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Abstract

Large Language Models (LLMs) have exhibited remarkable
capabilities but remain vulnerable to jailbreaking attacks,
which can elicit harmful content from the models by manip-
ulating the input prompts. Existing black-box jailbreaking
techniques primarily rely on static prompts crafted with a sin-
gle, non-adaptive strategy, or employ rigid combinations of
several underperforming attack methods, which limits their
adaptability and generalization. To address these limitations,
we propose MAJIC, a Markovian adaptive jailbreaking frame-
work that attacks black-box LLMs by iteratively combining
diverse innovative disguise strategies. MAJIC first establishes
a “Disguise Strategy Pool” by refining existing strategies and
introducing several innovative approaches. To further improve
the attack performance and efficiency, MAJIC formulate the
sequential selection and fusion of strategies in the pool as a
Markov chain. Under this formulation, MAJIC initializes and
employs a Markov matrix to guide the strategy composition,
where transition probabilities between strategies are dynami-
cally adapted based on attack outcomes, thereby enabling MA-
JIC to learn and discover effective attack pathways tailored
to the target model. Our empirical results demonstrate that
MAIJIC significantly outperforms existing jailbreak methods
on prominent models such as GPT-40 and Gemini-2.0-flash,
achieving over 90% attack success rate with fewer than 15
queries per attempt on average.

Introduction

Large language models (LLMs) have achieved remarkable
progress in recent years, demonstrating unprecedented capa-
bilities in natural language understanding, generation, and
reasoning (Team et al. 2023; Guo et al. 2025; Shen et al. 2023;
Nijkamp et al. 2023; Li et al. 2025b). As LLMs are increas-
ingly deployed in critical domains such as healthcare, finance,
and public services, ensuring their safety and reliability has
become a top priority. A significant threat to LLM safety is
the emergence of jailbreaking attacks (Zou et al. 2023; Chao
et al. 2023; Ding et al. 2024; Mehrotra et al. 2024), which
can exploit well-crafted prompts to elicit harmful content
(e.g., violent crimes or self-harm (Yao et al. 2024)) from
LLMs. Due to the potential severe consequences of jailbreak
attacks, such as erosion of user trust, breaches of ethical and
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regulatory standards (Zhou, Li, and Wang 2024; Souly et al.
2024; Xu, Liu, and Liu 2024; Zhang, Zhang, and Foerster
2024), research on jailbreaking attacks has recently received
widespread attention from the community (Zeng et al. 2024;
Liu et al. 2025a; Xiao et al. 2024; Li et al. 2025a; Hu, Chen,
and Ho 2025; Du et al. 2025).

Existing jailbreaking attacks can be broadly categorized
into white-box and black-box attacks (Yi et al. 2024). While
white-box attacks such as gradient-based adversarial suffix
optimization (Zou et al. 2023; Zhu et al. 2024; Hu, Chen,
and Ho 2024; Jia et al. 2024) and logits-based constrained
generation (Guo et al. 2024) are effective, they rely on full
access to the victim models (e.g., parameters and architec-
tures), which limits their applicability in practice. In addition,
their optimization process usually requires computing the
LLM gradients, leading to high computational overhead.

Consequently, attacking LL.Ms under the more challenging
yet practical black-box setting, where the adversary only has
the access to the API of the target LLM, has attracted signifi-
cant attention (Liu et al. 2025b; Ramesh et al. 2025; Jin et al.
2024; Wei, Liu, and Erichson 2024). However, existing black-
box attacks, including manual prompt engineering (Shen
et al. 2024; Liu et al. 2023) and automated techniques (Chao
et al. 2023; Mehrotra et al. 2024; Yuan et al. 2024; Hu, Chen,
and Ho 2024; Huang, Li, and Tang 2024), still have short-
comings that limit their efficiency or effectiveness. Manually
crafted prompts usually use fixed patterns and thus can be
easily detected by recent aligned LLMs. Most existing au-
tomated methods typically rely on a single strategy in each
attack attempt, either through application of a predefined
strategy (Zeng et al. 2024; Yuan et al. 2024) or iterative refine-
ment of a chosen strategy (Chao et al. 2023; Mehrotra et al.
2024). Consequently, such black-box attacks have limited
adaptability to diverse models or evolving defenses, leading
to suboptimal attack performance and poor generalization (Yi
et al. 2024).

Recognizing the inherent limitations of relying on a single
strategy, combining multiple strategies for synergistic effects
recently emerged as a promising direction (Li et al. 2024).
However, determining an optimal sequence of strategies to
combine remains non-trivial, as it may require navigating a
vast and dynamic space of possible combinations. Current
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multi-strategy methods mainly rely on arbitrary selections or
deterministic sequences (Ding et al. 2024; Liu et al. 2025a)
for strategy selection, which may result in limited attack
effectiveness or high query costs.

The above limitations of existing black-box attacks un-
derscore the urgent need for a diverse and comprehensive
strategy pool with an adaptive mechanism to dynamically and
optimally combine these strategies, to improve the effective-
ness and efficiency of current black-box jailbreaking attack.
Therefore, in this paper, we propose a Markovian Adaptive
Jailbreaking attack via Iterative strategy Composition of di-
verse innovative strategies (MAJIC), representing the state-
of-the-art attack for jailbreaking LLMs under the black-box
setting. We first construct a modular and extensible Disguise
Strategy Pool by enhancing previous attack strategies and
proposing our novel disguise strategies, including contextual
assumption, linguistic obfuscation, role-playing framing, se-
mantic inversion, and literary disguise. In our strategy pool,
we address the limitations of the existing strategies, such
as lack of details or context-rich scenarios. Inspired by the
properties of Markov chains for sequential state transitions,
we formulate the selection and combination of strategies in
the jailbreak process as a Markov chain, and we design an
effective mechanism to initialize the Markov transition ma-
trix using a proxy LLM and local datasets. In the real-time
attack process, we can adopt the Markov transition matrix
to guide the selection of the next applied strategy and inte-
grate different strategies using an attacker LLM. To further
enhance the adaptivity and dynamism of the attack, we also
design a Q-learning-inspired mechanism to update the tran-
sition matrix of the Markov chain during the attack process.
Our fine-grained designs enable MAJIC to learn an effective
selection order of multiple disguise strategies and facilitate a
structured and guided exploration of promising jailbreaking
pathways.

We conduct an extensive array of experiments to evaluate
MAIJIC on five state-of-the-art models, including Gemini,
GPT, and Claude. The results demonstrate that, in most cases,
MAIJIC can achieve more than 90% attack success rates with
fewer than 15 queries. Notably, MAJIC achieves a substantial
performance advantage over existing attack methods—even
against Claude-3.5-Sonnet, a model renowned for its robust
safety alignment—demonstrating the effectiveness of our
MAIJIC in highly secured LLMs.

Our contributions are three-fold:

1. We establish a comprehensive and innovative disguise
strategy pool by enhancing existing strategies and propos-
ing new strategies, which already can achieve superior
attack performance than most existing baselines.

2. To further improve attack efficacy and efficiency, we
model the strategy selection and combination process
as a Markov chain and develop an effective initialization
mechanism for the transition matrix, along with a dynamic
update algorithm for its real-time adaptation.

3. We conduct extensive experiments on a wide range of
open-source and closed-source LLMs to demonstrate the
state-of-the-art effectiveness and efficiency of MAJIC.

Related Work

Based on the required level of access to the target model,
existing LLM jailbreaking methods are broadly classified
into two main categories: white-box and black-box attacks.

White-box Jailbreaking Attacks. White-box attacks exploit
internal model knowledge, such as gradients or logits, to
craft adversarial prompts. GCG (Zou et al. 2023) leverages
LLMs’ gradient to optimize effective adversarial suffixes.
AutoDAN (Zhu et al. 2024) applies genetic algorithms to
optimize prompts. COLD-Attack (Guo et al. 2024) employs
energy-based constrained decoding, utilizing logits informa-
tion, for controllable and automated prompt generation under
constraints like fluency and stealthiness. While potentially
powerful, these methods fundamentally depend on privileged
white-box access. Furthermore, they often demand substan-
tial computational resources to generate a jailbreak prompt.
Critically, their effectiveness frequently struggles to gener-
alize across different models, particularly against more ro-
bustly aligned LLMs like Llama3 (Grattafiori et al. 2024) or
Gemma-2 (Team et al. 2024), where attack success rates tend
to decrease sharply. The lack of transferability, along with the
need for privileged access, significantly limits the practical
applicability of white-box methods.

Black-box Jailbreaking Attacks. Black-box attacks, rely-
ing solely on input-output interactions with the target LLM,
represents a more practical threat scenario (Chao et al. 2023;
Mehrotra et al. 2024; Lin et al. 2025; Andriushchenko, Croce,
and Flammarion 2024). Early efforts included manual prompt
engineering, exemplified by DAN (Shen et al. 2024), which
often relied on carefully crafted templates. More recent re-
search has focused on automated approaches, frequently
leveraging LLMs to generate or refine attacks. Techniques
like PAIR (Chao et al. 2023) and TAP (Mehrotra et al. 2024)
employ iterative refinement, using an attacker LLM or struc-
tured search (like tree search in TAP) to improve prompts
based on target model feedback. Others apply predefined or
learned strategies, such as using persuasion techniques de-
rived from social science (PAP (Zeng et al. 2024)), combining
rewriting functions with scenario nesting (ReNeLLM (Ding
et al. 2024)), or generating attacks from discovered or pro-
vided strategy libraries (AutoDAN-turbo (Liu et al. 2025a)).
Despite representing significant progress in automating black-
box attacks, these methods still face critical limitations. Man-
ual templates are static and brittle against evolving defenses.
Automated iterative refinement techniques like PAIR and
TAP can incur high query costs. More fundamentally, meth-
ods relying on predefined strategies (PAP, ReNeLLLM) or even
learned strategy libraries (AutoDAN-turbo) often lack mech-
anisms for adaptive strategy sequencing during an attack.
They typically execute chosen strategies without dynamically
adjusting the order or selection based on the real-time results
against the target LLM. This limits their robustness against
diverse model behaviors and their ability to efficiently adapt
to sophisticated or changing defenses, highlighting the need
for more dynamic and feedback-driven strategy coordination.
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Figure 1: Overview of the MAJIC framework. MAJIC leverages a dynamic Markov model to adaptively select and combine

disguise strategies, effectively bypassing LLM safety mechanisms.

Methodology

In this paper, we model the process of selecting and combin-
ing strategies in the jailbreak attack as a Markov chain (Norris
1998), where each state transition corresponds to the appli-
cation of a specific strategy. This modeling approach is able
to capture the sequential dependencies between strategies
and make adaptive decisions during the attack. Our frame-
work consists of three key stages: (1) Designing the Disguise
Strategy Pool: Disguise Strategy Pool is a modular and ex-
tensible collection of strategies, including refined versions
of existing methods and our new disguise strategies, which
serve as the building blocks for our attack. (2) Initializing
Markov Transition Matrix: The Markov Transition Matrix
is initialized using a proxy LLM and local datasets. This
matrix encodes prior knowledge of effective strategy transi-
tions, with each entry representing the likelihood of a specific
strategy succeeding after a failure. (3) Dynamic Strategy Se-
lection and Adaptation: During the attack process, strategies
are iteratively selected and fused based on the Markov transi-
tion matrix. To improve effectiveness, a Q-learning-inspired
mechanism is proposed to dynamically update the matrix in
real time, leveraging feedback from attack outcomes on the
target LLM. In the following, we detail the three stages.

Disguise Strategy Pool

To effectively bypass safety alignment mechanisms in LLMs,
we have meticulously designed a Disguise Strategy Pool. The
pool encompasses a wide range of effective strategies, aiming
to conceal the true intent of harmful prompts. We construct
the disguise strategy pool from two perspectives: on one hand,
we integrate and refine previous attack strategies; on the other
hand, we propose two novel disguise strategies, as follows.
First, we systematically refine existing jailbreaking strate-
gies (Andriushchenko and Flammarion 2024; Deng et al.
2024; Jin et al. 2024; Shen et al. 2024; Wei, Liu, and Erich-

son 2024), grouping them into three categories and applying
customized improvements for each category, as follows.

* Contextual Assumption: This category of strategies re-
duces the perceived harmfulness of prompts by embedding
them in hypothetical, historical, or imagined scenarios.
However, previous methods struggled to bypass alignment
mechanisms due to shallow contextualization or scenarios
that are framed too broadly without specific details. To
address this limitation, we introduce more detailed and
specific assumptions, such as philosophical dilemmas, his-
torical analogies, or futuristic contexts. By subtly preserv-
ing the original intent within these refined scenarios, we
could make the disguised prompts more coherent and less
detectable, while maintaining their effectiveness.

* Linguistic Obfuscation: This category of strategies fo-
cuses on disguising harmful prompts by altering the lin-
guistic appearance of language, making it harder for LLMs
to detect realistic content. Previous methods often relied
on simple character substitutions or vague expressions and
were easily detected by alignment mechanisms. To over-
come these limitations, we introduced more creative and
complex strategies, such as combining multiple techniques
(e.g., integrating euphemisms with leetspeak) and embed-
ding technical jargon, multilingual elements, or emojis
in specific contexts. These refinements enhance linguistic
complexity and diversity, making prompts less detectable
while still preserving their underlying intent.

* Role-Playing Framing: This category seeks to elicit harm-
ful outputs by assigning the LLM a professional or au-
thoritative role, thus reframing malicious queries as part
of legitimate tasks for this role. While earlier methods of-
ten relied on generic role prompts and lacked contextual
grounding, we enhance them by embedding prompts within
more credible and context-rich security scenarios. Our en-
hanced strategies incorporate terminology and structures



aligned with real-world practices (e.g., vulnerability assess-
ment procedures or compliance testing narratives), making
the prompts appear more authentic and plausible, while
subtly preserving their underlying harmful intent.

In addition to refining these existing techniques, we also
propose two new strategies as follows.

* Semantic Inversion: This method first rewrites the origi-
nal harmful prompt into a semantically opposite version,
transforming it into a positive statement. We then instruct
the target LLM to respond to this inverted positive prompt.
Finally, the response is analyzed and conceptually reversed
to reconstruct the harmful answer corresponding to the
original harmful prompt. This approach leverages semantic
inversion to bypass alignment mechanisms while implicitly
fulfilling the original request.

* Literary Disguise: This method frames the harmful
prompt in the form of poetry, narratives, fables, philosophi-
cal musings, or other literary styles, effectively concealing
the harmful intent within an artistic context. By embedding
the query in metaphorical expressions, it becomes harder
for alignment mechanisms to detect the underlying risk.

In summary, our Disguise Strategy Pool encompasses both
enhanced established techniques and novel approaches, of-
fering a diverse range of perspectives for disguising harmful
intent. Additionally, its modular design facilitates the integra-
tion of new disguise techniques in future work. More details
about the implementations of these disguise strategies and
how to enlarge the strategy pool are provided in the appendix.

Initializing Markov Transition Matrix

To model the iterative strategy selection process as a Markov
chain, we first introduce the following formal definitions:

* State Space S: S = {s1,s9,...,8K }, where each state
s; represents the application of a specific strategy. The
diversity of states ensures that the framework can model
various strategy combinations and adapt to complex attack
scenarios.

* Markov Chain: A Markov chain is a stochastic process
that satisfies the Markov property, where the probability
of transitioning to the next state depends only on the cur-
rent state. Formally, for a sequence of states (s;)$2,, the
Markov property is defined as:

,51) = P(st41 | 5¢). (1

* Transition Matrix M: The K x K matrix M defines the
transition probabilities between states. Each element M; ;
represents the probability of transitioning to the strategy j
after the failure of the strategy 1.

P(siy1 | 86,861, -

The transition matrix M is initially estimated using histori-
cal success rates derived from interactions with M pyqzy (a
proxy LLM controlled by the adversary), M azqcker (an ad-
versarial generator LLM), and M j,q4e (an evaluation LLM).
Specifically, we adopt LLaMA3-8B-Instruct (Grattafiori et al.
2024) as Mproyy, Which is an efficient and effective proxy
model for simulating the potential behaviors of aligned
LLMs, due to its relatively small size and strong safety

capabilities. For M ayacker, We use Mistral-7B (Jiang et al.
2023), a helpful-inclined model(i.e., not specifically safety-
aligned), allowing it to generate diverse and potentially harm-
ful prompts. Finally, for Mg, we leverage GPT-4o0 (Hurst
et al. 2024), which provides highly reliable assessments of
whether a given query successfully bypasses safety mech-
anisms, ensuring accurate supervision signals for estimat-
ing transition probabilities. First, we leverage M astqcker
to apply K disguise strategies to a local set of harmful
queries, which are carefully selected from the StrongReject
dataset(Souly et al. 2024). To ensure high data quality, we
eliminate duplicate entries and retain only distinct, representa-
tive samples. The resulting dataset comprises 50 well-curated
harmful queries covering a broad spectrum of malicious in-
tents, providing both diversity and comprehensiveness in the
representation of harmful behaviors. For each query g, strat-
egy i is applied to generate a jailbreak prompt ¢;, which is
subsequently submitted to M p;...,,. Then the generated re-
sponse is evaluated by M j,q44e to determine whether the
original harmful intent is successfully executed. Successful
attempts are logged into a success set H, while failed queries
are added to a failure set F.

For each failed query ¢, € F, M Attacker rewrites it by ap-
plying a second disguise strategy j, generating a new prompt
qg The response to q;; is then evaluated by M j,q44¢. Based
on the evaluation results, we first compute an empirical attack
score matrix A € RE*XK where each element A; j repre-
sents the observed success rate of applying strategy j after
the failure of strategy i:

_ Nsucceed(j/i)

Aij=
7 Nyaali)

@)
where Ngycceed(j/7) is the number of successful attack at-
tempts using strategy j after the failure of strategy i, and
Nyqii(i) is the total number of failures for strategy ¢. To ob-
tain the final transition probability matrix M, we apply the
Softmax function to A with a temperature parameter 7":

_ exp(Aivj/T) '
EkK:I eXp(Ai,k/T)

This process produces a probabilistic framework for se-
quential strategy selection, where M; ; represents the likeli-
hood of applying strategy j after strategy ¢ has failed.

Notably, the computational overhead of the initialization
phase is a one-time, offline cost, since the computation is
performed entirely using the adversary’s own local resources
and auxiliary models. It does not induce any additional cost
during the interaction with the target black-box LLM and
thus does not increase the query budget or runtime overhead
during the real-time attack process. Furthermore, even when
the adversary add new strategies into the Disguise Strategy
Pool, the corresponding matrix expansion and evaluation are
also conducted locally, without introducing any additional
cost to the interaction process with the target model.

(€)

2]

Dynamic Strategy Selection and Adaptation

After initializing the Markov transition matrix M, we can
launch adaptive attacks against various target LLMs. In the



Qwen-2.5-7b-it | Gemma-2-9b-it | Gemini-2.0-flash GPT-40 Claude-3.5-sonnet
Dataset | Attack Method | “yqp ™" g | ASR HS | ASR HS | ASR HS | ASR  HS
GCG-T 26.2%  0.15 16.7%  0.09 15.2% 0.08 21.5% 0.09 | 0.0% 0.00
PAIR 51.5% 0.18 31.2% 0.14 44.2% 0.16 32.7% 0.10 | 2.7% 0.01
TAP 52.7% 0.18 35.7% 0.14 56.7% 0.19 35.5% 0.11 1.5% 0.01
Harmbench PAP 35.7% 0.16 35.2% 0.15 39.2% 0.19 347% 0.14 | 0.7% 0.00
ReneLLM 39.2% 0.16 51.2% 0.19 42.2% 0.16 44.0% 0.17 | 3.7% 0.02
Autodan-Turbo | 552%  0.21 62.2% 023 | 65.5% 0.24 84.7% 040 | 1.7% 0.01
MAJIC (Ours) 96.2% 055 | 93.5% 0.53 | 98.5% 0.61 95.7% 0.55 | 41.2% 0.21
GCG-T 23.6% 0.14 16.5% 0.10 13.1% 0.08 179% 0.08 | 0.0% 0.00
PAIR 48.8% 0.18 33.5% 0.14 48.5% 0.17 333% 0.10 | 2.3% 0.01
TAP 53.3% 0.17 | 38.1% 0.15 | 52.9% 0.17 34.6% 0.14 | 1.6% 0.01
Advbench PAP 323% 015 | 36.5% 0.15 | 54.8% 0.22 36.9% 0.14 | 0.5% 0.00
ReneLLM 41.9% 0.16 50.6% 0.18 40.4% 0.15 45.6% 0.17 | 3.2% 0.02
Autodan-Turbo | 51.7% 0.20 59.4% 0.22 63.1% 0.23 86.0% 0.40 1.5% 0.01
MAJIC (Ours) 95.6% 0.54 | 92.7% 0.52 | 98.1% 0.62 94.5% 0.53 | 40.9% 0.20

Table 1: Comparison of Attack Success Rate (ASR) and Harmfulness Score (HS) for MAJIC and other SOTA jailbreak attacks
across datasets (Harmbench and Advbench) on various LLMs. We observe that MAJIC consistently achieves high effectiveness
against all tested LLMs, significantly outperforming baseline methods in both metrics.

actual attack process, MAJIC iteratively selects and combines
disguise strategies under the guidance of the matrix M, which
is dynamically updated based on real-time results.

The selection of the initial disguise strategy for the harm-
ful query is based on the previous success rates of various
strategies, which are calculated from the success set H in
the initializing phase. These success rates are normalized to
form a probability distribution. Using this distribution, an
initial strategy is probabilistically chosen from the pool of K
strategies. After that, M az¢qcker applies the chosen strategy
to transform the harmful query into a disguised query and
submits it to the victim model My ;¢ . The response is then
evaluated by M j, 44 to determine if the original harmful
intent was successfully fulfilled by the response. Based on the
evaluation result, the transition matrix M is updated to adjust
the probabilities of selecting different strategies. This process
is repeated iteratively until the attack is successful or the
maximum number of iterations N,,,, is reached. To adapt to
evolving defenses or diverse LLMs, the transition matrix M
is dynamically updated using a Q-learning-inspired approach.
Specifically, the matrix entry M;; is updated as follows:

MY = Mij 4o |r + ’ym]?X(Mjk) - M|, &
where r is the reward, « is the learning rate, +y is the discount
factor, and maxy, (M) represents the highest probability for
transitions from strategy j. More details about these variables
are provided in the appendix.

To further enhance the robustness, efficiency, and adapt-

ability of our updating strategy, we introduce two additional
optimization mechanisms as follows:
Adaptive Decay of Learning Rate. To ensure stable con-
vergence in long-term iterative scenarios, the learning rate «
is progressively reduced as the number of attack iterations
increases. This decay balances rapid initial adaptation with
long-term stability. The learning rate is updated as:

&)

Olpew = Qid * 17,

where 7 € (0, 1) is the decay factor.

Periodic Partial Reset of Transition Matrix. To maintain
adaptability in prolonged attack scenarios, the transition ma-
trix M is periodically adjusted to prevent overfitting to past
experiences. The reset shifts the matrix slightly toward a
uniform distribution, ensuring continued exploration of alter-
native strategies, as follows.
reset old 1

Mz(] ):<1_B)'Mi(j)+ﬁ'?a (6)
where 5 € (0,1) controls the degree of reset, and 1/K
represents equal probabilities for all strategies. This dynamic
updating approach effectively integrates real-time feedback,
encourages exploration, and captures long-term advantage,
thus significantly enhancing the adaptivity and performance
of MAJIC.

Experiments

Experimental Settings

Datasets. We follow the existing works (Zou et al. 2023; Liu
et al. 2025a) to evaluate MAJIC on HarmBench (Mazeika
et al. 2024), a widely-used jailbreaking benchmark dataset
with 400 harmful instructions, and AdvBench (Zou et al.
2023), which includes 520 malicious queries. The challeng-
ing nature and diversity of these prompts facilitate a com-
prehensive assessment of MAJIC’s performance and a fair
comparison against other baselines.

Models. We evaluate MAJIC on 2 open-source models, ¢.e.,
Qwen-2.5-7B-it (Yang et al. 2024) and Gemma-2-9b-it (Team
et al. 2024), and 3 closed-source commercial models, i.e.,
Gemini-2.0-flash (Team et al. 2023), GPT-40 (Hurst et al.
2024), and Claude-3.5-sonnet (Anthropic 2024). These mod-
els are representatives of the SOTA LLMs with both strong
generative capabilities and advanced safety alignment. We
also evaluate MAJIC against existing jailbreaking defenses
in the appendix.

Evaluation Metrics. Following (Liu et al. 2025a), we as-
sess attack effectiveness using two metrics. (1) We report
the Attack Success Rate (ASR) based on the Harmbench
metric (Mazeika et al. 2024), which uses a fine-tuned Llama-
2-13B classifier to assess if responses are both relevant and



Dataset \ Attack Method \ Qwen-2.5-7b-it Gemma-2-9b-it  Gemini-2.0-flash  GPT-4o Claude-3.5-sonnet
GCG-T 66.7 67.2 68.0 64.7 80.0
PAIR 45.2 61.7 50.4 52.9 78.1
TAP 46.0 58.3 42.7 59.5 78.9
Harmbench PAP 56.8 54.1 58.7 55.6 79.2
ReneLLM 454 48.9 51.0 50.2 77.3
Autodan-Turbo 425 34.8 322 25.7 78.7
MAJIC (Ours) 7.5 9.8 6.3 13.1 29.5
GCG-T 68.2 65.4 70.1 63.9 80.0
PAIR 47.1 59.5 50.8 52.3 76.9
TAP 49.3 59.8 45.6 58.9 71.5
Advbench PAP 57.7 56.9 57.8 56.2 78.6
ReneLLM 44.6 50.1 52.3 49.6 76.8
Autodan-Turbo 43.1 36.4 34.5 23.9 78.5
MAJIC (Ours) 7.8 10.0 6.4 13.7 29.8

Table 2: Average Query Count (AQC) required for attacks by MAJIC and baseline methods on the Harmbench and Advbench
datasets across various LLMs. MAJIC demonstrates significantly higher query efficiency compared to baselines.
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Figure 2: Distribution of Query Counts in Successful Jail-
break Attempts.

harmful. (2) To assess the quality of successful jailbreaks, we
also compute the Harmful Score (HS) using GPT-4 (Achiam
et al. 2023), following the methodology of (Souly et al. 2024).
HS considers the LLM’s non-refusal along with the speci-
ficity and convincingness of its response, thereby reflecting
both how effectively the safety mechanisms are bypassed and
the potential utility of the generated harmful content. Higher
ASR and HS indicate a more effective jailbreak attack.

Baseline Attacks. We compare MAJIC with 6 SOTA jail-
breaking attacks: (1) GCG-T (Zou et al. 2023) generates
adversarial suffixes on white-box models and transfers them
to black-box models by appending these suffixes to queries.
(2) PAIR (Chao et al. 2023) employs an attacker LLM to
iteratively refine jailbreak prompts by querying the target
LLM and updating the prompt based on its responses. (3)
PAP (Zeng et al. 2024) employs persuasive strategies to in-
duce the target LLMs to bypass their own safeguards. (4)
TAP (Mehrotra et al. 2024) iteratively generates and prunes
prompts, using successful ones as seeds to guide the next
round of jailbreak attempts. (5) ReneLLM (Ding et al. 2024)
rewrites harmful prompts to disguise intent and nests them
into benign scenarios. (6) Autodan-Turbo (Liu et al. 2025a)
discovers and integrates new jailbreak strategies using life-
long learning agents. Detailed discussion of these baseline
methods can be found in the appendix.

Main Results

We conduct a comprehensive evaluation of MAJIC and SOTA
baseline attack methods. The experimental results, detailed in
Table 1 and Table 2, unequivocally demonstrate MAJIC’s su-
perior performance in ASR, HS, and query efficiency across
diverse LLMs. Detailed settings of our MAJIC can be found
in the appendix.

Superior Attack Effectiveness. As shown in Table 1, MAJIC
consistently achieves the highest ASR and HS. On open-
source models like Qwen-2.5-7b-it, MAJIC reaches 96.2%
ASR with a 0.55 HS, substantially outperforming the best
baseline, Autodan-Turbo (with only 55.2% ASR, 0.21 HS).
A similar trend is also observed on Gemma-2-9b-it. MAJIC’s
superiority is further amplified in challenging closed-source
models. It achieves 98.5% ASR on Gemini-2.0-flash and
95.7% ASR on GPT-40, again significantly surpassing all
baselines in both ASR and HS. Most notably, MAJIC obtains
a41.2% ASR and 0.21 HS on the highly resistant Claude-3.5-
sonnet, where other methods fail in most cases (e.g., ASRs
typically <4% and HS <0.02).

Exceptional Query Efficiency. Beyond its effectiveness,
MAIJIC demonstrates remarkable query efficiency (as Ta-
ble 2), a critical advantage for black-box attacks. MAJIC dras-
tically reduces the Average Query Count (AQC) compared
to all baselines. For instance, it requires only 7.5 queries on
Qwen-2.5-7b-it and 6.3 on Gemini-2.0-flash, a 5 ~ 8% re-
duction compared to the suboptimal baseline (¢.e., Autodan-
Turbo) with 42.5 and 32.2 queries, respectively. Even on
GPT-40 and Claude-3.5-sonnet, MAJIC maintains a signif-
icant efficiency lead (13.1 and 29.5 queries, respectively)
while still achieving high ASR. This substantial reduction
in AQC underscores MAJIC’s ability to rapidly converge to
effective jailbreak prompts. The distribution of queries in
successful jailbreak prompts in MAJIC, depicted in Figure 2,
also supports this claim. In most cases, MAJIC can succeed
in attacking with fewer than 10 queries or even 5 queries.

We further conduct experiments to assess the generaliz-
ability of MAJIC-generated prompts across different models
and a wide range of harm categories. Detailed results are
provided in the appendix.
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Figure 3: MAJIC’s ASR against different LLMs under vari-

ous query budgets.

Method ASR (%) HS AQC
GCG-T 21.5 0.09 64.7
PAIR 32.7 0.10 529
TAP 35.5 0.11 595
PAP 34.7 0.14 556
RenelLLM 44.0 0.17 50.2
Autodan-Turbo 84.7 0.40 25.7
R-MAJIC 65.2 0.25 334
F-MAJIC 68.5 0.26 31.6
MAJIC 95.7 0.55 13.1

Table 3: Ablation on strategy selection. MAJIC’s Markov
model excels over fixed and random selections.

Ablation Study

We conducted ablation studies to assess the contributions of
MAIJIC’s core components: the effectiveness of the Disguise
Strategy Pool, Markov model-based strategy selection, matrix
initialization and dynamic updates. Our results show that all
proposed components are crucial for MAJIC’s performance.
Effectiveness of Disguise Strategy Pool. To evaluate the
effectiveness of the Disguise Strategy Pool, we conduct ab-
lation studies using simplified variants of MAJIC that omit
the Markov-based strategy selection and dynamic updates.
Specifically, we introduce two variants:F-MAJIC (strategies
applied in a fixed sequence) and R-MAJIC (strategies cho-
sen randomly upon failure). Table 3 shows results on GPT-40
(trends are consistent across other LLMs). Our Disguise Strat-
egy Pool proves to be an important contributor. Even without
adaptive selection mechanisms, both F-MAJIC and R-MAJIC
achieve higher ASR and HS than most strong baselines, while
also requiring less query cost.

Impact of Markovian Strategy Selection Mechanism. As
shown in Table 3, MAJIC achieves an ASR of 95.7%, sig-
nificantly surpassesing F-MAJIC (68.5%) and R-MAIJIC
(65.2%). The HS and AQC also show substantial improve-
ments with MAJIC’s guided selection. This underscores the
Markov model’s vital role in constructing effective attack se-
quences by learning optimal strategy transitions, as opposed
to simpler heuristic or random selection methods.

Impact of Matrix Initialization and Dynamic Updates.
We then assess the importance of both the initial Markov
transition matrix and its subsequent dynamic updates by com-

Init. Dyn. ASR

Variant Matrix Upd. (%) HS AQC
MAJIC (~Init) Unif. v 703 032 265
MAIJIC (-DynUpd) Lrn. X 765 039 20.2
MAJIC Lm. v 95.7 055 13.1

Table 4: Ablation on matrix initialization and dynamic up-
dates. “Lrn.” denotes a learned matrix; “Unif.” is uniform.

paring the full version of MAJIC against two variants. The
first variant, denoted as MAJIC (-DynUpd), utilizes the ini-
tialized Markov matrix but omits the dynamic updates during
the attack phase. The second variant, named MAJIC (-Init),
performs dynamic updates but starts from a non-informative,
uniform probability matrix instead of the one derived by
our initialization mechanism. Results on GPT-4o(trends are
consistent across other LLMs) are shown in Table 4. The
full version of MAJIC, benefiting from both a good initial
matrix (M) and dynamic updates (v), achieving the high-
est performance (95.7% ASR). Disabling dynamic updates
(MAIJIC (-DynUpd)) degrades ASR to 76.5%, demonstrating
the value of real-time adaptation. Similarly, disabling the ini-
tialization mechanism (MAJIC (-Init)), even with dynamic
updates, results in a lower ASR of 70.3% and a higher AQC
(26.5). These results highlight that while dynamic updates
can aid recovery from a suboptimal start, a well-constructed
initial matrix provides a significant head start, leading to
faster convergence and superior overall performance. Both
components make contributions to MAJIC’s success.
Impact of Query Budgets. We evaluate MAJIC’s ASRs un-
der varying query budgets (maximum query setting N,q.)
across five LLMs. The results, shown in Figure 3, reveal con-
sistent trends: ASR improves as the query budget increases,
but the rate of improvement diminishes beyond a certain
threshold. For instance, MAJIC achieves a 95.75% ASR on
GPT-40 with a budget of 40 queries, compared to 12.25%
with only 1 query. Similar patterns are observed across other
models, with Gemini-2.0 and Qwen-2.5 achieving 98.50%
and 96.20% ASR, respectively, at their maximum budgets.
Notably, Claude-3.5 exhibits the lowest ASR under all bud-
gets, reflecting its more robust defenses, while GPT-40 shows
a steeper improvement curve. These findings highlight MA-
JIC’s ability to effectively adapt and succeed within a con-
strained query budget, achieving high ASR with relatively
few interactions.

Conclusion

In this paper, we introduce MAJIC, a novel black-box jail-
break attack framework that leverages a dynamic Markov
model to intelligently select and fuse attack strategies from
an innovative disguise strategy pool. We conduct extensive
experiments to evaluate MAJIC. Compared to existing base-
line attacks, MAJIC achieves significantly higher Attack Suc-
cess Rates and Harmfulness Scores with substantially fewer
queries across a wide range of powerful closed-source and
open-source LL.Ms. Ablation studies underscored the critical
roles of our designed strategy pool, the proposed Markov
model, the initialization mechanism for the Markov transi-
tion matrix, and the dynamic update algorithm in MAJIC.



Furthermore, the evaluation results demonstrate MAJIC’s
strong attack generalizability across different models and its
broad efficacy across various harm categories. The success of
MAIJIC underscores the ongoing challenges in robustly align-
ing LLMs and defending against complex jailbreak prompts.
It highlights the need for the development of more advanced
and holistic defense strategies that can anticipate and counter
such dynamic, fusion-based attacks.
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