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Abstract—Secure Multi-Party Computation (MPC) offers a
practical foundation for privacy-preserving machine learning
at the edge, with MPC commonly employed to support non-
linear operations. These MPC protocols fundamentally rely on
Oblivious Transfer (OT), particularly Correlated OT (COT), to
generate correlated randomness essential for secure computation.
Although COT generation is efficient in conventional two-party
settings with resource-rich participants, it becomes a critical bot-
tleneck in real-world inference on resource-constrained devices
(e.g., IoT sensors and wearables), due to both communication
latency and limited computational capacity. To enable real-
time secure inference, we introduce Silentflow, a highly efficient
Trusted Execution Environment (TEE)-assisted protocol that
eliminates communication in COT generation. We tackle the core
performance bottleneck—low computational intensity—through
structured algorithmic decomposition: kernel fusion for paral-
lelism, Blocked On-chip eXpansion (BOX) to improve memory
access patterns, and vectorized batch operations to maximize
memory bandwidth utilization. Through design space explo-
ration, we balance end-to-end latency and resource demands,
achieving up to 39.51x speedup over state-of-the-art protocols.
By offloading COT computations to a Zynq-7000 SoC, SilentFlow
accelerates PPMLaaS inference on the ImageNet dataset under
resource constraints, achieving a 4.62x and 3.95x speedup over
Cryptflow2 and Cheetah, respectively.

Index Terms—Security & Privacy, Multiparty Computation,
Trusted Execution Environment, FPGA acceleration

I. INTRODUCTION

To address privacy concerns in Machine Learning as a Ser-
vice (MLaaS), Privacy-Preserving MLaaS (PPMLaaS) incor-
porates cryptographic primitives to safeguard sensitive data [[1-
5]. Among these primitives, secure Multi-Party Computation
(MPC) has been widely adopted for its effectiveness in han-
dling nonlinear operations [6H10]. A core component of MPC
protocols is Oblivious Transfer (OT), which plays a critical
role in ensuring data privacy between parties.

Over time, OT protocols have evolved significantly to im-
prove efficiency and scalability. Recent advancements, such
as Silent OT [11]] and the Ferret protocol [12], demonstrate
superior performance compared to classic OT protocols like
IKNP [13], particularly in throughput and communication
overhead. While the cost of generating usable OTs is often
negligible [11, [12 [14-H18]] in two-party computation (2PC)
settings—where both client and server run on resource-rich
platforms such as workstations—it becomes a major bottle-
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neck in real-world inference scenarios involving resource-
constrained client devices, as shown in Fig.

Motivations and Challenges. In real-world PPMLaaS de-
ployments—particularly at the edge—clients often run on
resource-constrained hardware such as IoT sensors, wearables,
or portable medical devices that have limited memory and
computational power [19} 20], which introduces two critical
challenges. First, limited memory necessitates splitting infer-
ence into small batches, as there is insufficient storage to retain
large intermediate values—particularly correlated oblivious
transfers (COTs), which are essential for secure computation
of nonlinear operations like ReLLU. As a result, even a single
nonlinear layer must be executed batch by batch, with fresh
COTs generated for each batch. This repeated COT gener-
ation intensifies interactive rounds and results in substantial
communication overhead. Second, since COT generation is
dominated by low arithmetic intensity and high global memory
traffic, state-of-the-art methods [11, [12, [18] suffer perfor-
mance degradation in resource-limited environments—not due
to computational limitations, but primarily due to frequent
cache misses when working sets exceed the limited on-chip
memory. These frequent cache misses during the generation
process lead to inefficient memory access and increased client-
side latency. This inefficiency not only increases end-to-end
inference time but also wastes server-side resources, as Servers
often idle while awaiting responses from slow clients.

To address these dual bottlenecks, we propose a set of
targeted design optimizations as contributions:

« First, we introduce a novel TEE-assisted protocol that
eliminates the communication overhead inherent in
OT extension. SilentFlow leverages synchronized seeds
within each party’s TEE to generate a minimal amount
of correlated randomness, effectively bridging the gap
between prior interactive approaches [11, [12, |15} [18].
This allows both parties to locally derive identical
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pseudorandom values and establish correlated random-
ness—traditionally requiring interaction—without any
communication, achieving up to a 39.51x speedup
over prior approaches In contrast to previ-
ous methods that delegate extensive computation to
the TEE—potentially exposing client inputs—SilentFlow
confines the TEE’s role to input-independent COT gen-
eration [21H25]. As a result, even if the TEE is compro-
mised, client data and model parameters remain secure
throughout the end-to-end PPMLaaS inference.

« Second, to address the memory-bound bottleneck in COT
generation, we propose a hardware—algorithm co-design
that employs structured algorithmic decomposition to
optimize memory access patterns and reduce intermediate
data movement. By fusing parallel kernels, introducing
Blocked On-chip eXpansion (BOX), applying vectorized
batch operations, and exploring the design space to
balance performance and resource utilization, SilentFlow
achieves scalable, low-latency execution with 10.21x
speedup, while using only 160KB of local memory.

« Finally, we conduct extensive experiments by offloading
COT generation to a Zyng-7000 SoC, accelerating secure
ResNet-50 inference with ImageNet dataset by 4.62x and
3.95x over Cryptflow2 [6] and Cheetah [7], respectively.

II. PRELIMINARIES

A. Oblivious Transfer

OT enables a sender to transmit multiple messages such that
the receiver learns only the one matching their selection bit,
while the sender learns nothing about the receiver’s choice. A
complete OT protocol consists of an input-independent cor-
related randomness generation phase and an input-dependent
oblivious data transfer phase, during which the client’s secret
message exchange occurs. The former dominates communi-
cation cost, while the latter incurs only linear, information-
theoretic cost with respect to the number of messages [14]].

As illustrated in Fig. the most efficient method for
generating the required correlated randomness is COT—a
cryptographic primitive in which the sender’s messages follow
a fixed correlation A. Specifically, the sender holds two values
v and v A, and the receiver holds a choice bit u € {0,1} and
the corresponding correlated value r,,. In the input-dependent
phase, the receiver masks their actual selection bit b by
computing ¢ = b@u and sends c to the sender. The sender then
returns the masked messages mg®r,. and m;Pr.qg1. Using r,,
the receiver recovers m; while learning nothing about mjgy.

T T
. we {01} , - j rg=v
offline ry=v®ul T H rp=v@A
____________________ e A
i ' b® '
online Input: b € {0,1} I—u)l c=bdu
' '
1 1 Input: mg,my
I kg, by '
Output: my, = kp, ® ru ( I kg =mg@re
H Lk =my@reg)
Receiver Sender

Fig. 2. Oblivious Transfer process

B. Related work and Key Motivations

The constitution of COT is crucial but not trivial. If
COTs are constructed purely using public-key cryptographic
techniques, each COT instance require expensive public-key
operations, leading to O(\) communication and computation
per transfer, where A is the security parameter (typically 128 or
256 bits). State-of-the-art COT generation protocols typically
follow a two-stage template: (1) a setup phase that generates
sparse correlations using primitives such as Homomorphic
Secret Sharing (HSS), Distributed Point Functions (DPF) [[L1]],
or OTs [12]]; and (2) a non-interactive linear expansion phase
based on the Learning Parity with Noise (LPN) assump-
tion [L1, 12, 15, 16 (18} 26, 27]. While these designs are
efficient on powerful machines, they are ill-suited to resource-
constrained environments such as IoT sensors and wearables.

In practice, secure operations in PPMLaaS—such as ReLU
and Maxpooling—rely on large volumes of COTs; however,
on resource-constrained devices, these operations must be split
into small batches, requiring repeated COT generation with
fresh correlations for each batch. In such scenarios, although
SOTA protocols claim non-interactive extension, the sparse
correlation setup still incurs significant communication over-
head. For example, recent silent OT-extension protocols [11]
require nontrivial key exchanges—typically via DPFs—before
parties can expand to a large number of OTs. Ferret [12]
generates the required correlations using multi-point COT,
which introduces considerable communication costs. Similarly,
Boyle et al. [15] use two rounds of OT-based key exchange,
relying on Puncturable Pseudorandom Functions (PRFs) with
position-specific constraints to construct sparse correlations.
SoftSpokenOT [26]] applies a related strategy over larger fields,
where each correlation block is instantiated using a special-
ized OT that also demands substantial setup. Despite being
labeled “silent,” these protocols still require communication
in the correlation setup, becoming a performance bottleneck
in resource-constrained, batch-based settings.

III. DESIGN OF SILENTFLOW

This section presents the core design of SilentFlow, starting
with a high-level architectural overview. describes how
TEEs are leveraged to eliminate interaction during COT gen-
eration. Finally, we introduce a hardware accelerator tailored
to overcome the computational bottleneck in COT generation.
SilentFlow assumes at most one malicious party, achieving
malicious security for COT generation via TEE-synchronized
randomness, while inheriting semi-honest security for online
inference from the underlying MPC framework.

A. System Architecture

As illustrated in Fig. [3] SilentFlow tackles excessive com-
munication overhead in COT generation through four inte-
grated modules: shared seed generation, initial correlation
setup, sparse correlation constitution, and LPN-based local
computation. The first two modules are one-time setup steps;
regardless of how many future batches are needed, execu-
tion can resume directly from the third module. Together,
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Fig. 3. System Overview of SilentFlow

these components eliminate client-server communication dur-
ing COT generation, supporting efficient small-batch execution
without repeated network interaction.

SilentFlow initially establishes correlations of the form
w = v @ uA non-interactively within the TEE, thereby
removing costly base OTs and interaction overhead typical
in state-of-the-art protocols such as Ferret [12]]. Subsequently,
the COT extension module expands these initial correlations
locally in the untrusted domain, avoiding the frequent and
expensive cross-boundary operations required by prior TEE-
based approaches [28]. Crucially, this non-interactive exten-
sion generates local correlations in the form of r @ s = eA,
where e is a sparse binary vector (often Hamming weight). In
the final step, the sparse correlation is added to the product
of the initial correlation and a public matrix A, ensuring
compliance with the LPN assumption and thereby satisfying
the security requirements for COT generation.

B. TEE-Assisted COT Generation

Shared Seed Generation. We adopt a synchronized seed
generation protocol, similar to the secure initialization in [24],
where both parties contribute random values and compute the
shared seed as their sum. This ensures mutual unpredictability
while allowing both parties to derive consistent CSPRNG
outputs. To securely execute this protocol, secret keys and
local randomness must remain confidential. Therefore, all
cryptographic operations are performed within TEEs, which
provide isolated execution and prevent leakage even in the
presence of an untrusted client or server.

Initial Correlation Setup. As a synchronized seed is gener-
ated, both the sender’s and receiver’s TEEs deterministically
sample the same vectors u € F§, v € FX,, and the global key
A € Fy via CSPRNG (Fig. [B). The receiver’s TEE locally
computes w = v @ uA. The sender then sends v, A out of
TEE, while the receiver sends u, w out of TEE.

This setup phase avoids the interactive communication re-
quired in traditional base OT protocols, reducing initialization
cost and enabling fast, communication-free correlation setup.
Although CSPRNGs in TEEs incur higher computational
latency than lightweight PRNGs, the overhead is minimal, as

only a small number of base COTs are needed to bootstrap the
later extension phase. Moreover, this one-time cost is amor-
tized over large batches of extended COTs. Compared to prior
TEE-based frameworks [28] that generate all COTs inside
the enclave, SilentFlow minimizes trusted-side computation by
restricting TEE usage to the initial seed and base COTs.
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Fig. 4. Design of non-interactive sparse correlation constitution (GGM
extension)

Non-interactive Sparse Correlation Constitution. As shown
in Fig. @l we adopt the standard approach of expanding
a Goldreich-Goldwasser-Micali (GGM) binary tree to con-
struct the sparse correlation, but with a key distinction—our
TEE-assisted protocol enables this process to be entirely
non-interactive, a feature not achieved by state-of-the-art
works [[11, 14} |15 [18]]. The constitution involves the receiver
obtaining a set of seeds from the sender, where the seed
corresponding to the secret index is hidden, and the remaining
red seeds are extended to the leaves of the tree. To ensure that
the receiver obtains only one of two seeds at each tree level,
protocols like Ferret [12] perform a 1-out-of-2 OT at every
level of the GGM tree. As the receiver traverses this single
secret path using the OT-derived seeds, it reaches the h-th
level and reconstructs all leaves except the one corresponding
to the nonzero entry in e. This process guarantees that the
sender and receiver generate correlated pseudorandom vectors
s and r satisfying r +s = e - A. However, this method incurs
high communication overhead under resource-limited devices
due to low-batch execution, requiring h OT operations per
extension, which becomes a major performance bottleneck.

Our key idea is to replace the costly OT-based selection with
a synchronized, shared seed within the TEE. Specifically, Stgeg
and Rrpg generate the same initial seed sjpiia On each side by
following the steps outlined in the shared seed generation.
Stee send siniia directly to the untrusted domain for tree
extension, while Rygg retains Siyq to keep it hidden from the
untrusted environment. On the sender’s side, the extension is
systematic, involving the expansion of i, to perform oh+1
computations up to level h.

The main challenge lies in extending only the selected seed
without revealing its identity to the receiver. To address this,
Rrgg generates a single value b € {0,1}" that encodes the
selection bits across the tree levels, where the path defined



by b corresponds to either the red or green seed. For each
extension at level ¢ € {1,...,h}, Rygg retains the green seed
along the path determined by b, while the complementary
red seed is released to the untrusted domain to enable faster
seed expansion. As a key optimization of the TEE-assisted
extension compared to prior work [28], only h seed expansion
operations are performed inside the TEE, while the remaining
2(h+1) _ h seed expansions are offloaded to the untrusted
domain, inducing only i — 1 trust boundary crossings. This
avoids costly computation inside the TEE. At each level, the
green seed on the secret path remains hidden from the receiver.
At the final level, a masked value is computed inside Rrtgg by
adding the global key to the corresponding green leaf. This
value is then released to the receiver. As a result, the receiver
learns only the masked value and the unmasked red values,
while the secret leaf remains hidden. This achieves the same
effect as the communication-intensive OT-based approach used
in Ferret [[12]], but with only A —1 trust boundary crossings and
no interaction between the client and server. For clarity, the
figure illustrates a single GGM tree extension, though multiple
trees are processed in parallel in practice.

C. Hardware Acceleration of Silentflow

This section introduces a novel hardware—algorithm co-
design aimed at accelerating COT generation (particularly,
sparse correlation constitution and LPN-based local compu-
tation) in Silentflow. Using the Roofline model [29], which
relates computational throughput to memory bandwidth and
arithmetic intensity, we identify that our baseline algorithm is
memory-bound, indicating that performance is limited primar-
ily by memory access rather than computation. To address this,
we propose a unified optimization strategy, termed structured
algorithmic decomposition, which targets latency bottlenecks
at both the system and module levels. Our approach improves
computational throughput while significantly reducing slow,
energy-intensive off-chip data transfers [30]].

Latency Optimization via Kernel Fusion.The non-interactive
extension phase consists of two serialized phases: GGM tree
expansion (for sparse correlation) and LPN computation, typi-
cally serialized due to presumed data dependencies. However,
our key insight is that the only true dependency lies in the
final XOR stage. We thus apply kernel fusion to reorganize
the pipeline by decoupling the LPN into two independent
sub-stages: a vector-matrix multiplication (VM) and a final
XOR. This decoupling transforms the original latency equation
from a strictly sequential model (I) to a latency-balanced
parallelizable form (2).
Latency = Lggm + Lipn (D
Latency = HlaX(LGGM, LVM) —+ LXOR (2)

To minimize latency, our design balances the computational
resources between the GGM and VM modules. While GGM is
inherently more compute-intensive, the runtime of both mod-
ules depends heavily on resource allocation. By employing
structured algorithmic decomposition, we explore an optimal
resource allocation strategy to balance latency and resource
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usage. This decomposition is applied not only at the system
level but also recursively within each module, such as the
blocked expansion used for GGM discussed in Section [[II-C]
Fig. [f] illustrates our hardware architecture, highlighting how
structured decomposition improves bandwidth utilization, par-
allelism, and overall execution latency.

GGM Acceleration via Blocked On-chip eXpansion (BOX).
Each node expansion in the GGM tree uses a pseudorandom
generator (PRG), typically AES in ECB mode [12]. To gener-
ate the required n pseudorandom leaves for LPN noise inputs,
the baseline method expands multiple binary trees of height
h. This expansion is memory-intensive due to frequent global
accesses to temporary intermediate nodes, resulting in poor
locality, low computational intensity, and exponential memory
growth with tree depth h (see Table [I).

TABLE 1
MEMORY ACCESS COST COMPARISON: NAIVE VS. PROPOSED. Cg/Cl
DENOTE AVERAGE GLOBAL/LOCAL ACCESS CYCLES.

Version Global Local Cost
Naive 6 x 2h—1 0 6 x 2"=1.Cy
Proposed 2 x 2P=1 4 x2h=1 2 x2h=1.(Cy +20))

To mitigate this performance bottleneck, we propose a
second-level decomposition strategy, Blocked On-chip eX-
pansion (BOX), which decomposes the GGM expansion into
independent subtree blocks of depth s. Each subtree reads
its root from global memory, expands locally to generate
2° leaves, and keeps all intermediate states on-chip. This
data localization enables parallel execution of subtrees at
the same level, significantly improving reuse and reducing
intermediate memory transfers as shown in Table |l Since
average global memory access cost (C,) significantly exceeds
the local memory access cost (Cp), our approach reduces
memory access overhead by approximately a factor of three.

As shown in Fig. [6] our hardware unrolls inner loops



Algorithm: COT Generation

for i=0 to 1: //
for p=1 to (h-1) step s:
for: 1 tos: //Imtlallze sublayer XORs

GGM

.for j=0to s: //---- Subtree block with local computation
: for g=(1<<(j+1))-2 to (1<<))-1: //AES exp. & sublayer XORs
ifor /=0 to (1<<s) step 4: //Vectorized write-back with masking j

for j=0 to size, step size, ., | /[-======mnmmmmmnmmnaaan VM (parallel to GGM)
O o (R T ——— XOR (combining GGM and VM results)

2R NAN AL

Fig. 6. Pseudocode of the proposed decomposition algorithm
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to exploit fine-grained parallelism and pipelines outer loops
of sub-tree block calls to achieve high-throughput dataflow.
To avoid redundant global memory accesses at the final
depth, masking is applied during leaf node write-back. This
optimization leverages the lower latency of TEE-based data
access compared to OT, which incurs higher cryptographic and
network overhead. Consequently, subtrees can proceed without
stalling on OT data. To identify the optimal subtree depth, we
explore the design space to balance LPN and GGM latencies,
aiming to minimize both absolute latency and latency gap.
As shown in Fig. while batch_size=16, s=3 achieves
the smallest latency gap, batch_size=256, s=4 offers lower
absolute latency with a small gap, providing the best trade-off
used in our evaluation.

To further accelerate BOX execution, we optimize AES at
the microarchitectural level, as its frequent invocation during
node expansion significantly affects performance. As illus-
trated in Fig. 8] precomputed round keys and S-box values are
stored in local RAM to reduce memory overhead and eliminate
redundant key expansions. The round key addition is deferred
to the final stage to minimize data dependencies and enhance
pipelining. Moreover, the deeply nested loop is restructured
into a pipeline-friendly format, shortening critical paths and
enabling efficient memory transfers across iterations.

Algorithm: AES

1. for i=0 to 1: //Initial round 1. for i=0to 1:

2. Kfaesikey[i*l 1+0] 2. offSet=it(i<<1)+(i<<3)

3. glil=glil®K //Split addRoundKey for better pipelining
4. for rzl_fo 9: //Main rounds 3. [ gli]=l _g[i]@aes_key[offset+0]
5. for ’:0 t‘? I: - //Change loop structure of rounds comp.
6. K=aes_key[i*11+r] 4 for r=1 to 9:

7. . AESR()und(g[i],K,sb()x) 5: y ESR()un;I'( 1 glil)

8. for 1:9 to 1: //limal round 6. I glil=l gli[®aes_key[offsertr]
9. K=aes key[i*11+10] 7. AESFinalRound(l_g[i))

10.  AESFinalRound(g[i],K,sbox)| g. I glil=l_glil®aes_key[offser+10]

(a) Alg#1: Conventional (b) Alg#2: Optimized

Fig. 8. AES expansion algorithm comparison

VM Acceleration via Vectorized Batch XOR Reduction.

The LPN computation involves a vector-matrix multiplication
(VM), e.g., (u,v,w) - A in Fig. |3 step #3, where A € IF’;X”
is a sparse binary matrix with d non-zero entries per column.
Each VM computes the XOR of d selected input indices, as
detailed in [12] [14]. The resulting low spatial locality—e.g.,
limited reuse of nearby memory addresses—leads to poor
cache utilization, as only small portions of cache lines are
accessed [31]]. This increases memory pressure in large-scale
COT generation, where frequent global memory accesses
exceed cache capacity. Prior works use AES with SIMD ex-
tensions to generate random indices, but XORs are computed
sequentially, incurring two global memory reads and one
write per operation. This read-modify-write pattern introduces
loop-carried dependencies, preventing full pipelining. Linear
Feedback Shift Registers (LFSRs) provide lightweight pseu-
dorandom number generation but are also sequential, limiting
parallelism in high-throughput designs.

To address memory constraints on resource-limited hard-
ware, we introduce a pipeline- and parallelism-friendly ap-
proach based on fine-grained decomposition of the VM com-
putation—decoupling index generation, memory access, and
XOR reduction into independently optimized stages. Let k
denote the input vector from the TEE-assisted Initial Correla-
tion Setup, and i € Fz represent a set of randomly generated
indices used to select entries from k. The XOR of selected el-
ements, k[i1],...,Kk[ig], is computed in local memory, thereby
reducing on-chip usage by avoiding storage of unused portions
of k. We introduce two variants of a Pipelined/Parallel XOR
Reducer (PXR) that replace sequential XOR operations. The
pipelined reducer (Alg#1) avoids intermediate reads for each
update, while the parallel reducer (Alg#2) eliminates itera-
tion dependencies, maximizing performance when additional
resources are available, as shown in Fig. E}

Algorithm: VM computation
Input: k; Output: n; Parameters: /_k/n, k/n in local mem; init_s, initial seed.

1. for i=0 to size, step size,,: /[Allocate local memory for vector &
2. for /=0 to size,,,, 1. for i=0 to size, step size,,.;:
3. init_s=k[i]+(i+1)(/+1) 2. init_s=I_k[i ]+(l+l)
4. m_LFSR(s, init s, 1) 3. m_LFS'R(s tmt_s i)
"""""""""""""" (4. for /=0 to size,,,:
JIXOR in local memory 5. for =0 to (d/3-1);
5. ifor j=0 to (d-1):
6. Coom  LESR(r, s+2+i+j, j)i //Generate locations for XOR:
6 im_LFSR(ry, s+2+i, )
7. I n[[I=PXR(l_n[I],k[r]) 1
8. A=A : .{’?__L.ESR(&’.§_+.2}.+_1.T.1_,J_+_f!{2)
- 8. U[j1=1_K[r\)DI_k{r,]
9. I_n[l]= PXR(11[0:(d/2-1)])
10. nli+l=l_n[/]

(a) Alg#1: Constrained resource (b) Alg#2: Moderate resource or higher

Fig. 9. Algorithms for VM computation with different resources

Unlike prior methods, our algorithm supports batched mem-
ory transactions by removing LFSR feedback dependencies.
We achieve this via a multiplexer that injects an auxiliary
bit into the XOR path, allowing independent iterations with
unique seeds derived from the iteration index. The system
uses a 512-bit data bus to fetch four 128-bit elements per
transaction, aligning with DDR4/AXI burst sizes for improved
bandwidth and latency. Consequently, our VM module sup-
ports dataflow parallelism through pipelining, local mem-
ory reuse, and batched partitioning. Structured decomposition



across GGM and VM modules further reduces memory traffic
and latency, setting a new benchmark for COT acceleration.
Detailed performance results are provided in Section

IV. EXPERIMENTS
A. Experiment Setup

We evaluate our benchmarks under three network config-
urations: (1) a regular LAN environment with 3Gbps band-
width and 0.3ms latency, (2) a constrained WAN setting with
200Mbps bandwidth and 50ms latency, and (3) a mobile-like
setting with 100Mbps bandwidth and 80ms latency. For secure
computation primitives, we synthesize and implement COT
generation on a low-end Zyng-7000 SoC FPGA using Vitis
High-Level Synthesis [32]. We define the client profile as
a constrained configuration equivalent to typical IoT sensors
(500MHz single-core CPU, 256MB mem), reflecting real-
world platforms like the BeagleBone embedded system used in
cryptographic benchmarking [33]]. The server resource profile
reflects an edge-server setup with equivalent resources as Intel
NUC 12 Pro. Intel SGX [34] is used as the TEE testbed,
Silentflow relies on a limited set of CSPRNG and PRNG
operations, thereby functioning with ultra-lightweight resource
requirements and avoiding computational overhead.

B. FPGA Acceleration of SilentFlow

Table [[I| shows hardware utilization and timing results for
the GGM and VM units, as well as overall COT generation,
after place-and-route. The number of BRAMs reflects on-chip
memory use, similar to CPU cache. We use Ferret as the
baseline for comparison. Our BOX approach achieves a 6.20x
to 23.13x speedup, depending on the subtree height config-
uration. For VM, our vectorized batch PXR method achieves
3.18% and 5.06x lower latency using Alg#1 and #2, respec-
tively, with batch_size=256—the best-performing setting in
Fig. [/l Finally, the integrated end-to-end COT generation im-
proves latency by 10.21x and 11.78x, with the chosen config-
uration balancing performance and resource trade-offs between
VM and GGM, as discussed in Section However, with
sufficient BRAM, we observe up to a 53.29x improvement
in VM computation, highlighting BRAM’s advantage in sup-
porting highly parallel operations. This result suggests that
with adequate resources—such as high-performance embedded
processors or smartphones (e.g., Raspberry Pi 4, or iPhone X
and later as the client)—significant speedups are achievable.
Our design thus provides two options: one for resource-limited
devices and another for more capable platforms.

C. COT generation

We compare SilentFlow with representative state-of-the-
art OT protocols, as summarized in Table SilentFlow
achieves substantial speedups ranging from 5.14x~39.51x
across different protocols. Notably, the speedup increases as
network latency worsens, while SilentFlow remains unaf-
fected due to its fully non-interactive design—even during
the sparse correlation generation phase, enabled by our TEE-
based approach. Consequently, the total COT generation time

TABLE II
HARDWARE RESOURCE COST OF VM, GGM, AND COT COMPUTATION,
WITH k = 32771, n = 220, USING DIFFERENT OPTIMIZATION METHODS
ON ZYNQ-7000 SoC Z-7045. * ALG#2 EXCEEDS THE FPGA STORAGE
LIMITS AND IS VIABLE WHEN SUFFICIENT RESOURCES ARE AVAILABLE.

Unit Method BRAM DSP FF

LUT Latency(ms) Speedup

Ferret 48 0 14564 19206 281.40 -
BOX(s=3) 67 0 31446 20193 109.37 6.20x
GGM BOX(s=4) 67 0 42346 28269 73.99 9.16x
BOX(s=6) 67 0 82378 55921 43.82 15.47x
BOX(s=12) 227 0 73189 60490 29.31 23.13x
Ferret 4 0 8520 8265 281.40 -
vMm  Alg#l 4 1 8748 3885 88.46 3.18x
Alg#2 276 0 14272 13275 55.66 5.06 %
Alg#2* 2072 0 25920 23005 5.28 53.29x
Ferret 84 0 22881 23986 985.79 -
COT Alg#l(s=4) 71 1 50044 31870 96.54 10.21x
Alg#2(s=6) 295 0 101376 62341 83.67 11.78 %

is dominated solely by local computation, which is further
accelerated by our FPGA-based hardware architecture.

TABLE III
PERFORMANCE COMPARISON WITH VARIOUS STATE-OF-THE-ART COT
GENERATION PROTOCOLS. FOLLOWING THE STANDARD IN PRIOR WORKS,
THE GENERATION OF 107 COTS IS USED AS THE BENCHMARK, INCLUDING
BOTH THE SPARSE CORRELATION CONSTITUTION AND THE EXTENSION
PHASES, WHILE EXCLUDING THE NEGLIGIBLE ONE-TIME SETUP.

107 COTs generation (second)

Protocol

LAN  Speedup WAN  Speedup Mobile Speedup
QuietOT [27] 36.24  29.46x  43.89  35.65%x 48.48 39.51x
SilentOT [11] 17.32  14.08x 2497  20.28x 29.56 24.09x
Ferret [12] 9.703 7.89% 17.02  13.83x 21.64 17.64x
SSOT [26] 6.33 5.14x 1398  11.36x% 18.57 15.13%
SilentFlow  1.230 - 1.231 - 1.227 -

D. End-to-end Framework

In Table we compare SilentFlow against the Ferret
and IKNP protocols integrated into state-of-the-art PPMLaaS
frameworks. We evaluate two deep learning models: ResNet-
50, representing a large-scale network, and SqueezeNet, rep-
resenting a lightweight architecture. The results show that
with SilentFlow, the Cheetah and CrypTFlow?2 frameworks can
complete inference under a mobile network environment in 60s
for ResNet-50 and 152s for SqueezeNet, achieving a speedup
of 4.75x to 4.78x over previous protocols. As network
conditions improve, the relative speedup from communication
reduction diminishes; however, SilentFlow still achieves at
least a 3.17x acceleration on ResNet-50, primarily due to
FPGA-based computation, as communication is typically not
a bottleneck under LAN settings. These results demonstrate
that although SilentFlow primarily targets COT generation, it
delivers a 2.88x~4.78 x improvement in end-to-end inference
performance—validating the effectiveness of our design.

V. CONCLUSION

In this work, we demonstrate that secure MPC-based
deep learning inference is becoming practical in resource-
constrained environments by addressing the primary bot-
tleneck of COT generation. SilentFlow introduces a hard-
ware—algorithm co-design that enables SqueezeNet inference
in under 1 minute over mobile networks on hardware equiva-
lent to IoT sensors or wearables, achieving a 4.78x speedup.



TABLE IV

PERFORMANCE COMPARISON WITH FERRET AND IKNP PROTOCOLS BY

IMPLEMENTATIONS IN REAL-WORLD PPMLAAS FRAMEWORKS.

ResNet50 (second) SqueezeNet (second)

Framework
LAN WAN Mobile LAN WAN Mobile

SCI [6] 581 1058 1424 357 584 728

SCI+SilentFlow 183 266 308 124 139 152
Speedup 3.17x  3.97x 4.62x 288x 4.20x 4.78x

Cheetah [7] 500 795 1013 129 209 285

Cheetah+SilentFlow 145 216 256 38 52 60
Speedup 3.448x 3.68x 3.95x 339x 4.02x 4.75x

For more complex models like ResNet-50, SilentFlow com-
pletes inference in under 5 minutes with a 4.62x speedup.
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