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Abstract

This work introduces CAI Fluency, an an educational platform of the Cybersecurity AI (CAI) frame-
work dedicated to democratizing the knowledge and application of cybersecurity AI tools in the global
security community. The main objective of the CAI framework is to accelerate the widespread adop-
tion and effective use of artificial intelligence-based cybersecurity solutions, pathing the way to vibe-
hacking – the cybersecurity analogon to vibe-coding.

CAI Fluency builds upon the Framework for AI Fluency, adapting its three modalities of human-AI
interaction and four core competencies specifically for cybersecurity applications. This theoretical
foundation ensures that practitioners develop not just technical skills, but also the critical thinking
and ethical awareness necessary for responsible AI use in security contexts.

This technical report serves as a white-paper, as well as detailed educational and practical guide
that helps users understand the principles behind the CAI framework, and educates them how to apply
this knowledge in their projects and real-world security contexts.

Keywords Red-teaming · Cybersecurity AI · Vibe Hacking · Cybersecurity Education · AI Fluency ·
Human-AI Interaction

1 Introduction and Motivation † ∗

1.1 CAI – a cybersecurity AI framework

The cybersecurity landscape is undergoing a dramatic transformation as AI becomes increasingly in-
tegrated into security operations. We predict that by 2028, AI-powered security testing tools
will outnumber human pentesters. This shift represents a fundamental change in how we approach
cybersecurity challenges. AI is not just another tool - it’s becoming essential for addressing complex se-
curity vulnerabilities and staying ahead of sophisticated threats. As organizations face more advanced
cyber attacks, AI-enhanced security testing will be crucial for maintaining robust defenses.

This work builds upon prior efforts1 [1, 2, 3] and similarly, we believe that democratizing access to
advanced cybersecurity AI tools is vital for the entire security community. That’s why we’re releasing

1https://github.com/aliasrobotics/cai
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Cybersecurity AI (CAI) as an open source framework. Additionally, we launch CAI Fluency – a frame-
work educating about Cybersecurity AI.

Our goal is to empower security researchers, ethical hackers, and organizations to build and deploy
powerful AI-driven security tools. By making these capabilities openly available and by sharing our
knowledge with the community, we aim to level the playing field and ensure that cutting-edge security
AI technology isn’t limited to well-funded private companies or state actors.

1.2 Ethical principles behind CAI and CAI Fluency

You might be wondering whether releasing CAI in-the-wild and sharing our know-how – given CAI’s
capabilities and security implications – is ethical.

Our decision to open-source this framework is guided by two core ethical principles:

1. Democratizing Cybersecurity AI: We believe that advanced cybersecurity AI tools should be
accessible to the entire security community, not just well-funded private companies or state ac-
tors. By releasing CAI as an open source framework, we aim to empower security researchers,
ethical hackers, and organizations to build and deploy powerful AI-driven security tools, leveling
the playing field in cybersecurity.

2. Transparency in AI Security Capabilities: Based on our research results, understanding of
the technology, and dissection of top technical reports, we argue that current LLM vendors are
undermining their cybersecurity capabilities. This is extremely dangerous and misleading. By
developing CAI openly, we provide a transparent benchmark of what AI systems can actually do
in cybersecurity contexts, enabling more informed decisions about security postures.

CAI is built on the following core principles:

• Cybersecurity oriented AI framework: CAI is specifically designed for cybersecurity use cases,
aiming at semi- and fully-automating offensive and defensive security tasks.

• Open source, free for research: CAI is open source and free for research purposes. We aim
at democratizing access to AI and Cybersecurity. For professional or commercial use, including
on-premise deployments, dedicated technical support and custom extensions reach out to obtain
a license.

• Lightweight: CAI is designed to be fast, and easy to use.

• Modular and agent-centric design: CAI operates on the basis of agents and agentic patterns,
which allows flexibility and scalability. You can easily add the most suitable agents and pattern
for your cybersecurity target case.

• Tool-integration: CAI integrates already built-in tools, and allows the user to integrate their own
tools with their own logic easily.

• Logging and tracing integrated: using phoenix, the open source tracing and logging tool for
LLMs. This provides the user with a detailed traceability of the agents and their execution.

• Multi-Model Support: more than 300 supported and empowered by LiteLLM. The most popular
providers:

– Anthropic: Claude 3.7, Claude 3.5, Claude 3, Claude 3 Opus

– OpenAI: O1, O1 Mini, O3 Mini, GPT-4o, GPT-4.5 Preview

– DeepSeek: DeepSeek V3, DeepSeek R1

mailto:research@aliasrobotics.com
https://github.com/Arize-ai/phoenix
https://github.com/BerriAI/litellm


– Ollama: Qwen2.5 72B, Qwen2.5 14B, etc

.
Access to this library and the use of information, materials (or portions thereof), is not
intended, and is prohibited, where such access or use violates applicable laws or
regulations. By no means the authors encourage or promote the unauthorized tamper-
ing with running systems. This can cause serious human harm and material damages.

By no means the authors of CAI encourage or promote the unauthorized tampering with computing
systems. Please don’t use the source code in here for cybercrime. Pentest for good instead. By
downloading, using, or modifying this source code, you agree to the terms of the LICENSE as well as
the DISCLAIMER file.

1.3 Closed-Source is NOT an Alternative

Cybersecurity AI is a critical field, yet many groups are misguidedly pursuing it through closed-source
methods for pure economic return, leveraging similar techniques and building upon existing closed-
source (often third-party owned ) models. This approach not only squanders valuable engineering re-
sources but also represents an economic waste and results in redundant efforts, as they often end up
reinventing the wheel. Below in Table 1 we list some of the closed-source initiatives we keep track of
and attempting to leverage genAI and agentic frameworks in cybersecurity AI:

Autonomous Cyber CrackenAGI ETHIACK Horizon3
Lakera Mindfort Mindgard NDAY Security Runsybil
Selfhack SQUR Sxipher2 Staris Terra Security
Xint XBOW ZeroPath Zynap 7ai

Table 1: A non-exhaustive list of closed source alternatives to CAI.

1.4 Why Education is Key to Democratizing Cybersecurity

The process of democratizing cybersecurity AI tools entails the provision of tools for researchers and
students, but it also involves making these advanced technologies accessible to a broader audience
beyond just experts and large organizations. While providing tools for researchers and studentsis a
crucial step towards fostering a more inclusive and diverse cybersecurity community, the mere provi-
sion of tools is not enough, for the following reasons:

- Complexity of AI Tools: Generative and Agentic AI tools often come with a steep learning curve
due to their complex nature. Cybersecurity AI tools additionally demand a good understanding
of both cybersecurity principles and AI concepts. Proper education and documentation help in
demystifying these complexities, making the tools more approachable for a wider audience.

- Skill Gap: There is a significant skill gap in the cybersecurity field, with a shortage of profes-
sionals who are proficient (aka. fluent) in both cybersecurity and AI. Educational materials can
help bridge this gap by providing learning resources that cover the basics of AI in cybersecurity,
thereby empowering more individuals to use these tools effectively.

- Community Engagement: Democratization is not just about access but also about fostering a
sense of community. By providing educational resources and encouraging the use of these tools,

https://github.com/aliasrobotics/cai/blob/main/LICENSE
https://github.com/aliasrobotics/cai/blob/main/DISCLAIMER
https://www.acyber.co/
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the cybersecurity community can engage more actively. This can lead to collaborative learning,
the sharing of best practices, and the development of new applications for these tools.

- Innovation and Adaptability: Education encourages innovation and adaptability. When more
people have access to and understand these tools, there is a higher likelihood of novel use cases
and innovative applications emerging. This can accelerate the evolution of cybersecurity practices
and solutions.

- Inclusivity and Diversity: Making cybersecurity AI tools accessible through education and doc-
umentation promotes inclusivity and diversity within the cybersecurity community. It allows
individuals from various backgrounds, including underrepresented groups and those with few
ressources, to participate and contribute. This diversity can lead to a richer set of perspectives
and solutions.

- Reducing Dependency on Vendors: Over-reliance on vendors for cybersecurity solutions can
limit the ability of organizations and individuals to customize and adapt solutions to their spe-
cific needs. By educating users on how to use open-source tools, the community becomes less
dependent on commercial solutions and more capable of developing customized solutions.

- Continuous Learning and Improvement: Cybersecurity is a rapidly evolving field, with new
threats and technologies emerging continuously. Educational resources and documentation that
are regularly updated can help the community stay current with the latest developments and best
practices in using AI for cybersecurity.

In summary, while providing access to cybersecurity AI tools is a critical step towards democratization,
it is the education and documentation that truly enables their widespread adoption and effective use
across the entire security community. By lowering the barriers to entry and fostering a culture of learn-
ing and collaboration, the democratization of cybersecurity AI tools can lead to a more robust, diverse,
and resilient cybersecurity ecosystem.

Figure 1: CAI Fluency – A new platform dedicated to education and documentation on cybersecurity AI.

For this reason, we decided to create a new platform – CAI Fluency – dedicated to
education and documentation, profound lectures and tutorials, ensuring that CAI is
usable and beneficial for the entire security community.



1.5 Introducing CAI Fluency: An Educational Framework for Cybersecurity
AI Use and Deployment

CAI Fluency is part of the official CAI GitHub. It is an an educational platform of the CAI framework
dedicated to democratizing the knowledge and application of cybersecurity AI tools in the global secu-
rity community. The main objective is to enable the widespread adoption and effective use of artificial
intelligence-based cybersecurity solutions.

This platform aims to minimize barriers and cultivate a culture of continuous learning and collaboration
through educational resources, hands-on tutorials and practical guides that help users understand how
to interact with CAI framework, and ultimately apply this knowledge in their projects and real-world
security contexts.

CAI Fluency is grounded in a comprehensive theoretical framework that we detail in Section 1.4,
which adapts established AI fluency principles specifically for cybersecurity applications, ensuring that
practitioners develop both technical proficiency and ethical awareness.

Through this commitment to education and knowledge sharing, CAI Fluency helps
foster a more inclusive, collaborative and resilient Cybersecurity AI community.

This document serves as an extensive technical report and user guide on the CAI arichitecture, tools
and foundations, complementing the GitHub repository [4] as well as the technical report [1].

1.6 Theoretical Foundation: The Framework for AI Fluency in Cybersecurity

To establish a solid educational foundation for CAI Fluency, we build upon the Framework for AI Flu-
ency developed by Dakan and Feller [5]. This framework provides a comprehensive structure for un-
derstanding and developing competencies in Human-AI interaction, which we adapt specifically for
cybersecurity applications.

The integration of this framework is particularly relevant to CAI because it addresses the funda-
mental challenge of bridging the gap between AI capabilities and human expertise in cybersecurity
contexts. As we will explore in subsequent sections, CAI implements ReAct agent models that require
sophisticated human-AI collaboration - precisely the domain where AI fluency becomes critical.

1.6.1 AI Fluency Defined

We define AI Fluency as the ability to work

• effectively,

• efficiently,

• ethically, and

• safely

within emerging modalities of Human-AI interaction. In the cybersecurity context, this means under-
standing how to leverage AI tools not merely as efficiency engines, but as authentic thinking partners
for conducting meaningful security work while maintaining the highest standards of ethical practice.

This definition becomes particularly important when considering the ReAct framework (detailed in
Section 2.2), where the iterative reasoning-action cycle requires practitioners to effectively delegate
tasks, describe requirements, discern outputs, and maintain diligence throughout the process.



1.6.2 Three Modalities of Human-AI Interaction in Cybersecurity

The framework identifies three distinct modalities of interaction that are particularly relevant to cyber-
security practitioners and directly align with CAI’s architectural design:

Modality 1: Automation (AI Performs Security-Defined Tasks) In this modality, AI systems per-
form cybersecurity tasks independently based on direct human instructions. This corresponds to single-
agent ReAct implementations in CAI, where practitioners delegate specific security tasks to AI agents.
This is particularly valuable for:

• Reconnaissance automation: Automated scanning, enumeration, and information gathering
using CAI’s built-in tools

• Log analysis: Processing large volumes of security logs and identifying patterns through special-
ized agents

• Report generation: Creating standardized vulnerability reports and documentation via CAI’s
reporting agents

• Routine security tasks: Password policy checks, basic compliance validation using CAI’s valida-
tion tools

Modality 2: Augmentation (AI and Human Collaborate on Security Tasks) This modality in-
volves AI and human co-defining and co-executing security tasks iteratively. It focuses on enhancing
human cybersecurity expertise through AI thinking partnership and aligns with CAI’s multi-agent pat-
terns and Human-In-The-Loop (HITL) capabilities:

• Threat hunting: Collaborative analysis of complex attack patterns using CAI’s swarm patterns
for distributed analysis

• Vulnerability assessment: Joint evaluation of security weaknesses through CAI’s specialized
assessment agents

• Incident response: Real-time collaboration during security incidents using CAI’s coordination
mechanisms

• Security research: Exploring novel attack vectors through CAI’s research and development
patterns

Modality 3: Agency (Human Configures AI for Independent Security Operations) In this ad-
vanced modality, humans configure AI systems to independently perform future security tasks, poten-
tially for other users or in autonomous security operations. This corresponds to CAI’s most sophisti-
cated agentic patterns:

• Autonomous monitoring: AI systems configured through CAI patterns that independently de-
tect and respond to threats

• Adaptive defense systems: AI agents that evolve security postures based on emerging threats
using CAI’s learning mechanisms

• Security training simulators: AI tutors and adversarial training environments built with CAI’s
educational patterns

• Intelligent security orchestration: AI systems that coordinate complex security workflows
using CAI’s orchestration capabilities



1.6.3 The Four Core Competencies for Cybersecurity AI Fluency

Building on the original framework’s "4 D’s", we present adapted competencies specifically tailored for
cybersecurity applications and integrated with CAI’s architectural principles:

Delegation - Strategic AI Tool Selection for Security Goals Delegation in cybersecurity involves
identifying when and how to use AI tools effectively in security processes while understanding the
unique capabilities and limitations of various AI technologies in security contexts. This competency is
essential for effective use of CAI’s agent ecosystem.

Subcategories:

• Security Goal Awareness: Understanding security objectives and threat landscapes to effec-
tively integrate AI into security workflows using CAI’s specialized agents

• Security Platform Awareness: Knowledge of CAI’s agent capabilities, tool integrations, and
appropriate use cases for different security scenarios

• Security Task Delegation: Optimal assignment of security tasks between human expertise and
CAI’s agent capabilities, including selection of appropriate agentic patterns

Description - Effective Communication with AI for Security Tasks Description encompasses
skills needed to communicate security requirements, constraints, and objectives to AI systems, includ-
ing crafting prompts that guide CAI agents toward producing useful security-related outputs.

Subcategories:

• Security Product Description: Articulating desired security outcomes and characteristics to
CAI agents through effective prompting and configuration

• Security Process Description: Engaging in iterative dialogue with CAI agents for complex
security analysis and investigation using the ReAct framework

• Security Performance Description: Defining how CAI agents should behave in security-critical
scenarios and user interactions through proper configuration of agentic patterns

Discernment - Critical Evaluation of AI Security Outputs Discernment involves critically evaluat-
ing AI-generated security outputs, understanding their quality, relevance, potential biases, and security
implications. This is crucial for maintaining security integrity when using CAI’s capabilities.

Subcategories:

• Security Product Discernment: Evaluating the quality and security relevance of CAI-generated
security analysis and recommendations

• Security Process Discernment: Assessing the effectiveness of Human-AI collaboration in secu-
rity contexts using CAI’s tracing and monitoring capabilities

• Security Performance Discernment: Evaluating CAI systems’ effectiveness in independent
security operations and adjusting configurations accordingly



Diligence - Ethical and Responsible AI Use in Security Diligence refers to responsible use of AI
in cybersecurity, including ethical considerations, transparency, and accountability for security deci-
sions made with CAI assistance.

Subcategories:

• Security Creation Diligence: Responsible use of CAI tools while maintaining ethical security
practices and awareness of potential misuse

• Security Transparency Diligence: Clear communication about CAI involvement in security as-
sessments and decisions, leveraging CAI’s built-in tracing capabilities

• Security Deployment Diligence: Taking responsibility for CAI-assisted security outputs, includ-
ing thorough validation and risk assessment using CAI’s validation tools

1.6.4 Framework Integration with CAI Architecture

This adapted framework provides the theoretical foundation for CAI Fluency’s educational approach,
ensuring that cybersecurity practitioners develop not just technical skills, but also the critical thinking
and ethical awareness necessary for responsible AI use in security contexts.

The framework’s integration with CAI’s technical architecture becomes evident in several key areas:

• ReAct Implementation: The framework’s emphasis on iterative reasoning-action cycles aligns
perfectly with CAI’s ReAct-based architecture (Section 2.2)

• Multi-Agent Coordination: The three modalities map directly to CAI’s single-agent, multi-
agent, and autonomous agentic patterns (Section 6)

• Human-In-The-Loop Integration: The framework’s focus on human-AI collaboration supports
CAI’s HITL capabilities (Section 6.7)

• Educational Scaffolding: The competency framework provides a structured approach to learn-
ing CAI’s capabilities progressively

As we proceed through the technical sections of this document, we will repeatedly reference how
these AI fluency competencies apply to specific CAI implementations, providing practitioners with both
theoretical understanding and practical guidance for effective cybersecurity AI deployment.

1.7 Framework for Cybersecurity AI Fluency

Building upon the foundational AI Fluency framework, we now present a novel Framework for Cy-
bersecurity AI Fluency that specifically addresses the unique challenges and opportunities of AI
integration in cybersecurity contexts. This framework synthesizes insights from the Dakan-Feller AI
Fluency model with the cybersecurity automation taxonomy developed by Mayoral-Vilches [2], creating
a comprehensive educational and operational framework tailored for security practitioners.

1.7.1 Cybersecurity AI Automation Levels

Drawing from robotics principles and cybersecurity-specific requirements, we adopt and extend the
6-level taxonomy (Level 0-5) that distinguishes automation from autonomy in Cybersecurity AI [2]. This
taxonomy provides a crucial foundation for understanding the current capabilities and limitations of AI
systems in security contexts:



Modality 1

AUTOMATION

AI as a Tool

• Human controls execution
• AI follows instructions

• Limited decision-making

Levels 0-2

Examples:
Script execution

Basic reconnaissance
Simple vulnerability scans

Automated reporting

Modality 2

AUGMENTATION

AI as a Partner

• Collaborative decisions
• AI suggests options

• Human makes final call

Levels 2-4

Examples:
PentestGPT

Tool recommendations
Analysis assistance

Decision support systems

Modality 3

AGENCY

AI as an Agent

• Autonomous operation
• Human oversight only
• Independent execution

Levels 4-5

Examples:
CAI autonomous system
Self-directed planning

Intelligent security orchestration

Independent execution

← Human Control Increasing AI Autonomy →

Figure 2: The three modalities of Human-AI interaction in cybersecurity contexts, showing the progression from
automation through augmentation to agency, aligned with CAI automation levels.

Level Autonomy Type Plan Scan Exploit Mitigate

0 No tools × × × × Impossible in practice

1 Manual × × × × Metasploit [6], MulVAL [44]

2 LLM-Assisted ✓ × × × PentestGPT [7]

3 Semi-automated ✓ ✓ ✓ × AutoPT [8], Vulnbot [9]

4 Cybersecurity AIs ✓ ✓ ✓ ✓ CAI [1]

5 Autonomous ✓ ✓ ✓ ✓ Aspirational

Table 2: The autonomy levels in cybersecurity, adapted from [1] and SAE J3016 [10] driving automation levels. I
classify cybersecurity autonomy from Level 0 (no tools) to Level 5 (full autonomy). Table outlines capabilities each
level allows a system to perform autonomously: Planning (strategizing actions to test/secure systems), Scanning
(detecting vulnerabilities), Exploiting (utilizing vulnerabilities), and Mitigating (applying countermeasures).

Level 0: No Automation Traditional manual cybersecurity operations with no AI assistance. Human
operators perform all security tasks including monitoring, analysis, and response using conventional
tools and methodologies.

Level 1: Assistance AI provides basic assistance to human operators, such as automated alert fil-
tering, simple pattern recognition, or basic log aggregation. The human maintains full control and
decision-making authority.

Level 2: Partial Automation AI systems can perform specific security tasks independently under
human supervision, such as automated vulnerability scanning, basic threat detection, or routine com-
pliance checking. Human oversight is required for validation and action approval.



Level 3: Conditional Automation AI systems can execute complex security workflows autonomously
within defined parameters, such as automated incident triage, threat hunting, or vulnerability assess-
ment. Human intervention is required for edge cases and strategic decisions.

Level 4: High Automation AI systems operate with significant independence in security operations,
handling complex scenarios and making tactical decisions. Human oversight focuses on strategic guid-
ance and exception handling.

Level 5: Full Autonomy Theoretical level where AI systems operate completely independently in
cybersecurity contexts. This remains aspirational and raises significant concerns about accountability
and control in security-critical environments.

1.7.2 Novel Cybersecurity AI Fluency Modalities

Inspired by the original framework but adapted for cybersecurity contexts and aligned with automa-
tion levels, we propose three specialized modalities that reflect the unique requirements of security
operations:

Level 0
No Automation

Level 1
Assistance

Level 2
Partial

Level 3
Conditional

Level 4
High

Level 5
Full

Modality I:
Supervised Security

Automation

Modality II:
Collaborative Security

Intelligence

Modality III:
Autonomous Security

Orchestration

Human maintains
direct control

Dynamic human-AI
collaboration

AI-driven with
strategic oversight

CAI Implementation Patterns:
Single-agent (L0-L2) Multi-agent coordination (L2-L4)

Autonomous swarms (L4-L5)

Figure 3: The relationship between cybersecurity AI automation levels (0-5) and the three modalities of interaction,
showing how different levels of automation align with different interaction patterns in CAI.

Modality I: Supervised Security Automation (Levels 0-2) This modality encompasses human-
supervised AI operations where security practitioners maintain direct control over AI systems. It cor-
responds to CAI’s single-agent patterns and basic automation capabilities:

• Guided Reconnaissance: AI-assisted information gathering with human validation at each step

• Supervised Scanning: Automated vulnerability assessments with human interpretation of re-
sults

• Assisted Analysis: AI-powered log analysis and pattern recognition with human oversight

• Directed Response: Human-initiated automated responses to common security events



Modality II: Collaborative Security Intelligence (Levels 2-4) This advanced modality involves dy-
namic Human-AI collaboration where both parties contribute expertise to complex security challenges.
It aligns with CAI’s multi-agent coordination and swarm patterns:

• Adaptive Threat Hunting: AI and human expertise combined to identify sophisticated threats
through iterative hypothesis testing

• Intelligent Incident Response: Coordinated human-AI teams managing complex security inci-
dents with distributed decision-making

• Strategic Vulnerability Management: AI-driven prioritization combined with human strategic
assessment of organizational risk

• Collaborative Red Teaming: Human creativity augmented by AI’s systematic exploration of
attack vectors

Modality III: Autonomous Security Orchestration (Levels 4-5) This modality represents the most
advanced form of cybersecurity AI deployment, where AI systems operate with significant indepen-
dence while maintaining human oversight for strategic decisions:

• Autonomous Defense Systems: AI systems that independently detect, analyze, and respond to
security threats within defined parameters

• Adaptive Security Posture: AI systems that automatically adjust security configurations based
on evolving threat landscapes

• Intelligent Security Training: AI tutors and simulation environments that adapt to learner
needs and emerging threat scenarios

• Predictive Security Operations: AI systems that anticipate and prepare for potential security
events before they occur

1.7.3 Adapted Core Competencies: The "4 C’s" of Cybersecurity AI Fluency

While maintaining the structural integrity of the original framework, we introduce cybersecurity-specific
adaptations of the core competencies, renamed as the "4 C’s" to reflect their security-focused nature:

Command - Strategic AI Deployment in Security Operations Command encompasses the ability
to strategically deploy and direct AI systems within cybersecurity contexts, understanding when and
how different automation levels are appropriate for specific security challenges.

Subcategories:

• Threat-Aware Goal Setting: Establishing security objectives that leverage appropriate AI au-
tomation levels based on threat assessment and organizational risk tolerance

• Security Technology Mastery: Deep understanding of cybersecurity AI tools, their capabilities,
limitations, and appropriate deployment contexts across automation levels

• Tactical Resource Allocation: Optimal distribution of human and AI resources across security
operations, considering automation capabilities and human oversight requirements
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Behavioral Security
Configuration

Security Output
Validation

Collaborative Process
Assessment
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Ethical Security
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Security

Operations

Accountable Security
Outcomes

Strategic de-
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security ops

Effective
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security dialogue

Critical as-
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of AI
outputs

Responsible
AI

stewardship

Figure 4: The 4 C’s framework for Cybersecurity AI Fluency, showing the four core competencies (Command,
Communication, Critique, and Custody) with their respective subcategories tailored for security practitioners.

Communication - Effective Human-AI Security Dialogue Communication involves the special-
ized skills needed to interact effectively with AI systems in security contexts, including the ability to
translate complex security requirements into AI-understandable instructions.

Subcategories:

• Security Context Articulation: Clearly communicating threat landscapes, security require-
ments, and operational constraints to AI systems

• Iterative Security Collaboration: Engaging in dynamic dialogue with AI systems for complex
security analysis, investigation, and response planning

• Behavioral Security Configuration: Defining appropriate AI behaviors for different security
scenarios and automation levels

Critique - Critical Assessment of AI Security Outputs Critique involves the sophisticated eval-
uation of AI-generated security outputs, understanding their implications, limitations, and potential
security risks or benefits.

Subcategories:



• Security Output Validation: Rigorous evaluation of AI-generated security analysis, recommen-
dations, and automated actions for accuracy and completeness

• Collaborative Process Assessment: Evaluating the effectiveness of human-AI security work-
flows and identifying optimization opportunities

• Autonomous System Monitoring: Continuous assessment of AI system performance in security
operations, including detection of drift or degradation

Custody - Responsible Stewardship of AI Security Systems Custody represents the highest level
of responsibility in cybersecurity AI deployment, encompassing ethical use, accountability, and long-
term stewardship of AI systems in security contexts.

Subcategories:

• Ethical Security AI Deployment: Ensuring AI systems are used responsibly in security contexts,
avoiding potential for misuse or harm

• Transparent Security Operations: Maintaining clear documentation and communication about
AI involvement in security decisions and actions

• Accountable Security Outcomes: Taking full responsibility for the consequences of AI-assisted
security operations, including thorough validation and risk management

1.7.4 Integration with CAI Architecture and Pedagogy

This Framework for Cybersecurity AI Fluency provides the theoretical foundation for CAI Fluency’s
educational methodology, ensuring that security practitioners develop competencies aligned with the
realities of modern cybersecurity AI deployment. The framework’s integration with CAI’s technical
architecture manifests in several key areas:

• Automation Level Awareness: Educational content is structured around the 6-level taxonomy,
helping practitioners understand current capabilities and limitations

• Modality-Specific Training: Different learning paths for supervised automation, collaborative
intelligence, and autonomous orchestration scenarios

• Competency-Based Assessment: Evaluation frameworks based on the 4 C’s, ensuring compre-
hensive skill development

• Progressive Complexity: Learning pathways that advance through automation levels as compe-
tencies develop

This framework serves as the pedagogical backbone for the practical implementations and case studies
presented in subsequent sections, providing both theoretical grounding and practical guidance for
effective cybersecurity AI deployment.

1.8 How to Read this Document

For clarity and ease of use, this document is structured into 9 chapters that are categorized as either
theoretical or practical. This distinction is intended to facilitate a more accessible reading experience
for academia and practitioners, allowing each audience to navigate seamlessly between conceptual
foundations and hands-on applications according to their specific interests and needs.



To facilitate easy navigation, the respective chapters are either marked with a † for theorerical Chapters
and/or ∗ for practical chapters.

1.8.1 Relevant Chapters for Academia and Technicians

The following chapters contain the foundational aspects and technical niceities of the CAI framework.

- 1 Introduction and Motivation †∗

- 2 Preliminaries: Foundational Concepts in CAI †

- 3 Computational Models of Language from Theoretical Computer Science †

– This chapter can be skipped for a fast-lane theoretical introduction.

- 4 Neural Models: A Subset of Statistical Language Models †

– This chapter can be skipped for a fast-lane theoretical introduction.

- 5 The Evolution of Language Models: From Pure Generation to Agentic Interaction †

- 6 CAI Architecture †∗

1.8.2 Relevant Chapters for Practitiones

The following chapters contain the practical and hands-on aspects of the CAI framework.

- 1 Introduction and Motivation †∗

- 6 CAI Architecture †∗

- 7 Getting Started ∗

- 8 Quickstart, CAI Commands and Use ∗

- 9 Development ∗

A Note to the Readers

We encourage practitioners and academia to read CAI’s the technical report at https://arxiv.org/
pdf/2504.06017. Moreover, please note that CAI is in active development, so do not expect it work
flawlessly. Instead, contribute by raising an issue or sending a pull request

https://arxiv.org/pdf/2504.06017
https://arxiv.org/pdf/2504.06017
https://github.com/aliasrobotics/cai/pulls
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2 Preliminaries: Foundational Concepts in CAI †

2.1 Formal vs. Probabilistic Language Models, LLMs and ReAct Agents

To understand the core functionalities of CAI, its limitations and use, you need to get familiar with its
components and their foundations. The first important concept in this context is the ReAct Framework.

2.2 Motivation: CAI is a ReAct Framework

CAI generally implements the ReACT agent model [11]. ReAct stands for Reasoning and Acting, and it
represent a powerful architecture where a Large Language Model (LLM) performs reasoning steps in
natural language, generates code snippets or actions, and then executes them in an external environ-
ment (e.g. a Python interpreter or an API call). The results of the execution are then fed back into the
LLM for further reasoning. The process is illustrated in the picture below.

Reasoning Cycle

Question Thought Answer

Action Observation

if finished

if actions needed new info

Figure 5: Conceptual Drawing: Key Steps in ReAct agent models.

Key Steps in ReAct

1. Reasoning step: The LLM analyzes the problem using natural language.

2. Action generation: The LLM generates a code snippet (e.g., a function or API call).

3. Execution: The code is executed in a sandboxed environment.

4. Observation: The result of the execution is returned to the LLM.

5. Next step: The LLM refines its plan based on the new information.

We will explain the detailes of the ReAct framework at a later stage. For now we focus on the funda-
mental tension the ReAct framework bridges: LLMs are probabilistic models of natural language, while
code must adhere to the rules of a formal language.



• Programming languages such as Python, JavaScript, or C++ are formal systems: they have strictly
defined syntactic and semantic rules. A program is either valid or invalid, and small errors can
result in total failure.

• In contrast, LLMs like GPT are probabilistic models trained on natural and programming language
corpora. They learn to approximate what "correct" output should look like based on frequency and
co-occurrence patterns, rather than internalizing grammar rules. They do not know the Python
grammar – they have learned to simulate Python-like code based on what they have seen.

The ReAct loop operates right at the intersection of these two formalisms, feeding LLM output (i.e.
Code) into external environments and reasoning based on the received output in a closed feedback
loop.

2.3 Bridging Formal and Probabilistic Language Models in ReAct Frame-
works

To understand why code generated by large language models (LLMs) is often syntactically correct but
semantically flawed, we need to recognize a fundamental mismatch between two kinds of language
modeling.

2.3.1 LLM-Generated Code Often Needs Revision: The Mismatch Between Language Models

Formal vs. Statistical Language Models. A programming language is a formally defined language.
It has a precise syntax and semantics governed by strict rules (often defined via context-free grammars
or stricter variants).

LLMs are probabilistic mod-
els of natural language,
while code must adhere to
the rules of a formal lan-
guage.

A compiler or interpreter expects exact compliance with
those rules and will reject any deviation – no matter how small.
An LLM, by contrast, is a statistical (probabilistic) language
model. It learns from examples, not from formal rules. It doesn’t
"know" syntax or semantics in the symbolic sense; rather, it has
learned to approximate plausible-looking code based on patterns
in the training data.

This leads to a structural mismatch:

• The programming language expects precision. It requires complete syntactic and semantic cor-
rectness.

• The LLM produces probability-weighted guesses, even for code – predictions that are often right,
but not guaranteed to be.

Formal vs. Probabilistic Language Models As a result, LLM-generated code may:

- Be syntactically valid, but semantically incorrect (wrong logic, misuse of an API)

- Include placeholder variables or inconsistent naming

- Mix styles or make invalid assumptions about types, scopes, or libraries

Thus, LLMs generated code that "looks right", while not "being right".



Aspect Formal Language Model (e.g., pro-
gramming languages)

Probabilistic Language Model (e.g.,
LLMs)

Defined by Symbolic grammar (e.g., context-free) Statistical patterns in data modelled by
statistical model

Output validity Must be exact (strict syntax and seman-
tics)

Approximate; best-guess predictions

Error handling Hard failure on rule violation Soft failure or degradation of quality

Interpretation Deterministic (parser, compiler) Contextual, probabilistic.

Learning method Hand-crafted rules and specifications Data-driven learning from corpora.

Table 3: Formal vs. Probabilistic Language Models.

3 Computational Models of Language from Theoretical Com-
puter Science †

3.1 Formal Models of Language

A language is a collection of sentences of finite length all constructed from a finite alphabet (or, where
our concern is limited to syntax, a finite vocabulary) of symbols, cf. [45]. Accordingly, a grammar is a
"machine" that enumerates the sentences of a language.3 In the study of language from a computational
perspective, formal models, such as grammars, serve as essential tools for describing and analyzing
the structure and behavior of languages – both artificial (e.g., programming languages) and natural.
These models stem from theoretical computer science and formal language theory, and they provide
mathematical frameworks for specifying which sequences of symbols are valid within a given language.

The motivation behind these models is twofold:

1. Descriptive: To formally characterize linguistic phenomena such as syntax, structure, and gram-
maticality.

2. Computational: To develop algorithms that can recognize, parse, or generate valid linguistic
expressions efficiently. One of the foundational classes of formal models in this context is that of
finite automata, which are used to define and analyze regular languages – the simplest class of
formal languages.

3.1.1 Finite Automata and Regular Languages

Finite automata are abstract computational machines designed to recognize patterns in strings. They
consist of a finite set of states, a transition function, an initial state, and one or more accepting states.
When processing a string of symbols, the automaton transitions between states based on the current
input symbol and its transition function. If the automaton ends in an accepting state after processing
the entire input, the string is considered accepted by the automaton.

Regular Languages A language is classified as a regular language if it can be recognized by some
finite automaton or equivalently described by a regular expression. Regular expressions are symbolic
notations that define search patterns and are widely used in programming and text processing.

3Informally, one can think of languages as a set of strings, and a grammar as a set of rules how to generate all those strings.



Regular languages are powerful enough to capture many simple and repetitive patterns, such as:

• Strings that begin or end with certain characters

• Strings that contain repeated subsequences

• Sets of strings with constrained lengths or character sequences

Formally, regular languages are closed under operations such as union, concatenation, and Kleene star
(repetition). This makes them robust and mathematically tractable.

Limits of Regular Languages Despite the aforementioned capabilities, finite automata have signifi-
cant limitations. They lack memory beyond their current state, which means they cannot handle nested
or recursively structured patterns. For instance, they cannot recognize balanced parentheses or match
long-range dependencies – phenomena commonly found in natural and programming languages.

Therefore:

• Finite automata can decide whether a string belongs to a regular language, but they cannot
express hierarchical or recursive structures.

• This leads to the realization that not all languages of interest, particularly natural languages, are
regular.

As a result, more expressive models, such as context-free grammars, are required to capture the com-
plexity of such languages.

3.1.2 Context-Free Grammars (CFGs)

Context-free grammars consist of a vocabulary and a set of production rules (also called substitution
rules). Their goal is to generate all valid strings (i.e., symbol sequences) of a language using these
rules. A production rule takes the form A → w meaning that an occurrence of A in a string can be
replaced by w. Here, both A and w are symbols drawn from the vocabulary of the grammar.

A context-free grammar G is formally defined by the set of it production rules. In this context:

• A derivation is a sequence of production rule applications from G.

• A string (composed only of terminal symbols) is derivable from G if such a derivation exists.

• The language L(G) generated by the grammar is the set of all strings derivable from the start
symbol S using the rules in G.

• Languages generated by context-free grammars are known as context-free languages.

Context-free languages strictly include the class of regular languages –i.e., those defined by finite
automata – thus forming a proper superset of them.

Iteration vs. Recursion Finite automata make use of iteration: they loop arbitrarily many times,
processing repeated patterns of symbols. In contrast, context-free grammars rely on recursion: a
production rule may refer to the same symbol it defines. This recursive structure allows for the deep
nesting of constructs and enables rules to relate elements that may be arbitrarily far apart in a string.



Properties of Context-Free Grammars

A grammar is termed context-free if all its rules are formulated independently of the context in which
they are applied.This allows for a well-defined parsing process, in which:

• One can determine whether a string adheres to the grammar, and

• A syntax tree (also called a parse tree) representing the structure of the string can be constructed.

A program that performs this analysis is called a parser. Parsers are widely used in the processing
of programming languages. In computational linguistics, there are ongoing efforts to describe natural
language using context-free grammars.

Beyond Finite Automata: Structural Interpretation Unlike finite automata, context-free gram-
mars do more than define the set of valid expressions in a language – they also implicitly assign struc-
ture to these expressions. They associate derivation trees (also known as parse trees or syntax trees)
with sentences of the language. This process, known as parsing, represents the automatic syntactic
analysis of sentences

3.1.3 Context-Sensitive Languages and Their Role in Natural Language Processing

Figure 6: The Chromsky Hierarchy of formal languages.

Figure 17 depicts Context-Sensitive Languages as a Type 1-language in the Chomsky hierarchy. In for-
mal language theory, Noam Chomsky [45] proposed a hierarchy of grammars that classifies languages
based on the computational complexity required to generate them:



1. Type 3 – Regular languages, generated by finite automata

2. Type 2 – Context-free languages (CFLs), generated by pushdown automata

3. Type 1 – Context-sensitive languages (CSLs), generated by linear bounded automata

4. Type 0 – Recursively enumerable languages, generated by Turing machines

Context-sensitive languages (Type 1) occupy a crucial position in this hierarchy: they are strictly more
powerful than context-free languages, but still more constrained than unrestricted languages.

A context-sensitive grammar allows production rules of the form: α A β → αγβ where A is a non-
terminal, α, β are strings (possibly empty), and γ is a non-empty string. The application of the rule
depends on the context provided by α, β.

Context Sensitivity in Natural Language: An Example

Consider the phenomenon of subject-verb agreement in English in the two senteces "The dog barks"
and "The dogs bark". In this case, the verb form must agree in number with the subject. This depen-
dency can be managed by a context-free grammar with some effort. However, natural language may
exhibit more complex dependencies that require context-sensitive mechanisms.

Example: Cross-serial Dependencies in Swiss German A classic illustration (see [46]) comes from
Swiss German, where verb order and noun dependencies are interleaved in a way that cannot be cap-
tured

Some natrural language
characteristics phenomena
exceed the expressiveness
of regular & context-free
languages.

by context-free grammars. Consider the sentence: "... dass mer
d’chind em Hans es huus händ wele laa hälfe aastriiche" (... that
we the children have wanted to let Hans help paint the house).
Here, each noun (object) must correspond with a specific verb,
and the dependencies cross each other in a non-nested fashion.
This structure cannot be represented by a context-free gram-
mar and instead requires the additional expressive power of a

context-sensitive grammar. This example shows that natural languages are not fully context-free and
often require context-sensitive grammatical frameworks to be accurately modeled.

3.2 Computational Models for Context-Sensitive Languages

To process context-sensitive languages computationally, we need models more powerful than pushdown
automata. The appropriate model is the linear bounded automaton (LBA) - a restricted form of Turing
machine where the tape is limited to a length proportional to the input. LBAs can recognize context-
sensitive languages, but they are computationally expensive and less practical for large-scale parsing
tasks.

Thus, natural language processing (NLP) systems rarely use true context-sensitive grammars due to
efficiency concerns. Instead, they often rely on approximations (e.g., mildly context-sensitive grammars
like Tree Adjoining Grammars or Combinatory Categorial Grammars) or on statistical (aka. probabilis-
tic) models.

Conclusion

Natural languages may display context-sensitive characteristics that go beyond the expressive power of
regular and context-free grammars. These characteristics are reflected in long-distance dependencies,
agreement phenomena, and structural ambiguities.

From the perspective of the Chomsky hierarchy:



• Finite automata and context-free grammars are insufficient to fully model natural language.

• Context-sensitive grammars offer the necessary expressive power, but at the cost of computational
tractability.

Modern approaches, such as LLMs, offer an alternative by learning context-sensitive patterns implicitly
through data-driven methods, providing practical but approximate solutions to the problem of natural
language understanding.

3.3 Models for Natural Language

In this Chapter, we will ealobarte the details on and contrast the relevant computational language
modeling paradigms. See [47] for further reading.

3.3.1 From Formal Grammars to Probabilistic Language Models

Large Language Models (LLMs), such as ChatGPT, represent a different paradigm for modeling lan-
guage. They do not follow the strict generative frameworks of formal grammars, but instead:

- Learn probabilistic relationships between tokens based on vast amounts of real-world text.

- Capture context-sensitive behavior implicitly through attention mechanisms and deep neural net-
works.

- Do not explicitly enforce syntactic or semantic constraints but instead learn to approximate them
statistically.

This makes LLMs highly effective for natural language, which is full of contextual subtleties. However,
their probabilistic nature makes them less suited to handling formal languages (such as programming
code), where precise syntax and unambiguous interpretation are crucial.

Thus, LLMs simulate grammaticality rather than guaranteeing it. Their strength lies in pattern
generalization, not formal rule enforcement.

3.3.2 Language Models: A Probabilistic Perspective

From a formal standpoint, a language model is a probabilistic model [47] that estimates the likelihood
of a sequence of words. Given a word sequence W = w1, w2, . . . , wn, the task of the language model is
to model or estimate

P (W ) = P (w1, w2, . . . , wn)

However, due to the sparse data problem, we cannot reliably estimate probabilities for long sequences
directly from data. Therefore, earlier language models from natural language modelling (e.g., n-gram
models) make simplifying assumptions to decompose the probability:

P (W ) ≈ P (w1) · P (w2 | w1) · P (w3 | w2) · . . . · P (wn | wn−1)

This Markov approximation assumes that each word depends only on the previous word (bigram) or
a limited context (trigram, etc.). While computationally efficient, these models have limited ability to
capture long-range dependencies or hierarchical structures – hallmarks of natural language.

3.3.3 Mathematical Definition as Stochastic Processes

Language models represent sequences – such as sentences – as ordered chains of elements (e.g., char-
acters or words). In stochastic language models, these elements are treated as random variables



X1, X2, . . . , forming a discrete-time stochastic process.

To enable the same model to handle sequences of varying length n, the beginning and end of the se-
quence are typically marked by two additional random variables, X0 and Xn+1, which take on a special
value – often denoted by a symbol such as ⊥ or < s > representing a start or end token. The probability
of a specific sequence w1, . . . , wn can then be expressed as the joint probability of all elements in the
sequence, including the start and end markers:

P (X0 = ⊥ ∧X1 = w1 ∧ · · · ∧Xn = wn ∧Xn+1 = ⊥) .

A common shorthand notation for this is P (⊥, w1, . . . , wn,⊥). According to the law of total probability,
this joint probability can be decomposed into a product of conditional probabilities:

P (⊥, w1, . . . , wn,⊥) =

P (X0 = ⊥)

·P (X1 = w1 | X0 = ⊥)

·P (X2 = w2 | X0 = ⊥, X1 = w1)

· · ·
·P (Xn = wn | X0 = ⊥, X1 = w1, . . . , Xn−1 = wn−1)

·P (Xn+1 = ⊥ | X0 = ⊥, X1 = w1, . . . , Xn = wn) .

Or more concisely:

P (⊥, w1, . . . , wn,⊥) = P (⊥) · P (w1 | ⊥) · P (w2 | ⊥, w1) · · ·P (wn | ⊥, w1, . . . , wn−1) · P (⊥ | ⊥, w1, . . . , wn) .

This formulation reflects the fundamental approach of probabilistic language models: they estimate
the likelihood of an entire sequence by chaining together conditional probabilities that represent the
model’s learned expectations of which elements are likely to follow others, given the preceding context.

3.3.4 Enter Large Language Models (LLMs)

LLMs, such as GPT, extend the probabilistic modeling paradigm by leveraging deep learning architec-
tures, particularly transformers, which use self-attention mechanisms to model dependencies across
entire sequences –regardless of their length.

Unlike traditional probabilistic language models, such as n-grams, LLMs:

- Estimate P (W ) using neural representations of language learned from massive corpora.

- Do not rely on hand-crafted rules or fixed context windows.

- Use distributed representations (embeddings) and training objectives such as next-token predic-
tion to generalize from observed patterns.

LLMs thus implicitly learn context-sensitive behavior, not by encoding grammars, but by observing
countless examples where such behavior is evident. They generalize from statistical regularities across
the data.

Conclusion Large language models represent a fundamental shift in how we model linguistic knowl-
edge:

• They do not correspond to any one level of the Chomsky hierarchy, since they are not symbolic
processors.



• They do not store or apply explicit grammar rules, yet they can produce grammatically plausible
output, often consistent with context-sensitive grammars.

• Their success comes from learning from data, not from formal derivations.

In summary, language are not formal language processors in the classical sense, but the example of
LLMs proves their effectivity at approximating even highly structured linguistic phenomena – simply
because they have seen enough examples to learn their statistical signatures.



4 Neural Models: A Subset of Statistical Language Models †

Neural networks, also known as artificial neural networks (ANN) are powerful tools to learn and extract
patterns from data. The design of neural networks is inspired by the functioning of the human brain,
or, more exactly, the interaction of neurons, see [48]. Figure 7 is a schematic illustration of a natural
neuron.

Figure 7: Schematic Drawing of a Natural Neuron.

- A Neuron (Figure 7) is a nervous cell, that is connected to other neurons, passing electric signals
to connected neurons. The brain consists of Billions of Neurons, making up our consciousness.

- The Axon of a neuron sends a signal to the Dendrit of another Neuron.

- An Axon has several terminals.

- Axon terminals and Dendrits are connected via synapses (Figure 8).

- Synapses can amplify or damp signals. If an incomming signal is sensed, the receiving neuron
itself might fires a signal (electrical activity).

When do neurons fire? The activation of a neuron depends on several parameters:

1. the number of signals received

2. the type of synapses (damping or amplfying)

3. randomness – activations need not be dertministic.

4.1 Basic Structure of an Artifical Neuron – the Perceptron

The simplest neural model – the perceptron – imitates the functioning of a single neural cell, cf. [48].
The structure is depicted in Figure 11. Similar to the neuron that aggregates and processes signal



Figure 8: Synapses connect two or more neurons.

Figure 9: Artificial Neurons – Perceptrons (b) – mimick the structure and behaviour of natural neural cells (a).

inputs from the dendrites in the nucleolus, before passing them on to other neurons in the axon termi-
nals, the perceptron processes the input features x1, ..., xn from left to right, producing an output yj .

• Inputs: x1 to xn represent the input features of the perceptron. These can be various types of
observations: Images, Audio signals, Text (e.g., words or characters).

• Output: yj is the output predicted by the perceptron. Often, the output is related to a classifica-
tion problem (e.g., in a binary classification task). In this case, the output is a class label of a set
of predefined classes.

• Parameters: Weights: the weights wij and bias bj (see Figure 12) are the learnable parameters of
the model. They correspond to the synapses, cf. figure 8, damping and aplifying the input signals.
These are the only unknowns in a basic neural model. They are learned through supervised
learning.

• Node Computation: Each unit x computes the weighted sum of its inputs.

• Activation Function: The activation function applies a transformation to x, often mapping it to
a limited range such as [0, 1] (e.g., via a sigmoid function or via thresholding).



Figure 10: Perceprtons consist of input features x1, ...,xn, weights w1j, ...,wnj, an aggregation node that aggre-
gates the input signals to x, an activation function f(x) and the output yj .

Figure 11: Image of a sigmoid neuron activation function f which maps the aggregates input activation x to a
value in a limited range, here [0, 1]. In this example, due to the mapping to [0, 1] outputs yj can be interpreted as
probabilities of class labels.

4.2 Supervised Learning

In supervised learning, labeled instances x1 to xn and their corresponding outputs yj are used as
training samples. In an interative learning process, the weights of the perceptron are to adjusted to fit
the data. The aim is to modify the parameter in a way that the error – the loss – between true outputs
and predicted output is as small as possible, cf. Figure 12.

In supervised learning, the model receives feedback based on whether its predictions are correct.

- Correct Prediction: No update needed; the weights remain unchanged.

- Incorrect Prediction: At least one weight must be updated to reduce error.

The updates are computed using gradient descent. For a complete mathematical description, we refer
the interested reader to [49]



Figure 12: Depiction of the weights and bias update in supervised perceptron learning.

4.3 Neural Networks with Hidden Layers

Note that artificial neural networks (ANNs) may contain multiple neurons in the output layer, particu-
larly when handling multi-class classification. Networks may also include hidden layers, allowing them
to model more complex patterns, see Figure 13.

Figure 13: Multi-layer Perceptron Neural Network with hidden layers and two outputs.



Example: Log Analysis

Let us assume we want to train a neural network for anomaly detection, in order to detect cyberattacks
(e.g. DDoS) using the log traces. For simplicity assume the log trances are of fixed length.

- Input Layer: The input training instances x1, ..., xn represent the logs traces in form of words/to-
kens. For simplicity, let us assume we have one neuron for each word/token in the vocabulary.

- Output Layer: The output yj represents the set of cyberattacks, or, in case of binary classifi-
cation, whether or not a cyberattack occured. The respective output neuron indicates whether
a particular attack is detected (1 = yes, 0 = no). The value is a real number between 0 and 1,
representing the probability that a certain attack has occured.

4.4 Supervised Training of ANNs – the Process

In supervised learning of artificial neural networks, the training process consists of two steps: forward
propagation and backpropagation [50].

Forward Propagation:

1. A single or multiple training instances are fed into the network.

2. Each neuron computes its output based on current weights.

3. The signal passes forward through the layers until it reaches the output.

4. The model’s predicted output is compared to the true label.

Figure 14: Multi-layer Perceptron – the signal (green – activated, white – not activated) passes though the network.



At this point we, compute the difference between the true vs. predicted output labels and distinguish
two cases:

Case 1: Correct Prediction

→ No changes are needed. We move to the next training instance.

Case 2: Incorrect Prediction

→ The parameters need to be changed. Note however, that, when a single neuron modifies one of
its parameters, subsequent neurons may also need to adjust their connection weights according to
the learning equation. "Hence, we need to solve a set of the mutually coupled learning equations."
[51] This coupled learning problem is solved using Backpropagation, a stochastic descent method
[52]:

– The error is propagated backwards through the network, from the output to the input layer.

– The weights are updated using gradient descent, based on the computed gradients of the
loss function.

Once the input layer is reached, the weights have been adjusted. The next instance can then be pro-
cessed using the updated parameters.

4.5 The Loss Function

The loss function quantifies the error on training instances. It serves as the objective function to mini-
mize during training and it quantifies the difference between tue and predicted outputs of the ANN.

Common loss functions include [47]:

• Cross-entropy loss (for classification)

• Mean squared error (MSE) (for regression)

4.6 Gradient Descent

Gradient descent(see, e.g. [52]) is an iterative optimization algorithm used to minimize the loss. The
idea is to take repeated steps in the opposite direction of the gradient of the function at the current
point, because this is the direction of steepest descent. Following the steepest descent, see Figure 15.

4.7 Learning Rate, Batch Size, Epochs and Iteration

- In training, the learning rate determines how large the updates to the weights are during training.
The learning rate corresponds to the changes applied in each gradient descent step, see table 4.
The optimal rate depends on the form of the functionand needs to be determined in the training.

- The batch size is the number of instances propagated forward before the network updates its
weights. Common sizes are powers of 2: 32, 64, 128, 256.

- One complete pass through the entire training dataset is called a training epoch . The number of
training epochs thus determines how often the whole dataset it propagated throught the model in
order to uodate the parameters.



Figure 15: Effect of the learning rate on convergence in gradient descent methods. A small learning rate (a)
requires many updates before reaching the minimum point. A large learning rate (b) causes drastic changes in the
updates. The optimal rate (c) lies between the two extremes and results in optimal convergence behaviour.

Learning Rate Effect

High Faster convergence, but may cause
overshooting of global minima (unstable).

Low More stable, but slow learning and risk
of getting stuck

Moderate good balance is typically most effective

Table 4: Effect of Learning Rate on Gradient Descent Convergence.

- One forward-backward pass over a single batch is called an iteration.

After the initial terminology has been introduced, the next chapter provides a detailed description about
the evolution of the ReAct-Framework.



5 The Evolution of Language Models: From Pure Generation to
Agentic Interaction †

In this chapter, we will give an overview on the evolution of large language models, related prompting
techniques (prompt engineering) and agentic frameworks. For further reading, we refer the interested
reader to the Prompt Engineering Guide, see [12].

Figure 16: Illustration of the Evolution of ReAct models from language models via reasoning models and tool use.

5.1 Towards the ReAct Framework

Modern language models (LMs) have undergone a significant evolution, progressing from purely sta-
tistical text generators to sophisticated agents capable of complex reasoning and tool use (i.e. LLMs).
Below, we outline this trajectory in four stages:

• Basic LLMs → Section 5.2

• Reasoning LLMs → Section 5.3

• Agentic LLMs, as well as → Section 5.4

• ReAct Frameworks → Section 5.5

5.2 Basic LLMs: Statistical Sequence Modeling

Generative language models, such as GPT-2 [13] and early GPT-3 [14] variants, were trained to predict
the next token in a sequence based solely on large-scale text corpora. Tokens are the basic units that
an LLM uses to process texts. A token can be a complete word, a punctuation mark or just a part of a
word.



Core Capability The core capabilities of these models is the generation of fluent, coherent text by
learning statistical co-occurrence patterns of tokens, so called n-grams, which were generalized via the
models’ self-attention mechanism.

Limitations Due to their purely generative nature, basic LLMs posses several inherit limitations.

1. Lack of explicit multi-step reasoning. Basic LLMs produce an output stream, and thus lack the
ability to rethink and iteratively refine their output.

2. No interaction with external data or execution environments. Basic large language models gen-
erate new tokens based on their internal parameters only and have no access to external sources
and tools.

3. They are susceptible to superficial "hallucinations" and inconsistencies in complex tasks. Lacking
external tools, the output cannot be verfied or validated.

5.3 Reasoning LLMs: Chain-of-Thought and Internal Deliberation

To improve performance on tasks requiring multi-step inference (e.g., arithmetic, logic puzzles, multi-
fact question answering), a method called Chain-of-Thought (CoT) Prompting was developed [15]. To
create a chain-of-thought prompt, users typically attach instructions such as "Describe your reasoning
step by step" or "Explain your answer in steps" to their request. This encourages the LLM to generate
intermediate steps before the final answer, making the process more transparent and accurate.

Core Capability CoT encourages the model to produce intermediate reasoning steps in natural lan-
guage before arriving at a final answer. It enables the LM to "think out loud", decomposing complex
problems into smaller sub-problems.

Compared to basic LLMs, reasoning LLMs show significant gains on benchmarks requiring sequen-
tial logic. Moreover, they provide enhanced transparency, since instructors and users can inspect the
model’s reasoning chain.

Limitations The Chain-of-Thought (CoT) still occurs entirely within the LM’s parameters; there is no
external verification or data retrieval involved in the reasoning process. Moreover, errors in early rea-
soning steps propagate through to the final answer. Therefore, despite enhanced reasoning capabilities
compared to vanilla LLMs, reasoning models still are still restricted in terms of knowledge base and
external verification [15].

5.4 Agentic LLMs: Integrating Tools and External Environments

Agents based on LLMs, hereafter also referred to as LLM agents for short, integrate LLM applications
that can perform complex tasks by using an architecture that combines LLMs with key modules such as
scheduling and memory. When building LLM agents, an LLM serves as the main controller or "brain"
that controls a sequence of operations required to complete a task or user request.

Core Capability Agents allow language models to act - to query databases, call APIs, execute code, or
interact with other software - thus overcoming information constraints and validating reasoning steps.
The LLM agent may require key modules such as scheduling, memory and tool utilization.



5.4.1 Building Blocks

Generally speaking, an LLM agent framework can consist of the following core components:

• Agent/brain the LLM serves as the core coordinator.

• Memory: manages the agent’s past behaviors. It stores intermediate results and context from
the tools and enhances the model with long-term memory and data

• Tools: Tools correspond to a set of tool(s) that enables the LLM agent to interact with external
environments, such as Wikipedia Search API, code interpreter and math engine.

– Tool API Interface: The LM is extended with a predefined set of callable functions (search,
calculator, code execution).

• Planning Module: The LM devises a sequence of tool uses to satisfy the user’s query, often
framed as a plan in natural language.

– Execution and Observation: Each tool invocation returns structured observations that feed
back into the LM’s next planning step.

Wang et al., (see [16]) formalise various planning modules, differentiating between planning modules
with feedback and without feedback. The latter are termed [12] Act-Only language models and often
fail to solve complex tasks. Examples of Act-Only LMs (acc. to [16]) include the following:

- WebGPT: Browses the web to gather citations [17].

- HuggingGPT: HuggingGPT [18] employs ChatGPT to orchestrate Hugging Face AI models to for
multi-modal problem solving.

- SayCan: Plans robot actions by combining LLM reasoning with affordance models. [19]

- Toolformer and frameworks like LangChain: Automatically learn when and how to call exter-
nal tools during generation. [20, 21]

To overcome this challenge, one can use a mechanism that allows the model to iteratively reflect
and refine the execution plan based on past actions and observations: ReAct.

5.5 The ReAct Framework: Synergizing Reasoning and Acting

ReAct – short for Reasoning + Acting – formalizes an integrated loop in which an LM interleaves
internal deliberation with external tool use:

The ReAct-loop (in general and in CAI) comprizes of five steps:

1. Reasoning ("Think"): The model generates one or more natural-language thoughts, articulating
what to do next or why.

2. Acting ("Act"): Also termed ‘action generation’. In this step the action is generated. The LLM
selects and an external tool based on its reasoning.

3. Execution ("Execute"): The action or code is executed in a sandboxed environment.

4. Observation ("Observe"): The environment or tool returns results (data retrieval, computation
output, API response), which become new context.

5. Iterative Loop: The LM uses the updated context to refine its next "Thought" and "Action",
enabling error correction, dynamic planning, and more reliable outcomes.



Figure 17: The ReAct-loop comprizes of five steps: Thinks, Act, Execute, Observe, Iterate

5.6 Why Iteration Matters

The iterative nature of ReAct-Frameworks posesses several advantages over Act-Only and pure Rea-
soning LMs:

• Overcomming the Formal-Probabilistic Bridge. Because LLMs are not formal processors, the
code they generate might not be correct. ReAct provides a runtime check – a way to bring formal
verification into a probabilistic process. But the need for iteration reflects the mismatch: LLMs
can’t guarantee correctness, so they must observe and revise.

• Error Mitigation. If a code snippet fails or a data lookup yields no result, the model can analyze
the failure and adjust its approach.

• Dynamic Reasoning. ReAct enables adaptive strategies – branching plans, conditional tool use,
and exploration of alternative solutions.

• Grounding. ReAct anchors the LM’s internal reasoning in concrete, verifiable outputs from the
external environment.

In effect, the ReAct Framweork makes LLMs behave more like programmers: it enables the agent to
write code, test it, learn from the result, and iterate.

5.6.1 Agent Profiles or Personas

Although not mandatory, an agent can be assigned a profile or persona to define their role [16]. This
profiling information is typically written in the prompt, which can contain specific details such as role
details, personality, social information and other demographic information.

5.7 Limitations of Single Agents

Intitially, ReAct is a single agent model, meaning it inherits the draw-backs of single agent models.
Single agent models are subject to the following limitations:

• Context Window Limits: Language models can only consider a limited amount of text (tokens)
at once, restricting their ability to handle large documents or long conversations.



• Hallucination / Lack of Accuracy: Even with external tools, single agents sometimes generate
confident but incorrect or unverifiable responses, due to a lack of real-time validation or external
checking.

• Single Task Execution: Most LLMs handle one prompt at a time, limiting their efficiency for
complex or multi-part problems.

• Lack of Collaboration: A single agent lacks the capacity for division of labor or specialized
reasoning, reducing its performance on tasks that benefit from teamwork or expert roles.

5.8 Solutions: Parallelization and Multi-Agent Systems

To overcome the limitations of single agents, multi-agent systems have gained popolarity in generative
AI systems Common use-cases include the following:

- Distributed Processing and Cross-Validation: Multiple agents can evaluate the same task
independently, increasing reliability through majority voting or peer review.

- Shared Tasks – Divide and Conquer, Meta-Agents: Tasks are split among agents by a con-
troller (meta-agent), each solving a portion before merging their outputs. Example: AutoGen[22],
LangGraph [20]

- Multi-tasking and Specialized Agents: Assigning different roles to agents (e.g., planner, coder,
evaluator) increases efficiency and facilitates expertise-based problem solving, cf. [23, 24].

5.9 The Challenge: Coordination of Agents

In multi-agent systems, agents may use structured messages or APIs to exchange results, feedback, or
queries, mimicking human collaboration [25]. The following terminology is used in this context: After

the basic terminology of agentic LLM frameworks has been discussed, we proceed to elaborating on
the how the ReAct framework is realized within the CAI architecture.



Term Definition

Agentic Patterns Designing systems that balance autonomy and coordination without exces-
sive complexity is task-dependent. Various ways to do so include Hierarchical
Patterns, Swarm Patterns etc. The overarching term describing the setup is
called Multi-Agent Architecture or Agentic Pattern [20] [26].

Human-In-The-Loop
(HITL)

Acc. to [27] the term Human-In-The-Loop (HITL) refers to semi-autonomous
systems where model developers continuously integrate human feedback into
different steps of the model deployment workflow, see Section 6.7.

Turns As in group discussions, turns are used to prevent overlap or confusion in AI-
agent communication. A turn typically represents the workflow from the incom-
ing to an outgoing message of the agent. During a turn, multiple interactions
with other agents may take place (e.g. tool use). An interaction is a bilateral
exchange between an agent and another agent or the environment.

Handoffs Handoffs are sub-agents that the agent can delegate to. You provide a list of
handoffs, and the agent can choose to delegate to them if relevant. They allow
passing on context and results smoothly between agents. This is particularly
useful in scenarios where different agents specialize in distinct areas.

Tracing Tracing defines the act of collecting a comprehensive record of events during
an agent run: LLM generations, tool calls, etc.

Table 5: Multi-Agent LLM Systems - Basic Terminology.

6 CAI Architecture † ∗

In this Chapter, we describe how the ReAct Framework is realized in the CAI software stack. CAI fo-
cuses on making cybersecurity agent coordination and execution lightweight, highly controllable, and
useful for humans. To do so it builds upon 7 pillars: Agents, Tools, Handoffs, Patterns, Turns,
Tracing and HITL. We recommend the interested reader and practitioners to take a look at the follow-

ing files in the source folder of the CAI GitHub repository as a starting point for using CAI:

• __init__.py

• cli.py - entrypoint for command line interface

• util.py - utility functions

• agents - Agent implementations

• internal - CAI internatl functions (endpoints, metrics, logging, etc.)

• prompts - Agent Prompt Database

• repl - CLI aestethics and commands

• sdk - CAI command sdk

• tools - agent tools

https://github.com/aliasrobotics/cai/blob/main/src/cai/__init__.py
https://github.com/aliasrobotics/cai/blob/main/src/cai/cli.py
https://github.com/aliasrobotics/cai/blob/main/src/cai/util.py
https://github.com/aliasrobotics/cai/blob/main/src/cai/agents
https://github.com/aliasrobotics/cai/blob/main/src/cai/internal
https://github.com/aliasrobotics/cai/blob/main/src/cai/prompts
https://github.com/aliasrobotics/cai/blob/main/src/cai/repl
https://github.com/aliasrobotics/cai/blob/main/src/cai/sdk
https://github.com/aliasrobotics/cai/tree/main/src/cai/tools
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Figure 18: Conceptual Drawing: ReAct Model Architecture in CAI

6.1 Agents

At its core, CAI abstracts its cybersecurity behavior via Agents and agentic Patterns (see Section 5).
An Agent in an intelligent system that interacts with some environment. More technically, within CAI
we embrace a robotics-centric definition wherein an agent is anything that can be viewed as a system
perceiving its environment through sensors, reasoning about its goals and and acting accordingly upon
that environment through actuators (definition adapted from [28]).

In cybersecurity, an Agent interacts with systems and networks, using peripherals and network in-
terfaces as sensors, reasons accordingly and then executes network actions as if actuators.

And, as mentioned before, in CAI, Agents implement the ReACT (Reasoning and Action) agent model
[11].� �

1 import os
2 from openai import AsyncOpenAI
3 from cai.sdk.agents import Agent, Runner, OpenAIChatCompletionsModel
4

5 #Function to run the agent
6 async def run_agent(agent, message):
7 response = await Runner.run(agent, message)
8 return response� �� �
1 #Initialize the agent



2 ctf_agent = Agent(
3 name="CTF Agent",
4 instructions="""You are a Cybersecurity expert Leader""",
5 model=OpenAIChatCompletionsModel(
6 model=os.getenv(’CAI_MODEL’, "openai/gpt-4o"),
7 openai_client=AsyncOpenAI(),))
8

9 #Define the task message
10 messages = [{"role": "user",
11 "content": "CTF challenge: TryMyNetwork. Target IP: 192.168.1.1"}]
12

13 #Run the agent
14 response = await run_agent(agent = ctf_agent, message = messages)� �
6.2 Tools

Tools let cybersecurity agents take actions by providing interfaces to execute system commands, run
security scans, analyze vulnerabilities, and interact with target systems and APIs - they are the core
capabilities that enable CAI agents to perform security tasks effectively.

In CAI, tools include built-in cybersecurity utilities (like LinuxCmd for command execution, WebSearch
for OSINT gathering, Code for dynamic script execution, and SSHTunnel for secure remote access),
function calling mechanisms that allow integration of any Python function as a security tool, and agent-
as-tool functionality that enables specialized security agents (such as reconnaissance or exploit agents)
to be used by other agents, creating powerful collaborative security workflows without requiring formal
handoffs between agents. Please refer to Section 8.3 for a detailed description of available tools and
their functioning.

� �
1 import os
2 from openai import AsyncOpenAI
3 from cai.sdk.agents import Agent, Runner, OpenAIChatCompletionsModel
4 from cai.tools.reconnaissance.generic_linux_command import generic_linux_command
5 from cai.tools.reconnaissance.exec_code import execute_code
6

7 #Function to run the agent
8 async def run_agent(agent, message):
9 response = await Runner.run(agent, message)

10 return response� �



� �
1 #Initialize the agent and set tools
2 ctf_agent = Agent(
3 name="CTF Agent",
4 instructions="""You are a Cybersecurity expert Leader""",
5 model=OpenAIChatCompletionsModel(
6 model=os.getenv(’CAI_MODEL’, "openai/gpt-4o"),
7 openai_client=AsyncOpenAI(),),
8 tools=[generic_linux_command, execute_code])
9

10 #Define the task message
11 messages = [{"role": "user",
12 "content": "CTF challenge: TryMyNetwork. Target IP: 192.168.1.1"}]
13

14 #Run the agent
15 response = await run_agent(agent = ctf_agent, message = messages)� �
6.3 Handoffs

Handoffs allow an Agent to delegate tasks to another agent, which is crucial in cybersecurity opera-
tions where specialized expertise is needed for different phases of an engagement.

In our framework, Handoffs are implemented as tools for the LLM, where a handoff/transfer function
like transfer_to_flag_discriminator enables the ctf_agent to pass control to the flag_discriminator_agent
once it believes it has found the flag. This creates a security validation chain where the first agent han-
dles exploitation and flag discovery, while the second agent specializes in flag verification, ensuring
proper segregation of duties and leveraging specialized capabilities of different models for distinct
security tasks.� �

1 import os
2 from cai.sdk.agents import Agent, Runner, OpenAIChatCompletionsModel, function_tool
3 from openai import AsyncOpenAI
4

5 #Function to run the agent
6 async def run_agent(agent, message):
7 response = await Runner.run(agent, message)
8 return response
9

10 #Custom function for flag discriminator
11 @function_tool
12 def transfer_to_flag_discriminator():
13 """
14 Transfer the flag to the
15 flag_discriminator_agent to check if
16 it is the correct flag
17 """
18 return flag_discriminator_agent� �



� �
1 #Initialize the CTF agent
2 ctf_agent = Agent(
3 name="CTF Agent",
4 instructions="""You are a Cybersecurity expert Leader""",
5 model=OpenAIChatCompletionsModel(
6 model=os.getenv(’CAI_MODEL’, "openai/gpt-4o"),
7 openai_client=AsyncOpenAI(),),
8 tools = [transfer_to_flag_discriminator])
9

10 #Initialize the Flag Discriminator Agent
11 flag_discriminator_agent = Agent(
12 name="Flag Discriminator Agent",
13 instructions="""You are a Cybersecurity expert facing a CTF challenge.
14 You are in charge of checking if the flag is correct.""",
15 model=OpenAIChatCompletionsModel(
16 model=os.getenv(’CAI_MODEL’, "openai/gpt-4o"),
17 openai_client=AsyncOpenAI(),))
18

19 #Define the task message
20 messages = [{"role": "user",
21 "content": "CTF challenge: TryMyNetwork. Target IP: 192.168.1.1"}]
22

23 #Run the agent
24 response = await run_agent(agent = ctf_agent, message = messages)� �
6.4 Patterns

Recall that agentic Pattern is a structured design paradigm in artificial intelligence systems where
autonomous or semi-autonomous agents operate within a defined interaction framework (the pattern)
to achieve a goal. These Patterns specify the organization, coordination, and communication methods
among agents, guiding decision-making, task execution, and delegation.

An agentic pattern (AP) can be formally defined as a tuple:

AP = (A,H,D,C,E)

wherein:

• A (Agents): A set of autonomous entities, A = {a1, a2, ..., an}, each with defined roles, capabilities,
and internal states.

• H (Handoffs): A function H : A× T → A that governs how tasks T are transferred between agents
based on predefined logic (e.g., rules, negotiation, bidding).

• D (Decision Mechanism): A decision function D : S → A where S represents system states, and
D determines which agent takes action at any given time.

• C (Communication Protocol): A messaging function C : A×A → M , where M is a message space,
defining how agents share information.

• E (Execution Model): A function E : A× I → O where I is the input space and O is the output
space, defining how agents perform tasks.

When building Patterns in CAI, we generally classify them among one of the categories in Table 6,
though others exist.



Agentic Pattern categories Description

Multi Agent Patterns

Swarm (Decentralized) Agents share tasks and self-assign responsibilities without a cen-
tral orchestrator. Handoffs occur dynamically. An example of a peer-
to-peer agentic pattern is the CTF Agentic Pattern, which involves
a team of agents working together to solve a CTF challenge with dy-
namic handoffs.

Hierarchical A top-level agent (e.g., "PlannerAgent") assigns tasks via struc-
tured handoffs to specialized sub-agents. Alternatively, the structure
of the agents is harcoded into the agentic pattern with pre-defined
handoffs.

Chain-of-Though (Sequential
Workflow)

A structured pipeline where Agent A produces an output, hands
it to Agent B for reuse or refinement, and so on. Handoffs follow a
linear sequence. An example of a chain-of-thought agentic pattern is
the ReasonerAgent, which involves a Reasoning-type LLM that pro-
vides context to the main agent to solve a CTF challenge with a linear
sequence.

Auction-Based (Competitive Al-
location)

Agents "bid" on tasks based on priority, capability, or cost. A deci-
sion agent evaluates bids and hands off tasks to the best-fit agent.

Single Agent Patterns

Recursive A single agent continuously refines its own output, treating itself
as both executor and evaluator, with handoffs (internal or external)
to itself. An example of a recursive agentic pattern is the CodeAgent
(when used as a recursive agent), which continuously refines its own
output by executing code and updating its own instructions.

Table 6: Patterns in CAI - Framwork-specific Terminology and Description.

6.4.1 Building Custom Patterns in CAI

Building a Patterns is rather straightforward and only requires to link together Agents, Tools and
Handoffs. For example, the following builds an offensive Pattern that adopts the Swarm category:� �

1 import os
2 from cai.sdk.agents import Agent, Runner, OpenAIChatCompletionsModel, function_tool
3 from openai import AsyncOpenAI
4 from cai.agents.red_teamer import redteam_agent
5 from cai.agents.thought import thought_agent
6 from cai.agents.mail import dns_smtp_agent� �



� �
1 #Custom function for dns agent
2 @function_tool
3 def transfer_to_dns_agent():
4 """
5 Use THIS always for DNS scans and domain reconnaissance about dmarc and dkim registers
6 """
7 return dns_smtp_agent
8

9 #Custom function for red team agent
10 @function_tool
11 def redteam_agent_handoff(ctf=None):
12 """
13 Red Team Agent, call this function empty to transfer to redteam_agent
14 """
15 return redteam_agent
16

17 #Custom function for thought agent
18 @function_tool
19 def thought_agent_handoff(ctf=None):
20 """
21 Thought Agent, call this function empty to transfer to thought_agent
22 """
23 return thought_agent
24

25 # Register handoff functions to enable inter-agent communication pathways
26 redteam_agent.tools.append(transfer_to_dns_agent)
27 dns_smtp_agent.tools.append(redteam_agent_handoff)
28 thought_agent.tools.append(redteam_agent_handoff)
29

30 # Initialize the swarm pattern with the thought agent as the entry point
31 redteam_swarm_pattern = thought_agent
32 redteam_swarm_pattern.pattern = "swarm"� �
6.5 Turns and Interactions

During the agentic flow (conversation), we distinguish between interactions and turns.

• Interactions are sequential exchanges between one or multiple agents. Each agent executing
its logic corresponds with one interaction. Since an Agent in CAI generally implements the ReACT
agent model, each interaction consists of 1) a reasoning step via an LLM inference and 2) act by
calling zero-to-n Tools. This is defined in process_interaction() in core.py.

• Turns: A turn represents a cycle of one or more interactions which finishes when the Agent (or
Pattern) executing returns None, judging there’re no further actions to undertake. This is defined
in run(), see core.py.

Note: CAI Agents are not related to Assistants in the Assistants API. They are named similarly for
convenience, but are otherwise completely unrelated. CAI is entirely powered by the Chat Completions
API and is hence stateless between calls.

6.6 Tracing

CAI implements AI observability by adopting the OpenTelemetry standard and to do so, it leverages
Phoenix which provides comprehensive tracing capabilities through OpenTelemetry-based instrumen-

https://github.com/aliasrobotics/cai/blob/main/cai/core.py
https://github.com/aliasrobotics/cai/blob/main/cai/core.py
https://github.com/Arize-ai/phoenix


tation, allowing you to monitor and analyze your security operations in real-time. This integration en-
ables detailed visibility into agent interactions, tool usage, and attack vectors throughout penetration
testing workflows, making it easier to debug complex exploitation chains, track vulnerability discovery
processes, and optimize agent performance for more effective security assessments.

6.7 Human-In-The-Loop (HITL)

6.7.1 Levels of Autonomy in Cybersecurity

In robotics, automation refers to systems that execute predefined tasks without human intervention,
while autonomy requires something fundamentally different:

The distinction between au-
tomated and autonomous cy-
bersecurity AI is not aca-
demic pedantry – it’s a crit-
ical safety issue.

adaptive behavior. Autonomous systems must interact with their
environment, reason about uncertainty, and tailor their actions
to environments and situations never explicitly programmed.
The key difference between automated and autonomous systems
lies in the capability of intelligent adaptation to changing envi-
ronments.

The cybersecurity domain, comprizing of dynamic environ-
ments, adversarial actors, incomplete information, and the need for creative problem-solving, resem-
bles the robotics setting. Similarily, "AI security tools" intelligent adaption capabilities range over
spectrum from no automation to true autonomy.

Adapting the well-established SAE J3016 levels of driving automation [10], [2] proposes six levels of
cybersecurity autonomy, from Level 0 (no tools) to Level 5 (fully autonomous):

• Level 0 – No Tools: all tasks are performed manually, without any computational tools whatso-
ever. Since using a terminal or text editor constitutes tool usage, true Level 0 operation is limited
to offline spying tasks.

• Level 1 – Manual Tools: tool use (e.g. Metasploit [6] or Nmap [29]) provides assistance and
execute commands. Tool input and strategic decisions what to do next, however, remain human-
driven.

• Level 2 – LLM-Assisted: LLMs, such as PentestGPT [3], assist while humans execute. The AI
is an intelligent assistant, not an independent actor.

• Level 3 – Semi-Automated: The AI system can execute complete attack sequences in specific,
well-defined scenarios. Tools like AutoPT [8] and Vulnbot [9] alongside many others operate here
– they can autonomously scan, exploit, and report findings, but require human intervention for
edge cases, validation, and mitigation strategies.

• Level 4 – Cybersecurity AIs: Systems aim to handle the complete security assessment lifecy-
cle in security scenarios with minimum human intervention. Nontheless, these systems require
human oversight.

• Level 5 – Fully Autonomous: The aspirational goal where AI handles all cybersecurity tasks in
all conditions without human intervention.

6.7.2 CAI is a semi-autonomous framwork

Our framework aims for Level 4 capabilities by combining multiple specialized agents (for pentesting,
bug hunting, blue teaming, etc.) with seamless tool integration and a human supervisor overseeing
the AI’s choices. While CAI explores autonomous capabilities, we recognize that effective security



operations still require human teleoperation providing expertise, judgment, and oversight in
the security process. In this taxonomy, CAI delivers a framework for building Cybersecurity AIs with a
strong emphasis on semi-autonomous operation, as the reality is that fully-autonomous cybersecurity
systems remain premature and face significant challenges when tackling complex tasks.

Accordingly, the Human-In-The-Loop (HITL) module is a core design principle of CAI, acknowledging
that human intervention and teleoperation are essential components of responsible security testing.

Figure 19: Despite rapid progress in AI, human expertise remains a critical component of effective cy-
bersecurity AI systems. The "Human-In-The-Loop (HITL)" is the end-user or security analyst who provides the
prompts, guidance, and final judgment on the AI’s findings.

Through the cli.py interface, users can seamlessly interact with agents at any point during execution
by simply pressing Ctrl+C. This is implemented across core.py and also in the REPL abstractions REPL.

https://github.com/aliasrobotics/cai/blob/main/cai/core.py
https://github.com/aliasrobotics/cai/blob/main/cai/repl


7 Getting Started ∗

In this chapter we provide a detailed description how to setup CAI in your OS or container environment.

7.1 Install

To install CAI framework on different platforms the system needs to ensure that Python 3.12 is installed
on your machine. After that a Python virtual environment has to be set up to isolate dependencies. The
environment is activated when the cai-framework package is installed. A .env file with API keys and
default settings is generated. Finally the CAI command-line tool is launched.

Platform-specific steps are applied as needed, such as Homebrew on macOS, Personal Package Archives
on Ubuntu or manual compilations on Android.

In the following sections, you will find the OS or environment specific installation commands to in-
stall CAI.

7.1.1 OS X� �
1 brew update && \
2 brew install git python@3.12
3

4 # Create virtual environment
5 python3.12 -m venv cai_env
6

7 # Install the package from the local directory
8 source cai_env/bin/activate && pip install cai-framework
9

10 # Generate a .env file and set up with defaults
11 echo -e ’OPENAI_API_KEY="sk-1234"\nANTHROPIC_API_KEY=""\nOLLAMA=""\nPROMPT_TOOLKIT_NO_CPR=1
12 \nCAI_STREAM=false’ > .env
13

14 # Launch CAI
15 cai # first launch it can take up to 30 seconds� �
7.1.2 Ubuntu 24.04

Installing CAI in Ubuntu 24.04 is done using the following commants in the CLI:� �
1 sudo apt-get update && \
2 sudo apt-get install -y git python3-pip python3.12-venv
3

4 # Create the virtual environment
5 python3.12 -m venv cai_env� �



� �
1 # Install the package from the local directory
2 source cai_env/bin/activate && pip install cai-framework
3

4 # Generate a .env file and set up with defaults
5 echo -e ’OPENAI_API_KEY="sk-1234"\nANTHROPIC_API_KEY=""\nOLLAMA=""
6 \nPROMPT_TOOLKIT_NO_CPR=1
7 \nCAI_STREAM=false’ > .env
8

9 # Launch CAI
10 cai # first launch it can take up to 30 seconds� �
7.1.3 Ubuntu 20.04

To launch CAI in Ubuntu 20.04, please proceed with the following commands:� �
1 sudo apt-get update && \
2 sudo apt-get install -y software-properties-common
3

4 # Fetch Python 3.12
5 sudo add-apt-repository ppa:deadsnakes/ppa && sudo apt update
6 sudo apt install python3.12 python3.12-venv python3.12-dev -y
7

8 # Create the virtual environment
9 python3.12 -m venv cai_env

10

11 # Install the package from the local directory
12 source cai_env/bin/activate && pip install cai-framework
13

14 # Generate a .env file and set up with defaults
15 echo -e ’OPENAI_API_KEY="sk-1234"\nANTHROPIC_API_KEY=""\nOLLAMA=""\nPROMPT_TOOLKIT_NO_CPR=1
16 \nCAI_STREAM=false’ > .env
17

18 # Launch CAI
19 cai # first launch it can take up to 30 seconds� �
7.1.4 Windows WSL

To install CAI in the Windows Subsystem for Linux (WSL), please open a terminal and execute the
following commands:� �

1

2 sudo apt-get update && \
3 sudo apt-get install -y git python3-pip python3-venv
4

5 # Create the virtual environment
6 python3 -m venv cai_env� �



� �
1 # Install the package from the local directory
2 source cai_env/bin/activate && pip install cai-framework
3

4 # Generate a .env file and set up with defaults
5 echo -e ’OPENAI_API_KEY="sk-1234"\nANTHROPIC_API_KEY=""\nOLLAMA=""\nPROMPT_TOOLKIT_NO_CPR=1
6 \nCAI_STREAM=false’ > .env
7

8 # Launch CAI
9 cai # first launch it can take up to 30 seconds� �

7.1.5 Android

To set up CAI in android, please process the following commands:� �
1 # Get new apt keys
2 wget http://http.kali.org/kali/pool/main/k/kali-archive-keyring/
3 kali-archive-keyring_2024.1_all.deb
4

5 # Install new apt keys
6 sudo dpkg -i kali-archive-keyring_2024.1_all.deb && rm kali-archive-keyring_2024.1_all.deb
7

8 # Update APT repository
9 sudo apt-get update

10

11 # CAI requieres python 3.12, lets install it (CAI for kali in Android)
12 sudo apt-get update && sudo apt-get install -y git python3-pip build-essential
13 zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libreadline-dev
14 libffi-dev libsqlite3-dev wget libbz2-dev pkg-config
15 wget https://www.python.org/ftp/python/3.12.4/Python-3.12.4.tar.xz
16 tar xf Python-3.12.4.tar.xz
17 cd ./configure --enable-optimizations
18 sudo make altinstall # This command takes long to execute
19

20 # Clone CAI’s source code
21 git clone https://github.com/aliasrobotics/cai && cd cai
22

23 # Create virtual environment
24 python3.12 -m venv cai_env
25

26 # Install the package from the local directory
27 source cai_env/bin/activate && pip3 install -e .
28

29 # Generate a .env file and set up
30 cp .env.example .env # edit here your keys/models
31

32 # Launch CAI
33 cai� �
7.1.6 Docker

There is also the possibilty to run the framework directly in a Docker container without additional en-
vironmental configuration. For that the Github repo has to be cloned to the local machine and opened
in an IDE e.g. in Visual Studio Code. After opening the project folder a pop-up appers in the lower
right corner saying "Folder contains a Dev Container configuration file. Reopen folder to develop in
container." By clicking on "Reopen in Container" the remote connection initializes and starts the con-
tainer (this may take some time). Once the container is running a new terminal can be opened directly
in VS Code, leading to a shell session with user root in workspace.



Alternatively, a seperate terminal can be started accessing the docker container via� �
1 docker exec -it <containerID> bash� �

After entering the session with root in workspace, the tool can be started with the command cai.� �
1 (root@1ae1d8c63301)-[/workspace]
2 # cai� �

7.2 Initial Configuration

CAI uses a .env file to manage key settings like API keys, model selection, and feature toggles via
environment variables. This section explains how to set up the file using the provided .env example
and outlines important requirements. It also shows how to configure a custom endpoint for advanced
setups or self-hosted models.

7.2.1 Setup the .env File

CAI leverages the .env file to load configurations at launch. To facilitate the setup, the repo provides
an exemplary .env file as a template for configuring CAI’s setup and your LLM API keys to work with
the desired LLM models.

.
CAI does not provide API keys for any model by default. In order to use CAI, users need
to integrate their own LLM API keys or host their own models. To use a specific LLM
in CAI, the respective API keys or URLs have to be set in the respective environment
variables.
Moreover, the OPENAI_API_KEY must not be left blank. It should contain either "sk-123"
(as a placeholder) or your actual API key.

If you are using alias0 model, make sure you have installed a CAI version >0.4.0 and that you have an
.env.example file to be able to use it.� �

1 OPENAI_API_KEY="sk-1234"
2 OLLAMA=""
3 ALIAS_API_KEY="<sk-your-key>" # note, add yours
4 CAI_STEAM=False� �

7.2.2 Custom OpenAI Base URL Support

CAI supports configuring a custom OpenAI API base URL via the OPENAI_BASE_URL environment vari-
able. This allows users to redirect API calls to a custom endpoint, such as a proxy or self-hosted
OpenAI-compatible service. Below you can find an Example of a .env entry configuration:� �

1 OLLAMA_API_BASE="https://custom-openai-proxy.com/v1"� �
Or directly from the command line:� �

1 OLLAMA_API_BASE="https://custom-openai-proxy.com/v1" cai� �



7.3 Environment Variables

To use private models, users are provided with a .env.example file. After renaming it as .env., users can
fill in in their corresponding API keys to use CAI. A list of possible environment variables is shown in
Table 7.

Variable Description

Swarm (CTF_NAME) Name of the CTF challenge to run (e.g. "picoctf_static_flag")

CTF_CHALLENGE Specific challenge name within the CTF to test

CTF_SUBNET Network subnet for the CTF container

CTF_IP IP address for the CTF container

CTF_INSIDE Whether to conquer the CTF from within container

CAI_MODEL Model to use for agents

CAI_DEBUG Set debug output level (0: Only tool outputs, 1: Verbose debug
output, 2: CLI debug output)

CAI_BRIEF Enable/disable brief output mode

CAI_MAX_TURNS Maximum number of turns for agent interactions

CAI_TRACING Enable/disable OpenTelemetry tracing

CAI_AGENT_TYPE Specify the agents to use (boot2root, one_tool...)

CAI_STATE Enable/disable stateful mode

CAI_MEMORY Enable/disable memory mode (episodic, semantic, all)

CAI_MEMORY_ONLINE Enable/disable online memory mode

CAI_MEMORY_OFFLINE Enable/disable offline memory

CAI_ENV_CONTEXT Add dirs and current env to LLM context

CAI_MEMORY_ONLINE_INTERVAL Number of turns between online memory updates

CAI_PRICE_LIMIT Price limit for the conversation in dollars

CAI_REPORT Enable/disable reporter mode (ctf, nis2, pentesting)

CAI_SUPPORT_MODEL Model to use for the support agent

CAI_SUPPORT_INTERVAL Number of turns between support agent executions

CAI_WORKSPACE Defines the name of the workspace

CAI_WORKSPACE_DIR Specifies the directory path where the workspace is located

Table 7: List of Environment Variables



7.4 OpenRouter Integration

The Cybersecurity AI (CAI) platform offers seamless integration with OpenRouter, a unified interface
for Large Language Models (LLMs). This integration is crucial for users who wish to leverage advanced
AI capabilities in their cybersecurity tasks. OpenRouter acts as a bridge, allowing CAI to communicate
with various LLMs, thereby enhancing the flexibility and power of the AI agents used within CAI.

To enable OpenRouter support in CAI, you need to configure your environment by adding specific en-
tries to your .env file. This setup ensures that CAI can interact with the OpenRouter API, facilitating
the use of sophisticated models, such as Meta-LLaMA. The following code snippet depicts how users
can configure OpenRouter support in CAI.� �

1 CAI_AGENT_TYPE=redteam_agent
2 CAI_MODEL=openrouter/meta-llama/llama-4-maverick
3 OPENROUTER_API_KEY=<sk-your-key> # note, add yours
4 OPENROUTER_API_BASE=https://openrouter.ai/api/v1� �

7.5 Model Context Protocol (MCP) Integration

CAI supports the Model Context Protocol (MCP) for integrating external tools and services with AI
agents. MCP is supported via two transport mechanisms:

SSE (Server-Sent Events) - For web-based servers that push updates over HTTP connections:� �
1 CAI>/mcp load http://localhost:9876/sse burp� �
STDIO (Standard Input/Output) - For local inter-process communication:� �

1 CAI>/mcp stdio myserver python mcp_server.py� �
Once connected, you can add the MCP tools to any agent:



� �
1 CAI>/mcp add burp redteam_agent
2 Adding tools from MCP server ’burp’ to agent ’Red Team Agent’...
3 Adding tools to Red Team Agent
4 ______________________________________________________________________________________________

5 | Tool | Status | Details |
6 | |
7 | send_http_request | Added | Available as: send_http_request |
8 | create_repeater_tab | Added | Available as: create_repeater_tab |
9 | send_to_intruder | Added | Available as: send_to_intruder |

10 | url_encode | Added | Available as: url_encode |
11 | url_decode | Added | Available as: url_decode |
12 | base64encode | Added | Available as: base64encode |
13 | base64decode | Added | Available as: base64decode |
14 | generate_random_string | Added | Available as: generate_random_string |
15 | output_project_options | Added | Available as: output_project_options |
16 | output_user_options | Added | Available as: output_user_options |
17 | set_project_options | Added | Available as: set_project_options |
18 | set_user_options | Added | Available as: set_user_options |
19 | get_proxy_http_history | Added | Available as: get_proxy_http_history |
20 | get_proxy_http_history_regex | Added | Available as: get_proxy_http_history_regex |
21 | get_proxy_websocket_history | Added | Available as: get_proxy_websocket_history |
22 | get_proxy_websocket_history_regex | Added | Available as: get_proxy_websocket_history_regex |
23 | set_task_execution_engine_state | Added | Available as: set_task_execution_engine_state |
24 | set_proxy_intercept_state | Added | Available as: set_proxy_intercept_state |
25 | get_active_editor_contents | Added | Available as: get_active_editor_contents |
26 | set_active_editor_contents | Added | Available as: set_active_editor_contents |
27 | _____________________________________________________________________________________________|
28

29 Added 20 tools from server ’burp’ to agent ’Red Team Agent’.
30 CAI>/agent 13
31 CAI>Create a repeater tab� �
You can list all active MCP connections and their transport types:� �

1 CAI>/mcp list� �



8 Quickstart, CAI Commands and Use ∗

8.1 Quickstart

To start CAI after installing it, the user has to type cai in the command line interface:� �
1 # cai
2

3 CCCCCCCCCCCCC ++++++++ ++++++++ IIIIIIIIII
4 CCC::::::::::::C ++++++++++ ++++++++++ I::::::::I
5 CC:::::::::::::::C ++++++++++ ++++++++++ I::::::::I
6 C:::::CCCCCCCC::::C +++++++++ ++ +++++++++ II::::::II
7 C:::::C CCCCCC +++++++ +++++ +++++++ I::::I
8 C:::::C +++++ +++++++ +++++ I::::I
9 C:::::C ++++ ++++ I::::I

10 C:::::C ++ ++ I::::I
11 C:::::C + +++++++++++++++ + I::::I
12 C:::::C +++++++++++++++++++ I::::I
13 C:::::C +++++++++++++++++ I::::I
14 C:::::C CCCCCC +++++++++++++++ I::::I
15 C:::::CCCCCCCC::::C +++++++++++++ II::::::II
16 CC:::::::::::::::C +++++++++ I::::::::I
17 CCC::::::::::::C +++++ I::::::::I
18 CCCCCCCCCCCCC ++ IIIIIIIIII
19

20 Cybersecurity AI (CAI), vX.Y.Z
21 Bug bounty-ready AI
22

23 CAI>� �
The cai command initializes CAI and provides a prompt to execute any security task you want to per-
form. The navigation bar at the bottom displays important system information, which facilitates the
user in understanding the environment while working with CAI.

You can find a quick demo video to help you get started with CAI. In the following Sections, the basic
steps – from launching the tool to running your first AI-powered task in the terminal – are described in
a beginner friendly manner.

8.2 CAI Command Reference

After starting CAI, users can directly enter natural language instructions in the command line interface,
e.g. ‘Do a port scan on machine ...’ or execute CAI commands. CAI commands start with a slash
/ and possibly require arguments.

8.2.1 Quick Shortcuts

The following shortcuts help navigate quickly in CAI:

- ENTER - execute input

- ESC + ENTER - Multi-line input

- TAB - Command completion

- ↑/↓ - Command history

https://asciinema.org/a/zm7wS5DA2o0S9pu1Tb44pnlvy


- Ctrl+C - Interrupt/Exit

- Use help for detailed command help

- Use help quick for a quick guide

- Use help commands for all commands

- shell [COMMAND] - Execute shell commands

- Use the $ prefix for quick shell: $ ls

8.2.2 Environment Commands

To set the workspace, change the environment variables or run a ducker container, the following com-
mands come handy:

- workspace set [NAME] - Set workspace directory

- config - Manage environment variables

- virt run [IMAGE] - Run a Docker container

Example: to set the CAI workspace directory, use the workspace set [NAME] command:� �
1 CAI>/workspace set ctf_name� �

8.2.3 Manage LLMs

To manage models, either via Model Context Protocol or CAI API, users can use the following com-
mands

- mcp load [TYPE] [CONFIG] - Load MCP servers

- model [NAME] - Change AI model

Find an example of MCP use with CAI commands below:� �
1 CAI>/mcp load sse http://localhost:3000
2 CAI>/mcp add server_name agent_name� �

Example: To change the LLM, use the cai command model.� �
1 CAI>/model claude-3-haiku� �

8.2.4 Agent Management in CAI

For a detailed description on available built in agents (cf. agent list their use and tools, see Section
8.4. For an overview of build in multi-agent patterns, see Section 8.5.

- agent list - List all available agents

- agent select [NAME] - Switch to specific agent

- agent info [NAME] - Show agent details

- parallel add [NAME] - Configure parallel agents



8.2.5 Session History and Memory Management

The following commands can be used to manage the conversation and interaction history of CAI.

- memory list - List saved memories

- history - View conversation history

- compact - AI-powered conversation summary

- flush - Clear conversation history

8.2.6 Quick Start Workflows

After the initial configuration is set up, it is time to test CAI and and perform the first cybersecurity
tasks.

CTF Challenge

To have CAI solve a capture the flag (CTF) challenge, the following sample workflow can be followed.� �
1 /agent select redteam_agent
2 /workspace set ctf_name
3 Describe the challenge...� �

Bug Bounty

To setup a simple boug bounty hunter agent – Bug Bounter Agent) – to test a website, can proceed with
the following commands.� �

1 /agent select bug_bounter_agent
2 /model claude-3-5-haiku
3 Test https://example.com� �

Parallel Reconnaissance

To spawn two agents (here: a Red Team Agent and a Network Traffic Specialist) in parallel, use
the following commands:� �

1 /parallel add red_teamer
2 /parallel add network_traffic_analyzer
3 Scan 192.168.1.0/24� �

For advanced security testing and more sophisitcated analysis taylored to the users’ needs, agents and
agentic patterns can be customized.

In the folloging sections we provide a comprehensive overview of available agents (Section 8.4) and
function tools (Section 8.3) that can be assigned to agents, as well as built in mutli-agent patterns
(Section ).



8.3 Tools Available in CAI (v0.5.2)

This section, Section 8.3 gives a comprehensive overview of the function tools and related modules
available in CAI. Since not all users might be familiar with the tools usually used for network security
analysis, this section also provides a short introduction to the most common tools as well as use of
these functions.

We refer to src/cai/tools/ in the repository for the source code of the tools.

8.3.1 Taxonomy of Function Tools

CAI provides different tools agents can use for security analysis. They are grouped in six major cate-
gories inspired by the Cyber Kill Chain (a cybersecurity attack model typically accredited to Lockheet
Martin [30], see [31]), as well as misc, web, others and web.

8.3.2 The Cyber Kill Chain

The Cyber Kill Chain is a framework developed by Lockheed Martin to identify and prevent cyber
intrusion activity. The framework is structured in disctinct stages, providing a structured way for
security teams to identify what the adversaries must complete in order to achieve their objectives. The
seven stages of the Cyber Kill Chain are:

1. Reconnaissance: The attacker gathers information about the target such as email addresses,
systems, employees and potential entry points.

2. Weaponization: The attacker creates a malicious payload and pairs it with an exploit.

3. Delivery: The attacker transmits the exploit to the target.

4. Exploitation: The payload is triggered, exploiting a vulnerability in the target system.

5. Installation: The attacker installs malware to maintain a foothold.

6. Command and Control: The compromised system connects back to the attacker, enabling a
command channel for remote manipulation of the victim.

7. Actions on Objectives: The attacker achieves their final goal such as stealing sensitive files,
deploying ransomware,causing operational disruption, etc.

Similarily, we categorize the CAI tools into six major categories and four additional smaller categories:

Reconnaissance and Weaponization | Exploitation | Privilege Escalation | Lateral Movement | Data Ex-
filtration | Command and Control | Network | Web Tools | Miscellaneous Tools | Other Tools

8.3.3 Tool Overview

As of version V0.5.2, CAI supports the following tools (by group) and related utility modules are avail-
able. Note that function tools that can be used by agents (directly or indirectly) are displayed in
turquoise color, whereas classes and utility modules will be displayed in gray.

1. Reconnaissance and Weaponization - reconnaissance

• curl (Function Tool)

• generic_linux_command (Function Tool)



• netcat (Function Tool)

• netstat (Function Tool)

• nmap (Function Tool)

• shodan.py (Utility Module)

• shodan_search (Function Tool)

• shodan_host_info (Function Tool)

2. Exploitation - exploitation

• strings_command (Function Tool)

• decode_hex_bytes (Function Tool)

• decode64 (Function Tool)

• execute_code (Function Tool)

3. Privilege escalation - escalation

• currently empty

4. Lateral movement - lateral

• currently empty

5. Data exfiltration - exfiltration

• list_dir (Function Tool)

• cat_file (Function Tool)

• pwd_command (Function Tool)

• find_file (Function Tool)

• wget (Function Tool)

6. Command and control - control

• run_ssh_command_with_credentials (Function Tool)

• ReverseShellClient (Class)

7. Network - network

• capture_remote_traffic (Function Tool)

• remote_capture_session (Function Tool)

8. Web Tools - web

• google_search.py (Utility Module)

• headers.py (Utility Module)

• query_perplexity (function tool)

• make_web_search_with_explanation (Function Tool)

• make_google_search (function tool)

• webshell_suite.py (Utility Module)

9. Miscellaneous Tools - misc

• rag.py (Utility Module)



• reasoning.py (Utility Module)

• think (Function Tool)

• execute_cli_command (Function Tool)

• execute_python_code (Function Tool)

10. Other Tools - others

• scripting_tool (Function Tool)

8.3.4 Reconnaissance Tools

curl A simple curl function tool to make HTTP requests to a specified target (argument). the function
returns the output of running the curl command.

�
curl is a command-line tool to transfer data from or to a server using various protocols
such as HTTP, HTTPS, FTP, and more. It can be used to interact with web servers, APIs,
etc. This way, curl can be leveraged to uncover server misconfigurations, erroreous
access control (e.g. if it is possible to access unauthorzied endpoints). Moreover, curl
can be used to ss controls (e.g., accessing unauthorized endpoints) check for information
disclosure in HTTP headers. See [32] for futher reading.

generic_linux_command The tool generic_linux_command executes commands with session man-
agement. This tool can be used to run any command. The system automatically detects and handles
regular commands (ls, cat, grep, etc.), interactive commands that need persistent sessions (ssh,
nc, python, etc.). It also handles session management and output capture. The function call returns
either the command output, the session ID for interactive commands and/or the status message.

Examples generic_linux_command("ls -la").
The system should automatically detect and use the appropriate execution environment.

• CTF: Commands run in the CTF challenge environment when available

• Container: Commands run in Docker containers when the environment variable CAI_ACTIVE_CONTAINER
is set

• SSH: Commands run via SSH when the environment variables SSH_USER and SSH_HOST are config-
ured

• Local: Commands run on the local system as fallback

�
Linux commands are foundational elements for system management, monitoring, and
scripting. General Linux commands include ls, ps, and grep [33]. It’s primarily used
for monitoring system behavior, viewing running processes, open ports, and users, and
automating tasks via shell scripts. This tool can help uncover misconfigured services,
unwanted running processes, and file permission issues [33].



netcat This fuction tool provides a simple netcat tool to connect to a specified host and port. Addi-
tional arguments to pass to the netcat command are the host, port and (optionally) the payload data
to send to the host.

The function returns the output of running the netcat command or an error message if connection
fails.

�
netcat (nc) is a versatile networking tool used for reading and writing data across net-
work connections using TCP or UDP [34]. It finds application in port scanning, banner
grabbing, setting up reverse shells, and debugging and testing network services. Using
netcat can help uncover open and exposed ports, identify services with verbose banners
revealing software versions, and potentially achieve remote command execution if used
with reverse shell techniques [34].

netstat This function provides the netstat tool to list all listening ports and their associated pro-
grams. The function returns the output of running the netstat command or an error message if
connection fails.

�
The netstat command displays active network connections, listening ports, routing ta-
bles, and network interface statistics [35]. The tool commonly used for checking open and
listening ports, monitoring network activity, and identifying unexpected or unauthorized
connections. This tool assists in uncovering hidden or unauthorized services, malware
communicating externally, and port misuse or conflict [35].

nmap This function provides a simple nmap tool to scan a specified target (argument). The function
returns output of running the nmap command.

�
nmap is a powerful network scanning tool used for discovering hosts and services on a
network [29]. It is employed for host discovery, port scanning, OS and service finger-
printing, and vulnerability detection. nmap can help uncover open and vulnerable ports,
identify running services and their versions, and detect weak configurations or outdated
software [29].

shodan.py A Shodan search utility module for reconnaissance. This module provides helper functions
to search Shodan for information about hosts, services, and vulnerabilities using the Shodan API.

shodan_search This function tool performs a Shodan search for information based on the provided
Shodan search query (str) and limit (int), specifying the maximum number of results to return (de-
fault:10).

shodan_host_info This function tool provides detailed information about a specific host from Shodan.

�
Shodan [36] is a search engine that "lets you find and explore devices and systems con-
nected to the Internet" [37]. It provides detailed information about a specific IP address
and assists in viewing open ports and services on a host, checking for known vulnerabili-
ties and CVEs, and profiling devices from external IPs. Shodan services can help uncover
vulnerable or outdated services, unintended exposure of internal systems, and potential
entry points for attackers [36].



8.3.5 Privilege Esclalation Tools

Currently, there are no tools in CAI that fall into this specific category. This does not imply that there
are no tools available to do so; rather they corresponding tools correspond to multiple categories and
are located in other categories.

8.3.6 Lateral Movement Tools

As with Privilege Escalation, the corresponding tools can be assigned to multiple categories and can be
found in other categories.

8.3.7 Exploitation Tools

strings_command Given the file path as an argument, this function tool extracts the printable strings
from a binary file.

decode_hex_bytes The function decodes a string of hex bytes (Input format: "0xFF 0x00 0x63..." into
ASCII text.

decode64 This function tool decodes an input string from Base64 format to ASCII text.

�
As their Linux analogons xxd or hexdump, base64 and strings, these functions can be
used for threat hunting, and vulnerability assessment: The strings command can be
used to analyze malware or suspicious files, as it can help identify potential malicious
code, extract configuration data, credentials, or other sensitive information. Decoding
hexdumps is useful when analyzing network captures, malware, or (suspicious) files that
contain hexadecimal-encoded data, such as authentication credentials. Base64, onn the
other hand, is often used in HTTP traffic in authorization and content-type headers, as
well as for JSON Web Tokens and API keys. When analyzing HTTP traffic, being able to
decode base64-encoded data helps identify authentication credentials or API keys, and
helps uncover security issues, such as hardcoded credentials.

execute_code The function tool execute_code create a file code, stores it and executes it. It allows
for executing code provided in the programming languages depicted in Table 8: Bevore execution, the

Python (py) PHP (php) Bash (sh) Shell (sh) Ruby (rb)
Perl (pl) Go (go) Golang (go) JavaScript (js) JS (js)
TypeScript (ts) TS (ts) Rust (rs) C# (cs) CS (cs)
Java (java) Kotlin (kt) C (c) C++ (cpp)

Table 8: List of programming languages that can be processed by the execute_code function tool.

tool creates a permanent file with the provided code. Subsequently, it executes the code using the
appropriate interpreter. The code can be executed repreatedly using the generic_linux_command tool.

The arguments of the function are the code snippet to execute, the programming language to use
(default: python), the filename (default: exploit) as well as a timeout paramerer (default: 100 seconds).
In case no code is provided the function returns an error message.

8.3.8 Data Exfiltration Tools

list_dir Given the path and some optional additional arguments, function list_dir lists the contents
of a directory. The output is the the output of the generic ls command.



cat_file As the generic Linux command, cat displays the contents of a file. As additional argument,
the path to the fiile is passed to the cat command.

pwd_command A function to retrieve the path of the current working directory (pwd ). Returns the
absolute path of the current working directory.

find_file Given the filepath, find_file Finds a file in the filesystem.

wget Given the url (and optional additional argumentS), the function tool wget downloads files from
the web.

8.3.9 Command and Control Tools

run_ssh_command_with_credentials The run_ssh_command_with_credentials tool executes remote
commands via SSH using password authentication. The function takes the remote host address, then
SSH username, password and SSH port (default: 22) as function arguments.

ReverseShellClient The command and control module implemented in command_and_control.py
provides the class ReverseShellClient – a reverse shell client implementation that allows an LLM
control and interact with remote shells. The module provides a flexible and interactive way for the
LLM to interact with remote machines. The module

• Establishes a connection to a listener on the attacker’s machine

• Allows the attacker to send commands to the remote machine

• Executes the commands on the remote machine and sends the output back to the attacker

• Provides a way for the attacker to interact with the remote machine’s shell

• Manages shell sessions.

�
A reverse shell client is a type of software tool that establishes a connection from a
remote machine back to the attacker’s machine, allowing the attacker to interact with
the remote machine’s shell.

8.3.10 Network Tools

capture_remote_traffic The capture_remote_traffic function tool captures network traffic from a
remote virtual machine. It returns a pipe (a process with stdout) that can be read by tshark.

The function inputs are the target ip, username, password, interface, port (default: 22) and
timeout (default: 10 seconds), as well as optional filters.

�
Tshark [38] (the non-graphical counterpart of Wireshark [39, 40]) is a powerful,
command-line based network protocol analyzer. Tshark can output data in a variety of
(human-readable) formats and filter the capture by protocol, IP address, port, etc. It can
be used to diagnose network issues on remote servers, gather and inspect captured traf-
fic for intrusion detection or forensics. For details on .pcap and network analysis, see,
e.g., [41].

remote_capture_session The remote_capture_session is a context manager/function tool ton cap-
ture remote traffic capture. The tool also automatically cleans up resources. The function inputs are
the target ip, username, password, interface and port (default: 22), as well as optional filters.



8.3.11 Web Tools

google_search.py This utility mulude provides methods to perform to perform Google searches in
two modes:

1. The regular search returns URLs from standard Google search results

2. Google dorking returns URLs from searches using advanced Google search operators

headers.py This utility module analyzes HTTP requests and responses using the web_request_framework
function. The function provides utilities for making HTTP requests and analyzing the responses from a
security testing perspective, including header analysis, parameter inspection, and security vulnerabil-
ity detection.

webshell_suite.py This helper module contains utilities for web exploitation, specifically for PHP
webshell and curl generation and upload.

query_perplexity The function tools queries the Perplexity AI API.[42] with a user prompt and re-
turns the query output.

�
Perplexity AI is an AI-powered search engine and answer engine. It combines the capa-
bilities of LLMs with real-time web search. While traditional search engines return a list
of links, Perplexity summarizes the information and presents natural language answers
with direct citations.

make_web_search_with_explanation Executes an intelligent web search via the AI service for rele-
vant cybersecurity and CTF-related information. This function sends the provided query to the internet
search engine and returns the response. It also uses the full context of the current CTF challenge.

make_google_search Performs a google search and returns a list of search results. Each result
contains an URL, the title and a text snippet.

8.3.12 Miscalleneous Tools

execute_python_code The tool executes Python code (the input argument) and returns the output.
Optional additional inputs include context in form of a dicitonary. The funtion returns the output of the
Python program.

execute_cli_command This Command Line Interface aka. CLI command function executes shell
commands and processing their output. The function argument is the command to execute, which
should be concise and focused. Avoid overly verbose commands with unnecessary flags or options. It
returns the formatted command output and possibly truncates it.

8.3.13 Other Tools

rag.py A utilities module for Retrieval Augmented Generation (RAG) to query and add data to a vector
databases. This module is used by the memory agent.

The module constists of a function tool query_memory to retrieve relevant context from Previous CTFs
executions. The function arguments are the search query to find relevant documents and top_k (de-
fault: 3), a parameter specifying the number of top results to return. The function either returns the
most relevant matches from the vector database (formatted as a string) or a warning "No documents



found in memory."

The two other function tools in the module, add_to_memory_episodic and add_to_memory_semantic
add relevant data to the persistent memory.

�
Retrieval Augmented Generation (RAG) [43] introduces an intermediary step to classical
LLM inference. Rather than passing the input directly to the LLM, RAG instead uses
the input to retrieve a set of relevant documents or passages from a database or corpus.
The retrieved inputs are then concatenated with the original input and inputed to the
LLM, which subsequenty generates the actual output. RAG thus has two sources of
knowledge: the parametric memory (knowledge stored in the model parameters) and the
nonparametric memory - the database from which RAG retrieves passages.

reasoning.py The reasoning.py utilities module provides reasoning tools for tracking thoughts, find-
ings and analysis. Specifically, it provides utilities for recording and retrieving key information discov-
ered during CTF progression, via the function tools

• thought, a tool used to express detailed thoughts and analysis during boot2root CTF;

• write_key_findings as well as

• read_key_findings; the tools to read and write key findings to a state.txt file to track critical
informations with respect to the CTF, such as discovered credentials and vulnerabilities, privilege
escalation vectors, system access details and other key findings needed for progression

think think is a function tool from the reasoning.py module. An agent, e.g. the thought agent, can
use the tool to think about something. While the method cannot obtain new information or change the
database, it can be used when complex reasoning or some cache memory is needed.

scripting_tool The scripting tool is a method to execute Python code directly in the memory. We
advice the users to use this tool with caution since the function executes Python code directly.

Moreover, since code is directly executed, the user needs to import all the modules and libraries before
use. If the command is empty or invalid or whenever potentially dangerous operations are detected an
error is returned.

The function can handle the following arguments as inputs:

• Raw Python code

• Markdown formatted code

• Code with leading or trailing whitespace

Additional optional arguments include the usual command line arguments as well CTF context objects
(required for tool interface). After the call, the function returns the output from the Python code.

8.4 Built-in Agents Available in CAI (v0.5.2)

As of Version 0.5.2, the following agents are available (see also: https://github.com/aliasrobotics/
cai/tree/main/src/cai/agents). For a short introduction how to build your own agents and integrate
function tools, please refer to Sections 6.1 and 8.3 for custom tool use documentation.

https://github.com/aliasrobotics/cai/tree/main/src/cai/agents
https://github.com/aliasrobotics/cai/tree/main/src/cai/agents


Agent (Nr.) Key (Module) Description

Blue Team Agent (1) blueteam_agent
(cai.agents.blue_teamer)

An agent that specializes in system defense and
security monitoring. Expert in cybersecurity
protection and incident response.

Bug Bounter (2) bug_bounter_agent
(cai.agents.bug_bounter)

An agent that specializes in bug bounty hunting
and vulnerability discovery. Expert in web secu-
rity, API testing, and responsible disclosure.

DFIR Agent (3) dfir_agent (cai.agents.dfir) DFIR Base Agent Digital Forensics and Incident
Response (DFIR) Agent module for conducting
security investigations and analyzing digital evi-
dence. This agent specializes in system and net-
work forensics, malware analysis, memory and
disc forensics, evidence preservation, incident
response, threat hunting as well as iimeline re-
construction.

Flag discriminator (4) flag_discriminator
(cai.agents.flag_discriminator)

An Agent focused on extracting the flag from the
output. The agent calles the CTF_Agent if no flag
is found.

CTF agent (5) one_tool_agent
(cai.agents.flag_discriminator)

A CTF Agent and profound command line tool ex-
pert, focused on conquering security challenges
using generic linux commands. Expert in cyber-
security and exploitation.

DNS_SMTP_Agent (6) dns_smtp_agent
(cai.agents.mail)

The DNS SMTP Agent is a module for checking
email configuration security.

Memory Agent query_agent, se-
mantic_builder,
episodic_builder
(cai.agents.memory)

Memory agent implementation realzing retrieval
augmented generation (RAG) [43] for CAI. It
stores long term memory in episodic and se-
mantic formats. The episodic_builder stores
episodic memories – chronological records of
past interactions – in episodic format. The se-
mantic_builder memorizes cross-exercise knowl-
edge through similarity-based on historical ex-
periences. The query_agent queries the mem-
ory system to retrieve relevant historical infor-
mation from previous security assessments and
CTF exercises.

Memory Analysis Spe-
cialist (7)

memory_analysis_agent
(cai.agents.memory_analy-
sis_agent)

An agent that specializes in network security
analysis. Expert in monitoring, capturing, and
analyzing network communications for security
threats. Can call the DFIR Agent for help.

8.5 Predefined Patterns Available in CAI (v0.5.2)

As of Version 0.5.2, the following build in patterns are available in CAI. For a short introduction how to
build your own patterns using agents, tools and handoffs, please refer to Section 6.4 for documentation.



Agent Key (Module) Description

Network Security Ana-
lyzer (8)

network_security_analyzer
(cai.agents.network_traffic_-
analyzer)

An agent for runtime memory analysis and ma-
nipulation. The Agent specializes in process
memory examination, monitoring, and modifica-
tion for security assessment, vulnerability dis-
covery, and runtime behavior analysis.

Red Team Agent (9) redteam_agent
(cai.agents.red_teamer)

A red team base agent that specializes in bug
bounty hunting and vulnerability discovery. Ex-
pert in web security, API testing, and responsible
disclosure.

Replay Attack Agent (10) replay_attack_agent
(cai.agents.replay_attack_agent)

Replay attack and counteroffensive agent, spe-
cialized in network replay attacks, packet ma-
nipulation, and counteroffensive techniques for
security testing and incident response.
The agents objectives are to identify and exploit
replay vulnerabilities, test protocol implemen-
tation security, simulate advanced persistent
threats and evaluate defensive controls against
replay attacks.

Reporting Agent (11) reporting_agent
(cai.agents.reporter)

The reporting agent creates professional secu-
rity assessment reports in HTML.

Retester Agent (12) retester_agent
(cai.agents.retester)

An agent that specializes in vulnerability veri-
fication and triage. Expert in determining ex-
ploitability and eliminating false positives

Reverse Engineering
Specialist (13)

reverse_engineering_agent
(cai.agents.reverse_engineer-
ing_agent)

A reverse engineering and binary analysis. The
agent specializes in firmware analysis, binary
disassembly, decompilation, and vulnerability
discovery using tools like Ghidra, Binwalk, and
various binary analysis utilities.

Sub-GHz SDR Specialist
(14)

subghz_sdr_agent
(cai.agents.subghz_sdr_agent)

An agent for sub-GHz radio frequency analysis
using HackRF One. The agent specializes in sig-
nal capture, replay, and protocol analysis for IoT,
automotive, industrial, and wireless security ap-
plications.

Thought Agent (15) thought_agent
(cai.agents.thought)

A reasoning agent focused on analyzing and
planning the next steps in a security assessment
or CTF challenge.

Use Case Agent (16) use_case_agent
(cai.agents.usecase)

Agent that creates high-quality cybersecurity
case studies, demonstrating how CAI tackles
various security scenarios, CTF challenges, and
cybersecurity exercises.

Wi-Fi Security Tester
(17)

wifi_security_agent
(cai.agents.wifi_security_test-
er)

A Wi-Fi security testing agent for wireless lan
network security testing and penetration. The
agent is expert in wireless attacks, password re-
covery, and communication disruption.

Table 9: List of Agents available in CAI



Pattern (Nr.) Key (Module) Description

Bug Bounty Triage Agent
(18)

bb_triage_swarm_pattern
(cai.agents.patterns.bb_triage)

Swarm Pattern. A cyclic swarm pattern for
bug bounty triage operations. This module
establishes a coordinated multi-agent system
where specialized agents collaborate on vulner-
ability discovery and verification tasks. The pat-
tern implements a directed graph of agent re-
lationships, where each agent can transfer con-
text (message history) to another agent through
handoff functions, creating a complete commu-
nication network for comprehensive bug bounty
and triage analysis.

Red Team Manager (19) redteam_swarm_pattern
(cai.agents.patterns.red_team)

Swarm Pattern. A cyclic swarm pattern for
red team operations. This pattern establishes
a coordinated multi-agent system where spe-
cialized agents collaborate on security assess-
ment tasks. The pattern implements a directed
graph of agent relationships, where each agent
can transfer context (message history) to an-
other agent through handoff functions, creating
a complete communication network for compre-
hensive security analysis.

Offsec Pattern (20) offsec_pattern
(cai.agents.patterns.offsec)

Parallel Pattern. A parallel bug bounty and red
team with different contexts for offensive secu-
rity operations.

blue_team_red_team_share
(21)

blue_team_red_team_share
(cai.agents.patterns.red_blue-
_team)

Parallel Pattern. A parallel security assess-
ment pattern - a team of red and blue agents
with shared context. This pattern demonstrates
the use of the unified Pattern class for parallel
agent execution, where both red and blue team
agents share the same context.

blue_team_red_team_split
(22)

blue_team_red_team_split
(cai.agents.patterns.red_blue-
_team_split)

Parallel Pattern. A parallel security assess-
ment pattern combining red and blue team
agents with split context.
This pattern demonstrates the use of the uni-
fied Pattern class for parallel agent execution,
where red and blue team agents operate with
separate contexts for independent analysis.

Table 10: List of Pre-defined Patterns available in CAI

9 Development ∗

Development is facilitated via VS Code dev. environments. To try out our development environment,
clone the repository, open VS Code and enter de dev. container mode:

9.1 Contribution

If you want to contribute to this project, use Pre-commit before submitting your merge request.� �

https://pre-commit.com/


1 pip install pre-commit
2 pre-commit # files staged
3 pre-commit run --all-files # all files� �

9.2 Optional Requirements: caiextensions

Currently, the extensions are not available as they have been (largely) integrated or are in the process
of being integrated into the core architecture. We aim to have everything converge in version 0.6.x.
Coming soon!

9.3 Usage Data Collection

CAI is provided free of charge for researchers. To improve CAI’s detection accuracy and publish open
security research, instead of payment for research use cases, we ask you to contribute to the CAI
community by allowing usage data collection. This data helps us identify areas for improvement, un-
derstand how the framework is being used, and prioritize new features. Legal basis of data collection
is under Art. 6 (1)(f) GDPR – CAI’s legitimate interest in maintaining and improving security tooling,
with Art. 89 safeguards for research.

The collected data includes:

• Basic system information (OS type, Python version)

• Username and IP information

• Tool usage patterns and performance metrics

• Model interactions and token usage statistics

We take your privacy seriously and only collect what’s needed to make CAI better. For further info,
reach out to research[at]aliasrobotics.com. Users can disable some of the data collection features via
the CAI_TELEMETRY environment variable. Nontheless, we encourage users to enable the feature and
contribute back to research: CAI_TELEMETRY=False cai.

9.4 Reproduce CI-Setup locally

To simulate the CI/CD pipeline, you can run the following in the Gitlab runner machines:� �
1 docker run --rm -it \
2 --privileged \
3 --network=exploitflow_net \
4 --add-host="host.docker.internal:host-gateway" \
5 -v /cache:/cache \
6 -v /var/run/docker.sock:/var/run/docker.sock:rw \
7 registry.gitlab.com/aliasrobotics/alias_research/cai:latest bash� �

mailto:research@aliasrobotics.com
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