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Abstract

Accurately assessing software vulnerabilities is essential for effec-
tive prioritization and remediation. While various scoring systems
exist to support this task, their differing goals, methodologies and
outputs often lead to inconsistent prioritization decisions. This work
provides the first large-scale, outcome-linked empirical comparison
of four publicly available vulnerability scoring systems: the Com-
mon Vulnerability Scoring System (CVSS), the Stakeholder-Specific
Vulnerability Categorization (SSVC), the Exploit Prediction Scoring
System (EPSS), and the Exploitability Index. We use a dataset of 600
real-world vulnerabilities derived from four months of Microsoft’s
Patch Tuesday disclosures to investigate the relationships between
these scores, evaluate how they support vulnerability management
task, how these scores categorize vulnerabilities across triage tiers,
and assess their ability to capture the real-world exploitation risk.
Our findings reveal significant disparities in how scoring systems
rank the same vulnerabilities, with implications for organizations
relying on these metrics to make data-driven, risk-based decisions.
We provide insights into the alignment and divergence of these
systems, highlighting the need for more transparent and consistent
exploitability, risk, and severity assessments.

CCS Concepts

« Software and its engineering — Software safety; « Security
and privacy — Usability in security and privacy.
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1 Introduction

Vulnerability Management (VM) is the process of identifying, clas-
sifying, remediating, and mitigating vulnerabilities [17]. It consists
of several interrelated activities: discovery and research, identifying
previously undiscovered vulnerabilities; report intake, receiving
and processing information about vulnerabilities; analysis, devel-
oping an understanding of a vulnerability’s potential impact, root
causes, and remediation/mitigation strategies; coordination, sharing
information among stakeholders and those involved in disclosure;
disclosure to constituents enabling informed decisions; and response,
including remediating, mitigating, or patching vulnerabilities [32].

Vulnerability prioritization is fundamental for security practition-
ers [56] as organizations have limited resources while the gross
number of vulnerabilities discovered grows monotonically. One of
the most utilized VM resources is the US National Vulnerability
Database (NVD) [4], which contains data about vulnerabilities that
are assigned Common Vulnerabilities and Exposures (CVE) IDs.
Recent NVD trends show that the number of published CVEs has
grown significantly with 25,059, 28,961, and 29,004 CVEs published
in 2022, 2023, and 2024, respectively [62]. This overwhelming vol-
ume of vulnerabilities and alerts creates a significant operational
challenge. One survey of over 600 cybersecurity professionals found
that 63% are unable to act on the large number of alerts, and 67% feel
they do not have the time to mitigate all vulnerabilities [25]. The
study explicitly states the desire from respondents for “a risk-based
and prioritized list of actions,” directly advocating for the role of
scoring systems.

To manage the scale of vulnerabilities, the state-of-the-practice
relies on vulnerability scoring systems to measure their severities
and drive actions for effective outcomes [19]. Several vulnerabil-
ity scoring systems have been created with the goal of providing
insights for security practitioners. The most widely used is the
Common Vulnerability Scoring System (CVSS) [13, 18, 23, 54], with
CVSS scores available in the NVD.

While CVSS is currently the industry standard, security researchers
question its use for vulnerability prioritization [23, 54, 55]. Other
scoring systems have emerged to address CVSS’s gaps, these include
CISA’s emerging Stakeholder-Specific Vulnerability Categorization
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(SSVC) [56], the Exploitability Index [42], and the Exploit Predic-
tion Scoring System (EPSS) [15, 28] which is developed by FIRST
organization. Many other scoring systems are proprietary and not
publicly available [45-47, 51, 58], or have very specific use cases
and only score a subset of vulnerabilities [39, 44, 63].

Although prominent scoring systems have been individually
studied and critiqued [6, 27, 29, 40], much of the existing research is
qualitative, anecdotal, or narrowly focused, providing documentation-
based reviews of scope and limitations [23, 54]. Other studies have
examined theoretical underpinnings, pointing to a lack of justifi-
cation for the CVSS formula [7, 55], vague specifications [54], and
skewed score distributions [23]. While some analyses have inves-
tigated inconsistencies, they have typically focused on inter-rater
variability when scoring the same vulnerability with a single sys-
tem like CVSS [6, 20], or have examined individual systems’ score
distributions in isolation.

Position of This Paper: Critically, prior work has not been tied
to the operational effectiveness of these systems for real-world vul-
nerability management. No study has empirically compared the uni-
form messaging, predictive value, and practical utility of multiple,
competing scoring systems—such as CVSS, EPSS, and SSVC—when
applied to a shared set of real-world vulnerabilities from an indus-
trially relevant context. While critiques have inspired alternatives
like SSVC [5, 56], the field lacks a large-scale, data-driven compar-
ison to determine whether newer systems are more effective or
how their recommendations align or conflict with established ones.
An empirical study is therefore necessary to provide measurable,
grounded evidence of score disparities that prior qualitative studies
cannot, offering specific insights beyond theory to reveal hidden
patterns, challenge assumptions, and quantify these systems’ true
impact on prioritization and remediation decisions [57].

Therefore, in this paper we conduct a comprehensive empirical
study of Microsoft’s Patch Tuesday disclosures to compare the
effectiveness and practicality of four vulnerability scoring systems.
Patch Tuesday represents a recurring and high-impact event in
vulnerability management, making it a meaningful lens through
which to evaluate how scoring systems inform prioritization and
remediation decisions. We apply each scoring system to 600 real-
world vulnerabilities disclosed by Microsoft over a four-month
period and analyze their messaging, consistency, triage support,
and exploitability signals. Our goal is to assess how these systems
(CVSS, SSVC, EPSS, and Exploitability Index) differ in practice, and
how effectively they guide security practitioners in prioritizing
response and triage efforts.

To this end, we investigate the following research questions:

e RQ1: How consistent is the messaging across vulnerability
scoring systems during Patch Tuesday? We measured inter-
system agreements and found that the four scoring systems
exhibit very low correlation and agreement with each other,
indicating that the messaging they provide is inconsistent.
This means a CVE’s score and its perceived severity or ur-
gency can vary significantly depending on which system is
used, complicating unified and meaningful triage decisions.

e RQ2: How do scoring systems differ in their ability to support
triage and patch prioritization efforts? We found that scoring
bins result in difficulty deciding which CVEs to prioritize
due to the high number of CVEs in a limited set of bins.
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Furthermore, scoring systems do not agree on the top N
CVEs, further supporting the previous empirically grounded
findings about scoring inconsistencies but also resulting in
implications for the use of more than one scoring system to
support triage.

e RQ3: How well do time-based exploit prediction scores (EPSS)
align with actual exploitation events compared to static scoring
systems? We found that EPSS rarely predicted exploitability,
contrary to the premise of the approach. The time-based
analysis of known exploited vulnerabilities demonstrated
that EPSS fails to predict or measure likelihood of exploita-
tion with high confidence before CVEs addition to the CISA
KEV catalog; fewer than 20% of CVEs ever exceeded a 50%
chance of exploit beforehand. In contrast, static scoring sys-
tems, particularly CVSS, had a tendency to assign higher
severity scores to CVEs later confirmed as exploited.

e RQ4: Do scoring systems behave differently for different vul-
nerability types? CVEs are tagged with Common Weakness
Enumeration (CWE) data [61], representing the underlying
software weakness that contributes to each vulnerability. We
found that the way scoring systems treat different vulnerabil-
ity types shows no universal patterns in scoring agreement.
In other words, scoring behavior is largely independent of
CWE classification.

The contributions of our work are five-fold:

¢ Industry-Grounded Empirical Study - We conduct the
first large-scale, empirical comparison of four vulner-
ability scoring systems widely used in practice (CVSS,
EPSS, SSVC, and the Exploitability Index) on a real-world,
high-stakes dataset of 600 Microsoft Patch Tuesday CVEs.
The dataset mirrors enterprise patch cycles.

e We provide a comprehensive, data-driven empirical research
framework that examines consistency, triage effort, ac-
tionability, and exploit prediction alignment.

¢ Novel Operational Metrics: This paper introduces novel,
operationally relevant metrics—bin-based triage effort and
top-N overlap—to quantify analyst workload, prioritization
agreement, and exploitation alignment, providing actionable
insights directly applicable to real-world industrial vulnera-
bility management.

o The findings of the paper have practical significance for
the industry and inform academic communities as they
reveal significant divergence in scoring behavior, expose
limitations in predictive systems like EPSS, and offer action-
able insights for practitioners seeking to choose or combine
scoring systems effectively.

o Anin-depth discussion of limitations, weaknesses and failure
points of scoring systems requiring further investigation.

Replication Package: To support transparency and reproducibil-
ity of the findings, all collected data, evaluations, and source code is
available at: https://github.com/SoftwareDesignLab/Vulnerability-
Scoring-Systems-Comparison.

2 Vulnerability Scoring Systems Studied

In this section, we provide a brief overview describing how each of
our studied scoring systems rates vulnerabilities.
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Table 1: Mission and Well-Being Impact [7].

Public Well-Being Impact

minimal material irreversible
= § minimal | low medium high
SRS - - -
23 support medium medium high
S § | essential | high high high
[

2.1 Common Vulnerability Scoring System

CVSS was developed to systematically characterize vulnerabilities
and produce a numerical score that represents their severity. The
score is based on a formula with discrete input parameters. It out-
puts a scalar score ranging from 0 (not vulnerable) to 10 (critical)
in increments of 0.1 (resulting in 100 possible scores). Each CVSS
score maps to a qualitative severity label—Low (0.1-3.9), Medium
(4.0-6.9), High (7.0-8.9), or Critical (9.0-10.0)—to help organizations
assess and prioritize vulnerabilities more effectively.

CVSS metrics assess the qualities of vulnerabilities. These metrics
differ between CVSS v3 (currently most widely used) and v4 (the
newest version). They consist of base metrics, which are required for
SSVC score generation and optional metrics. Base metrics consist
of exploitability (attack vector, user interaction, and complexity),
vulnerable system impact in terms of confidentiality, integrity, and
availability (CIA), and subsequent system impact also in terms of
CIA. Environmental metrics override base metrics to express the im-
portance of the affected IT asset to a user’s organization. Additional
optional metrics include temporal metrics (v3), threat metrics (v4),
and supplemental metrics (v4) [9, 13]. Of the four scoring systems we
study, CVSS is the most well-documented. Additional information
is provided on the CVSS website [12].

2.2 Stakeholder-Specific Vulnerability
Categorization (SSVC)

The Stakeholder-Specific Vulnerability Categorization (SSVC) is
a decision tree model developed to improve vulnerability priori-
tization and mitigate perceived shortcomings of CVSS [56]. The
US Cybersecurity and Infrastructure Security Agency (CISA) devel-
oped a custom SSVC decision tree for vulnerability response for
the US federal government, state/local governments, and critical
infrastructure entities [7]. CISA’s SSVC decision tree utilizes a qual-
itative evaluation of factors affecting a vulnerability’s priority level,
and outputs a priority label indicating what action it recommends
with respect to that vulnerability, in contrast to a numerical score
like CVSS [3, 56]. The goal is to help vulnerability managers decide
what to do about a discovered vulnerability [56].

Each decision point in SSVC’s decision tree has at least two
decision values, which lead to a subsequent decision point, with
the last decision point resulting in a final outcome, or priority label
about what action to take regarding the vulnerability. CISA’s SSVC
model was developed based on vulnerabilities relevant to various
critical infrastructure entities [8]. This decision tree’s four decision
points are described below, based on CISA’s SSVC guide [7]:

(State of) Exploitation describes the vulnerability’s present
state of exploitation. It has three possible decision values. None in-
dicates no evidence of active exploitation or public proof of concept.
Public proof-of-concept (PoC) indicates that there is either a publicly
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available PoC on the Web or the vulnerability has a well-known
method of exploitation. Active describes vulnerabilities with reliable
evidence that they have been exploited by attackers in the wild.

Technical Impact describes the control gained over, or the in-
formation exposed about, the vulnerable component. It has two
possible decision values: partial when an adversary obtains limited
control over or information about the software with the vulnerabil-
ity (if exploited), and total when an adversary gains total control
over the software or total information disclosure.

Automatable describes whether a vulnerability’s exploit may
be automated, and has two possible decision values. No refers to
cases where the first four steps of the cyber kill chain [38] cannot
be automated for the vulnerability. Yes refers to the case where
these steps can be automated or where there are no known barriers
to automation.

Mission and Well-Being Impact is a combined decision based
on both the mission prevalence and the public well-being im-
pact. Mission prevalence describes the effects of a vulnerability on
mission-essential functions. It can be minimal, support, or essential.
Public well-being impact describes the effects of a vulnerability
on the affected system’s operators or consumers as defined by the
Centers for Disease Control and Prevention [16]. It can be minimal,
material, or irreversible. The resulting values are shown in Table 1.

CISA also defines four priority labels based on combinations of
decision values. Table 2 provides an overview of the priority labels.

2.3 Exploit Prediction Scoring System

The Exploit Prediction Scoring System (EPSS), like CVSS, was devel-
oped by FIRST.Org, Inc. [15]. It is designed to estimate the likelihood
(probability) that a software vulnerability will be exploited in the
wild within the next 30 days. EPSS aims to address other scoring sys-
tems’ limited ability to assess threat, although it does not account
for any specific environmental controls or estimate the impact of
the vulnerability being exploited [14]. Although FIRST.Org, Inc.
does not share the underlying data, model and/or source code of
EPSS, the general machine learning techniques used, as well as
results, are published in an academic paper [28]. EPSS takes into
account data such as the vendor, age of the vulnerability, keywords
in the vulnerability description, CVSS metrics, mentions of the
vulnerability online, publicly available exploit code, and more.

The EPSS model produces a score between 0 and 1, representing
the probability that a vulnerability will be exploited in the next
30 days. Unlike CVSS and SSVC, EPSS does not assign qualitative
category labels to the various percentages. Scores change over time
and are calculated daily. EPSS scores for any day are available for
download from the EPSS website!. This website also provides infor-
mation on top rated recent CVEs, CVEs with shifting EPSS scores,
distributions of EPSS scores across vendors, and a comparison of
EPSS scores with CVSS scores.

2.4 Exploitability Index

Exploitability Index [41, 42] was introduced as a learning based
approach which takes advantage of both Convolutional Neural Net-
work (CNN)-based prediction and a data-driven common product
enumeration (CPE)-based scoring model. The Exploitability Index

https://www.first.org/epss/data_stats
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Table 2: SSVC Priority Labels.

The vulnerability does not require action at this time. The organization would continue to track the vulnerability and reassess if new information becomes available. CISA
recommends remediating Track vulnerabilities within standard update timelines.

timelines.

The vulnerability contains specific characteristics that may require closer monitoring for changes. CISA recommends remediating Track* vulnerabilities within standard update

than standard update timelines.

The vulnerability requires attention from the organization’s internal supervisory-level individuals. Necessary actions may include requesting assistance or information about the
vulnerability and may involve publishing a notification, either internally and/or externally, about the vulnerability. CISA recommends remediating Attend vulnerabilities sooner

The vulnerability requires attention from the organization’s internal supervisory-level and leadership-level individuals. Additional information or assistance should be requested,
and a notification should be published internally or externally. Remediate as soon as possible.

aims to assess the likelihood that a vulnerability is exploited in the
wild, using publicly available descriptions from the NVD. By encod-
ing vulnerability descriptions into semantic representations using
CNNs, the trained model learns patterns linked to the availability
of historical exploits.

The CNN model was trained using the CVE descriptions from the
NVD and corresponding exploit data from various exploit databases.
Experimental evaluations and case studies demonstrated that CNN
models can predict the severity of vulnerabilities with high confi-
dence. This exploitability scoring method was chosen in our study
as it has outperformed the existing exploitability scores provided
by the NVD, suggesting a more effective means of assessing the
potential risk associated with software vulnerabilities. To compute
the exploitability score, the authors developed a composite metric
that combines CNN-based predictions with an empirically derived
Product Hygiene Index based on the CPE. This index is based on
how often a given product (identified via CPEs) has been associated
with exploited vulnerabilities in the past. The final exploitability
score is derived by weighting the CNN’s output (indicating the
likelihood that a vulnerability will be exploited) with the historical
exploit frequency of the affected product. Like CVSS, the resulting
Exploitability Index produces scores on a 0-10 scale, but offers a
more nuanced and adaptive alternative to static, rule-based systems
such as CVSS.

3 Case Study Setup

To address our research questions from Section 1, we conducted an
embedded case study [49] of Microsoft’s Patch Tuesday disclosures,
following established guidelines for empirical research [65]. We use
a single embedded case study design — one case (Patch Tuesday),
with multiple units of analysis (vulnerabilities across Microsoft
products). This setup allows for diverse scoring behavior to be
analyzed across 600 real-world CVEs.

3.1 Case Selection

Patch Tuesday occurs on the second Tuesday of each month at
about 10 a.m. Pacific Standard Time. The Microsoft Security Re-
sponse Center investigates all reports of security vulnerabilities
affecting Microsoft products and services, and provides this infor-
mation as part of an ongoing effort to manage security risks and
help keep systems protected. We selected Microsoft’s Patch Tues-
day as the basis for our embedded case study due to its unique
position in the software security ecosystem. Patch Tuesday repre-
sents a consistent, high-impact, and well-structured vulnerability
disclosure and remediation event that occurs monthly. It provides
a controlled and repeatable environment in which hundreds of vul-
nerabilities across a wide range of Microsoft products are disclosed
simultaneously, often accompanied by vendor-supplied severity
ratings and exploitability indicators.

This setting is particularly well suited for comparing vulnera-
bility scoring systems, as all Patch Tuesday vulnerabilities are: (i)
released under similar timing and disclosure conditions, (ii) well-
documented in Microsoft’s Security Update Guide, with most Patch
Tuesday CVEs having a detailed Q&A describing their impacts and
exploitability, and (iii) relevant to enterprise vulnerability manage-
ment teams who must prioritize responses quickly and at scale.
This selection strategy allows us to focus on real-world scoring be-
havior under practical triage constraints while holding contextual
variables, such as disclosure policy, vendor communication, and
patch availability, constant.

3.2 Data Collection

Our dataset includes 600 vulnerabilities disclosed across four Patch
Tuesday events between April and July 2024. These span multiple
Microsoft product families, including Windows, Office, Edge, and
Azure. They exhibit a range of severity levels, CWE types, and
exploitability characteristics. Each CVE serves as an embedded unit
of analysis within the broader context of coordinated vulnerability
disclosure by a single vendor. For each CVE, we obtained data from
the NVD, such as the CVE ID, vulnerability description, and CVSS
score/vector, as well as data from Microsoft’s Security Update Guide,
which contained more data such as information on exploitability
and a Q&A.

3.3 Scoring Vulnerabilities

To ensure a comprehensive evaluation of each vulnerability scoring
system, we assigned scores to each of the 600 Patch Tuesday vulner-
abilities using each scoring framework: CVSS, Exploitability Index,
EPSS, and SSVC. Since each system has different methodologies and
data sources for scoring vulnerabilities, our approach to obtaining
scores for each system also varied accordingly.

3.3.1 CVSS Scores. Each CVE released in Microsoft Patch Tuesday
receives a CVSS score by the Microsoft security team. These base
scores are also published on NVD. It is important to note that while
CVSS temporal and environmental scores may be calculated, they
are considered organization- and time-specific, and are therefore
not provided by default in the NVD. Each organization can choose
to calculate these if desired.

3.3.2 Exploitability Index scores. We obtained Exploitability Index
scores using a publicly available automated tool that incorporates
a pre-trained CNN model and the exploit frequency of the affected
product. The score is derived by combining the CNN’s output, which
indicates the likelihood that a vulnerability will be exploited, and
the exploit frequency of the affected product [42]. The Exploitabil-
ity Index scoring method relies on vulnerability descriptions and
Common Platform Enumeration (CPE) information, both of which
we retrieved from the NVD to ensure consistency.
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3.3.3  EPSS scores. Unlike the other scoring systems studied, EPSS
scores are generated and updated on a daily basis. While the model
itself is trained on proprietary data and is not publicly available,
both daily and historical scores are downloadable from the EPSS
website. To maintain temporal consistency with Patch Tuesday
vulnerability disclosures, we obtained EPSS scores from July 9th,
2024, which was the release date of last Patch Tuesday in our dataset.
Although EPSS scores are updated daily, some vulnerabilities are not
scored immediately. As a result, we were able to obtain EPSS scores
for 458 CVEs, with 142 not yet scored by EPSS when the scores
were obtained. For the studies requiring a score from each of the
four systems, CVEs without EPSS scores were removed to ensure a
complete dataset. All CVEs were kept for analysis in Sections 4.2.1,
4.2.2, and 4.3.2.

3.3.4 SSVC scores. To obtain SSVC scores, each vulnerability was
systematically assessed by a security team with two years of expe-
rience scoring vulnerabilities according to the official guidelines of
SSVC [7]. As described in Section 2, SSVC relies on four key deci-
sion points: (State of) Exploitation, Technical Impact, Automatable,
and Mission & Well-Being Impact (M&WB). For (State of) Exploita-
tion, the team classified vulnerabilities as “Active” if they were
listed in CISA’s Known Exploited Vulnerabilities (KEV) catalog,
“PoC” if they were associated with a common weakness that en-
ables consistent exploitation? or if a PoC was publicly available,
and “None” otherwise. Technical Impact was determined using both
NVD vulnerability descriptions and Microsoft’s Patch Tuesday Q&A
documentation. The scoring team categorized impact as “Total” for
vulnerabilities described as having total control or information
gained (with the help of key-phrases such as “remote code execu-
tion”) and “Partial” for cases where total control or information
is not gained. “Automatable” status (Yes/No) was also determined
based on NVD descriptions and the Patch Tuesday Q&A, partic-
ularly leveraging Q&A sections detailing exploitation techniques
and prerequisites. For example, if an attack required specific user
interaction (e.g., clicking a malicious link), it was classified as not
automatable. Since M&WB is inherently organization-specific, the
security team did not attempt to assign a single definitive value.
Instead, they computed three separate SSVC scores, correspond-
ing to all possible M&WB values: “Low,” “Medium,” and “High”
This allows for greater and more organization-specific flexibility in
interpretation by different stakeholders.

3.4 Data Analysis

ROQ1 (Scoring System Consistency): To address this question,
we evaluated the degree of agreement among scoring systems us-
ing three complementary approaches: (i) t-SNE visualizations [64]
to illustrate clustering and divergence in scoring behavior across
systems; (ii) normalized score comparison to illustrate individual
scoring differences among scoring systems; (iii) rank- and value-
based correlation metrics, including Kendall’s Tau, Spearman’s Rho,
and Pearson correlation [43], and; (iv) categorical agreement mea-
sures such as Cohen’s Kappa [66] and Krippendorft’s Alpha [33].

Zhttps://certcc.github.io/SSVC/reference/decision_points/exploitation/
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RQ2 (Support for Triage and Patch Prioritization): To an-
swer this question, we perform a bin-based effort estimation analy-
sis to evaluate how effectively each scoring system supports triage
and prioritization. Specifically, we calculate triage load and prioriti-
zation density by analyzing the distribution of CVEs across score
bins, with a focus on the number of vulnerabilities concentrated
in the top-ranked bins (e.g., top-1, top-2, and top-3 bins). We also
perform a top-N effort distribution estimation, where instead of us-
ing top-ranked bins, we use top N ranked vulnerabilities to analyze
distributions at a more fine-grained level.

RQ3 (EPSS Exploit Estimation Power): We address this ques-
tion by conducting a detailed temporal analysis of EPSS scores
prior to exploitation. Specifically, we compare historical EPSS pre-
dictions with the timelines of known exploited vulnerabilities as
documented in the KEV catalog, assessing how well EPSS identifies
threats before public confirmation of exploitation. We also analyze
the distributions of known exploited vulnerabilities as scored by all
four scoring systems to provide a comparison of how each system
treats such vulnerabilities.

ROQ4 (Scoring System Behavior for Different Vulnerabil-
ity Types): We answer this question by analyzing consistency
among scoring systems for CVEs grouped by their associated CWE
identifiers. We identify the most frequently occurring CWEs in
our dataset and focus our analysis on the top five to ensure mean-
ingful sample sizes. To evaluate whether scoring systems behave
differently across these vulnerability types, we conduct a t-SNE
visualization of CVEs tagged with the top five CWEs, using marker
shapes to distinguish CWEs and color to reflect inter-system score
agreement. Additionally, we compute agreement metrics (Cohen’s
Kappa and Krippendorff’s Alpha) across scoring system pairs for
each CWE to assess consistency at the vulnerability type level com-
pared to that of all CVEs. This multi-perspective analysis allows us
to determine whether CVEs of the same CWE exhibit consistent
scoring behavior or agreement across systems.
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Figure 1: SSVC, CVSS, EPSS, and Exploitability Index scores
visualized using t-SNE, colored by score agreement. The axes
represent nonlinear dimensions computed by t-SNE to pre-
serve relative similarity in the high-dimensional score space.
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4 Empirical Evaluation of Vulnerability Scoring
Systems During Microsoft Patch Tuesday

In this detailed empirical study, we compare the messaging, effec-
tiveness, and actionability of vulnerability scoring systems.

4.1 RQ1: Evaluating Scoring System Messaging
Consistency

To evaluate the consistency of vulnerability scoring system mes-
saging, we investigated how different scoring systems agree—or
disagree—when rating the same vulnerabilities disclosed during Mi-
crosoft Patch Tuesday. Consistency is critical for coordinated triage
and patching; inconsistent scores can lead to misaligned priorities
across teams and tools.

4.1.1 Visual Insight - t-Distributed Stochastic Neighbor Embedding
(t-SNE) . We begin by visualizing the scoring behavior of all four sys-
tems using t-Distributed Stochastic Neighbor Embedding (t-SNE)
(Figure 1). t-SNE is a machine learning algorithm created for visu-
alizing high-dimensional data using dimensionality reduction [64].
Our t-SNE visualization takes all CVE points from six dimensions
(CVSS base score, EPSS, SSVC-Low, SSVC-Medium, SSVC-High, and
the Exploitability Index), and visualizes them in 2D in a way that
preserves structure, colored by score agreement. Blue-colored ar-
eas represent CVEs with high agreement between scoring systems,
while red-colored areas represent CVEs with strong disagreement
between scoring systems. We removed 142 samples where EPSS
did not provide a score. While EPSS scores CVEs much lower than
any other scoring system, this does not significantly affect our
t-SNE visualization results. The tight blue cluster shows that
only a small number of CVEs were scored similarly by all
scoring systems.> However, there are significantly more CVEs
where the scoring systems diverge, as shown by the dark orange
and red. These reddish tones (High Disagreement) indicate wide-
spread disagreement across scoring systems. Additionally, the Wide
Dispersion of CVEs and lack of a clear, dense clusters indicates that
each scoring system contributes a unique signal, and there is no
consistent pattern of agreement. We can conclude that, while some
CVEs are reliably scored across systems, there are many regions in
the data with systematic disagreement among the scoring systems
analyzed.

4.1.2  Normalized Score Comparison. To complement the t-SNE
view, we sort CVEs by their average normalized score across scor-
ing systems and plot per- system values (as shown in Figure 2). In
this analysis, CVEs without EPSS scores were removed, resulting
in 458 vulnerabilities in the figure, with each vertical line repre-
senting a unique CVE as scored by the four scoring systems. Next,
the CVEs were sorted based on averages of normalized scores. As
represented by the lines on the left and right edges of the figure,
only a handful of vulnerabilities had scores in agreement
for all four systems. Most CVEs in the middle portion of the
figure show that scoring systems do not generally agree about how
a given vulnerability should be scored. It appears that CVSS and

31n order to examine if EPSS could skew the visualization data, we conducted the
t-SNE visualization for a second time and removed the all EPSS data from the analysis,
however the resulting visualization demonstrated the same divergence patterns. Here
we only provide the t-SNE with all scoring systems.
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the Exploitability index have more agreement in scores with each
other than with the other two scoring systems. However, there are
still CVEs that are rated significantly higher in one scoring system
than in the other.

4.1.3  Correlation Coefficient Analysis. To quantify these observa-
tions, we compute pairwise correlation coefficients between ev-
ery two systems (Figure 5). We include Kendall’s Tau and Spear-
man’s Rho to capture ordinal agreement (ranking), and Pearson
correlation for raw score comparison [43]. Kendall’s Tau, which
assesses whether there is a monotonic relationship between two
variables by measuring ranking agreement, shows that CVSS has
a week/moderate correlation with Exploitability Index and EPSS,
while EPSS and Exploitability Index have a weak agreement. All
other combinations of unique scoring systems do not have a
significant ranking agreement.

The stronger correlation between the SSVC scores provides some
validation for this method as they are all related for low, medium,
and high M&WB. Spearman’s correlation coefficient shows
similar trends, with both metrics indicating that while there is
some ordinal consistency, the scoring systems generally follow dif-
ferent ranking patterns. Pearson’s correlation, which captures linear
relationships, indicates a moderate association between CVSS-B
and the Exploitability Index, while its correlation with other
scoring systems is near zero, suggesting no linear relationship.
Overall, the weak correlations across most pairs suggest that dif-
ferent scoring systems prioritize distinct aspects of vulnerability
assessment.

We obtained the p-values for our correlation analysis and found
that for both Kendall’s Tau and Spearman’s Rho, p-values are < .05
for all combinations of scores except for the Exploitability Index
with SSVC-Low and SSVC-Medium. In contrast, the Pearson corre-
lation yielded higher p-values for approximately half of the score
combinations, especially those involving the Exploitability Index.
This suggests a lack of linear relationships between some scoring
systems. These findings also support the notion that Kendall’s Tau
and Spearman’s Rho, which measure monotonic relationships and
rank-order agreement, align more closely with how prioritization
scores are interpreted.

4.1.4 Agreement Metrics. We further analyze inter-system agree-
ment using Cohen’s Kappa and Krippendorft’s Alpha after binning
each system’s scores into categorical levels. This analysis supple-
ments our prior correlation analysis, as both Cohen’s Kappa and
Krippendorft’s Alpha quantify the extent of agreement beyond
chance of two given scoring systems. Since CVSS, the Exploitability
Index, and EPSS provide decimal number scores, and SSVC provides
four categorical scores, we calculated these metrics based on scor-
ing bins. Comparisons with SSVC were binned using a four-quarter
split. Non-SSVC comparisons were placed into ten equally sized
bins for a finer-grained comparison. The results, as shown in Table
3, indicate a low level of agreement, if any, between the various
scoring systems. Cohen’s Kappa values are close to zero across
all comparisons, suggesting no agreement beyond chance.
Similarly, Krippendorff’s Alpha values are predominantly
negative, indicating inconsistencies in how scoring systems
classify vulnerabilities. Even within the same scoring system,
SSVC scores with different M&WB values still have relatively weak
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Figure 2: A heatmap of normalized scores for CVEs provided by each scoring system.

Table 3: Cohen’s Kappa and Krippendorff’s Alpha for each
combination of scoring systems, including SSVC with low,
medium, and high M&WB.

Scoring Systems Kappa Alpha
CVSS - Exploitability Index 0.01 -0.03
CVSS - EPSS 0.00 -0.45
CVSS - SSVC Low 0.00 -0.59
CVSS - SSVC Medium 0.00 -0.52
CVSS - SSVC High -0.01 -0.21
Exploitability Index - EPSS 0.00 -0.41
Exploitability Index - SSVC Low 0.01 -0.42
Exploitability Index - SSVC Medium | -0.01 -0.42
Exploitability Index - SSVC High 0.03 -0.03
EPSS - SSVC Low 0.00 -0.01
EPSS - SSVC Medium 0.02 0.00
EPSS - SSVC High 0.00 -0.49

agreement. These findings suggest that the scoring systems assess
vulnerabilities from fundamentally different perspectives, high-
lighting a need for careful interpretation when selecting a scoring
methodology to integrate.

Key findings:

o We found that scoring systems exhibit low correlation
and minimal agreement when assessing the same vul-
nerabilities.

e Visualizations (e.g., t-SNE) show widespread diver-
gence, and statistical measures—including Spearman’s
Rho, Kendall’s Tau, Cohen’s Kappa, and Krippendorft’s
Alpha—consistently confirm that no pair of systems
aligns reliably.

o This inconsistency suggests that the perceived sever-
ity and prioritization of a CVE may vary significantly

depending on the chosen scoring system, complicating
triage and decision-making processes.

4.2 RQ2: Evaluating Scoring System
Prioritization and Triage Using Effort
Estimation

To evaluate how well each scoring system supports patch prioritiza-
tion and triage, we use effort estimation as a proxy for operational
burden. Our goal is to assess whether a scoring system offers mean-
ingful prioritization—guiding security teams toward high-impact
vulnerabilities first without overloading them with noise.

We estimate triage effort by measuring how many vulnerabilities
fall into the highest-priority bins defined by each system. However,
effectiveness is not determined solely by placing fewer CVEs in
the top bin. Rather, we assess whether the system provides a useful
prioritization gradient that allows security teams to progressively
allocate attention and resources across bins of decreasing urgency.

4.2.1 Bin-Based Effort Estimation. We assess triage effort using a
bin-based analysis, where each scoring system’s outputs are divided
into ordered priority bins. For CVSS, EPSS, and the Exploitability
Index, we define 10 evenly spaced bins based on their respective
score ranges (see Table 4), allowing for a consistent comparison
across systems. For SSVC, which provides four discrete decision
categories—Track, Track®, Attend, and Act—we treat the “Act” and
“Attend” outcomes as the top priority bins (see Table 2).

To estimate effort, we measure how many vulnerabilities each
system places in its top one, two, or three bins. This reflects the
volume of CVEs a practitioner would need to address if follow-
ing the system’s highest-priority recommendations. However, raw
counts alone do not indicate effectiveness: a scoring system that
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Table 4: Scoring bin ranges considered for CVSS, Exploitabil-
ity Index, and EPSS, where x is the normalized CVE score.

CVSS | Exploitability Index EPSS
9<x<10 0.9<x<10
8<x<9 0.8 <x<0.9
7<x<8 0.7<x<0.8
6<x<7 0.6 < x<0.7
5<x<6 0.5 < x<0.6
4<x<5 0.4 <x<05
3<x<4 03<x<04
2<x<3 0.2<x<03
1<x<2 0.1 <x<0.2
0<x<1 0.0 <x<0.1
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Figure 3: Prioritized CVEs in the top three bins for each scor-

ing system.

places only a few CVEs in the top bin but many more in the second
or third may not provide actionable stratification. Therefore, our
analysis also considers whether each system produces a “meaning-
ful prioritization gradient”—that is, whether its binning structure
helps practitioners phase their response across tiers of urgency,
rather than forcing binary all-or-nothing decisions. This approach
highlights the extent to which scoring systems support progressive,
scalable triage under realistic operational constraints.

In our analysis we ignore bins with zero vulnerabilities. For
example, EPSS has one CVE in the 0.9-1.0 range, no CVEs in the 0.8-
0.9 range, and one CVE in the 0.7-0.8 range. In this case, the highest
bin is 0.9-1.0 and the second highest bin is 0.7-0.8. Figure 3 triages
600 CVEs, binning them to prioritize which CVEs should be patched
first. We assume that organizations will patch vulnerabilities in the
first bin, then the second bin and finally the third bin, etc.

EPSS categorization results in only four CVEs being patched
based on the top three bins. SSVC-High, SSVC-Low, Exploitability
Index, and CVSS result in >50% of the CVEs needing to be patched,
effectively overwhelming security teams and undermining the pur-
pose of triage by failing to concentrate attention on the highest-risk
subset. SSVC-Medium provides the most reasonable effort estimate,
with 8, 13, and 37 CVEs in the top 3 bins. Binning strategies we
considered but did not analyze include (1) splitting the scoring bins
into four quarters to match SSVC and (2) aligning CVSS binning
with the severity labels described in Section 2.1. These strategies
produced large, coarse grained bins and did not allow for as much
nuance in comparing the scoring systems. This is because larger
bins retain less of the original scores’ variabilities, thus making it
more difficult to compare scoring systems and analyze any patterns
that may emerge.
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4.2.2  Top-N Overlap. We measured the overlap between the top
N scored vulnerabilities. This analysis highlights two qualities be-
tween scoring systems: agreement in terms of prioritization, and
the number of “tied” scores. To conduct this analysis, we:

(1) Generate rankings for all CVEs in each scoring system.

(2) Order CVEs for each scoring system by rank.
o Tied scores result in a tied rank. For example, CVSS has

six 9.8 CVEs, so they all have a rank of 1.

(3) Obtain the top N CVEs for each scoring system, adding
tied CVEs if needed. For example, if we obtain the top CVE
(N = 1) for CVSS, we include all six CVEs with a rank of 1.

(4) Compare sets of top N CVEs between scoring systems, count-
ing the number of overlapping CVEs (the union of the sets).

As shown in Figure 6, agreement among scoring systems on
top-ranked vulnerabilities is minimal: across the top 10 to top 100
CVEs, only five vulnerabilities are shared by all four systems. Pair-
wise comparisons reveal similarly weak overlap—for example, the
Exploitability Index shares fewer than 20 CVEs with EPSS and
SSVC-High within their respective top 100 lists.

Although CVSS appears to overlap more with EPSS and SSVC-
High, this is largely due to extensive score ties, rather than true
agreement. Specifically, CVSS assigns the same score to 198 CVEs in
its top 20, meaning that 178 CVEs share the same score as the 20th-
ranked one. Similar tie patterns exist in EPSS and SSVC-High, which
include 102 and 279 CVEs, respectively, in their top 50 and top 20
score tiers. These large tie groups result in broad, undifferentiated
priority bins, offering little actionable guidance for analysts seeking
to triage vulnerabilities with precision.

Key findings:

e Scoring systems show minimal agreement on which
CVEs to prioritize: only 5 CVEs overlap across all four
systems in their top-100 lists. Large tie groups—such
as 198 CVEs sharing a top-20 score in CVSS—further
undermine the ability to rank vulnerabilities meaning-
fully.

e Both bin-based and top-N analysis demonstrate that
these scoring systems provide limited triage guidance,
leaving security teams with broad, undifferentiated lists
and no clear path for action.

While using top-N analysis makes it easy to visualize how many
CVEs are most important according to each scoring system, it is also
apparent that if top-N analysis is used for CVE patch prioritization,
the issue of having many CVEs with identical scores still exists. This
leaves analysts with no clear guidance on how to prioritize such
CVEs. Furthermore, the lack of agreement between scoring systems
means that if multiple scoring systems are used, CVE prioritization
is still unproven.

Key findings:

o Our findings highlight trade-offs between different scor-
ing systems when used for vulnerability triage. Scoring
systems such as EPSS highlight few high-priority CVEs,
and may overlook many CVEs which do not have the
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highest score. Systems such as SSVC and CVSS, and
the Exploitability Index flag a broad set of CVEs as a
priority, potentially overburdening response efforts.

4.3 ROQ3: Evaluating Scoring System Alignment
with Real-World Exploitation

4.3.1 Distributions of Exploited Vulnerabilities. In this section, we
analyze the scoring systems in terms of exploitation states and
predictions. First, we normalze the distributions of scores to a value
between 0 and 1. Of the 600 Patch Tuesday CVEs, 13 are in the
KEV and therefore known to be exploited. Table 5 shows how each
scoring system evaluated the 13 exploited CVEs.

CVSS tends to rate exploited CVEs high, with 12 greater than
0.7, but because these CVEs are being actively exploited, we argue
that the CVSS score should be > 9 for all 13. The Exploitability
Index rates them lower still, and according to the definition of the
Exploitability Index, all 13 should be rated at 1. For SSVC, we found
that the distribution of exploited vulnerabilities is heavily influ-
enced by the M&WB parameter and not the fact that the CVE is
being exploited. Finally, we found that EPSS rates exploited vul-
nerabilities overwhelmingly low. Nine had a score lower than 0.1,
three were unscored, and only one had a score > 0.1.

Table 5: Distribution of (normalized) scores for known ex-
ploited vulnerabilities across different scoring systems.

SSVC-L | SSVC-M

8

Score range CVSS | Expl. Index SSVC-H | EPSS
0.9 <x <1.0 3 0
0.8 <x<0.9
0.7 <x<0.8
0.6 <x<0.7
0.5 <x<0.6
0.4 <x<05
03<x<04
0.2<x<03
0.1 <x<0.2
0.0 <x<0.1
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4.3.2  EPSS Scoring of Exploited Vulnerabilities. The lack of EPSS
prediction further motivated us to study the EPSS independently.
We investigated whether EPSS scoring can effectively predict whether
or not a vulnerability will be exploited. To conduct this study, we
analyzed all 1226 CVEs in the KEV catalog at the time of the study.
For each CVE, we obtained the EPSS score at the beginning of each
month from May 2021 (the first available score) until December
2024. Each CVE had up to 43 months of EPSS scores. As we are inter-
ested in EPSS scores prior to the CVE being added to the KEV catalog,
we removed EPSS scores generated after the CVE was added to the
KEV catalog.

As shown in Table 6, less than 20% of exploited CVEs were ever
rated > 0.5 (50% chance of exploitation in the next month) by EPSS
at any time prior to being added to the KEV catalog. Only 8.3%
of CVEs had an EPSS score > 0.9 at any time prior to appearing
in the KEV catalog. This, along with the fact that 275 (22.4%) of
CVEs did not have any EPSS score prior to known exploitation,
suggests that EPSS may not be a reliable predictor of whether
a vulnerability will be exploited.
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Table 6: Number and percent of CVEs in the KEV catalog
with corresponding ranges of highest EPSS scores obtained.

Highest EPSS Score | # of CVEs | % of CVEs
> 0.5 244 19.9%
> 0.6 211 17.2%
> 0.7 192 15.7%
> 0.8 156 12.7%
> 0.9 102 8.3%

Key findings:

o EPSS underperforms as a predictive tool for real-world
exploitation. While it is designed to estimate the likeli-
hood that a CVE will be exploited in the next 30 days,
our empirical analysis shows that it often fails to flag
exploited vulnerabilities in advance:

— Only 19.9% of known exploited CVEs in the KEV
catalog had an EPSS score > 0.5 before exploitation.

— Just 8.3% ever reached an EPSS score > 0.9.

— Over 22% of exploited CVEs had no EPSS score at all
prior to exploitation.

e In contrast, static scoring systems (e.g., CVSS, Ex-
ploitability Index) more consistently assigned high
scores to exploited CVEs, despite lacking predictive
modeling.

e These findings suggest that while EPSS provides a
probabilistic and dynamic signal, its current perfor-
mance limits its reliability as a standalone predictor for
exploitation-based prioritization.

4.4 ROQ4: Evaluating Scoring System Behavior
for Different Vulnerability Types

To explore whether different vulnerability scoring systems behave
differently across vulnerability types, we analyzed CWE tags asso-
ciated with 600 CVEs in our dataset. These CVEs were mapped to
91 unique CWEs. However, only seven CWEs were associated with
more than 20 CVEs each, while the majority were mapped to only
one or a few CVEs. This limits the conclusions that can be drawn
from this data, as there are not enough samples for most CWEs to
draw meaningful generalizations. 14 CVEs were either not mapped
to any CWE or were tagged with “‘NVD-CWE-noinfo,” limiting the
ability to draw broad conclusions for those cases as well.

4.4.1 Top-5 CWE t-SNE Visualization. Similar to before, we visual-
ized the scoring behavior of all four systems using t-SNE (see Figure
4). However, this time we focused on CVEs that are associated with
the top five CWEs: CWE-122: Heap-based Buffer Overflow, CWE-
416: Use After Free, CWE-125: Out-of-bounds Read, CWE-190: Integer
Overflow or Wraparound, and CWE-20: Improper Input Validation,
containing 103, 81, 38, 31, and 27 samples, respectively. Coloring
represents scoring agreement, while the shape of each point repre-
sents which CWE the point is mapped to. The distribution of shapes
representing each CWE on the map shows that each of the top five
CWEs has a wide range of scores across all systems, with different
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Figure 4: Scores for CVEs associated with the top five CWEs
visualized using t-SNE.

agreements. This suggests that scoring is not closely related to vul-
nerability types (CWEs) of the CVEs. The small dark orange cluster
on the upper left side of the map shows that there are some CVEs
associated with CWE-122 that have a strong scoring agreement.
However, since the points representing CVEs associated with CWE-
122 are spread across the map, the scores and scoring agreements
for these CVEs are still diverse, and being associated with CWE-122
will not guarantee that score agreement is consistent. We can con-
clude that based on this visualization, the systematic disagreement
among the scoring systems analyzed still exists among different
vulnerability types, as exemplified by the wide variability, even
though some CWEs demonstrated internal consistency in scoring
across systems. This suggests that no universal pattern exists in
how scoring systems treat specific types of weaknesses.

4.4.2  Agreement Metrics for CWEs. We further evaluated agree-
ment between scoring systems at the CWE level, using Cohen’s
Kappa and Krippendorf’s Alpha. While some CWEs showed greater
agreement or disagreement than others, overall agreement trends
did not significantly differ from the general population. In fact, the
overall average of all unique scoring system pair agreements for
all CWEs is consistent with the average of all unique scoring sys-
tem pair agreements for the top five CWEs. These findings imply
that, while vulnerability type (as captured by CWE) may influence
scoring outcomes in isolated cases, it does not systematically affect
the behavior of scoring systems across the dataset. This highlights
the complexity of score interpretation and suggests that CWE con-
text alone is insufficient for predicting how a vulnerability will be
prioritized across different scoring paradigms.

Key findings:
e We found that scoring systems do not behave consis-
tently across specific vulnerability types. Our analy-
sis of the top five CWEs most commonly associated
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Table 7: Average agreement score for Cohen’s Kappa and
Krippendorf’s Alpha among top CWEs.

CWE ID Cohen’s Kappa | Krippendorf’s Alpha
Average (All) 0.01 -0.29

CWE-122 0.05 -0.44

CWE-416 0.07 -0.33

CWE-125 0.02 -0.06

CWE-190 -0.06 -0.41

CWE-20 0.02 -0.20

with our CVE data revealed wide variability in scor-
ing and score agreement for CVEs within the same
CWE. While a small number of CVEs, particularly in
CWE-122, showed higher scoring agreement, the major-
ity were distributed widely, suggesting no systematic
pattern in how scoring systems interpret vulnerability
types. Agreement metrics further support this, with
the average agreement for top CWEs closely match-
ing the overall population. These results indicate that
CWE context alone is insufficient to predict consistent
scoring or prioritization outcomes across systems.

5 Threats to Validity

We follow established guidelines for evaluating empirical research
in software engineering and discuss threats across three main di-
mensions: construct validity, internal validity, and external validity.

Construct validity concerns whether the evaluation metrics
we use appropriately capture the concepts we intend to study, such
as consistency, prioritization support, or exploit prediction qual-
ity. Our study measures scoring consistency using correlation and
agreement statistics, prioritization support through score diversity
and triage bin analysis, and predictive performance via overlap with
CISA’s KEV catalog. While these are standard and appropriate prox-
ies, they do not capture all aspects of real-world decision-making.
For example, KEV inclusion is a useful proxy for exploitation but
does not reflect exploitability in all enterprise environments nor
does it include 0-day vulnerabilities. Similarly, using score bins or
top-N analysis to infer triage effort assumes organizations follow
uniform workflows, which may not hold. To mitigate these threats,
we selected widely adopted metrics in the literature and carefully
aligned each with the intended use case of the scoring system.

Internal validity addresses whether our study’s conclusions
are supported by sound data and analysis. We ensured internal
consistency by collecting scores from authoritative sources at a
fixed time (April-July 2024), and by applying all scoring systems to
the same set of 600 CVEs from Microsoft Patch Tuesday disclosures.
For our in-depth analysis of EPSS, we used all CVEs contained
in the KEV catalog, which were frozen prior to KEV inclusion
to avoid post-hoc bias in prediction evaluation. Nevertheless, we
acknowledge two limitations: (i) EPSS scores can fluctuate daily; we
captured snapshots rather than full time series. (ii) CVE mappings
to KEV are binary (exploited or not) and may miss nuances such as
partial exploit development or internal proof-of-concept exploits
not in the wild.

External validity refers to the generalizability of our findings
beyond the studied dataset. Our dataset focuses exclusively on
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Microsoft vulnerabilities disclosed during Patch Tuesday over a
four-month period. While this scenario represents a realistic, high-
stakes environment where vulnerability prioritization occurs at
scale, it may not reflect scoring behavior for non-Microsoft software,
non-enterprise contexts, and CVEs with non-disclosure embargoes
or vendor-specific triage paths. Furthermore, we evaluated publicly
available scoring systems only, and did not assess proprietary or
context-aware tools used in some enterprise settings. To mitigate
this threat, we selected general-purpose scoring systems with broad
adoption across public and private sectors, and we analyzed real-
world CVEs from one of the most structured vulnerability disclosure
streams in industry.

6 Discussion

A central finding of our study is the profound lack of agreement
among prominent scoring systems. In this section we provide a
detailed discussion and key insights on the root causes of such
inconsistencies, and provide actionable recommendations for both
practitioners and researchers.

6.1 Key Insights: From Inconsistent Scores to
Practical Failures

6.1.1 A Crisis of Consistency - The Lack of a Shared Risk Model:
This is not merely a technical discrepancy but points to a deeper,
conceptual problem: there is no shared conceptual model of vulner-
ability risk among the creators and users of these systems. Each
system optimizes for a different definition of risk—be it static sever-
ity (CVSS), predicted likelihood of exploit (EPSS), or stakeholder-
specific impact (SSVC). This fundamental disagreement means that
simply combining scores is not a viable solution, as it risks am-
plifying noise rather than creating clarity. These distinct ques-
tions—“How dangerous is it?”, “Will it be exploited soon?”, and
“What should we do now?”—naturally lead to low correlation, as
a vulnerability may score high in severity but low in predicted ex-
ploitation, creating conflicting signals for prioritization. Addition-
ally, these questions are often not sufficiently clear with respect to
vulnerability management tasks, leading to misunderstandings. As
a result, practitioners are left to reconcile conflicting recommenda-
tions without sufficient guidance, making consistent prioritization
a moving target (RQ1).

6.1.2  The Failure of Abstraction - Triage in Theory vs. Practice.
Our analysis shows that even when used individually, scoring sys-
tems often fail in their primary practical purpose: to provide a
clear, differentiated, and actionable priority list (RQ2). This fail-
ure leads to a significant loss of practical utility, leaving security
teams with broad, undifferentiated bins that offer little actionable
guidance. This problem can cause triage bottlenecks [59] and alert
fatigue [35], effectively undermining the purpose of using a scoring
system. Furthermore, the lack of consistent scoring patterns based
on CWE (RQ4) suggests that high-level abstractions about vulnera-
bility types are insufficient for guiding real-world prioritization.

6.1.3  The Prediction Paradox - The Difficulty of Foreseeing Exploita-
tion. Our findings reveal a “prediction paradox” regarding the dif-
ficulty of foreseeing exploitation (RQ3). The Exploit Prediction
Scoring System (EPSS), the only system designed specifically to
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predict future exploitation, rarely did so with high confidence be-
fore an exploit was known. This highlights the immense difficulty
of real-time threat forecasting and suggests that current predictive
models have limited reliability as standalone prioritization tools. It
also reveals a crucial distinction: a high severity score (like from
CVSS) and a high likelihood of future exploitation score (like from
EPSS) are not interchangeable concepts, yet they are often treated
as such in practice.

6.2 Recommendations for Practitioners

The evidence of systemic disagreement and practical limitations
means that scoring systems should be used as carefully calibrated
tools, not as absolute arbiters of risk.

6.2.1 Treat Scores as Divergent, Advisory Inputs. Our findings show
that the perceived severity and urgency of a vulnerability can
change dramatically depending on the tool used. This complicates
any attempt to create a unified and meaningful triage strategy.
Therefore, practitioners should treat scores not as prescriptive com-
mands but as advisory inputs to a broader, context-aware decision-
making process. No single score provides a comprehensive view of
risk.

6.2.2 Distinguish Between Severity and Exploit Likelihood. A criti-
cal error is to treat a high severity score (like from CVSS) as being
interchangeable with a high likelihood of exploitation score (like
from EPSS, or KEV). Our findings caution against over-relying on
EPSS for predicting future exploits, as it failed to provide a high-
confidence warning for over 80% of known exploited vulnerabilities
before they were publicly disclosed.

6.2.3  Favor Internal Contextual Augmentation Over Score Aggrega-
tion. Simply combining or averaging scores from different systems
is not a solution and may amplify confusing signals rather than
create clarity. A more effective approach is to use internal overlays
or heuristics that interpret scores within an organization’s spe-
cific context, considering factors like asset criticality and business
impact.

6.2.4 Mitigate Triage Bottlenecks from Coarse Bins. Practitioners
should be aware that systems like CVSS/SSVC frequently cluster
large numbers of vulnerabilities at the same severity level, creating
triage bottlenecks. Organizations should develop secondary criteria
or use internal risk models to further differentiate priorities within
these large, overly inclusive bins.

6.3 Recommendations for the Research
Community

Our study reveals several key gaps in the current landscape of
vulnerability scoring, pointing to important directions for future
work.

6.3.1 The Need for Explainable and Interpretable Models. The con-
flicting signals produced by current systems highlight a need for
more explainable vulnerability scoring models. Future systems
should provide transparency into the reasoning behind their scores
to help users build trust and better integrate them into their decision
processes.
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6.3.2 The Need for Richer Ground-Truth Severity Scores. Our study,
like others, relied on proxies such as the CISA KEV catalog for
ground truth on exploitation. However, these proxies are inher-
ently incomplete. A significant research barrier to advancing this
topic and developing more accurate systems is the lack of com-
prehensive ground-truth severity datasets. Future research should
focus on creating and curating richer datasets that track not only
exploitation but also capture contextual details about the actual
impact on affected organizations.

6.3.3  Rethinking Severity Scoring: Research Directions for Integrated,
Context-Aware Prioritization. Our findings show that a single, ab-
stract severity score is insufficient to support the full range of
tasks that operational vulnerability management programs require.
In practice such tasks span from data intake and context enrich-
ment through triage, remediation planning, mitigation, and gover-
nance. This points to a critical research direction: advancing beyond
existing single-framework approaches by developing integrated,
task-specific systems. Such systems should be designed to (i) fuse
multiple scoring and context sources (e.g., CVSS, Exploitability In-
dex, KEV, vendor advisories, and internal asset signals), (ii) produce
task-tailored outputs aligned with the operational realities of each
stage in the workflow, and (iii) be empirically evaluated against op-
erational metrics such as time-to-remediation, workload reduction,
and exploit capture rate. Grounding future research in this full-
lifecycle, multi-signal paradigm would move vulnerability scoring
from an isolated decision point toward a continuous, context-aware
support system that directly improves the efficiency and impact of
real-world vulnerability management programs.

7 Related Work

A small but growing body of work compares vulnerability scoring
or prioritization approaches; however, most of these studies are
qualitative, documentation-based, or analyze a single system in
isolation rather than comparing multiple systems on the same
corpus of real-world CVEs.

7.0.1 Landscape and qualitative comparisons. Milousi et al. pro-
vide a comprehensive landscape review of scoring methodologies
(CVSS, CWSS, MVSS, VIEWSS, etc.), detailing metric groups, formu-
las, and stated strengths/weaknesses as specified by their designers,
but do not evaluate systems head-to-head on a dataset [40]. Simi-
larly, surveys and position papers question CVSS’s suitability for
prioritization [23, 54, 55] and describe SSVC’s decision-oriented
goals [7, 56], yet remain largely conceptual. Le et al’s survey cata-
logs data-driven assessment and prioritization methods (e.g., exploit
prediction, severity modeling), but focuses on technique classes
rather than empirical cross-system behavior on common CVEs [34].

7.0.2  Inter-rater and source inconsistency. Multiple works examine
inconsistency within CVSS rather than between systems: inter-rater
variability when experts score the same vulnerability [6, 20] and
skew/ambiguity in specifications [23, 54]. Other studies compare
data sources (e.g., NVD vs. other repositories) and document meta-
data inconsistencies rather than operational outcomes [3, 29]. These
results motivate caution in using any single source for CVSS, but
do not provide outcome-linked, cross scoring system comparisons.
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7.0.3  Outcome-linked studies focus on single signals, not cross scor-
ing system comparisons. Early empirical work relates severity to
exploitation using case-control designs [2] and Bayesian analysis of
CVSS trustworthiness [30]. EPSS is developed as a prediction signal
using historical exploitation data [26, 27], while later work models
exploit development likelihood [57]. These studies are outcome-
linked but typically evaluate one scoring/prediction signal at a time
(e.g., EPSS), as opposed to a side-by-side comparison of heteroge-
neous systems (severity, threat-likelihood, and decision-support)
applied to the same CVEs.

7.0.4  Context-aware prioritization and CVSS-centric enhancements.
A large stream of work augments CVSS (re-weighting, temporal,
environmental variants, text mining/ML scoring) [11, 18, 24, 31, 36,
37,52, 53, 67, 68]. Context-aware frameworks (e.g., Vulcon, Vulman,
and related models) integrate asset criticality, mission impact, in-
ventories, or reinforcement learning for selection/triage [1, 5, 10, 21,
22, 48, 50], but still consume CVSS or similar signals as inputs and
report case-specific evaluations rather than cross-system, outcome-
linked comparisons. Domain/proprietary systems (e.g., Microsoft
Exploitability Index, Tenable VPR, Qualys VMDR, Rapid7 Nexpose)
extend inputs with threat/asset context [39, 45-47, 51, 58, 60], yet
are either ecosystem-specific or opaque, limiting reproducible com-
parative studies.

7.0.5 Gap and positioning. Across these threads, we find (i) few
comparative studies of multiple scoring systems on the same, oper-
ationally relevant CVE set; (ii) limited outcome-linked evaluation
that aligns system outputs with real-world exploitation (e.g., KEV)
across systems; and (iii) little analysis of how differing goals (sever-
ity vs. threat likelihood vs. action recommendation) and input types
(static vs. dynamic; context-free vs. context-aware) drive disagree-
ment in practice. To our knowledge, prior work has not provided
a large-scale, industry-grounded empirical comparison of CVSS,
EPSS, SSVC, and Exploitability Index applied to a shared Patch
Tuesday corpus, with quantitative measures of inter-system agree-
ment, triage burden, and exploitation alignment [15, 28, 39, 56]. Our
study addresses this gap by supplying reproducible, cross-system,
outcome-linked evidence that complements (and extends beyond)
prior qualitative and single-signal analyses.

8 Conclusions

This paper presents the first large-scale, empirical evaluation of
four prominent vulnerability scoring systems—CVSS, EPSS, SSVC,
and the Exploitability Index—using a real-world dataset of 600 vul-
nerabilities from Microsoft’s Patch Tuesday disclosures. Our study
was designed to fill a critical gap left by prior work, which has been
largely qualitative, by providing quantitative evidence of how these
systems perform in an operational context. The findings demon-
strate considerable and systemic disagreement among the systems,
which exhibit little to no correlation or categorical agreement when
scoring the same vulnerabilities. We found that all four systems
produce overly broad priority groups that complicate triage efforts
and that predictive systems like EPSS often fail to flag known ex-
ploited vulnerabilities ahead of time, with fewer than 20% of CISA
KEV CVEs receiving a high-confidence score before exploitation
was public.
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The central implication of this research is that these widely used
scoring systems are not interchangeable and their conflicting guid-
ance reveals a deeper, systemic issue: a lack of a shared conceptual
model of risk across the vulnerability management ecosystem. The
observed divergence is a direct result of each system’s unique de-
sign goals—measuring inherent severity versus predicting threat
likelihood versus recommending a specific action. Given these find-
ings, we caution practitioners against relying on any one system
as the sole basis for prioritization; scores should be treated as ad-
visory inputs to a broader, context-aware process. Ultimately, our
study highlights an urgent need for the research community to
develop more transparent, interpretable, and task-specific frame-
works that are empirically grounded and better aligned with the
practical realities of cybersecurity operations.
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A Correlation Coeflicient Analysis

Figure 5 demonstrates the Pearson Correlation, Spearman Corre-
lation, and Kendall’s Tau measurements for CVSS, Exploitability
Index, EPSS, and SSVC scoring systems.

B Agreement among scoring systems on
top-ranked vulnerabilities

Figure 6 demonstrates the results on the agreement among scoring

systems on top-ranked vulnerabilities.
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Figure 5: Pearson Correlation, Spearman Correlation, and Kendall’s Tau measurements for CVSS, Exploitability Index, EPSS,
and SSVC scoring systems.
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