
1

Beneath the Mask: Can Contribution Data Unveil
Malicious Personas in Open-Source Projects?

Ruby Nealon

Abstract—In February 2024, after building trust over two
years with project maintainers by making a significant vol-
ume of legitimate contributions, GitHub user “JiaT75” self-
merged a version of the XZ Utils project containing a highly
sophisticated, well-disguised backdoor targeting sshd processes
running on systems with the backdoored package installed. A
month later, this package began to be distributed with popular
Linux distributions until a Microsoft employee discovered the
backdoor while investigating how a recent system upgrade
impacted the performance of SSH authentication. Despite its
potential global impact, no tooling exists for monitoring and
identifying anomalous behavior by personas contributing to other
open-source projects. This paper demonstrates how Open Source
Intelligence (OSINT) data gathered from GitHub contributions,
analyzed using graph databases and graph theory, can efficiently
identify anomalous behaviors exhibited by the “JiaT75” persona
across other open-source projects.

Index Terms—Open-source, Supply-chain security, Social en-
gineering

I. INTRODUCTION

ON February 23, 2024, Version 5.6.0 of the XZ Utils
project libxz/liblzma library package was released, in-

troducing a backdoor targeting the sshd remote login server.
Just over a month later, on March 29, it was discovered by
Andres Freund, a software engineer at Microsoft, who first
disclosed it to the Openwall mailing list. The backdoor was
introduced to the project source code by a contributor known
as Jia Tan (or “JiaT75”). JiaT75 had first started contributing
to the project in January 2022, engaging in an incredibly
sophisticated campaign of sock-puppetry. By the time the
backdoored version was released, they were recognized as a
project member with commit rights, publishing the backdoored
version without prior review by other maintainers [1].

The backdoor received much attention after the disclosure
for reasons relating to the discovery of the backdoor, the
backdoor itself, and the extensive time and effort the attacker
invested in building trust with the “JiaT75” persona. In his
own words, Freund, who disclosed the backdoor, did not con-
sider himself a security researcher; instead, he discovered the
backdoor whilst investigating high CPU usage on SSH logins,
which he initially believed to be a performance regression [2].

The choice of the sshd package as a target was also
interesting, as sshd does not depend directly or indirectly
on the backdoored package. However, many major Linux
distributions, like Ubuntu and Debian, use systemd for service
management. They distribute versions of packages like sshd

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

patched for compatibility. Because systemd depends on XZ
Utils liblzma package, the backdoored library was loaded
indirectly with the sshd process [2].

For many, though, the most interesting part of the backdoor
was the “JiaT75” persona and the level of trust over time the
attacker had built by making significant legitimate-seeming
contributions to the project – most of which are still present
in the source code. Existing timelines and analyses [3], [4]
demonstrate that the social engineering done by the attacker
behind the backdoor likely extends far beyond the XZ Utils
GitHub repository and even the specific “Jiat75” persona itself.

In the aftermath of the backdoor, work has already been
done to implement technical controls against the weaknesses
in how open-source packages are released and distributed
that were exploited by the attacker. For example, “backseat-
signed” is a tool created in response to the backdoor to
assist with verifying the cryptographic chain-of-custody of
Linux distribution packages and their upstream source code
inputs [5]. However, despite a lot of the social engineering
identified in previously mentioned writing taking place within
the structures of the GitHub and Git repositories themselves,
there have been no attempts so far to automate detecting the
anomalous behaviors exhibited by the JiaT75 persona in other
open-source project repositories.

A. Graph Databases

Databases used by applications requiring data retrieval and
storage are typically “relational”; data is modeled and stored
in structured tables with rows and columns. This is the case for
small databases aimed at personal and small business use, such
as Microsoft Access, and commercial and non-commercial
large-scale offerings like MySQL, Microsoft SQL Server, and
Oracle. In contrast, graph databases model and store data as
nodes connected by relationships (also referred to as edges
or links). Though graph data can be modeled and stored
in relational databases, graph databases are generally more
performant for queries that traverse graph data. Graph database
query languages are also considered more straightforward
when writing queries against graph data [6].

Cybersecurity tools already use graph databases for use
cases involving analyzing and investigating relationship-dense
data. A well-known example of this is BloodHound. Using
Active Directory objects like users and groups and their
relationships like memberships and privileges, BloodHound
uses graph theory to find possible paths for privilege escalation
from a given level of access in an environment, as well as the
discovery of unusual or unexpected relationships [7].

ar
X

iv
:2

50
8.

13
45

3v
1

 [
cs

.C
R

]
 1

9
A

ug
 2

02
5

https://orcid.org/0009-0003-7432-6943
https://arxiv.org/abs/2508.13453v1

2

TABLE I
PROJECTS IN SCOPE FOR COLLECTION (DATA AS OF MARCH 27, 2025)

GitHub repository Arch package name Arch package popularity (%) # of commits in main branch # of unique contributors

tukaani-project/xz core/xz 100 % 2854 29
linux-audit/audit-userspace core/audit 100 % 2725 62
p11-glue/p11-kit core/libp11-kit 100 % 1474 82
seccomp/libseccomp core/libseccomp 100 % 1047 66
vcrhonek/hwdata core/hwdata 99.73% 414 14
besser82/libxcrypt core/libxcrypt 99.97% 830 23
lz4/lz4 core/lz4 100 % 3615 177
fukuchi/libqrencode extra/qrencode 69.97% 807 29
thom311/libnl core/libnl 100 % 2138 143
tpm2-software/tpm2-tss core/tpm2-tss 99.55% 2905 119
libpwquality/libpwquality extra/libpwquality 41.11% 263 57
PJK/libcbor extra/libcbor 44.29% 1379 40
libexpat/libexpat core/expat 100 % 4501 89
json-c/json-c core/json-c 100 % 1376 139
libarchive/libarchive core/libarchive 100 % 6640 307
PCRE2Project/pcre2 core/pcre2 100 % 2064 58
eliben/pyelftools extra/python-pyelftools 23.66% 716 94
apjanke/ronn-ng extra/ruby-ronn-ng 1.7 % 591 22
xkbcommon/libxkbcommon extra/libxkbcommon 89.8 % 2510 66
shadow-maint/shadow core/shadow 99.42% 3865 177

The natural provenance inside Git repositories, spread
across many projects and contributors, makes data from source
forge websites like GitHub inherently relationship-dense. This
creates an opportunity for using graph theory and graph
databases to investigate and query open-source project con-
tribution data.

II. RESEARCH METHOD

To validate the utility of signals from OSINT contributor
data, public data was gathered from XZ Utils and a control
group of similar projects. The data was collected from both
GitHub and the GitHub-hosted Git repository itself, and in-
gested into a graph database. Behaviors anomalous to typical
open-source contributors identified in existing writing about
the backdoor were analyzed, quantified, and written as graph
database queries. The queries were then executed against the
set of data collected from the scoped projects, and their
results discussed for the suitability of the query in discovering
behavior that may be worthy of further scrutiny.

A. Scoping

A total of 19 repositories hosted on GitHub.com containing
the source code for direct and indirect, required, optional,
and make dependency packages of systemd were selected
from the Arch Linux package registry. The selected projects
range from small (such as hwdata with 414 commits from
14 contributors) to large (libarchive with 6640 commits from
307 contributors) with varying levels of organization and
governance. The projects selected also have varying levels of
“popularity” (presence across sampled, opted-in Arch Linux
installations) per the archlinux.de “Pkgstats” project [8].

As data was to be collected for the GitHub repositories
and their related entities, the GitHub GraphQL API was used.
GraphQL is a schema and query language that allows for
requesting objects and their fields as graphs, allowing for

more efficient API queries returning only the required data
[9]. The GitHub GraphQL API enforces an hourly point-
based rate limit system, scoring requests based on the total
number of entities their query loads [10]. As it can take several
hours to load all relevant data for some larger repositories, the
number of projects scoped was intentionally limited for this
experiment.

B. Tool development and environment

1) Environment: The Neo4j graph database was used for
this experiment, the same used by the previously mentioned
BloodHound tool. The database and tooling used were run on
a single macOS machine, with all data collected with GitHub
GraphQL API and git clone calls.

2) Data Collection: To collect data efficiently and within
the constraints of the aforementioned limits of the GitHub
GraphQL API, automation was developed as a “gem” using
the Ruby programming language. The automation first queried
the total number of nodes for the desired connections of each
repository (for example, pull requests or issues), and used
GraphQL variables to control the pagination cursor and batch
size. This minimized the number of requests and API quota
used and ensured that only new, relevant data was loaded. Once
all data was loaded, the raw paginated connections were joined
into arrays and serialized into JSON data files for flexibility
with schema changes during data ingestion.

3) Data Ingestion: The same gem defines ORM models
for nodes representing the different entities using ActiveGraph
– a Ruby gem providing similar functionality to the popular
ActiveRecord ORM distributed as a part of the Ruby on Rails
web framework [11]. The collected data was traversed as a
tree, upserted into nodes, and mapped into a temporary list of
all possible relationships between nodes. Once all nodes were
inserted, the temporary list of relationships was then reduced
to the minimal number required, removed of duplicates, and
inserted in bulk.

3

TABLE II
NODE LABELS AND THEIR EXTERNAL DATA SOURCES

Node label Data source

GithubCommit GitHub GraphQL API
GithubCommitComment GitHub GraphQL API
GithubDiscussion GitHub GraphQL API
GithubDiscussionComment GitHub GraphQL API
GithubIssue GitHub GraphQL API
GithubIssueComment GitHub GraphQL API
GithubOrganization GitHub GraphQL API
GithubPullRequest GitHub GraphQL API
GithubPullRequestReview GitHub GraphQL API
GithubPullRequestReviewComment GitHub GraphQL API
GithubRepository GitHub GraphQL API
GithubUser GitHub GraphQL API
GithubUserContentEdit GitHub GraphQL API
GitBranch Git repository data
GitCommit Git repository data
GitIdentity Git repository data

After the data queried from the GitHub GraphQL API was
ingested, the branch, commit, and author/committer identity
data were also ingested from the Git repository retrieved with
the bare git clone call.

Finally, the minimal number of additional GitHub GraphQL
API calls was made to resolve additional GitHub user data
associated with email addresses present in the loaded Git
commits.

A schema of node labels and relationships was defined
via the ActiveGraph ORM to mirror the same objects and
hierarchies found in each external data source. For exam-
ple, the HAS GITHUB PULL REQUEST relationship from
GithubRepository to GithubPullRequest mirrors how pull re-
quests are loaded for a repository in the API call.

The final schema for all node labels and their defined
external data sources is described in Table II below.

C. Defining Anomalous Criteria and Method of Investigation

1) Review of Existing Analyses and Writing: Existing anal-
yses and articles covering the extended timeline leading up to
the insertion and discovery of the XZ Utils backdoor cover
social engineering efforts far beyond what would be detectable
from just the GitHub and Git repository data. However,
consistent patterns are identified regarding the activity of the
JiaT75 user in the project.

The ”JiaT75” GitHub user was created in January 2021,
more than 3 years before the backdoor was created. However,
the Git repository for XZ Utils dates back as far as 2007, and
the project dates back even further. After creating their GitHub
user, they immediately began contributing to other projects,
including libarchive – one of the scoped repositories for data
collection. In April 2022, the Jia Tan/JiaT75 persona begins
regularly contributing to the XZ Utils project, and in January
2023, they self-merge their first pull request.

While contributing to multiple projects and new maintainers
joining projects is not unusual, the frequency and pacing of the
JiaT75 persona are. Connor Tumbleson, a software engineer,
highlighted this in his blog post covering the attack situation:

So now I was curious when Jia Tan was created on
GitHub and scrolled all the way back. . . .
This user was not a very old account being only cre-
ated in January of 2021 and one of their first public
merged pull requests is also under investigation.
I scroll the user’s history on GitHub and I’m blown
away - commits and fixes to projects all over -
some seemingly great and normal while others being
reverted as quick as possible. [3]

The short time to become an active contributor and gain
trust within the project is also noted. Evan Boehs, a software
engineer also blogging about the attack, writes:

Three days after the emails pressuring Lasse Collin
to add another maintainer, JiaT75 makes their first
commit to xz: Tests: Created tests for hardware
functions... Since this commit, they become a regular
contributor to xz (they are currently the second most
active). . . .
JiaT75 merges their first commit on January 7, 2023,
which gives us a good indication of when they fully
gain trust. [4]

2) Quantifiable Anomalous Criteria: From these obser-
vations, several quantifiable factors are identified that, in
combination, could suggest anomalous behavior:

• Project history age (the earliest and latest authored date
of any commit in a project)

• Contribution activity within a project (the percentage of
commits authored by a contributor in a project)

• Contribution history within a project (the earliest and
latest dates of commits authored by the contributor)

• History of self-merging pull requests without review
within a project (if any, the earliest merge request by
a contributor merged without review by another party)

3) Defining the Sets of Anomalous Criteria To Investigate:
This research investigated two sets of criteria that indicate
anomalous behavior: (1) contributors self-merging pull re-
quests without review with limited project involvement and
(2) contributors making an unusually significant share of all-
time contributions for their total presence in the repository
history.

Each set of criteria was investigated by first writing and
executing an unscoped query, analyzing the results and defin-
ing thresholds/filters where appropriate, then re-executing and
discussing the set of criteria and results with regard to their
suitability as a signal of potential social engineering. With the
exception of the JiaT75 persona, contributor usernames are
anonymized in the results.

III. FINDINGS AND DISCUSSION

A. Enriching Collected Data With Additional Relationships

While the data collected from the GitHub GraphQL API
and bare Git repository already have inherent hierarchies that
accurately describe the logical relationships between entities,
like the repository having pull requests example mentioned
earlier, other relationships valuable for investigation were not
present in the source data.

4

MATCH (ghr : G i t h u b R e p o s i t o r y) − [: IS GIT REPOSITORY]−>(g r : G i t R e p o s i t o r y) ,
(ghc : GithubCommit) − [: IS GIT COMMIT]−>(gc : GitCommit)<−[:HAS GIT COMMIT] −(g r : G i t R e p o s i t o r y)

RETURN * LIMIT 1 ;

tukaani-project/xz https://github.com/. . . ef652a. . . ef652a. . .IS GIT REPOSITORY HAS GIT COMMIT IS GIT COMMIT

Fig. 1. Query Demonstrating IS GIT REPOSITORY and IS GIT COMMIT

MATCH (g i : G i t I d e n t i t y) − [: LINKED TO GITHUB USER]−>(ghu : Gi thubUse r)
WHERE ghu . l o g i n = ” J i aT 75 ”
RETURN * ;

JiaT75

jiat75

Jia Tan Jia Cheong Tan

LINKED TO GITHUB USER

LINKED TO GITHUB USER LINKED TO GITHUB USER

Fig. 2. Query Demonstrating LINKED TO GITHUB USER

To assist with expressively writing queries to look for
deep relationships in the data set, the following additional
relationships were defined and populated for the ingested data.

1) IS GIT REPOSITORY and IS GIT COMMIT: These
relationships link a GithubRepository or GithubCommit loaded
from the GraphQL API to its corresponding GitRepository or
GitCommit loaded from the bare Git repository data.

An example query demonstrating these relationships run
against the scoped data set is shown in Figure 1.

2) LINKED TO GITHUB USER: This relationship links a
GitIdentity to a GithubUser from the set of commits collected
for a repository from the GraphQL API. As GitHub links a
commit to a user by the email address, only a single commit
needs to be loaded from the GraphQL API, where the email
address is the committer or author to create this relationship
between the resulting GithubUser node and all GitIdentity
nodes with the same email address.

An example query demonstrating this relationship by load-
ing the GitIdentity nodes linked to the GithubUser node for
“JiaT75” is shown in Figure 2.

3) HAS EMAIL: This relationship links a GithubUser,
GithubOrganization, or GitIdentity to a new Email node cre-
ated for each unique email address discovered.

An example query demonstrating this relationship by load-
ing the GitIdentity nodes linked to the Email node for the
email address “jiat0218@gmail.com” is shown in Figure 3.

B. Querying for Unreviewed, Self-Merged Pull Requests

1) Query Creation: The first candidate criteria set to in-
vestigate earlier was a contributor’s history of unreviewed (by
another party), self-merged pull requests in relation to the
age of the repository and when they first began contributing
to it. To effectively measure this, a query was prepared
collecting the following values for each GithubUser in each
GithubRepository where they had self-merged at least one pull
request:

• The GitHubUser username, creation timestamp, first au-
thored commit timestamp, and all associated email ad-
dresses

5

MATCH (g i : G i t I d e n t i t y) − [:HAS EMAIL]−>(e : Email)
WHERE e . a d d r e s s = ” j i a t 0 2 1 8 @ g m a i l . com”
RETURN * ;

jiat0218@gmail.com

Jia Cheong Tan

jiat75 Jia Tan

HAS EMAIL

HAS EMAIL HAS EMAIL

Fig. 3. Query Demonstrating HAS EMAIL

• The GithubRepository name with its owner, creation
timestamp, and first-authored commit timestamp

• The URL of and merge timestamp of the first self-merged
pull request

• The total number of self-merged pull requests
• The difference between the GithubUser and

GithubRepository first authored commit timestamps (i.e.,
the repository age at the time of the first contribution)

• The difference between the GithubUser’s first authored
commit timestamp and the merge timestamp of the first
self-merged pull request

This query returned 40 users, approximately 2% of the 1996
unique users in the data set who had authored a pull request.
No user in the data set had self-merged an unreviewed pull
request in more than one repository.

The data returned for the JiaT75 persona differs slightly
from what Boehs [4] stated in his timeline but was confirmed
as correct by cross-referencing against GitHub and the Git
repository; the first authored commit by JiaT75 in the repos-
itory was in late January 2022 (though not committed until
July), and their first self-merged pull request was in December
of the same year. GitHub does not show separate dates for
authored and committed times of commits, so this could have
caused a misinterpretation.

The correct contributor age for JiaT75, confirmed from the
dates in Figures 4 and 5, returned in the results, is 10 months.
Nearly half of the results (19) have a contributor age of less
than 24 months, which was used as a threshold for the final
query to exclude long-term project participants.

The query was then further iterated, adding exclusions for
irrelevant (i.e., now long-term contributors) and edge cases:

• Excluded results where the user’s first authored Git
commit was more than 4 years ago – reduced the results
from 19 to 7 records

Fig. 4. JiaT75’s First Authored Commit to XZ Utils

Fig. 5. JiaT75’s First Unreviewed, Self-Merged Pull Request

• Excluded results where the contributor age was less than
or equal to zero – reduced the results from 7 records to
4 records

2) Discussion of Results: Table III presents the relevant
data from the results after executing the final query. The full
query used is available in the supplementary material.

The circumstances for each contributor in the results were
investigated and are described briefly below:

• Contributor A had recently started actively contributing

6

TABLE III
RESULTS OF THE UNREVIEWED, SELF-MERGED PULL REQUEST QUERY

Name Repository Contributor age at first self-merge # of unreviewed, self-merged pull requests

Contributor A PCRE2Project/pcre2 2months 43
Contributor B PCRE2Project/pcre2 7months 7
JiaT75 tukaani-project/xz 10months 24
Contributor C linux-audit/audit-userspace 20months 3

to the project and became the principal maintainer after
an in-person meeting with the former maintainer. Con-
tributor A has previously made commits with a corporate
email address for a large American technology company
and was verified as a current employee on the company’s
website.

• Contributor B was a long-term contributor to the project
before its source code was hosted on GitHub. However,
the email address on the Git identity used for their earlier
contributions is not linked to their current GitHub user.

• Contributor C uses a corporate email address for another
sizable American technology company on their commits
and has the same domain name as the project maintainer
listed in the AUTHORS file.

Though none of the additional results were true positives,
including the JiaT75 user and the overall limited number of
matches proportional to the total number of users assessed
(approximately 0.2%), the query is suitable for detecting
potential social engineering cases. Additionally, the discovery
of earlier commits by the JiaT75 user suggests there is utility
in using similar queries to investigate attacks that have already
occurred.

C. Querying for Significant Contribution Relative to Presence

1) Query Creation: The second candidate criteria set to
investigate earlier was a contributor making a significant share
of all-time contributions relative to a contributor’s presence in
the repository history.

As was done for the first candidate criteria, a query was
prepared to collect the following values for each GithubUser
in each GithubRepository where they had made at least one
commit:

• The GitHubUser username, creation timestamp, first au-
thored commit timestamp, and all associated email ad-
dresses

• The GithubRepository name with its owner, creation
timestamp, and first-authored commit timestamp

• The difference between the GithubUser and
GithubRepository first authored commit timestamps (i.e.,
the repository age at the time of the first contribution)

• The difference between the current date and the
GithubRepository first authored commit timestamp (i.e.,
the repository age)

• The percentage of commits authored by the user in the
Git repository

• The difference between the first and last user-authored
commit timestamps, as a percentage of the difference
of the first and last authored commit timestamps for the

repository (i.e., what percentage of the repository history
the contributor has been present)

This query returned 2023 unique combinations of users with
contributions in repositories. The data for JiaT75 indicates they
authored 17.4% of commits to the repository, despite their
contributions only taking place over 12.5% of the repository’s
history. As the intent of the role is to catch potential social
engineering efforts before they occur, looser thresholds were
chosen, matching contributors who have authored more than
5% of commits with less than 20% presence in the repository.
Rerunning the query with the threshold returned six unique
contributors, and after applying the same exclusion for the
first-authored over four years ago, was reduced to 4.

2) Discussion of Results: Table IV presents the relevant
data from the results after executing the final query. The full
query used is available in the supplementary material.

Again, the circumstances of each additional contributor
were investigated, and are briefly described below:

• Contributor A also appeared in the results of the other
query and was previously discussed.

• Contributor D uses a corporate email address for the same
domain name as Contributors B and C. They are also
listed as a maintainer in the project README.md file.

• Contributor E uses an email address with a domain
associated with a sizable open-source software project
and was verified as a long-term contributor through
information published on the project’s website. They are
also listed as a project maintainer in the AUTHORS file.

Though once again the results did not contain any new
true positives, the limited number of results, even a relatively
relaxed threshold relative to what would have been observable
for the JiaT75 persona, supports this also being a viable signal
to investigate potential social engineering.

IV. RECOMMENDATIONS AND IMPLICATIONS

A. Recommendations

This research shows that social engineering attacks against
open-source projects can potentially be detected by analysis of
contributor metadata. Security practitioners aiming to monitor
or investigate social engineering attacks against open-source
projects should use automation where possible to collect and
analyze contribution data from project contributors.

B. Non-recommendations

As was observed with the case of Contributor A, despite
the aggregated data signaling suspicious or otherwise unusual
behavior, upon investigation, it was discovered that they had

7

TABLE IV
RESULTS OF THE SIGNIFICANT CONTRIBUTION RELATIVE TO PRESENCE QUERY

Name Repository % of authored commits % of time presence in the commit history

Contributor A PCRE2Project/pcre2 6.91% 4.66%
JiaT75 tukaani-project/xz 17.38% 12.47%
Contributor D p11-glue/p11-kit 7.18% 16.67%
Contributor E shadow-maint/shadow 18.4 % 18.28%

been vetted by the former maintainer and recently taken over
the responsibilities of the project.

Legitimate reasons exist for open-source contributors to use
personas/aliases, or otherwise have a limited web presence
outside of their open-source contributions. Security practition-
ers and project maintainers responding to signals raised by
this kind of analysis should approach investigations without
presumptions of malicious intent. While it is encouraged
to be conscious and apply caution when granting privileges
or transferring responsibilities to new parties, such caution
should not dissuade or hinder legitimate contributors from
participating.

C. Future Research

This research validates the potential for investigation, but
only on a smaller sample set of projects at a particular point
in time. Potential future research could encompass one or more
of the following elements:

• Continuous collection and ingestion of data.
• Deeper traversal/further collection of data from the

GitHub GraphQL API.
• Additional data sources like the gharchive project should

be used to minimize the number of requests necessary
for the GitHub GraphQL API.

• Collection of data from other source code forges like
GitLab.com or Gitea.com, as well as project-managed
self-hosted instances.

• Collection of data from mailing lists relevant to the
project (for example, the project mailing list or Linux
distribution mailing lists relevant to the project), and
identification of similar usage of sock puppets to pressure
project maintainers.

• Collection of other web presence or social media activity
for monitored contributing personas.

• Use of LLM to identify major events like transferring
maintainership in project issue trackers and mailing lists.

• Use of sentiment analysis to identify unusual pressure
applied towards maintainers in project issue trackers and
mailing lists.

V. CONCLUSION

This research demonstrated the potential of using anomalous
contribution patterns in open-source projects as a signal of
social engineering attacks like the XZ Utils backdoor. Both
sets of criteria tested against aggregate contributor data — the
timescale over which contributors gain privileged access to or
become significant participants — show viability as good sig-
nals for similar projects. Further work to continuously monitor

projects and collect additional data sources is encouraged and
could raise an early warning for a similar attack in the future.

REFERENCES

[1] S. James, “FAQ on the xz-utils backdoor (CVE-2024-3094),” https:
//gist.github.com/thesamesam/223949d5a074ebc3dce9ee78baad9e27,
2024, accessed: March 25, 2025.

[2] A. Freund, “backdoor in upstream xz/liblzma leading to ssh server
compromise,” https://www.openwall.com/lists/oss-security/2024/03/29/
4, Mar. 2024, accessed: February 2, 2025.

[3] C. Tumbleson, “Watching xz unfold from afar,” https://connortumbleson.
com/2024/03/31/watching-xz-unfold-from-afar/, Mar. 2024, accessed:
March 29, 2025.

[4] E. Boehs, “Everything I Know About the XZ Backdoor,” https:
//boehs.org/node/everything-i-know-about-the-xz-backdoor, Apr. 2024,
accessed: March 29, 2025.

[5] kpcyrd, “backseat-signed (README.md),” https://github.com/kpcyrd/
backseat-signed, n.d., accessed: March 25, 2025.

[6] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,
“A comparison of a graph database and a relational database: a
data provenance perspective,” in Proceedings of the 48th Annual
ACM Southeast Conference, ser. ACMSE ’10. New York, NY, USA:
Association for Computing Machinery, 2010. [Online]. Available:
https://doi.org/10.1145/1900008.1900067

[7] SpecterOps, “Bloodhound - Six Degrees of Domain Admin
(README.md),” https://github.com/SpecterOps/BloodHound, n.d.,
accessed: March 25, 2025.

[8] archlinux.de, “Package statistics & comparisons,” https://pkgstats.
archlinux.de/packages, n.d., accessed: March 27, 2025.

[9] S. L. Vadlamani, B. Emdon, J. Arts, and O. Baysal, “Can graphql
replace rest? a study of their efficiency and viability,” in 2021 IEEE/ACM
8th International Workshop on Software Engineering Research and
Industrial Practice (SER&IP), 2021, pp. 10–17.

[10] GitHub, “Rate limits and node limits for the
GraphQL API,” https://docs.github.com/en/graphql/overview/
rate-limits-and-node-limits-for-the-graphql-api#primary-rate-limit,
n.d., accessed: March 25, 2025.

[11] neo4jrb, “activegraph (README.md),” https://github.com/neo4jrb/
activegraph, n.d., accessed: March 25, 2025.

Ruby Nealon received an M.S. degree in informa-
tion security engineering from SANS Technology
Institute in 2025. She is currently a security engineer
at GitLab, where she works on red team and platform
safety operations.

https://gist.github.com/thesamesam/223949d5a074ebc3dce9ee78baad9e27
https://gist.github.com/thesamesam/223949d5a074ebc3dce9ee78baad9e27
https://www.openwall.com/lists/oss-security/2024/03/29/4
https://www.openwall.com/lists/oss-security/2024/03/29/4
https://connortumbleson.com/2024/03/31/watching-xz-unfold-from-afar/
https://connortumbleson.com/2024/03/31/watching-xz-unfold-from-afar/
https://boehs.org/node/everything-i-know-about-the-xz-backdoor
https://boehs.org/node/everything-i-know-about-the-xz-backdoor
https://github.com/kpcyrd/backseat-signed
https://github.com/kpcyrd/backseat-signed
https://doi.org/10.1145/1900008.1900067
https://github.com/SpecterOps/BloodHound
https://pkgstats.archlinux.de/packages
https://pkgstats.archlinux.de/packages
https://docs.github.com/en/graphql/overview/rate-limits-and-node-limits-for-the-graphql-api#primary-rate-limit
https://docs.github.com/en/graphql/overview/rate-limits-and-node-limits-for-the-graphql-api#primary-rate-limit
https://github.com/neo4jrb/activegraph
https://github.com/neo4jrb/activegraph

	Introduction
	Graph Databases

	Research Method
	Scoping
	Tool development and environment
	Environment
	Data Collection
	Data Ingestion

	Defining Anomalous Criteria and Method of Investigation
	Review of Existing Analyses and Writing
	Quantifiable Anomalous Criteria
	Defining the Sets of Anomalous Criteria To Investigate

	Findings and Discussion
	Enriching Collected Data With Additional Relationships
	IS_GIT_REPOSITORY and IS_GIT_COMMIT
	LINKED_TO_GITHUB_USER
	HAS_EMAIL

	Querying for Unreviewed, Self-Merged Pull Requests
	Query Creation
	Discussion of Results

	Querying for Significant Contribution Relative to Presence
	Query Creation
	Discussion of Results

	Recommendations and Implications
	Recommendations
	Non-recommendations
	Future Research

	Conclusion
	References
	Biographies
	Ruby Nealon

