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Abstract

Timely detection of hardware vulnerabilities during the early
design stage is critical for reducing remediation costs. Exist-
ing early detection techniques often require specialized secu-
rity expertise, limiting their usability. Recent efforts have ex-
plored the use of large language models (LLMs) for Verilog
vulnerability detection. However, LLMs struggle to capture
the structure in Verilog code, resulting in inconsistent detec-
tion results. To this end, we propose VerilogLAVD, the first
LLM-aided graph traversal rule generation approach for Ver-
ilog vulnerability detection. Our approach introduces the Ver-
ilog Property Graph (VeriPG), a unified representation of Ver-
ilog code. It combines syntactic features extracted from the
abstract syntax tree (AST) with semantic information derived
from control flow and data dependency graphs. We leverage
LLMs to generate VeriPG-based detection rules from Com-
mon Weakness Enumeration (CWE) descriptions. These rules
guide the rule executor that traversal VeriPG for potential vul-
nerabilities. To evaluate VerilogLAVD, we build a dataset col-
lected from open-source repositories and synthesized data. In
our empirical evaluation on 77 Verilog designs encompassing
12 CWE types, VerilogLAVD achieves an F1-score of 0.54.
Compared to the LLM-only and LLM with external knowl-
edge baselines, VerilogLAVD improves F1-score by 0.31 and
0.27, respectively. !

Introduction

Modern hardware architectures have grown significantly
more complex. This increased design complexity compli-
cates the application of traditional security verification tech-
niques, such as formal verification and dynamic simula-
tion, which often suffer from scalability limitations and in-
complete state-space coverage (Akter, Khalil, and Bayoumi
2023). As a result, security vulnerabilities may remain un-
detected until the post-silicon validation stage, which sub-
stantially increases the cost and complexity of remediation
(Karri et al. 2010). Therefore, ensuring compliance with se-
curity specifications during early design stages is essential
to building trustworthy hardware systems.

Existing tools for analyzing security at the RTL have ma-
jor limitations. The verification process requires engineers to
manually review the RTL code to define security rules, cre-
ate matching SystemVerilog Assertion (SVA) and run tests
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Hardware Design Flow

<o E>| RTL Design |:>| Simulation t:>| Synthesis |:> ces

Vulnerability Detection in the RTL Design Stage\

| Vulnerability Description + Verilog Code |
(b) LLM+Knowledge (c) VerilogLAVD

(a) Static Analysis

L Q
Expert Beginner. - — - _\I C — - _\l
—_v___ _v__ _ | Ho | Ho
9 : I @E’? ! | @\% |
| Manual Analysis d | { |
| . Il ums 1 wws
(@) Security Knowledge | | |
N
| () Long Time | }
—_—— e — — — —— -
Vulnerability
Detection
Static Analysis Rules Rules
o y—— L2
Results  [(BResults Results Results
True Positive Vv True Positive v True Positive v True Positive Vv
True Positive v False Positive x False Positive x True Positive Vv
True Positive V False Positive x False Positive x True Positive V
False Positive x False Positive x False Positive x False Positive x

Figure 1: (a) Static analysis requires substantial time and ex-
pertise, and the effectiveness depends on the expertise and
experience of the analysts. (b) LLM+Knowledge tends to
generate false positives. (c) VerilogLAVD reduces false pos-
itives by generating detection rules.

during simulation (Orenes-Vera et al. 2021). Engineers an-
alyze the SVA results to identify potential security vulner-
abilities. It only functions with fully completed hardware
designs, making it unsuitable for early development stages.
The RTL designs analysis tools in the early stage of hard-
ware design, like Spyglass (Synopsys 2015), they can iden-
tify vulnerabilities early by using expert-defined static anal-
ysis rules. This workflow requires substantial security ex-
pertise and intensive labor for code review. More critically,
Current these tools mainly focus on checking functional cor-
rectness instead of security.

Recently, large language models (LLMs) have become
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Figure 2: Overview of VerilogLAVD. VerilogLAVD consists of (a) VeriPG Construction, (b) Validation-Based Rule Generation

and (c) Vulnerability Rule Execute.

widely used across many industries because LLMs are good
at understanding context and logical reasoning, especially in
software development domains, like Github Copilot (Github
2021) and Cursor (Anysphere 2023). LLM is also applied
in hardware security vulnerability detection, researchers use
LLMs to find security weaknesses. Common methods cre-
ate prompt templates that include both security knowledge
and code structure information (Fang et al. 2025; Saha et al.
2024). These prompt templates help LLMs detect vulnera-
bilities in the early stage of hardware design. For LLM, there
is an important problem in vulnerability detection. LLMs are
trained to excel at logical reasoning in natural language, they
have a weak understanding of Verilog code structure. This
issue makes LLMs much more likely to output incorrect in-
formation, producing unreliable results with factual errors.

Figure 1 illustrates the motivation of VerilogLAVD. As
shown in Figure 1(a), traditional approaches rely on man-
ually crafted static analysis rules, which require extensive
security expertise and significant time. Moreover, the effec-
tiveness of these methods is highly dependent on the engi-
neer’s professional knowledge. In contrast, methods based
on LLMs combined with external knowledge perform vul-
nerability detection through carefully designed prompts, as
seen in Figure 1(b). However, these methods often suffer
from a high rate of false positives. This is primarily due to
LLMs’ limited understanding of Verilog’s structural seman-
tics and their are misled by irrelevant information. This is-
sue can be addressed by incorporating code graph structure
analysis via static techniques.

To address the above challenges, we propose Ver-
ilogLAVD, a novel LLM-aided graph traversal rule gener-
ation approach for Verilog vulnerability detection. Inspired
by Code Property Graph (CPG) (Yamaguchi et al. 2014), we
aim to model Verilog code in a similar way. However, due to

the syntactic and concurrency differences between Verilog
and the languages targeted by CPG, we construct VeriPG, a
graph-based representation of Verilog, and design a rule ex-
ecutor for vulnerability detection. We also design a vulner-
ability detection rule generation flow. Within this approach,
LLMs are responsible for generating VeriPG traversal-based
detection rules from natural language descriptions of vulner-
abilities, which avoids direct structural reasoning. However,
as LLMs tend to cause API misuse in software code gen-
eration, they similarly exhibit misuse of traversal primitives
during rule generation (Zhong and Wang 2024). We built a
rule-validation tool to reduce the misuse of traversal prim-
itive output by LLM. This tool monitors generated rules in
real-time and gives instant feedback to LLMs to fix invalid
rules. This tool reduces mistakes in vulnerability rules.
Our key contributions are as follows.

* VeriPG: We propose VeriPG, a unified Verilog represen-
tation integrating AST, CFG, and DDG to enhance vul-
nerability detection accuracy and extensibility in detecting
various vulnerability types.

 Validation-Based Rule Generation: We propose an im-
proved generation method incorporating rule validation to
verify rules, reducing rule misuse while improving cor-
rectness and stability.

* Vulnerability Rule Executor: We develop a suit of opti-
mized traversal approach with a dedicated rule executor,
leveraging Verilog characteristics and vulnerability pat-
terns to significantly improve efficiency.

Preliminaries
The Verilog Language

Verilog is a hardware description language (HDL) most
commonly employed at the register transfer level (RTL),



which describes the flow of data between registers and the
logical operations performed on those data. In this paper, all
Verilog code under discussion is situated at the RTL. Un-
like software programming languages, Verilog describes the
structure and behavior of hardware components that oper-
ate in parallel. However, due to the concurrency and timing
sensitivity of hardware, static analysis and vulnerability de-
tection in Verilog pose unique challenges distinct from tra-
ditional software security analysis.

Symbolic Definitions in VeriPG

Formally, a Verilog module is represented as a directed
graph G = (V, E, AV, AF), where V is AST node (V4),
E contains E4, E~ and Ep, AV is property of V, con-
tains name, type, lineno and wvalue, AE s property of
E, contain type, condition. The traversal primitives are
specialized traversal functions for VeriPG. The symbolic
definition of traversal primitives is as follows: P(m) =
{n‘Vpéoperty(n) = tl"/jngoperty(m>n) = tQ}’ where m
is the current node, n is the next node, ¢; nominates the
type of n, to nominates the type of edge between m and
n. The graph construction is designed to preserve the struc-
tural, control flow, and data dependencies semantics of Ver-
ilog code, enabling precise traversal and reasoning for vul-
nerability detection. We will use this graph representation
throughout the paper to define traversal primitives and vul-
nerability rules for CWE vulnerability detection.

Methodology
Overview

Figure 2 shows an overview of VerilogLAVD. We begin
by analyzing the Verilog code to construct its correspond-
ing VeriPG representation. Simultaneously, we step-by-step
extract vulnerability rules from natural language descrip-
tions of CWE vulnerabilities by using LLM. These gener-
ated rules be validated to ensure their correctness. Subse-
quently, the generated VeriPG representation and the vali-
dated vulnerability rules are input into the vulnerability rules
executor. This executor systematically examines the VeriPG
structure against the vulnerability rules to identify potential
security vulnerabilities.

VeriPG Construction

The VeriPG construction phase consists of three key steps:
1) Syntax and Semantic Analysis, 2) Extraction of Common
Nodes, and 3) Feature Combination. We first analyzes Ver-
ilog code to generate three graph representations: AST, CFG
and DDG. Subsequently, we identifies the common nodes in
these structures. Finally, we merges the three graphs into a
unified model by leveraging these common nodes.

Syntax and Semantic Analysis We employ the Py Verilog
toolkit to parse Verilog code and generate its AST. Custom
scripts then perform semantic analysis on the AST to ex-
tract both CFG and DDG. We construct CFG in procedural
block of Verilog. The CFG construction involves identifying
procedural blocks (e.g., Always blocks) and control blocks
(such as ITfStatement and ForStatement), followed

by establishing control flow edges between them. Unlike the
CFG of software program language, the CFG of Verilog re-
quires handle parallel statements. For DDG generation, we
analyze signal definitions, usages, dependency relationships,
and construct corresponding dependency edges. This pro-
cess yields three complementary representations of the Ver-
ilog code: AST, CFG and DDG.

Common Node Extraction Our analysis of these struc-
tures begins with extracting appropriate syntactic identifiers
from the AST to serve as common nodes for representation
fusion. While CFG nodes (V) and DDG nodes (Vp) rep-
resent complete code statements, each containing distinc-
tive identifiers or their combinations that indicate semantic
types (chommon € VA7 3’UC' € VC, 3UD € VDaUcommon €
Ve Of Veommon € VD), these identifiers maintain correspon-
dence with their AST counterparts. We systematically ex-
tract these aligned identifiers as fusion anchors for subse-
quent feature integration (Veommon U Va4 — V).

Feature Combination The feature fusion process uses
the AST as the foundational structure, augmented with
control flow edges from the CFG and data dependency
edges from the DDG. To prepare for fusion, we prepro-
cess the AST by breaking the AST edges between com-
mon nodes (€4 € Ea,ea = (Vipmmons Viommon) —
e4 = @) and decomposing it into multiple syntax sub-
trees rooted at the identified common nodes, each sub-
tree representing a code segment that corresponds to the
CFG / DDG nodes. Semantic enrichment is achieved by
incorporating the control edges of CFG and the depen-
dency edges of DDG between the corresponding sub-

tree nodes (Jv’ € vk, € vhec =

N common common
i — (ni i o _
(Uc7 UC) % ec - (U(:merLorL7 U2077LTVL071) SImll’arly eD -
(vt’j’ofmmon, v?ommon). Thlg integrated representation, termed
VeriPG, effectively combines the three structural code rep-

resentations through their interconnected common nodes.

Validation-Based Rule Generation

To mitigate reliance on security experts in vulnerabil-
ity analysis, we leverage LLMs to generate vulnerability
rules through natural language descriptions of vulnerabil-
ities. However, the inherent output randomness of LLMs
introduces instability in rule generation. To address this,
we propose a validation-based vulnerability rule generation
methodology. We first extract the vulnerability conditions
from the CWE descriptions by LLMs. Subsequently, we
generate the VeriPG traversal rules for vulnerability detec-
tion using the rule validation tool.

VeriPG Traversal Primitive We propose a set of fun-
damental traversal methods for VeriPG that synergistically
consider Verilog syntax characteristics and common vulner-
ability patterns, achieving enhanced efficiency in vulnera-
bility detection. These basic traversal methods are systemat-
ically combined through textual vulnerability descriptions,
forming configurable vulnerability rules. The traversal prim-
itives consist of three categories: 1) Generic graph traver-
sal, contains fundamental traversals, like DFS, BFS, traver-
sal along AST edge; These traversals are basic components
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(Left) generates traversal primitive step by step, Validation
Tool (Right) validates traversal primitive and output result.

of other traversal primitives. 2) Boolean operations, mainly
involve the composition and computation of the results from
other traversal primitives. 3) VeriPG-specific traversal, fo-
cuses on semantic-aware processing of Verilog syntax ele-
ments through direct indexing of critical syntax nodes and
specialized traversal strategies. For instance, our conditional
variable traversal for IfStatement nodes identifies vari-
ables affecting branch decisions, while rule analysis lever-
ages CFG edges to determine execution rules under spe-
cific conditions. The assignment variable traversal utilizes
DDG edges to track variable propagation. Generic graph
traversal supplements these specialized methods with con-
ventional graph operations including node type filtering and
depth-first search along specific edge types. Boolean oper-
ations enable logical combinations of traversal results, sup-
porting complex pattern detection through result transforma-
tion and filtering. Examples of two primitives (Node () and
Branch () ) are illustrated in Equations (1) and (2).

Node(t) = {n|Vyj,.(n) =t} (1

where ¢ is one kind of node type, V) . (n) means obtaining
type property value of n, this primitive returns all nodes with
type t.

Branch(m) = {n |Vlﬁ,e(m) = IfStatement&
V.E (m,n) = CFG} )

type

where IfStatement is value of node type, CFG is value
of edge type, %Epe(m, n) means get type property value of
edge from m to n, this primitive returns all nodes reachable
from an I fStatement node along CFG edges.

Vulnerability Detection Rule Vulnerability rules imple-
ment combinatorial logic through three core components:
Functions, Filters, and Paths. Functions encapsulate basic
traversal operations with configurable parameters and result
filters. Filters apply Boolean logic (AND/OR) to combine
multiple verification conditions, which can be either nested
Functions or Paths. Paths define sequential execution chains
where preceding Function outputs serve as subsequent Func-
tion inputs. For practical implementation, these rules are
stored in JSON format with structured schema definitions.

Vulnerability Condition Extraction Our solution try to
bridge the significant semantic gap between natural lan-
guage descriptions and formal vulnerability rules through a
Chain-of-Thought (CoT) approach. CWE descriptions typ-
ically contain two critical components: vulnerability mani-
festations and root causes, which essentially define vulner-
ability types through specific conditional constraints. Our
method systematically extracts these constraint from textual
descriptions and converts them into vulnerability judgment
conditions. Through iterative optimization of prompt engi-
neering, we achieve stable and standardized LLM outputs.

Rule Generation To address two key issues—(1) halluci-
nated rules that exceed VeriPG’s structural constraints, and
(2) invalid traversal primitives generated during rule synthe-
sis—we implement a rule validation mechanism. This mech-
anism incorporates a VeriPG-based node state machine that
continuously monitors transformation states throughout the
rule generation process. It provides real-time feedback on
node state transitions and validates transformation steps, en-
abling the LLM to dynamically correct erroneous outputs.
The resulting validated vulnerability rules are directly appli-
cable to the automated vulnerability rule executor.

Rule Validation The rule validation tool uses a finite state
machine built from the VeriPG’s structure. We treat differ-
ent VeriPG nodes as states and connections between nodes
as state transitions. Some nodes have self-loop edges that
show nested relationships, such as when one If statement
contains another. The tool sets a start state and moves be-
tween states by traversal primitives. The process of rule val-
idation begins at a common node decided by LLM, and state
transitions are driven by traversal primitives. When multiple

Table 1: Vulnerability categories (this work), their corre-
sponding CWE types and number of designs in the dataset.

Category CWEs No.
Improper Access Control 1231, 1243, 1244, 1280 17
Improper Resource Operate 226, 1258, 1271 13
Improper Lock 1232, 1234 11
Side Channel 1255, 1300 11
Finite State Machine 1245 7

Non-Vulnerability None 12




Table 2: Vulnerability detection performance evaluation of recent LLMs and VerilogLAVD. F1 scores are shown in bold, and
the best-performing metrics are highlighted with a green background.

DeepSeek-V3 DeepSeek-V3 GPT-40 GPT-40

Vulnerability Category DeepSeek-V3 +Kll:owledge +Verli)logLAVD GPT-do +Knowledge +VerilogLAVD

P(%) R(%) F1 |P(%) R(%) Fl |P(%) R(%) F1 ||P(%) R(%) Fl1 |P(%) R(%) F1 |P(%) R(%) Fl
Improper Access Control 15.07 64.71 0.24|25.71 52.94 0.35|48.15 76.47 0.59| 11.71 76.47 0.20|14.85 88.24 0.25|60.87 82.35 0.70
Improper Resource Operate || 13.79 30.77 0.19]26.09 46.15 0.33|24.32 69.23 0.36 || 12.07 53.85 0.20|12.90 61.54 0.21|32.26 76.92 0.45
Improper Lock 31.25 45.45 0.37|35.29 54.55 0.43|43.75 63.64 0.52|/24.24 72.73 0.36|21.88 63.64 0.33|46.15 54.55 0.50
Side Channel 18.75 27.27 0.22]26.67 36.36 0.31|83.88 45.45 0.59| 8.16 36.36 0.13|12.50 72.73 0.21|53.85 63.64 0.58
Finite State Machine 11.11 14.29 0.13]17.65 42.86 0.25|45.45 71.43 0.56 | 18.75 42.86 0.26 |27.27 42.86 0.33|54.55 85.71 0.67
Total 16.78 40.68 0.2426.17 47.46 0.34|40.21 66.10 0.50 | 13.11 59.32 0.21|15.19 69.49 0.25|47.25 72.88 0.57

valid transitions exist for a traversal primitive, the tool tracks
all possible state transition branches, but illegal branches in
successor state transition will be stopped tracking immedi-
ately. This method checks whether the LLM’s traversal com-
mands follow VeriPG’s rules and provides real-time feed-
back, as shown in Figure 3.

Vulnerability Rule Executor

We design a rule executor to traverse the VeriPG by pars-
ing vulnerability rules. By jointly optimizing traversal prim-
itives and adopting an extensible rule architecture, the ex-
ecutor achieves both high traversal efficiency and flexible
support for new vulnerability types. The rule executor com-
prises three key components: the Primitive Executor, which
serves as the core and entry point responsible for executing
traversal primitives of rules on VeriPG; It first resolves its
arguments (primitives or paths) by invoking the correspond-
ing executor, then performs the traversal and applies a filter
to extract results that meet the specified conditions; the Fil-
ter Executor, which applies filtering conditions during rule
execution; and the Path Executor, which manages and inter-
prets the traversal paths specified by the rules.

Experiments
Experiments Setup

We evaluate VerilogLAVD in different aspects to answer the
following research questions. RQI: How effective is Ver-
ilogLAVD compared with LLM-only approaches across dif-
ferent categories of vulnerabilities? RQ2: How effective is
Rule Validation of vulnerability detection rule generation?
RQ3: How efficient is the vulnerability rule executor across
Verilog designs of different scales? We introduce a represen-
tative case to prove the effectiveness of VerilogLAVD.

Dataset Existing hardware CWE datasets cover only a
limited range of vulnerability types, making it difficult to
comprehensively evaluate our approach. To address this lim-
itation, we constructed a customized dataset based on CWE
classifications by using samples from the real-world open-
source repository Hack@21 as seed data, while also ac-
counting for the diverse code structures that can occur within
the same CWE category. Our mutation strategies include: 1)
Name substitution, where signal or register names related to
the vulnerability are replaced; 2) Process block extension,

where unrelated procedural blocks are inserted to increase
code complexity and length; and 3) Structural complica-
tion, which involves extending the distance between vulner-
able components within the source file or introducing addi-
tional branching and looping constructs. Using these meth-
ods, we generated 59 positive samples. We obtained 18 neg-
ative samples from the corresponding patched versions. The
final dataset comprises 77 Verilog designs covering 12 CWE
types, as shown in Table 1.

Baseline Although several related studies and tools have
achieved promising results on this task, we did not adopt
them as direct baselines for the following reasons: 1) lack
of publicly available code, 2) inconsistency in research ob-
jectives, and 3) heavy reliance on human expertise. In-
stead, we compare our approach against the LLM-only and
LLM+Knowledge methods. In the LLM-only method, we
provide the LLMs with the Verilog code along with a brief
description of the corresponding CWE vulnerability. The
LLM-+Knowledge method extends this input by incorporat-
ing detailed CWE information retrieved from the official
MITRE CWE database.

In all methods, we using two representative LLMs: GPT-
40 (OpenAl 2024) and DeepSeek-V3 (DeepSeek-Al 2024).
GPT-4o0 is widely recognized for its strong performance and
has served as a benchmark for many subsequent models
since its release. DeepSeek-V3, by contrast, is an open-
source model that offers a favorable balance between ac-
curacy and computational efficiency, making it a practical
option for a broad range of real-world applications.

Implementation Detail We implemented the whole ap-
proach using Python 3.10, parsed the Verilog code into an
AST using PyVerilog (Takamaeda-Yamazaki 2015), used
neod4j (Webber 2012) to operate the VeriPG graph struc-
ture, and built the agent in the Vulnerability Rule generation
Module using Autogen (Wu et al. 2024).

Evaluation Metrics We choose precision (P), recall (R),
and F1 score as our evaluation metrics, which are widely
used in previous studies. For each individual CWE, the
dataset contains an imbalanced number of positive and nega-
tive samples. Therefore, we avoid using accuracy as an eval-
uation metric, as it can be misleading under such conditions.



Table 3: The results of ablation study.

Traversal Primitive Misuse

Method

IPTR (%) IPMR (%) Total (%)
LLM+Knowledge 27.04 13.83 40.87
VerilogLAVD (w/o PV) 23.96 12.88 36.84
VerilogLAVD (with PV) 3.49 6.61 10.10

Effectiveness of VerilogLAVD (RQ1)

To evaluate the effectiveness of VerilogLAVD in RTL vul-
nerability detection, we conducted a series of comparative
experiments against representative baselines across differ-
ent CWE vulnerability categories. We adopted the Pass@5
strategy to mitigate the randomness of LLM outputs. Each
method was executed independently 5 times, and a Ver-
ilog sample was considered vulnerable if any of the 5 runs
detected a vulnerability. This evaluation covered 12 types
of CWE-defined vulnerabilities, which we grouped into 5
broader categories to facilitate analysis.

Table 2 summarizes the performance comparison be-
tween VerilogLAVD and the LLM+Knowledge base-
line using different backbone models. The results in-
dicate that VerilogLAVD consistently outperforms the
knowledge-augmented approach, demonstrating greater ro-
bustness across diverse model architectures. For instance,
DeepSeek-V3+VerilogLAVD achieved a 44.12% improve-
ment in F1 score over DeepSeek-V3+Knowledge, while
GPT-40+VerilogLAVD showed a 133.33% increase com-
pared to GPT-40+Knowledge. These findings confirm the
effectiveness of VerilogLAVD in accurately identifying RTL
security vulnerabilities and highlight its potential as a gen-
eralizable framework that surpasses conventional LLM fine-
tuning and prompt engineering methods.

Impact of Rule Validation (RQ2)

To assess the impact of rule validation on vulnerability rule
generation, particularly in mitigating traversal primitive mis-
use, we conduct a series of ablation experiments using the
DeepSeek-V3 backbone model. We compare three config-
urations: 1) LLM+Knowledge (DeepSeek-V3), 2) Rule Ex-
traction without Rule Validation, and 3) Rule Generation
with Rule Validation.

All configurations use the same inputs: CWE descrip-
tions, VeriPG structural information, traversal primitives,
and example rule. In the first configuration, the LLM di-
rectly receives these inputs as a prompt. The second con-
verts CWE descriptions into rules through step-by-step rea-
soning. The third further refines these rules by applying a
rule validation tool iteratively, halting upon success or af-
ter 50 iterations. Each method runs five times per CWE type
across all 12 categories. The resulting rules are manually ex-
amined for two types of traversal primitive misuse: Illegal
rules, where a primitive is incorrectly applied to an unre-
lated node, and Illegal parameters, involving invalid param-
eter counts or types. We define two metrics: the illegal rule
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Figure 4: Variation of number of executed primitives and
rule execution time with the lines of Verilog code.

rate and illegal parameter rate, calculated as the proportion
of violations among all generated primitives.

Table 3 presents the results. The rule validation configura-
tion significantly lowers the overall misuse rate to 10.10%,
compared to 40.87% for the baseline and 36.84% for the
no-validation method. Specifically, it reduces the illegal
rule rate to 3.49%, representing decreases of 87.10% and
85.43%, respectively. The illegal parameter rate also drops
to 6.61%, yielding reductions of 52.21% and 48.68% over
the two other methods. These findings demonstrate that rule
validation substantially reduces misuse, particularly illegal
traversal rules, thereby improving the structural integrity and
reliability of generated vulnerability rules.

Efficiency Across Verilog Design Scales (RQ3)

To evaluate the performance of the vulnerability rule ex-
ecutor on single-module Verilog code of varying lengths,
we conducted experiments using our dataset. As shown in
Figure 4, we observe that as the number of code lines in-
creases, neither the number of executed traversal primitives
nor the rule execution time exhibits a clear upward trend.
This suggests that the executor’s performance is not directly
correlated with code length. Notably, the number of traver-
sal primitives closely aligns with execution time, indicat-
ing that primitive execution dominates the overall scanning
process. Interestingly, in some cases, longer Verilog files
yield shorter execution times, suggesting that the scanner is
largely insensitive to irrelevant code and can maintain high
performance even on lengthy designs.

Case Study

We present a representative RTL vulnerability case in which
data-flow analysis is critical for accurate detection. Specif-
ically, detecting CWE-1280 requires analyzing data depen-
dencies: this vulnerability arises when an access control con-
dition is used before being properly initialized, potentially
leading to nondeterministic execution behavior,as shown in
Figure 5a. To efficiently detect such issues, our approach
uses customized traversal primitives for the CFG and DDG.



always @ (posedge clk or negedge rst_n)
begin
if (!rst_n)
data_out = 0;
else
data_out = (grant_access) ? data_in : data_out;
grant_access = (usr_id == 3'h4) ? 1'bl : 1'b0;
end

(a) Verilog Code with Vulnerability

"Func": "Variable",

{"Func": "LoadStatement", "Params": []},
{"Func": "DriverStatement", "Params": ['=']}
{"Func": "Exist", "Params": []}

(b) Vulnerability Rule

Figure 5: (a) A Verilog code with CWE-1280. The code con-
taining vulnerabilities is highlighted with a red background.
(b) The fragment of CWE-1280 vulnerability rule.

As shown in Figure 5b, the corresponding vulnerability
rule consists of four key steps: 1) Use the Variable prim-
itive to collect all signals in the module, then apply a Filter to
select relevant ones; 2) Traverse from each selected signal to
its usage via LoadStatement, following data dependency
edges; 3) Move from the usage point to the corresponding
blocking assignment using AssignStatement along the
DDG:; 4) Apply the Exist primitive to check whether the
identified pattern exists and return a boolean result. This rule
demonstrates how VeriPG utilizes data dependency informa-
tion for graph-based traversal, emphasizing its essential role
in enabling semantic-level vulnerability detection. More de-
tails/results are referred to the appendix.

Related Work

Traditional Hardware Security Verification With the
increasing complexity of hardware design, a variety of
hardware security verification methods have emerged. 1)
Simulation-based Validation depends on manually crafted
test cases to assess hardware security (Dessouky et al.
2019; Rajendran et al. 2023); however, this method is labor-
intensive, inefficient, and suffers from limited coverage.
2) Fuzzing Testing and Penetration Testing employ auto-
mated test case generation via mutation and feedback mech-
anisms (Hossain et al. 2023; Al-Shaikh et al. 2023), but
they require extensive testing to achieve sufficient coverage.
3) Assertion-based Formal Verification expresses security
properties using SVAs and checks them with formal tools
(Aftabjahani et al. 2021; Orenes- Vera et al. 2021); despite its
rigor, this approach often encounters state space explosion
in complex designs and demands considerable expertise to
construct accurate SVAs. 4) Security Analysis based on RTL

Code Structure leverages RTL code structure scanning with
problem-specific detectors (Ahmad et al. 2022). While ef-
fective for certain issues, it requires custom analyzer devel-
opment for different vulnerability types, heavily relying on
domain-specific knowledge. 5) Information Flow Tracking
(IFT) monitors the propagation of sensitive data to identify
unauthorized flows (Solt, Gras, and Razavi 2022; Zhao et al.
2024), but it introduces significant computational overhead.
6) Machine Learning-based Verification, including methods
based on graph neural network (GNN), strives to automate
the validation process (Fan et al. 2024; Yasaei et al. 2022);
however, the absence of large-scale labeled datasets limits
the generalization capability of these models.

LLM-aided Hardware Security Verification Recent ad-
vances have explored the application of LLMs in various as-
pects of hardware security verification. 1) LLM-based Log-
ical Verification utilizes LLMs to reason about and identify
issues in RTL code logic (Akyash and Kamali 2024; Pearce
et al. 2025; Zhang et al. 2024b); however, the inherent com-
plexity and structural characteristics of RTL present signif-
icant challenges for accurate comprehension by LLMs. 2)
LLM-aided Formal Verification employs LLMs to generate
SVAs, aiming to lower the barrier to writing formal prop-
erties (Orenes-Vera, Martonosi, and Wentzlaff 2023). How-
ever, due to the intricate nature of SVAs and the ambiguity
often found in security specifications, the generated results
frequently exhibit instability. 3) LLM-aided IFT improves
the efficiency and scalability of IFT by dynamically infer-
ring security properties (Mashnoor et al. 2025).

Despite these promising directions, prior work has not
investigated the integration of LLMs with RTL-structure-
based security analysis. Leveraging LLMs to generate anal-
ysis rules can reduce the manual effort involved in rule con-
struction, thereby enhancing the scalability of RTL struc-
tural analysis and facilitating early-stage security assess-
ment during hardware design.

Conclusion and Future Work

In this paper, we proposed the first LLM-aided graph traver-
sal rule generation approach for Verilog vulnerability detec-
tion. Our method introduces VeriPG, a unified intermediate
representation that integrates syntactic and semantic infor-
mation from ASTs, CFGs, and DDGs. Using LL.Ms, we an-
alyze vulnerability patterns and generate graph traversal rule
for structured vulnerability matching. VerilogLAVD achiev-
ing an F1 score improvement of 0.31 and 0.25 over LLM-
only and LLM+knowledge baselines, respectively.

During the course of this study, we observed that Verilog
vulnerabilities tend to be concentrated within specific func-
tional modules. However, our current approach does not in-
corporate functional context into the detection process. In
future work, we plan to explore integrating functional mod-
ule information to improve vulnerability localization and de-
tection accuracy.
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