
example, Jiang et al. [92] proposed monitoring the aver-
age loss reported by clients to identify and exclude poten-
tially compromised updates caused by Sybil attacks. Pan
et al. [93] proposed integrating advanced anomaly detec-
tion techniques with a unique model update aggregation
strategy, enabling the identification and neutralization of
backdoor influences in a single update cycle, avoiding the
need for extensive data access or communication between
clients. Since non-IID data can make normal client up-
dates appear like anomalies, which attackers may exploit,
adaptive anomaly detection methods such as the one pro-
posed by Jiang et al. [92] and Pan et al. [93] help to differ-
entiate between natural variations in data and adversarial
manipulations.

3.2.2. Asynchronous Schemes
To mitigate the straggler issue, various asynchronous

schemes have been proposed. These schemes update the global
model based on the time difference between the current round
and the previous round when the client first received the global
model [80]. For example, Lu et al. [94] proposed FedAAM,
which employs an adaptive weight allocation algorithm that as-
signs dynamic weights to client updates based on their contri-
bution, considering factors such as the timeliness and quality
of the updates. The framework introduces two asynchronous
global update rules based on a differentiated strategy, allow-
ing the global model to update with varying client contribu-
tions depending on their performance and the frequency of
their updates. Additionally, FedAAM integrates global mo-
mentum by using the historical global update direction, which
helps smooth the global update process and manages the asyn-
chrony among clients, thereby improving training efficiency
and convergence behavior. However, Schlegel et al. [74] re-
port that these schemes generally do not converge to the global
optimum. They further propose two schemes to avoid this
problem. CodedPaddedFL combines one-time padding with
gradient codes to ensure straggler resiliency while maintain-
ing privacy, achieving an 18x speed-up for 95% accuracy on
the MNIST dataset. CodedSecAgg, based on Shamir’s se-
cret sharing, provides both straggler resiliency and robustness

against model inversion attacks, outperforming the state-of-the-
art LightSecAgg by a speed-up factor of 6.6-18.7 for similar
accuracy.

3.2.3. Pruning
Pruning can serve as both an optimization strategy and a

potential security measure in FL. It is a technique used to re-
duce the size and complexity of machine learning models by
removing less important or dormant neurons and connections.
This process helps address the computational and communica-
tion constraints typical in FL environments, where clients of-
ten have limited resources [23]. Additionally, selective pruning
can enhance security and mitigate backdoor attacks by remov-
ing neurons that are not activated by clean data. However, this
defense method may be less effective if attackers use pruning-
aware methods [62].

3.2.4. Adversarial Training
Adversarial training in FL is a defense mechanism in which

each client generates adversarial examples locally during train-
ing to enhance the robustness of their model updates against ad-
versarial attacks. These adversarially trained local models are
then aggregated by the central server, allowing the global model
to learn to resist adversarial inputs without directly exposing
client data, thereby improving security in a distributed and
privacy-preserving manner. Li et al. [95] formulated the train-
ing process as a min-max optimization problem, addressing the
unique challenges of decentralized data and model training.
They also provided a detailed convergence analysis, demon-
strating that the minimum loss can converge to a small value
under appropriate conditions, and introduced gradient approx-
imation techniques to enhance training effectiveness, particu-
larly for non-IID clients.

3.2.5. Personalized Solutions
This section covers customized solutions that do not fit the

categories discussed above. It highlights the most novel and
promising methods from recent research, showcasing innova-
tive approaches to enhancing security in FL environments.

FoolsGold It is a defense method specifically designed to
counter targeted poisoning sybil attacks. It identifies clients
with similar behavior and characteristics of Sybil clones. It
then adapts the learning rates of these clients based on the sim-
ilarity of their contributions, effectively reducing the influence
of malicious updates and mitigating the attack [60] [96]. This
technique also provides a way to tackle non-IID data issues pre-
sented in Section 2.3, detecting overrepresented gradients and
down-weighting contributions from clients that exhibit unusu-
ally high similarity, ensuring fairer aggregation despite hetero-
geneous data variations. However, when legitimate updates are
similar, these methods also tend to penalize them, causing sig-
nificant drops in model performance [97]. Some experiments
have shown that FoolsGold might completely fail to train the
model, potentially eliminating important local models. Addi-
tionally, the method may encounter limitations when integrated
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with large language models due to the substantial cache require-
ments needed to memorize intermediate results, such as models
from previous FL training rounds [88].

FL-Defender [97]: Proposed by Jebreel et al., FL-Defender
is a defense mechanism designed to combat targeted poison-
ing attacks, specifically addressing label-flipping (a type of
poisoning attack) and backdoor attacks. Similarly to Fools-
Gold, FL-Defender extracts last-layer gradients from workers’
updates and calculates cosine similarities to detect attack pat-
terns, followed by dimensionality reduction using PCA to fo-
cus on the most relevant features. During aggregation, it re-
weights updates based on historical deviations, minimizing the
influence of poisoned data while preserving model performance
and maintaining low computational overhead. Its aggregation
method is similar to Krum and Trimmed Mean. However, FL-
Defender adds an adaptive component by re-weighting updates
rather than rejecting them outright.

FLAME [65]: It is a robust defense framework designed
to counter backdoor attacks while preserving the benign per-
formance of the global model, even in non-IID data settings.
Unlike traditional defenses that rely on limited attacker mod-
els or degrade performance with excessive noise, FLAME dy-
namically estimates and injects the optimal amount of Gaussian
noise to eliminate backdoors. Its clustering-based approach ef-
fectively separates malicious updates from benign ones, ensur-
ing robust aggregation despite data heterogeneity. Additionally,
weight clipping limits the influence of outlier updates, enabling
FLAME to maintain high model accuracy while efficiently re-
moving adversarial backdoors.

PAMPAS [98]: Ching et al. proposed to combat GAN attacks
by partitioning the model between users and edge servers, with
users training only part of the model to enhance security and
efficiency. Their approach seeks to optimize model partitioning
to resist GAN attacks and minimize total training time while
addressing the trade-offs between computation, transmission,
and maintaining data privacy.

PPFDL [99]: Xu et al. proposed a solution designed to re-
duce the negative impact of irregular users (Users who join and
leave the training process frequently or unpredictably) on train-
ing accuracy by prioritizing high-quality data contributions.
The approach ensures the confidentiality of user information
using Yao’s garbled circuits and additively homomorphic cryp-
tosystems. PPFDL is also robust against user dropout, allowing
the training to continue as long as some users remain online.

LeadFL [100]: Zhu et al. proposed a client-side defense
mechanism against backdoor and poisoning attacks, which in-
troduces a novel regularization term in local model training to
nullify the Hessian matrix of local gradients. Additionally, the
regularization helps to tackle non-IID issues explored in Sec-
tion 2.3 by neutralizing adversarial gradient patterns, improving
robustness against backdoor and targeted attacks in heteroge-
neous data settings. Unlike existing defenses, LeadFL specifi-
cally targets the Hessian matrix to enhance robustness against
bursty adversarial patterns, effectively handling the high vari-
ance in malicious client activity that many server-side defenses
struggle with. Designed to work alongside existing server-side
defenses, LeadFL enhances overall security by complementing

other mechanisms rather than functioning as a standalone solu-
tion.

PASS [66]: To address Free-Rider attacks in FL, the paper in-
troduces the Parameter Audit-based Secure and Fair FL Scheme
(PASS). PASS employs a privacy-preserving strategy (PASS-
PPS) incorporating weak DP with a Gaussian mechanism and
a parameter prune mechanism to protect data during parame-
ter auditing. Additionally, PASS utilizes a novel contribution
evaluation method to accurately measure each client’s perfor-
mance, ensuring fairness in the training process and deterring
both AFR and Selfish SFR attacks.

Sageflow [80]: It introduces a staleness-aware grouping
method that integrates seamlessly with robust aggregation rules
such as Multi-Krum. This approach enhances resilience against
adversaries through entropy filtering and loss-weighted averag-
ing, effectively managing non-IID data distributions and outper-
forming previous methods like Zeno+ in practical scenarios.

FedRLChain [81]: It leverages blockchain technology to ad-
dress critical challenges in Federated Reinforcement Learn-
ing. This framework features a novel verification algorithm to
counter malicious client actions, an aggregation weight scheme
to avoid bias in the global model, and an enhanced FedAvg al-
gorithm for improved convergence speed.

In Table 6, we provide a relation between the defense mech-
anisms and the corresponding attacks or threats they aim to
mitigate in FL. Certain defenses, like robust aggregation op-
erators and anomaly detection, address various attacks such as
poisoning, GAN-based, Sybil, backdoor, free-riding, jamming,
and evasion. Asynchronous schemes, pruning, and personal-
ized solutions focus more specifically on addressing straggling
and dropout issues related to client heterogeneity and connec-
tivity.
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Robust aggregation operators ✔ ✔ ✔ ✔ ✔ ✔
Asynchronous schemes ✔ ✔ ✔ ✔
Pruning ✔ ✔ ✔
Adversarial training ✔ ✔ ✔ ✔
Personalized solutions ✔ ✔ ✔ ✔ ✔ ✔

Table 6: Relationship of defense mechanisms and attacks for secure FL

Thus, Table 6, together with the analysis of the papers as-
sessed, reveals key insights into the current security landscape
in FL by illustrating the effectiveness of various defense mecha-
nisms against different types of attacks. A notable observation is
the dominance of robust aggregation operators and anomaly de-
tection techniques, which address the broadest range of threats.
This suggests that adversarial manipulations, particularly poi-
soning, Sybil, and backdoor attacks, remain central concerns
in FL security. However, these methods alone are not suf-
ficient. For example, while robust aggregation enhances re-
silience against model and data poisoning, it does not directly
counter jamming attacks, which disrupt communication rather
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than manipulate training data.
Table 6 also highlights an ongoing challenge: no single de-

fense mechanism can comprehensively mitigate all security
threats, emphasizing the need for hybrid approaches. Personal-
ized solutions and adversarial training offer promising advances
by tailoring security mechanisms to specific attack vectors, but
they remain underexplored in the context of free-riding and eva-
sion attacks. The increasing sophistication of FL attacks ne-
cessitates continuous refinement of defense strategies, integrat-
ing multiple techniques to address emerging adversarial tactics
holistically.

Lessons learned: The analysis of security attacks and de-
fenses in FL reveals several critical insights. First, the grow-
ing sophistication of adversarial strategies highlights the need
for adaptive and multi-layered defense mechanisms. While ro-
bust aggregation operators and anomaly detection remain foun-
dational defenses, adversaries continuously develop novel poi-
soning and backdoor attack strategies that evade traditional fil-
tering methods. This aspect highlights the limitations of static,
threshold-based defenses and motivates the need for more adap-
tive, real-time techniques. Second, client heterogeneity and
participation dynamics significantly impact FL security, as at-
tackers can exploit phenomena like straggling, dropout, and
free-riding, emphasizing the importance of personalized and
incentive-aligned solutions. However, most current solutions
assume honest or uniformly distributed clients, leaving a gap in
defending against adversarial heterogeneity and collusion.. Ad-
ditionally, adversarial tactics such as Sybil-based collusion and
GAN-powered attacks’ rapid evolution underscores the neces-
sity for continuous monitoring and adaptive countermeasures.
However, there is no standardized framework to evaluate these
defenses across diverse threat types. Finally, while many de-
fenses focus on protecting global model integrity, there is a
growing need for client-side security solutions to detect and
mitigate threats locally before aggregation.

3.3. Comparative Analysis of Defenses for Secure FL
In this subsection, we analyze quantitative and experimental

studies to evaluate the effectiveness of the previous defenses in
specific scenarios. For instance, studies such as Li et al. [101]
and Zhang et al. [102] offer a detailed quantitative comparison
of various FL defense mechanisms across different attacks. Un-
der untargeted model poisoning attacks like the Fang et al. [44]
attack, Bulyan demonstrates superior robustness, achieving up
to 85% global model accuracy with a 20% adversarial client
ratio, compared to Trimmed Mean (78%) and Krum (75%).
However, Bulyan’s computational complexity (O(dn2) may hin-
der scalability in large-scale FL systems. For targeted backdoor
attacks, FLTrust, which uses a small trusted dataset, achieves
over 90% accuracy on benign tasks while suppressing back-
door success rates below 5%, outperforming Trimmed Mean,
which achieves 85% benign accuracy but struggles with back-
door suppression. FLAME emerges as a strong candidate in
highly heterogeneous data settings by dynamically adds noise
to mitigate backdoors while maintaining model performance
at around 88% accuracy. Trimmed Mean balances simplicity
and effectiveness for scenarios prioritizing low overhead. Thus,

the choice of defense depends on the attack type and system
constraints: Bulyan is recommended for untargeted attacks in
smaller systems, while FLTrust and FLAME are preferred for
targeted attacks or non-IID data distributions.

Beyond robust aggregation, the literature reports competitive
results for the remaining four defense families in our taxon-
omy. Asynchronous schemes such as FedAAM [94] and Cod-
edPaddedFL [74] address stragglers and jamming by updat-
ing the global model as soon as partial gradients are available.
On MNIST, CodedPaddedFL provides around 95% accuracy
while delivering an 18× reduction in time compared with syn-
chronous FedAvg in settings with slow or jammed clients; the
cost is roughly a two-fold increase in uplink bandwidth due
to coded padding. Moreover, Pruning-based defenses remove
dormant or highly suspicious neurons after each aggregation
round. [103] shows that neuron pruning can cut a Fashion-
MNIST backdoor attack success rate (ASR) from 99.7% to 2%.
Adversarial training hardens the model against inference-time
manipulations. For example, pFedDef [77] improves robust-
ness PGD perturbations by roughly 60% on CIFAR datasets
while maintaining competitive clean accuracy. Finally, person-
alised solutions mitigate Sybil and free-rider behaviour. For ex-
ample, Sageflow [80] further combines personalised weighting
with entropy filtering, yielding a 12% improvement in conver-
gence speed under mixed Sybil-plus-straggler settings.

These results confirm that each defense family excels un-
der specific threat models and resource budgets: asynchronous
protocols prioritise liveness, pruning targets stealthy back-
doors, adversarial training bolsters prediction-time robustness,
and personalised auditing enforces fairness against Sybil or
free-riding behaviour. A balanced deployment should there-
fore mix complementary mechanisms—for example, pairing
Bulyan with FedAAM for integrity and liveness, or coupling
Trimmed-Mean with pFedDef to resist both poisoning and eva-
sion—rather than relying on robust aggregation alone.

4. Privacy in FL

Following the taxonomy depicted in Fig. 4, we describe the
main attacks and defenses for privacy in FL in this section. For
the attacks, we provided specific mechanisms, degrees of harm,
and specific examples of manifestations in the real world. At the
end of each subsection, we provide some lessons learned after
analyzing the papers regarding attacks and defenses for privacy
in FL.

4.1. Privacy Attacks/Threats

In ML, privacy attacks and threats refer to techniques or
strategies used by adversaries to compromise the privacy of in-
dividuals or sensitive data during the training or inference phase
of ML models. These attacks aim to exploit vulnerabilities in
the ML process to gain unauthorized access to private informa-
tion or infer sensitive attributes of individuals [104]. In the FL
area, privacy attacks refer to attempts by adversaries to com-
promise data privacy during the training process. These attacks
allow extracting sensitive information from local or aggregated
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global models to infer, reconstruct, or cause data leakage. In
particular, we categorize such attacks based on the following
four main dimensions. First, method of inference distinguishes
between passive attacks (e.g., gradient inversion), which rely
on observing shared updates without injecting malicious be-
havior, and active attacks (e.g., canary gradient), which ma-
nipulate or perturb updates to increase data leakage. Second,
phase affected differentiates between leaks that occur predom-
inantly during training (such as gradient-based reconstruction)
and those emerging at inference time (like membership infer-
ence on final model outputs). Third, adversary’s role clarifies
whether an attacker is an insider–a legitimate FL client with
access to local computations–or an outsider who intercepts or
eavesdrops on communication, for instance, through man-in-
the-middle tactics. Lastly, the attack scope specifies whether an
attack is single-round, occurring once (e.g., a single instance of
eavesdropping), or multi-round, gradually accumulating sensi-
tive information over multiple iterations (as in repeated gradi-
ent inversion attempts). Thus, Table 7 summarizes how each
known privacy threat fits into these four dimensions. When a
threat spans multiple categories (for example, exhibiting both
passive and active behaviors), we explicitly mark that overlap.

The following sections explore the most relevant attacks
on privacy in FL by defining their nature, objectives, conse-
quences, and examples proposed in the literature.

4.1.1. Gradient Manipulation
Gradient manipulation in FL involves exploiting shared gra-

dients to infer or reconstruct sensitive data, posing significant
privacy risks. This includes techniques like gradient inversion,
reconstruction through inference, and canary attacks, highlight-
ing vulnerabilities in FL’s gradient-sharing mechanisms.

Gradient inversion attacks. These attacks exploit gradients or
weight updates shared during the aggregation process in FL to
reconstruct private data, posing significant privacy risks [15].
These attacks typically leverage optimization techniques or lin-
ear relationships between gradients and inputs to infer sensi-
tive information. For instance, Kariyappa et al. [105] introduced
the Cocktail Party Attack (CPA), which uses independent com-
ponent analysis to recover private inputs from aggregated gra-
dients, demonstrating its scalability to large batch sizes. This
highlights how gradient inversion can compromise privacy even
in high-dimensional settings. Li et al. [106] proposed the End-
to-End Gradient Inversion (E2EGI) attack, which iteratively re-
constructs training data by reversing gradients, showcasing its
potential to breach privacy across multiple iterations. Pasquini
et al. [107] further explored two variants: a passive optimiza-
tion-based approach that infers private training sets without ac-
tive interference and an active attack that manipulates model
updates to amplify privacy leakage. These methods underline
the nuanced mechanisms attackers employ to exploit gradients.

The consequences of gradient inversion attacks are severe.
In real-world scenarios, such attacks can expose sensitive med-
ical images or financial records used in FL systems, violating
privacy regulations and enabling misuse [15]. However, Huang

et al. [108] argue that practical risks may be mitigated by fac-
tors like large batch sizes and local iterations, which reduce re-
construction fidelity. Similarly, Boenisch et al. [109] observed
that gradient inversion often suffers from local minima and re-
quires extensive iterations for meaningful data recovery, limit-
ing its feasibility in some production environments. Implemen-
tation typically requires intercepting aggregated gradients and
running a local optimization loop that refines random inputs un-
til the gradients match observed signals. Encrypting or clipping
gradients partially hinder this by reducing the attacker’s visibil-
ity or precision, though some accuracy trade-offs may arise.

In contrast, gradient suppression attacks involve maliciously
suppressing gradients during aggregation to manipulate global
model updates [107]. By isolating individual updates, attack-
ers can amplify specific patterns in user data, increasing expo-
sure risks. Such attacks can infer the presence of specific data
points in user datasets, enabling targeted tracking [110]. While
their mechanisms differ from gradient inversion, suppression
attacks similarly exploit vulnerabilities in gradient-sharing pro-
tocols. Implementation of gradient suppression often involves
intercepting or nullifying certain gradient components before
sending them to the server, typically by modifying the local
backward pass. A partial defense strategy is to rely on crypto-
graphic checks that ensure gradient consistency across dimen-
sions, thereby preventing an attacker from selectively masking
or removing critical features.

Reconstruction through inference. It is a privacy-threatening
scenario where an adversary attempts to reconstruct or in-
fer sensitive information about the training data of individual
clients by analyzing the model updates or outputs shared dur-
ing the FL process [19]. Such attacks exploit the inherent vul-
nerability of gradient-sharing mechanisms in FL. For instance,
adversaries can reverse-engineer specific data points or pat-
terns from gradients using techniques like gradient inversion,
as demonstrated by Chen et al. [111]. They identified two dis-
tinct types of reconstruction attacks. The first, called extrac-
tion attack, focuses on accurately reconstructing a single train-
ing sample with minimal computational cost. This attack lever-
ages advanced optimization techniques to improve reconstruc-
tion accuracy, posing significant risks to data privacy. The sec-
ond type, manipulating reconstructed data, allows adversaries
to recover private training data and labels from gradients and
subsequently modify this data to execute targeted attacks on
models. For example, in healthcare FL applications, attackers
could reconstruct sensitive medical images shared across hos-
pitals and manipulate them to mislead diagnostic models [112].
Attackers mostly rely on final model outputs or partial gradient
snapshots for offline reconstruction, requiring minimal changes
to the FL pipeline. Defensive measures like gradient masking
or cryptographic aggregation reduce the granularity of the in-
formation available, limiting reconstruction success.

Canary Gradient. A canary gradient attack is a privacy breach
in FL where an attacker exploits gradients or weight updates
shared during the aggregation process to infer sensitive infor-
mation. Its name originates from using canaries in coal mines
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Table 7: Categorization of Privacy Attacks in FL
Privacy Attack Method (Passive vs. Active) Phase Affected Adversary’s Role Attack Scope Goal / Effect

Gradient Inversion Passive Training Insider Multi-Round Reconstruct private data
Gradient Suppression Active Training Insider Multi-Round Amplify data leakage patterns
Membership Inference Passive or Active Inference Outsider / Insider Single-Round Check if a data sample was used in training
Canary Gradient Active Training Insider Multi-Round Insert small triggers to deduce sensitive info
Model Inconsistency Active Training Insider (Server) Single-Round Compare user updates across different models
GAN-based Inference Active Training Insider Multi-Round Generate synthetic data that reveals distribution
Eavesdropping Passive or Active Training / Inference Outsider Single-Round or Multi-Round Intercept model updates or network traffic
Unintentional Data Leakage Passive Training Outsider / Insider Single-Round or Multi-Round Exploit unintended gradient exposure

to detect poisonous gases [110]. In this attack, the adversary in-
jects small, carefully crafted perturbations into a client’s gradi-
ents or weight updates and observes the server’s response to de-
duce private data. For instance, such attacks have been shown to
reconstruct sensitive client data under certain conditions, rais-
ing concerns about FL’s privacy guarantees [113]. Maddock et
al. [113] propose CANIFE, a method to evaluate empirical pri-
vacy risks in FL by introducing adversarially crafted ”canary”
samples. These samples are used to measure model exposure
to privacy breaches, revealing that the empirical per-round pri-
vacy loss is significantly tighter than theoretical bounds. This
approach highlights vulnerabilities in FL systems, such as sus-
ceptibility to gradient inversion attacks in real-world scenarios,
which theoretical DP guarantees may underestimate. By offer-
ing a realistic assessment of privacy risks, CANIFE underscores
gaps in current defenses and emphasizes the importance of ro-
bust threat models for FL. To carry out a canary attack, an ad-
versary could inject imperceptible ’signatures’ into local gra-
dients, then checks if these signatures reappear in the global
model’s updates. Clipping (see Section 4.2 or encrypting gradi-
ents dilutes such signatures, minimizing the attacker’s ability to
confirm the presence of sensitive data.

4.1.2. Membership Inference
In this privacy threat, an adversary seeks to determine

whether a specific data point was part of a client’s training
dataset used in the FL process. Such an attack primarily aims to
verify the membership status of individual data points, discern-
ing whether they belong to a client’s private training data [22].
This breach of privacy may lead to the disclosure of identi-
ties or sensitive attributes, undermining the confidentiality and
anonymity of data contributors. Zhang et al. [114] highlights
two types of membership inference attacks with distinct mech-
anisms and implications. Poisoning membership inference at-
tacks involve adversaries injecting carefully crafted malicious
samples into the training data to detect membership. For in-
stance, by observing how poisoned examples alter model loss,
attackers can infer membership, posing severe risks in health-
care FL systems where patient data is highly sensitive. Black-
box membership inference attacks, such as Memguard [115],
operate without direct access to training data or models. These
attacks generate adversarial queries to exploit model predic-
tions and infer membership, which could compromise user
anonymity in recommendation systems. Pasquini et al. [107]
emphasize that adversaries can leverage model updates or query
responses to enhance their guesses. The harm caused by these
attacks extends beyond privacy breaches, as they can facilitate

further privacy threats like attribute inference attacks, creating
a cascading effect on the overall security of FL systems. Specif-
ically, membership inference often queries the global model’s
confidence scores for specific inputs. Small modifications to the
local or server-side scripts can track these score patterns, ex-
posing training-set membership. Defensive techniques such as
local DP or randomizing confidence outputs inhibit the attack’s
reliability.

4.1.3. Model Inconsistency
This attack exploits a vulnerability in the FL protocol caused

by incorrect usage of secure aggregation and a lack of pa-
rameter validation. Specifically, a malicious server distributes
different versions of the model to different users within the
same training round. The server can analyze behavioral dif-
ferences in user updates, even though these updates are se-
curely aggregated. The attack leverages the fact that varying
model parameters can induce detectable differences in gradi-
ent updates, which may reveal sensitive training data. For in-
stance, Pasquini et al. [110] demonstrated that this approach
enables inference of private information regardless of the num-
ber clients. Real-world implications include risks to applica-
tions like healthcare and IoT, where sensitive data is prevalent.
Zhang et al. [116] further noted that inconsistencies between
global and local models could reflect attack-related informa-
tion, potentially guiding personalized FL algorithms to improve
fault diagnosis accuracy. These findings underscore the severe
privacy risks of model inconsistency attacks and their poten-
tial to compromise FL systems at scale. The implementation of
such an attack only requires slight server-side changes–assign-
ing slightly different model parameters to each client in a single
round. A recommended mitigation is verifying model consis-
tency across clients or leveraging secure multi-party aggrega-
tion to ensure identical parameter distributions.

4.1.4. GANs-based Inference
A GANs-based inference attack in FL uses GANs to infer

sensitive information about the training data held by individ-
ual clients. This attack aims to create a generator network that
can produce data samples indistinguishable from the data used
for training in the local client models [15]. The attacker can ef-
fectively determine whether a specific data point was part of a
client’s training dataset, conducting membership inference. For
example, in medical diagnosis scenarios, such attacks could al-
low a malicious client to infer sensitive patient conditions from
gradients shared during FL updates [117]. The consequences
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of such attacks are severe, as they breach privacy by reveal-
ing which data points were used during training, leading to po-
tential misuse or discrimination risks. Huang and Xiang [117]
introduce Cross-Client GANs (C-GANs) attacks, where a mali-
cious client reconstructs samples resembling the distribution of
other clients’ training data. This enables adversaries to com-
promise privacy by leaking benign clients’ sensitive data, as
demonstrated in experiments involving reconstructed images
from medical datasets. Attackers usually train a local genera-
tor alongside the global model, refining synthetic samples that
mimic real client data. By limiting gradient visibility with cryp-
tographic or noisy protocols, such as DP, defenders hamper the
generator’s ability to converge on sensitive distributions.

4.1.5. Eavesdropping
In this threat, an attacker intercepts the communication be-

tween the clients and the central server. It is done by sniffing
the network traffic or by compromising the devices of the clients
or the server [118]. The objectives of an eavesdropping attack
often include stealing the FL model, inferring sensitive infor-
mation from the client’s data, and disrupting the FL process.
Guo et al. [119] identifies four types of eavesdropping attacks:
Passive Eavesdropping, where an attacker monitors communi-
cation without altering data; Active Eavesdropping, involving
data modification, such as injecting malicious gradients; Man-
in-the-Middle (MitM) Attacks, which intercept and relay mes-
sages, posing significant risks to data integrity and confiden-
tiality; and Network Sniffing, capturing network traffic to ex-
tract sensitive information. Practical eavesdropping often ex-
ploits unsecured Wi-Fi or inadequate encryption. An attacker
needs little more than packet-capture tools to observe local up-
dates. Configuring Transport Layer Security (TLS) or imple-
menting fully HE (FHE) for parameter exchanges effectively
thwarts passive intercepts.

4.1.6. Unintentional Data Leakage
The latter is not precisely an attack, but it is more of a vul-

nerability that attackers can exploit once discovered. It occurs
when private training data leaks through the gradient-sharing
mechanism deployed in FL systems. The objective of this is to
recover batch data from the shared aggregated gradients. The
latter can be catastrophic and lead to users’ private data recon-
struction by eavesdropping on shared gradients. The risk of
confidential data leaking from the training gradients in standard
FL, especially the vertical case, is high. For Nair et al.[120],
these vulnerabilities are a concern in FL due to the potential for
data leakage and adversarial attacks during gradient transfer op-
erations. These threats can occur when gradients are transferred
between clients in the FL system. Ziz et al. [121] introduce the
CAFE (catastrophic data leakage in vertical FL) attack, an ad-
vanced data leakage attack in FL that aims to recover private
data from shared aggregated gradients. It addresses the limita-
tions of existing approaches regarding scalability and theoreti-
cal justification for data recovery. The attack algorithm consists
of three steps: (1) Recovering the loss gradients concerning the
outputs of the first fully connected (FC) layer. (2) Using the re-
covered gradients as a learned regularizer to improve the perfor-

mance of the data leakage attack. (3) Using the updated model
parameters to perform the data leakage attack. Such leakage
arises when partial gradient details or intermediate layer out-
puts inadvertently reveal private features. Minimizing or mask-
ing these signals (via secure aggregation or randomization) low-
ers the precision with which attackers can reassemble original
training data.

Figure 6: Papers related to privacy attacks over time

Leveraged on the literature review done, we retrieved a list of
privacy threats included in the current literature. Fig. 6 demon-
strates a notable increase in privacy attack research publica-
tions, reflecting heightened awareness and concern in this field.
The early years of 2018 until 2020 saw minimal research out-
put with a narrow focus on attack types. However, a marked
shift occurred since 2021, with a substantial rise in the quan-
tity and range of studies. Attacks like Membership inference
and Reconstruction through inference gained significant trac-
tion, particularly in 2023 and 2024. Concurrently, research on
GANs-based Inference and Gradient Inversion/Suppression ex-
panded considerably, with a noticeable peak in 2024. The emer-
gence of Unintentional data leakage as a research focus in re-
cent years adds to the diversifying landscape. The year 2024
stands out with the most comprehensive coverage across vari-
ous attack categories, indicating an intensified focus on privacy
protection research. This progression highlights the dynamic
nature of privacy threats and showcases the academic commu-
nity’s proactive stance in addressing evolving challenges in data
privacy safeguarding.

4.2. Privacy Defenses

Simultaneously, as the range and intricacy of attacks and
threats on FL grow, novel defenses are also emerging to coun-
teract their harmful impacts [17]. The following sections ex-
plore the most relevant defenses on privacy in FL by defining
their concept, advantages, disadvantages, and the attacks each
type of defense can defend against, proposed in the most recent
and pertinent literature.
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4.2.1. Zero-knowledge Proof
Zero-knowledge proof-based FL (ZKP-FL) scheme lever-

ages zero-knowledge proof for both the computation of local
data and the aggregation of local model parameters, aiming
to verify the computation process without requiring the plain-
text of the local data. Xing et al. [122] provided that on a
blockchain, ZKP-FL allows clients in an FL system to prove
to the central server that they have computed the correct model
updates without revealing their underlying data. It helps to
protect against attacks that aim to infer sensitive information
from the federated model or the FL process. The FLAG frame-
work [123] utilizes ZKP-FL techniques to provide secure com-
putation without revealing sensitive information. It protects
against data leakage, inference attacks, and unauthorized ac-
cess to sensitive information. It provides a lightweight and effi-
cient framework for secure aggregation in FL. However, imple-
menting ZKP-FL protocols requires additional computational
resources, which may introduce complexity and overhead due
to the need for safe communication and encryption.

4.2.2. Oblivious Transfer
Oblivious Transfer (OT) in FL refers to a cryptographic pro-

tocol that allows a client to obtain one out of multiple poten-
tial values from a server without revealing the chosen value
to the server. OT ensures privacy and confidentiality in FL
by enabling clients to securely access and retrieve information
from the server without compromising sensitive data. Rathee
et al. [124] introduced ELSA (Ensemble Learning with Semi-
honest Aggregators) as a defense mechanism in FL to protect
the privacy of individual gradients during aggregation. ELSA
employs l2-norm bounding to defend against boosted gradients
from malicious clients. It consists of multiple layers that incor-
porate semi-honest and adversarial privacy defenses. ELSA’s
l2-norm protection is relatively simple compared to other secu-
rities, making it suitable for working over secret shares. ELSA
cannot guarantee fairness, as it cannot distinguish between a
malicious server and a malicious client, potentially leading to
some honest clients’ inputs not being used in the computation.
ELSA’s privacy defenses aim to protect the privacy of individ-
ual gradients during aggregation, limiting information leakage
from the global aggregate.

4.2.3. Homomorphic Encryption (HE)
HE is a cryptographic technique that enables computations to

be performed on encrypted data, producing an encrypted result
that, when decrypted, matches the result of the same operations
performed on the (original) plaintext. Singh et al. [125] discuss
using HE to protect crucial data in the healthcare system, al-
lowing computations to use encrypted data without decrypting
it, preserving privacy. It enables secure data sharing and anal-
ysis in FL without revealing sensitive information to the cen-
tral server or other clients. Nevertheless, it is a complex tech-
nology that requires specialized knowledge and infrastructure
for implementation. The solution protects against unauthorized
access, data leakage, and inference attacks. HE is a critical
component of the SoK [126] defense strategy in FL. It offers
robust privacy guarantees by ensuring data remains encrypted

throughout the computation process. However, it can introduce
notable drawbacks, including computational overhead and in-
creased communication costs due to the complexity of process-
ing encrypted data. It serves as a robust defense against various
threats, including eavesdropping and data inference attacks, ul-
timately enhancing the privacy of FL systems.

4.2.4. Secret Sharing
Secret sharing (SS) is used in FL to distribute sensitive infor-

mation, such as model parameters, among multiple clients. It
involves dividing the secret into shares and distributing them to
different clients, ensuring that no single client can access the
complete secret. tMK-CKKS [127] with secret sharing pro-
vides information-theoretic security, making it impervious to
collusion attacks by up to t-1 clients working in concert with
the server. Even when many clients join forces, they cannot
deduce details about the master’s secret. It involves the distri-
bution of the master public key among all clients for encryption
purposes. Furthermore, individual secret keys for each client
are generated using a linear secret-sharing scheme. Notably,
the decryption of aggregated ciphertexts necessitates the coop-
eration of only a specific threshold value, t clients. This careful
balance of secret sharing and threshold requirements enhances
the FL system’s privacy.

4.2.5. MPC
MPC allows multiple clients to collaboratively compute a

function on their private inputs without disclosing those inputs
to one another. Bangalore et al. [123] proposed FLAG that
scales to 1000s of clients, requires only a constant number of
rounds, outperforms prior work in computational cost, and has
competitive communication cost. However, it may introduce
computational overhead due to the need for secure protocols
and encryption. It helps defend against attacks that aim to com-
promise the privacy of user-held data during the aggregation
process in FL. Mansouri et al. [126] proposed SoK, a defense
mechanism in FL that focuses on the MPC of data from multiple
sources without revealing individual inputs. It provides privacy
protection and prevents adversaries from inferring sensitive in-
formation. SOK defense offers advantages in FL, like ensuring
that individual data contributions remain confidential, making
it difficult for attackers to carry out these attacks by obfuscat-
ing individual data contributions. Some downsides may include
additional computational overhead and communication costs,
specialized cryptographic knowledge, and careful design to en-
sure efficiency and scalability. SoK was specially designed to
prevent membership inference and data reconstruction attacks.

4.2.6. DP
Nagy et al. [128] proposed a privacy-preserving FL frame-

work for natural language processing incorporating local dif-
ferential privacy (LDP) as a robust defense mechanism. LDP
safeguards the privacy of individual data contributions, intro-
ducing noise to the model updates before sharing it with the
server. The critical advantage of LDP is that it is exceedingly
challenging for potential attackers to infer sensitive information
about individual data contributors. However, introducing noise
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can impact the accuracy of the trained ML models, necessitat-
ing a careful balance between privacy preservation and model
utility. LDP is a defense against attacks to uncover sensitive
information about individual data contributors. Dynamic dif-
ferential privacy (DDP), proposed by Guo et al. [119], involves
dynamically adjusting the privacy budget and noise scale during
model training, allowing for higher-quality models with a fixed
privacy budget. It helps to get higher quality models and real-
time privacy tracking, preventing the privacy budget from being
exceeded, which could lead to the leakage of sensitive informa-
tion. One drawback of this method is that it requires careful
adjustment and injection of noise in each iteration, which adds
complexity to the FL process. It is particularly effective at de-
fending against eavesdropping attacks.

4.2.7. Gradient Clipping
Gradient-based defenses in FL involve modifying the gradi-

ents during training to protect against adversarial attacks. These
defenses aim to make the model more robust by perturbing the
gradients or adding noise. Chen et al. [111] proposed FedDef
as an optimization-based input perturbation defense in FL that
aims to preserve privacy and FL model performance by trans-
forming private data into pseudo data that is dissimilar to the
original data while maintaining similar gradients. Users down-
load the global model from the server and use FedDef during
local training to transform their data and gradients. However,
the computational and memory overhead of FedDef needs to
be considered, compared with HE in terms of performance.
FedDef defends against reconstruction attacks, such as inver-
sion attacks, extraction attacks, and attacks that manipulate re-
constructed data. Gradient clipping restricts the size of up-
dates from individual clients, ensuring that large updates from
skewed or non-IID data do not disproportionately impact the
model performance.

Li et al. [129] study gradient clipping and sparsification as
defense mechanisms in FL. Gradient clipping involves setting
a threshold for the magnitude of gradients during training and
scaling them down if they exceed the threshold. This tech-
nique helps mitigate privacy leakage risks by controlling gradi-
ent magnitudes, making it harder to infer sensitive information
from them. However, striking the right balance between privacy
and model performance is crucial, as overly stringent thresholds
can hinder learning. On the other hand, gradient sparsification
enhances privacy by selectively transmitting only a subset of
gradients that exceed a specified threshold. The latter reduces
the information shared with the central server, minimizing the
risk of privacy breaches. While it offers strong privacy protec-
tion, it may introduce computational overhead and affect the
learning process by discarding some information.

4.2.8. Personalized Solutions
The references reviewed offer tailor-made solutions created

to improve the security of FL environments. The most relevant
are mentioned below.

CrowdFL. CrowdFL [130, 131] is an innovative approach that
combines mobile crowdsensing (MCS) with FL to address pri-

vacy concerns while harnessing the computational power of
clients. In this system, participants can perform local data
processing using the FL framework, ensuring that sensitive
sensing data remains on their clients. Only encrypted train-
ing models are uploaded to the server, preserving clients’ pri-
vacy. CrowdFL offers scalability by leveraging MCS’s large-
scale data collection capabilities and reduces deployment costs
by eliminating the need for extensive centralized infrastructure.
This integration of FL into MCS enhances privacy and makes
it a cost-effective and scalable solution for privacy-preserving
mobile crowdsensing applications.

Soteria. Soteria [132, 111] is a defense mechanism proposed
against model inversion attacks in FL. The defense focuses on
perturbing data representation to severely degrade the quality of
reconstructed data while maintaining FL performance. It aims
to improve the privacy of FL systems by addressing data repre-
sentation leakage from gradients, which has been identified as
the essential cause of privacy leakage. After applying the pro-
tection, it provides a certified robustness guarantee to FL and a
convergence guarantee to FedAvg. The privacy of the FL sys-
tem is significantly improved with the implementation of Sote-
ria defense. Soteria is designed to defend against model inver-
sion attacks in FL, specifically the deep leakage from gradients
(DLG) and gradient stalking (GS) attacks. These attacks aim to
infer private data by exploiting the vulnerability of FL to infer-
ence attacks. Soteria ensures that the perturbed representations
remain similar to the true representations for effective learning
but degrade the quality of reconstructed data, mitigating the ex-
acerbated privacy risks caused by non-IID data distributions.

FLTrust. [133, 114]: FLTrust is a defense mechanism de-
signed to enhance the privacy of FL, aiming to detect and mit-
igate malicious clients in the FL process by evaluating their
trustworthiness based on their behavior and contributions to the
model training process. FLTrust utilizes trust scores to assess
the reliability of clients and make informed decisions regard-
ing their inclusion in the FL system. It relies on trust scores,
which may not always accurately reflect the true intentions of
clients. False positives or false negatives in trust evaluation can
impact the fairness and effectiveness of the defense mechanism.
FLTrust defends against attacks involving malicious clients in
FL, such as Byzantine poisoning adversarial attacks, local mod-
els, and poisoning attacks in Byzantine-robust FL. This method
addresses non-IID data issues (see Section 2.3) using a trusted
server-side dataset to evaluate and assign trust scores to client
updates, ensuring that malicious or biased updates are down-
weighted.

RoFL. [134, 135]: Robustness of secure FL (RoFL) is an
FL system that incorporates constraints on clients’ updates to
mitigate severe attacks. It extends secure aggregation with
privacy-preserving input validation. RoFL efficiently includes
conditions such as norm bounds on clients’ updates and pro-
vides secure FL protocols in the single-server setting. RoFL
can enforce restrictions such as L2 and L∞ bounds on high-
dimensional encrypted model updates. RoFL achieves prac-
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ticality even at a large scale. However, it incurs consider-
able overhead in terms of computational resources and, notably,
bandwidth. It also uses a fairness-aware optimization approach
to ensure balanced contributions from clients, improving over-
all model performance on non-IID datasets.

Prio. [136, 124]: It primarily focuses on preserving privacy
while collecting essential aggregate statistics. This system
leverages specialized zero-knowledge proofs, known as SNIPs,
to enforce diverse defenses against malformed gradients while
ensuring the confidentiality of clients’ data against the influence
of at most one malicious server. It not only safeguards sensitive
information but also provides the flexibility to implement vari-
ous defenses against irregular gradients, enhancing the overall
security of the FL process. However, it’s essential to consider
potential drawbacks, such as the potential for computational
overhead and increased communication costs due to using zero-
knowledge proofs. In essence, Prio defense plays a crucial role
in defending FL against attacks that manipulate gradients and
compromise the integrity of aggregated statistics, all while pre-
serving privacy.
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Zero-knowledge proof ✔
Oblivious Transfer ✔
Homomorphic encryption ✔ ✔
Secret sharing ✔
MPC ✔ ✔ ✔
Differential privacy ✔ ✔ ✔ ✔ ✔
Gradient clipping ✔
Additive Noise ✔ ✔ ✔
Personalized solutions ✔ ✔ ✔

Table 8: Relationship of defense mechanisms and attacks for private FL

Table 8 highlights the intricate interplay between privacy
threats and defense mechanisms in FL, revealing critical gaps
and strengths in existing approaches. Notably, DP and MPC
emerge as versatile solutions, countering a broad spectrum of
attacks, including gradient inversion, membership inference,
and unintentional data leakage. However, their effectiveness of-
ten comes at the cost of computational overhead and accuracy
trade-offs, limiting real-world adoption. HE and secret shar-
ing offer robust protection against gradient-based attacks but
are less effective against inference threats like model incon-
sistency or GAN-based inference. Personalized solutions pro-
vide targeted defenses but lack the generalizability required for
large-scale deployments. Moreover, attacks such as model in-
consistency and GAN-based inference remain under-defended,
signaling a need for novel countermeasures. These observations
suggest that while FL privacy defenses are evolving, a holistic
approach that balances security, efficiency, and adaptability re-
mains a key challenge.

Lessons learned: The analysis of privacy threats and de-
fenses in FL highlights a dynamic and evolving landscape.
Attacks such as gradient inversion, membership inference,
and reconstruction-based techniques continue to pose signifi-
cant risks, exposing systemic weaknesses in current gradient-
sharing protocols and the lack of standardized privacy auditing
frameworks.. The rise of sophisticated attack strategies, includ-
ing adversarial GANs and model inconsistency exploits, em-
phasizes the need for stronger, adaptive defenses , particularly
those capable of operating under heterogeneous client behav-
iors and long training cycles. On the defense side, privacy-
preserving techniques like DP, HE, and MPC show promise
but often introduce computational overhead and may degrade
model utility. Despite these limitations, hybrid protocols (e.g.,
DP-MPC) offer promising trade-offs, yet their scalability and
deployment in real-world FL settings remain largely under-
explored. Another challenge is the fragmented evaluation of
defense strategies; indeed, most studies lack unified bench-
marks or attack coverage, making it difficult to assess robust-
ness across multiple threat vectors. Personalized solutions,
such as FLTrust and Soteria, offer targeted protection against
specific attack vectors but may require careful tuning to bal-
ance security and efficiency. Lastly, while many efforts focus on
protecting server-side aggregation or model parameters, client-
side privacy preservation (e.g., during local training or device
compromise) remains insufficiently addressed, creating oppor-
tunities for attack vectors beyond the current scope of most de-
fenses.

4.3. Comparative Analysis of Defenses for Private FL
In this subsection, we examine quantitative and experimental

research to assess how well previous privacy defenses perform
under particular attack scenarios [137, 138, 139, 140]. DP is ef-
fective against inference attacks by adding noise to gradients,
but it often reduces accuracy, especially for underrepresented
classes; newer methods like DP-MPC improve efficiency signif-
icantly (16-182x faster) while maintaining privacy guarantees.
HE ensures strong confidentiality by enabling computations
on encrypted data, achieving high accuracy (e.g., 99.95% on
MNIST) but at a significant computational cost. MPC, partic-
ularly when combined with DP, enhances communication effi-
ciency (56-794x) and speed, making it suitable for both privacy
and efficiency scenarios. Gradient Clipping stabilizes training
and reduces the risks of exploding gradients, but can slightly
degrade performance if thresholds are too restrictive. ZKPs pro-
vide strong privacy and verifiability in trustless environments,
such as blockchain-based FL, but can be computationally ex-
pensive. DP-MPC is recommended for applications prioritizing
privacy without excessive overhead due to its balance of effi-
ciency and privacy. Despite its cost, HE is ideal for accuracy-
critical tasks like medical imaging, while gradient clipping with
DP is effective for resource-constrained scenarios. In decentral-
ized systems requiring trustless operations, ZKPs are valuable
but should be used selectively due to their computational de-
mands.

FL inherently involves trade-offs between privacy, security,
and model performance. Strengthening privacy mechanisms of-
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ten reduces model utility, while enhancing security may in-
crease computational overhead [141, 142]. Therefore, select-
ing appropriate techniques depends on the specific applica-
tion needs—whether prioritizing efficiency, accuracy, or pri-
vacy. Understanding these trade-offs is essential for designing
robust and practical FL systems [143].

5. FL Frameworks

FL has witnessed the emergence of several frameworks de-
signed to facilitate its application and address various aspects
of privacy and security. Table 9 compares multiple features
evaluated for the mentioned FL frameworks. The comparison
involves the privacy and security support, attack simulation ca-
pacity, FL implemented types, and documentation and tutorials
provided for the users. This comparative analysis enables us to
provide insights into the strengths and weaknesses of each FL
framework in terms of privacy, security, functionality, and user-
friendliness, aiding researchers and practitioners in selecting
the most suitable framework for their specific needs. The fol-
lowing paragraphs overview the most relevant FL frameworks,
highlighting their characteristics, advantages, and limitations.
At the end of the section, we also provide some lessons learned
from analyzing the frameworks.

CRYPTEN [144]: CrypTen is a privacy-preserving ML
framework implemented in Python and compatible with both
Linux and Windows. Built on PyTorch, it provides MPC primi-
tives, enabling collaborative computations on private data with-
out exposing sensitive information. Its API closely resembles
PyTorch, offering tensor computations, automatic differentia-
tion, and modular neural networks, which simplify the integra-
tion of secure MPC techniques into ML workflows. CrypTen
supports horizontal FL but lacks vertical and split FL capabil-
ities. While it excels in secure aggregation and secret sharing,
it does not implement DP or advanced attack simulations. The
framework is open-source, well-documented, and user-friendly,
making it accessible to ML practitioners. However, its reliance
on an honest-but-curious threat model and limited support for
advanced privacy mechanisms may restrict its application in
certain adversarial scenarios.

FATE [145]: FATE is a flexible FL framework compati-
ble with Linux and Windows, supporting popular programming
languages like Python and Java. It offers comprehensive, se-
cure computation protocols and diverse ML algorithms, includ-
ing HE and MPC. FATE supports horizontal and vertical FL but
lacks split FL capabilities. Its modular design provides end-to-
end usability with pre-built components and user-friendly visu-
alization tools, simplifying the implementation of privacy-pre-
serving techniques. Additionally, FATE includes robust docu-
mentation, case studies, and tutorials to guide users. However,
it does not implement DP or advanced attack simulations.

FEDML [146, 147, 148]: FedML, also referred to as Ten-
sorOpera AI, is a versatile and robust FL platform compatible
with Linux, macOS, and Windows, developed in Python. It sup-
ports three distinct computing paradigms: on-device training,
distributed computing, and single-machine simulation, making
it adaptable to various FL scenarios. FedML offers a flexible

API design with comprehensive baseline implementations for
optimizers, models, and datasets. Security and privacy are ad-
dressed through the FEDML-HE module, which employs HE
techniques. Additionally, its FEDMLSecurity component in-
cludes FedMLAttacker for simulating all type of attacks and
FedMLDefender for testing defensive strategies. It does not
implement advanced privacy mechanisms such as Zero-knowl-
edge proof or MPC. Despite these limitations, its extensive doc-
umentation and strong attack simulation features make it a rec-
ommended tool for research and practical applications in FL.

FEDSCALE [149]: FedScale is an FL benchmarking suite
compatible with Linux, macOS, and Windows, implemented
in Python. It provides scalable runtime and realistic datasets
that support diverse FL tasks, such as image classification, ob-
ject detection, and language modeling. Its high-level APIs sim-
plify the implementation, deployment, and evaluation of FL al-
gorithms, enabling researchers to benchmark FL at scale with
minimal effort. FedScale employs DP techniques to enhance se-
curity and privacy but lacks support for other mechanisms. It
supports horizontal FL but does not implement vertical or split
FL. While its documentation is somewhat limited, it includes
essential resources for experimentation.

FL AND DP [150]: The Federated Learning (FL) and Dif-
ferential Privacy (DP) framework is cross-platform, supporting
Linux, Windows, and macOS, and is implemented in Python,
Java, and C++. It emphasizes data privacy by integrating DP
and holomorphic encryption techniques to quantify and miti-
gate privacy loss during distributed learning. The framework
excels in ensuring privacy-preserving communication but lacks
advanced security features. It supports horizontal and vertical
FL but does not implement split FL. While the framework pro-
vides detailed documentation to guide users, its lack of a unified
vision and a well-defined methodological workflow may limit
its usability and effectiveness.

FLOWER [151, 152]: Flower is an open-source FL frame-
work compatible with Linux, macOS, and Windows, imple-
mented in Python. It is designed for large-scale FL experiments,
supporting up to 15 million clients using only a pair of high-end
GPUs, showcasing its scalability and efficiency. Flower excels
in handling heterogeneous FL cross-device scenarios, making
it suitable for diverse real-world applications. The framework
prioritizes privacy by implementing various secure aggregation
protocols, ensuring the server cannot inspect individual client
models. However, it lacks support for advanced privacy tech-
niques like FoolsGold or Geomed and does not include attack
simulation features such as data poisoning or backdoor attacks.
Flower supports horizontal and vertical FL but does not imple-
ment split FL. Detailed documentation and an active commu-
nity enhance its usability by providing comprehensive guidance
on installation, usage, and API references. Despite its limita-
tions in attack simulations, Flower’s scalability and flexibility
make it a recommended tool for FL research and experimenta-
tion.

FLUTE [153]: The FLUTE (Federated Learning Under True
Environment) framework is an open-source tool compatible
with Linux, macOS, and Windows, implemented in Python
(version 3.6 or higher). It is designed for high-performance
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Table 9: FL frameworks features comparison (✔: Complete, ◆: Under development/incomplete, ✘: Unknown/Not implemented)
CRYPTEN FATE FEDML FEDSCALE FL AND DP FLOWER FLUTE NVFLARE OPENFL PaddleFL PYSYFT TFF XFL

Privacy and security support ◆ ◆ ✔ ◆ ✔ ✔ ◆ ◆ ◆ ◆ ✔ ◆ ◆

❅ Differential privacy ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
❅ FoolsGold ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
❅ GeoMed ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
❅ Homomorphic encryption ✘ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✘ ✘ ✔ ◆ ✔
❅ Krum ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘
❅ Multi-Krum ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘
❅ Norm difference clipping ✘ ✘ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✘
❅ RFA (geometric median) ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
❅ Secret Sharing ✔ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘
❅ Secure Aggregation ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ◆ ✘ ✘
❅ MPC ✔ ✔ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔
❅ Trimmed Mean ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘
❅ Zero-knowledge proof ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Attacks simulation ✘ ✘ ✔ ✘ ◆ ✘ ✘ ✘ ✘ ✘ ✘ ◆ ✘

❅ Data Poisoning ✘ ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘
❅ Model poisoning ✘ ✘ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
❅ Byzantine ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
❅ Label flipping ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
❅ Backdoor ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘

FL types ◆ ✔ ✔ ◆ ✔ ✔ ◆ ✔ ◆ ✔ ✔ ◆ ✔

❅ Horizontal FL ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
❅ Vertical ✘ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ◆ ✔ ✔ ✘ ✔
❅ Split FL ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ◆ ✘ ✘

Open source ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘

Documentation and tutorials ✔ ✔ ✔ ✔ ✔ ✔ ◆ ✔ ◆ ◆ ✔ ✔ ◆

FL research, enabling rapid prototyping and large-scale simula-
tions of novel FL algorithms. FLUTE supports local and global
DP methods, emphasizing data security and preservation. How-
ever, it lacks other advanced privacy mechanisms and does not
include attack simulation features. While it supports horizontal
FL, it does not implement vertical or split FL. The framework’s
documentation is available but incomplete, with no tutorials to
assist new users.

NVFLARE [154]: The NVIDIA FLARE (a.k.a NVFLARE)
framework is a tool compatible with Linux and Windows.
FLARE primarily supports Python as the programming lan-
guage for developing FL workflows. Its exceptional features
encompass state-of-the-art FL algorithms and approaches, al-
lowing researchers to apply their data science workflows seam-
lessly using popular training libraries such as PyTorch, Ten-
sorFlow, XGBoost, or NumPy. Its lightweight, flexible, and
scalable nature distinguishes the framework, rendering it suit-
able for real-world FL scenarios. It ensures secure and pri-
vacy-preserving multiparty collaboration by implementing HE
or DP techniques. Comprehensive documentation provided by
NVIDIA FLARE aids users in harnessing the framework’s po-
tential for both research and practical applications.

OPENFL [155]: OpenFL is a Python-based FL framework
compatible with Linux, macOS, and Windows. It supports de-
veloping and training ML and DL algorithms using Tensor-
Flow, PyTorch, and other ML/DL frameworks, enhancing its
adaptability for diverse use cases. As an open-source plat-
form, OpenFL offers flexibility and customization options for
researchers and developers. However, it lacks support for ad-
vanced privacy-preserving techniques such as secure aggrega-
tion or HE, limiting its security features. It supports horizontal
FL but has an incomplete implementation of vertical FL. While
documentation is available on its official website, it is incom-

plete and lacks specialized tutorials to guide new users effec-
tively.

PaddleFL [156]: PaddleFL is an open-source framework
built on PaddlePaddle, supporting horizontal and vertical FL
with privacy-preserving techniques like DP and Secure Aggre-
gation. It is compatible with multiple platforms and languages
but lacks split FL and attack simulation support. Despite its
scalability, PaddleFL’s usability is limited by sparse documen-
tation and a predominantly Chinese-speaking community.

PYSYFT [157]: PySyft is an FL library compatible with
Linux, macOS, and Windows, primarily implemented in Python
and extending popular DL frameworks like PyTorch. Its mis-
sion is to democratize privacy-preserving techniques in ML,
making them accessible to researchers and data scientists.
PySyft supports privacy-enhancing methods such as MPC and
DP. However, it lacks advanced security protocols and does
not provide attack simulation capabilities. PySyft implements
horizontal vertical and an uncompleted version of split FL.
Its comprehensive documentation includes detailed procedures,
implementation guides, and example workflows, empowering
users to effectively utilize the framework for privacy-focused
FL projects.

TFF [158, 159]: TensorFlow Federated (TFF) is a Python-
based framework that integrates with TensorFlow, supporting
horizontal FL and incorporating privacy mechanisms like MPC
and DP. It includes a simulation environment for testing attacks
but lacks support for vertical and split FL and advanced privacy
techniques like secure aggregation. Comprehensive documen-
tation aids usability, though its limitations may restrict its use
in highly adversarial settings.

XFL [160]: XFL is a versatile framework compatible with
multiple platforms and languages, offering a user-friendly inter-
face and pre-built algorithms for horizontal and vertical FL. It
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supports privacy-preserving techniques like HE, DP, and MPC
but lacks support for split FL and attack simulations. While
XFL simplifies deployment via Docker, incomplete documen-
tation somewhat limits its usability.

Lessons learned: Given the previous details of each FL
framework, FEDML emerges as the most complete solution
since it incorporates many security and privacy methods, all
the most common FL types, and vast documentation and tutori-
als. In addition, it highlights that since it is the only framework
that includes a comprehensive suite of attack simulations. It is
perfect for quickly testing new defenses proposed by security
and privacy FL researchers. Nevertheless, FLOWER and FL
AND DP are also relevant frameworks for researchers to con-
sider due to the implementation of various security and privacy
protocols. However, they lack support for adversarial testing
modules and fine-grained control over threat modeling, which
limits their effectiveness for evaluating defenses under dynamic
or adaptive adversaries. A notable gap is that none of the
surveyed frameworks implement geometric median-based de-
fenses like GeoMed, despite their empirical robustness against
poisoning. In addition to missing implementations of advanced
defenses (e.g., FLAME, Pruning-based defenses), we also find
limited support for simulating realistic deployment conditions
such as heterogeneous participation, client drift, or colluding
Sybil attacks—factors increasingly relevant in real-world FL.
We also observe that support for vertical and split FL is in-
complete across most frameworks, which may hinder applica-
tions in finance, healthcare, or IoT, where data distributions are
often partitioned by feature. Finally, the lack of standardized
interfaces for measuring privacy-utility trade-offs (e.g., formal
accounting of DP budgets vs. accuracy degradation) further
limits reproducibility. Future framework development should
prioritize modular threat modeling, integrated attack-defense
testbeds, and support for adaptive, personalized, and hybrid de-
fense strategies.

6. Main Applications

We explore how various domains are employing this transfor-
mative FL technology. This chapter delves into real-world ap-
plications where FL plays a pivotal role, providing a deeper un-
derstanding of its practical significance. By highlighting rele-
vant use cases, ranging from healthcare and finance to intrusion
detection, we unveil the diverse scenarios where FL is making
a substantial impact. Additionally, at the end of the section, we
provide a paragraph of lessons learned based on analyzing the
main applications of secure and private FL.

Based on our literature review, we obtained the fields of ap-
plications that use FL in a private and secure context.Fig. 7 de-
picts the participation of each field over the papers analyzed.
The top three fields applying secure and private FL are text pre-
diction, healthcare, and the financial sector. The latter have
been the most employed fields for a long time. Nevertheless,
it is relevant to highlight that the intrusion detection systems
field has gained strong participation among researchers in re-
cent years. The following subsections describe how FL was

Figure 7: Main applications using privacy and secure FL

employed for each field, emphasizing some challenges, attacks,
and defenses utilized.

Text prediction. Privacy and security are relevant in FL for
text prediction because sensitive user data, such as personal
messages or search queries, is processed locally on devices.
Without strong privacy measures and secure communication
(e.g., encryption), there is a high risk of exposing personal in-
formation, which could lead to breaches of user confidential-
ity or misuse of private data by malicious actors. Advance-
ments in FL for text prediction emphasize privacy and secu-
rity through techniques like DP and local DP [161, 128]. How-
ever, these methods often struggle to balance privacy and model
performance, as stringent privacy measures can reduce pre-
diction accuracy. Given the sensitive nature of textual data,
ensuring security and privacy is vital for maintaining user
trust and compliance with data protection regulations. Vul-
nerabilities in this field can stem from the decentralized na-
ture of the data, with common attacks including poisoning at-
tacks [162, 128], GAN-based inference [163, 135], and gradi-
ent inversion/suppression [164, 165]. To address these risks,
defenses such as DP, employed by Qi et al. [166], can secure
text data while preserving model utility.

Healthcare. FL helps with privacy and security in healthcare
by allowing institutions (i.e., hospitals) to train models col-
laboratively without sharing sensitive patient data. Techniques
such as DP and HE safeguard patient information during model
updates, addressing risks like data leakage and unauthorized
access [167, 168]. However, they can also introduce com-
putational overhead and potentially compromise model accu-
racy. This domain encounters significant security and pri-
vacy challenges due to the sensitive nature of medical data.
Common attacks include poisoning attacks [169, 170, 171],
where adversaries inject malicious data to undermine model
integrity [114], and gradient inversion/suppression [172, 106],
which attempts to recover private medical information from
shared gradients [108]. Membership inference attacks pose ad-
ditional risks by revealing whether a specific patient was used
in model training [173].
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To mitigate these threats, cryptographic techniques like HE
and MPC ensure data privacy while allowing computations on
encrypted data [174, 125]. DP also plays a crucial role in lim-
iting the risk of sensitive information being memorized or in-
ferred from model updates. Moreover, robust aggregation op-
erators defend against poisoning and other adversarial manip-
ulations, ensuring the integrity of the global model. By com-
bining cryptographic techniques with privacy-preserving meth-
ods, healthcare FL systems can effectively protect against mul-
tifaceted attacks while maintaining accuracy and compliance
with healthcare regulations, as highlighted by Singh et al. [108].

Financial sector. FL enhances privacy and security in the fi-
nancial sector by enabling institutions (i.e., banks and Fintech
enterprises) to collaborate on fraud detection and risk manage-
ment without sharing sensitive customer data. Ensuring secu-
rity and privacy is critical in finance due to the sensitive nature
of financial data and regulatory requirements, fostering cus-
tomer trust and compliance with regulations like GDPR, which
enable safer financial services. FL is particularly valuable for
fraud detection and risk management but is susceptible to var-
ious attacks, notably GAN-based poisoning attacks [56, 175],
which can degrade model performance and compromise pri-
vacy by manipulating training data, as highlighted by Qiao et
al. [78]. Moreover, MPC ensures that no single client gains ac-
cess to sensitive financial data during joint model training.

Intrusion detection systems. FL enhances privacy and security
in intrusion detection systems by facilitating distributed model
training without sharing raw logs. Techniques such as MPC
and optimization-based input perturbation [111] guard against
inference and poisoning attacks [176]. However, challenges
like deployment complexity and potential impacts on model
accuracy persist. Security and privacy are vital in this do-
main, as adequate intrusion detection safeguards sensitive envi-
ronments from unauthorized access, ensuring compliance with
security standards and fostering user trust in system reliabil-
ity. In IoT networks, FL encounters significant security chal-
lenges, including label-flipping attacks [177], where malicious
clients manipulate labels to mislead the global model, as Yang
et al.[111] noted.

Visual question-answering. In visual question-answering
(VQA) models using FL, several security and privacy concerns
arise due to the complexity of the task and the diverse data
types involved. One prominent attack in vertical FL VQA is the
ADI, where adversaries manipulate input data, such as images,
to dominate the learning process and reduce the contributions
of other clients, as explored by Pang et al. [78]. GAN-based
inference is another risk, where attackers attempt to reconstruct
private information, such as images or questions, from model
updates. Anomaly detection can be employed to defend against
these threats by identifying and excluding manipulated data
or adversarial inputs before they influence the model. DP can
obscure sensitive images or question details to protect clients’
local data [178]. Additionally, robust aggregation operators
ensure that adversarial contributions, like poisoned data, do

not degrade the overall model performance. Vertical FL
VQA systems can leverage these defenses to maintain privacy
and security, enabling collaborative model training without
exposing sensitive visual or textual information.

Vehicles. Under this field, using FL with secure and private de-
fenses is critical because connected cars generate sensitive data
about drivers’ locations, routes, driving behaviors, and vehi-
cle diagnostics, and protecting this information prevents unau-
thorized tracking, behavior profiling, and potential safety vul-
nerabilities. In the vehicle field, ADI attacks, such as random
or bounded mutation, can manipulate vehicle data and degrade
model performance, as Pang et al. [78] reported. Additionally,
model inconsistency may arise from adversarial updates across
clients. To defend against these, robust aggregation operators
reduce the impact of malicious updates, while DP and additive
noise protect sensitive vehicle data from being inferred through
model updates. These defenses ensure secure and accurate FL
models in vehicle-related tasks.

Products production line. In this field, privacy and security
in FL are functional because manufacturers can collabora-
tively improve their production models and optimize processes
while securely keeping sensitive proprietary data (like man-
ufacturing parameters, quality control metrics, and produc-
tion recipes) within their facilities, preventing industrial es-
pionage and maintaining competitive advantages. FL faces
label-flipping and backdoor attacks in product production lines,
which can compromise model accuracy and reliability in as-
sembly processes [179]. To counter these threats, robust ag-
gregation operators filter out harmful contributions from adver-
saries, while anomaly detection identifies and excludes suspi-
cious data. Additionally, DP protects sensitive production met-
rics during model training [180].

Mobile crowd-sensing. Privacy and security in mobile crowd-
sensing FL are crucial to protect sensitive location and be-
havioral data, preventing unauthorized tracking and identity
breaches while enabling valuable insights for urban planning
and services. FL is susceptible to eavesdropping and mem-
bership inference attacks in mobile crowd-sensing, which can
compromise client privacy. Additionally, poisoning attacks can
manipulate model updates, degrading performance [130]. To
defend against these threats, secure aggregation methods based
on the threshold Paillier cryptosystem protect model confiden-
tiality while DP obscures individual contributions. Robust ag-
gregation operators also help mitigate the impact of adversarial
updates.

Merchandising. Privacy and security in FL regarding this field
are relevant because retailers handle sensitive customer pur-
chasing patterns, inventory strategies, and pricing data across
multiple locations. Thus, protecting such information pre-
vents competitors from accessing valuable business intelligence
while fostering peer-to-peer modeling to optimize merchandis-
ing decisions and customer experience across store networks.
In this field, FL faces threats like poisoning attacks, where ma-
licious clients corrupt the global model by manipulating their
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local data, and membership inference attacks, which attempt
to deduce the presence of specific data samples in the train-
ing dataset [114]. To defend against these attacks, robust ag-
gregation operators can filter out adversarial updates, ensur-
ing that only reliable contributions influence the global model.
Additionally, employing DP techniques helps obscure individ-
ual shopping histories, protecting sensitive merchandising data
from exposure [7].

Location. FL’s privacy and security are paramount in location
services as they protect users’ sensitive movement patterns and
visited places while leveraging multiparty learning to improve
location-based services without exposing individual data. FL
is vulnerable to location tracking attacks in the location field,
where adversaries attempt to infer users’ movements or patterns
from shared model updates. Membership inference attacks can
also expose sensitive information about individuals based on
their location check-ins [114]. Implementing DP techniques
can obscure individual check-in data to mitigate these threats,
protecting user privacy while allowing practical model training.
Additionally, robust aggregation operators can help filter out
adversarial contributions, ensuring that only trustworthy data
influences the global model [7].

Information retrieval. In information retrieval, FL’s privacy
measures protect users’ sensitive search patterns and interests
while permitting collaborative improvement of search systems
without exposing personal data. In this field, FL faces chal-
lenges such as insufficient training data, where individual users
may lack enough interactions to achieve high search effective-
ness. The latter can be exploited through model inversion at-
tacks, where adversaries infer sensitive user data from shared
model parameters [55]. DP techniques can be employed to pro-
tect individual search interactions, ensuring user privacy while
still allowing model training. Additionally, robust aggregation
operators can help mitigate the effects of malicious updates, en-
hancing the reliability of the global model.

Lessons learned: The analysis of secure and private FL
across main domains highlights its transformative potential and
persistent challenges. The widespread adoption in fields like
text prediction, healthcare, and finance underscores the neces-
sity of FL for protecting sensitive user data while enabling
collaborative model training. However, ensuring privacy and
model performance remains a central challenge, as strict pri-
vacy mechanisms often introduce accuracy and computational
efficiency trade-offs. The rise of FL in intrusion detection sys-
tems and mobile crowd-sensing indicates an increasing aware-
ness of its role in security-sensitive environments, though these
applications face threats like poisoning attacks and adversar-
ial data manipulation. Across all domains, the decentralized
nature of FL introduces vulnerabilities such as gradient inver-
sion and membership inference attacks, emphasizing the need
for robust defense mechanisms. Notably, emerging vehicles,
manufacturing, and information retrieval applications demon-
strate FL’s adaptability yet reveal unique domain-specific risks,
from adversarial attacks in autonomous driving to industrial es-
pionage in production lines. Another key limitation is the lack

of standardized, reproducible evaluation pipelines across do-
mains, making it difficult to compare defense effectiveness or
understand trade-offs across threat models. Furthermore, many
application areas lack publicly available benchmarks that re-
flect realistic attack scenarios, hindering the development and
validation of domain-adaptive security mechanisms. A key les-
son is that while FL enhances data privacy, both its privacy and
security largely depend on continuous advancements in crypto-
graphic techniques, adversarial defenses, and efficient aggrega-
tion strategies tailored to each field’s requirements.

7. Future Directions

While significant strides have been made in addressing FL’s
security and privacy challenges, several areas remain ripe for
exploration and improvement. The complexity and evolving
nature of FL environments necessitate ongoing research to re-
fine existing techniques and develop novel solutions. This sec-
tion outlines vital areas for future work, highlighting the need
for advanced methods to enhance the robustness of FL systems
against emerging threats. It emphasizes the importance of ad-
dressing limitations in current approaches and exploring inno-
vative strategies that balance security, privacy, and efficiency.

7.1. Security Future Directions

Security in FL remains a significant challenge, especially in
light of sophisticated poisoning and backdoor attacks. Future
directions should focus on developing robust and adaptive secu-
rity mechanisms that can detect and mitigate these threats while
maintaining the integrity of the global model. The emphasis
would be on improving the resilience of FL systems, enhancing
verification processes, and developing scalable solutions that
support high performance even in adversarial settings.

• Enhanced Robustness Against Advanced Attacks: As
discussed in Section 3, FL environments face significant
challenges from adversarial attacks, such as model poison-
ing and backdoor insertion, particularly in heterogeneous
data settings [181].

To counter model poisoning attacks, where compromised
clients degrade global model performance, future work
should explore adaptive aggregation techniques that dy-
namically adjust the contributions of client updates based
on anomaly detection metrics. For example, methods like
adaptive local aggregation [182] or sparsification-based
defenses [183] could be extended to incorporate real-time
monitoring of update trajectories [184]. Additionally, inte-
grating client-side defenses like FL-WBC, which perturbs
parameter spaces affected by attacks, could mitigate long-
term attack impacts [185].

For backdoor attacks, in which malicious clients insert
triggers into models to induce targeted misclassifications,
future defenses could leverage hybrid anomaly detection
approaches combining statistical gradient analysis and
cryptographic verification [186]. Techniques like ARIBA
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have shown promise in identifying distributional anoma-
lies in model updates. Furthermore, incorporating multi-
method adaptive aggregation algorithms (e.g., SAPAA-
MMF) could enhance robustness by balancing contribu-
tions based on data quality and variance [187]. Exploring
interdisciplinary methods inspired by biological immune
systems could also provide novel insights for adaptive and
self-healing mechanisms in FL systems.

• Resilience to Emerging Threats in Dynamic Environ-
ments: Deploying FL in dynamic settings such as au-
tonomous vehicles and smart cities introduces unique vul-
nerabilities, including free-riding attacks, model extrac-
tion attacks, and jamming threats [188]. Addressing these
challenges requires targeted strategies:

Free-Riding Attacks: Free-riders exploit FL aggrega-
tion protocols by contributing no meaningful updates
while benefiting from the global model [67]. Future
work should explore advanced anomaly detection mech-
anisms such as high-dimensional clustering techniques
(e.g., STD-DAGMM) to identify free-riders [70]. Integrat-
ing blockchain-based accountability frameworks could
also enhance trust by recording client contributions trans-
parently [189].

Model Extraction Attacks: Malicious clients can reverse-
engineer global models to steal intellectual property or
compromise privacy [190]. Hybrid encryption techniques
combining HE and MPC could be employed to counter
this. Furthermore, gradient obfuscation methods that dis-
tort shared parameters without degrading model perfor-
mance warrant investigation [191].

emphCollaborative Jamming Attacks: Jamming attacks in
FL-based 5G networks disrupt communication channels,
degrading model performance. In 5G networks, jammers
exploit public NR standards (e.g., PUCCH intra-slot hop-
ping patterns and RACH protocols) [192] to disrupt syn-
chronization signals with energy-efficient methods like re-
active jamming, posing critical risks to public safety and
military operations. Mitigation includes spread spectrum
techniques (DSSS/FHSS) and ML-based detection (XG-
Boost ensembles achieving 99.72% accuracy). Concur-
rently, model extraction attacks—enabled via API query
duplication (e.g., LLM ”leeching”) [193]—threaten pro-
prietary models in finance and healthcare. Defenses like
ModelGuard’s information-theoretic perturbation main-
tain ¡3% utility loss while thwarting extraction. A promis-
ing direction involves implementing decentralized jam-
ming detection frameworks using convolutional autoen-
coders for unsupervised anomaly detection and FedProx
algorithms for supervised classification [194].

• Fairness, Bias Mitigation, and Security Integration: As
FL models are increasingly deployed in sensitive applica-
tions like healthcare and finance, ensuring fairness under
adversarial conditions remains a critical challenge. A par-
ticularly concerning threat is fairness attacks (poisoning),

where attackers manipulate data or model updates to in-
troduce or amplify bias [195]. These attacks dispropor-
tionately harm specific groups, such as racial minorities
or underrepresented communities, making fairness a direct
target of adversarial manipulation.

Future research should focus on developing fairness-pre-
serving aggregation methods that integrate anomaly de-
tection with fairness constraints. For example, leveraging
techniques like FairFed [196], which adaptively reweights
client contributions based on fairness metrics, could coun-
teract biased updates. Additionally, interdisciplinary ap-
proaches combining cryptographic tools with fairness-
aware algorithms can enhance defenses against malicious
clients [197]. Addressing indirect bias–where even non-
malicious clients contribute biased data unintentionally–
requires advanced techniques like fairness-aware prun-
ing or incorporating domain adaptation methods to bal-
ance performance across heterogeneous client distribu-
tions [198].

• Scalable, Efficient, and Verifiable Secure Aggregation:
As FL scales to larger and more complex systems, se-
cure aggregation techniques face significant challenges,
particularly in mitigating attacks such as model poison-
ing and Sybil attacks. A critical technical challenge is
designing aggregation protocols that balance computa-
tional efficiency with robust security guarantees. For in-
stance, lightweight encryption mechanisms like homomor-
phic hash functions or single-mask symmetric encryption
could reduce overhead while maintaining privacy and ver-
ifiability [199]. Additionally, dynamic masking strategies,
which adapt to threat levels in real-time, could enhance
resilience against predictable attack patterns [200].

To counter Sybil’s attacks effectively, interdisciplinary ap-
proaches integrating DP with anomaly detection methods
show promise. For example, combining DP with graph-
based anomaly detection could identify malicious clients
based on their interaction patterns [201]. Furthermore, ver-
ifiable aggregation protocols such as LightVeriFL can en-
sure the integrity of updates by leveraging homomorphic
commitment schemes for lightweight verification [202].
Future work should explore these approaches in scenarios
with high user dropout rates to ensure robustness.

Blockchain technology offers a promising avenue for
tamper-resistant and auditable aggregation. However, its
scalability remains a concern due to high computational
costs. A potential solution is hybrid architectures that
combine blockchain with adversarial training techniques
or verifiable delay functions to balance security and ef-
ficiency [203]. Another plausible solution is using ded-
icated off-chain servers to handle validation and aggre-
gation (e.g., Fantastyc’s proof generation), reducing on-
chain operations by 70% [204]. Moreover, reinforce-
ment learning-based adaptive Proof-of-Work (PoW) dy-
namically adjusts mining difficulty in response to real-
time miner capabilities and network conditions, reducing
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energy waste by up to 45% and lowering computational
overhead for honest clients [205]. Research should focus
on optimizing these solutions for decentralized FL settings
where central servers are absent.

7.2. Privacy Future Directions

Privacy preservation is a critical aspect of FL, mainly when
dealing with sensitive data distributed across multiple clients.
The future of privacy-enhancing techniques will focus on im-
proving the efficiency and scalability of existing methods, mak-
ing them suitable for a wide range of applications, from edge
devices to large-scale cross-silo FL environments. The goal
is to ensure data privacy without compromising model perfor-
mance or significantly increasing computational and communi-
cation overhead.

• Privacy-Enhancing Techniques for Non-IID Data:
Non-IID data presents one of the biggest challenges in FL,
particularly in safeguarding privacy while ensuring robust
model performance (see Section 2.3). In non-IID scenar-
ios, privacy-preserving techniques like HE, MPC, and DP
face limitations due to data heterogeneity, which increases
susceptibility to targeted inference attacks [206]. Attack-
ers can exploit discrepancies in data distributions across
clients to perform data reconstruction or membership in-
ference attacks. To address these vulnerabilities, future re-
search should focus on:

Dynamic Privacy Mechanisms: Developing adaptive DP
mechanisms that adjust privacy budgets based on client-
specific data heterogeneity. For instance, privacy budgets
could be dynamically allocated using metrics such as the
Hellinger, Jensen-Shannon, or Earth mover’s distances to
quantify inter-client distribution disparities [32].

Scalable Encryption Protocols: Optimizing HE and MPC
for non-IID settings by reducing computational overhead
through techniques like hybrid encryption schemes or gra-
dient compression [207].

Robust Aggregation Methods: Designing aggregation
techniques that mitigate the influence of skewed client up-
dates, such as similarity-weighted aggregation or cluster-
ing-based approaches [206].

• Integration of Advanced Cryptographic Protocols: As
FL continues to scale, particularly in sensitive domains
like IoT and healthcare, privacy remains vulnerable to spe-
cific attacks such as inference and canary gradient attacks.
Future research must focus on integrating advanced cryp-
tographic protocols that enhance privacy while minimizing
performance costs. Such future work includes the follow-
ing technical challenges:

Inference Attacks: Adversaries reconstruct sensitive data
from aggregated model updates. This requires efficient HE
schemes that support secure aggregation without signifi-
cant computational overhead [147].

Canary Gradient Attacks: Attackers inject small pertur-
bations into gradients or weight updates. Existing crypto-
graphic methods struggle to detect such subtle manipula-
tions [59].

Key Management in HE: Current single-key HE schemes
risk key leaks, necessitating multi-key or secret-sharing
schemes for enhanced security [208].

Therefore, some proposed solutions that can be explored
in future research are: First, develop hybrid cryptographic
frameworks combining HE with MPC to protect against
both classical and quantum adversaries [147]. Second, im-
plement adaptive gradient clipping techniques alongside
DP to mitigate inference and canary attacks without de-
grading model accuracy [209]. Third, design decentral-
ized key management systems using secret sharing or
blockchain-based approaches to enhance security in HE
implementations.

• Enhanced Verification of Aggregated Models: Ensur-
ing the integrity of aggregated models while preserving
privacy is critical, especially given the growing threat
of GAN-based inference attacks. These attacks exploit
GANs to infer sensitive information about training data
in FL settings [210]. Future research must address spe-
cific challenges, such as reducing computational overhead
and communication costs while maintaining robust pri-
vacy guarantees. Promising directions include:

Lightweight Verifiable Aggregation Protocols: Techniques
such as homomorphic hashing and bilinear aggregate sig-
natures have shown potential for verifying aggregation re-
sults [211]. However, these methods often face scalability
issues due to high-dimensional model gradients. Research
should optimize these protocols by leveraging advanced
cryptographic techniques like polynomial commitments or
ProxyZKP frameworks [212].

Combating GAN-Based Attacks: Defense mechanisms like
Anti-GAN frameworks, which manipulate visual fea-
tures to thwart GAN-based inference attacks, are promis-
ing [122]. Future work could explore integrating such
frameworks with secure aggregation techniques to en-
hance privacy without compromising model accuracy.

ZKPs for Privacy-Preserving Verification: ZKPs enable
entities to prove the correctness of computations with-
out revealing sensitive data [122]. While ZKPs hold great
promise for FL, current implementations face scalability
challenges.

Optimizing ZKP Scalability: Techniques like zk-SNARKs
and zk-STARKs provide efficient proof systems but re-
quire further optimization for large-scale FL applications.
The ProxyZKP framework, which uses polynomial de-
composition to reduce proof generation times, offers a vi-
able path forward [212]. Another avenue is using Batch
verification processes to verify multiple proofs simultane-
ously, cutting verification overhead by up to 70%, while
recursive composition hierarchically aggregates proofs
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into compact representations, ideal for large-scale deploy-
ments [213]. For resource-constrained environments, col-
laborative zk-SNARKs distribute proof generation across
parties, linearly reducing per-node complexity [214].

Quantitative Privacy-Performance Trade-off Models:
While numerous studies have explored the qualitative
trade-offs between privacy, security, and model perfor-
mance in FL, a unified quantitative framework remains
an open challenge. Existing research provides valuable in-
sights into individual trade-offs, such as the impact of pri-
vacy budgets in DP on model utility, but lacks a standard-
ized mathematical formulation that systematically cap-
tures these interdependencies. Future research should fo-
cus on developing mathematical models that integrate pri-
vacy loss, computational overhead, and model accuracy
into a single framework. These models could incorporate
utility functions that balance security guarantees with per-
formance metrics, similar to approaches in economic game
theory or optimization-based frameworks [143]. By ad-
dressing these directions, future research can bridge the
gap between qualitative discussions and rigorous quanti-
tative analysis, ensuring a more precise understanding of
privacy-performance trade-offs in FL.

7.3. Joint Directions on Security–Privacy in FL

While this survey separately addresses challenges in security
and privacy, real-world FL deployments often suffer from their
combined vulnerabilities. A critical future direction lies in un-
derstanding how attacks on one axis may amplify risks on the
other, and how certain defenses may inadvertently open new
threat vectors. For instance, a poisoning attack can manipu-
late the model’s sensitivity to benign client gradients, thereby
increasing the effectiveness of gradient inversion techniques.
Similarly, colluding Sybil clients can bias the global model to-
ward a specific user’s data distribution, enhancing the attacker’s
chances in subsequent membership inference. Conversely, pri-
vacy defenses like secure aggregation or heavy DP noise may
hinder the detection of adversarial behavior, thereby weakening
overall system security.

Future research should pursue co-designed mechanisms that
bridge this gap:

•• Integrated threat modeling that considers both privacy
leakage and security compromise in unified scenarios.

• Privacy-aware robust aggregation techniques that maintain
anomaly detection capabilities even under DP noise.

• Layer-wise defense strategies that protect sensitive layers
with cryptographic tools while preserving transparency in
others for anomaly auditing.

• Client-side collaborative monitoring, using lightweight
trusted execution environments (TEEs) to audit gradients
locally before encrypted aggregation.

• Benchmark frameworks that evaluate FL systems against
compound attack scenarios rather than isolated vectors.

Based on the previous analysis, FL research must evolve
from siloed views to holistic frameworks, ensuring that
strengthening one defense front does not unintentionally
weaken the other. Tackling this interplay remains a fundamen-
tal challenge and opportunity for building resilient and trust-
worthy federated systems.

An emerging dimension of this security–privacy interplay
arises from the integration of FL with Generative AI (GenAI)
systems, including large language models (LLMs). While these
models offer powerful personalization and collaborative capa-
bilities, they also amplify both axes of vulnerability. For exam-
ple, GenAI systems are particularly prone to data memoriza-
tion, making them susceptible to privacy leakage even under
secure aggregation [215]. This problem becomes more pro-
nounced in FL, where attackers may exploit intermediate gra-
dients or personalized prompts to extract or reconstruct client
data. This raises new privacy risks beyond what traditional FL
defenses like secure aggregation or DP were designed to han-
dle. Security threats also take new forms. For instance, poison-
ing attacks in generative models may bias completions toward
specific ideologies or inject imperceptible toxic content. De-
tection and mitigation become more complex when the goal of
an attack is to subtly influence output distributions rather than
flip classification labels [216]. Additionally, verifying the in-
tegrity and alignment of decentralized GenAI systems becomes
increasingly difficult without centralized auditing. Future re-
search must thus explore new FL frameworks tailored for gen-
erative tasks. These may include federated instruction tuning
pipelines with private prompt alignment, hybrid split-federated
architectures to manage compute imbalance, and adaptive pri-
vacy controls that account for generative memorization risks,
for example, considering federated unlearning notions [217].
Addressing these questions is essential for deploying GenAI
responsibly in distributed environments, as well as for advanc-
ing the robustness and trustworthiness of FL systems more
broadly.

8. Conclusion

This survey provides an in-depth analysis of the security and
privacy challenges in FL. It reveals that despite FL’s design to
enhance data privacy, it is susceptible to various threats, such
as data poisoning, model inversion, and backdoor attacks, un-
derscoring the need for effective defense mechanisms. By cat-
egorizing these attacks and their impacts, we offer a structured
understanding of FL systems’ diverse threats. We also highlight
the importance of balancing privacy, security, and model perfor-
mance through techniques like cryptographic methods and DP.
Recent research trends indicate a growing focus on addressing
these issues, calling for scalable and adaptive solutions suit-
able for dynamic environments. Future research should develop
innovative, energy-efficient solutions to address the identified
challenges, paving the way for more secure and practical FL ap-
plications. Overall, this survey is a valuable resource for future
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work advancing secure, privacy-preserving collaborative learn-
ing systems.
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