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Abstract

Cyberattacks are increasing, and securing against such threats is costing industries billions of

dollars annually. Threat Modeling, that is, comprehending the consequences of these attacks, can

provide critical support to cybersecurity professionals, enabling them to take timely action and

allocate resources that could be used elsewhere. Cybersecurity is heavily dependent on threat

modeling, as it assists security experts in assessing and mitigating risks related to identifying

vulnerabilities and threats. Recently, there has been a pressing need for automated methods to

assess attack descriptions and forecast the future consequences of the increasing complexity of

cyberattacks. This study examines how Natural Language Processing (NLP) and deep learning

can be applied to analyze the potential impact of cyberattacks by leveraging textual descriptions

from the MITRE Common Weakness Enumeration (CWE) database. We emphasize classifying

attack consequences into five principal categories: Availability, Access Control, Confidentiality,

Integrity, and Other. This paper investigates the use of Bidirectional Encoder Representations

from Transformers (BERT) in combination with Hierarchical Attention Networks (HANs) for

Multi-label classification, evaluating their performance in comparison with conventional CNN

and LSTM-based models. Experimental findings show that BERT achieves an overall accuracy

of 0.972, far higher than conventional deep learning models in multi-label classification. HAN

outperforms baseline forms of CNN and LSTM-based models on specific cybersecurity labels.

However, BERT consistently achieves better precision and recall, making it more suitable for

predicting the consequences of a cyberattack.

Keywords: Hierarchical Attention Networks (HAN), Bidirectional Encoder Representations from

Transformers (BERT), Long Short-Term Memory (LSTM), Consequences of Cyber Attacks, Threat

Modeling.
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1 Introduction

Cyberattacks are becoming increasingly frequent and sophisticated, affecting critical infrastructure,

cloud services, and healthcare systems on an unprecedented scale. In August 2023, Amazon Web

Services (AWS) experienced a significant Distributed Denial of Service (DDoS) attack, targeting

Amazon S3 and resulting in more than 155 million requests per second. The incident caused an

eight-hour outage, which affected access to vital services and highlighted the vulnerability of the

cloud infrastructure to major cyber threats [3]. In another incident on that date, Google Cloud

services experienced an alarming DDoS attack driven by HTTP/2, which peaked at 398 million

requests per second. Unlike all previous events [18], this incident was the biggest Layer 7 assault

known to date.

Beyond cloud services, the healthcare industry has also experienced numerous instances of cy-

berattacks. In February 2024, Change Healthcare [22] experienced a significant ransomware attack,

compromising the medical and personal records of about 190 million people. The attack revealed

private information, including names, phone numbers, social security numbers, and medical histo-

ries, resulting in one of the most significant health breaches, which caused significant operational

challenges [22].

Threat modeling is an indispensable process within the field of cybersecurity, providing a struc-

tured methodology for security experts to assess and understand the potential threats and vulnera-

bilities inherent to complex systems [34]. The application of machine learning in cybersecurity has

attracted a myriad of interests and is widely utilized to address security-related problems such as

intrusion detection [6, 26, 29], malware analysis [2, 27], anomaly detection [1, 20] and vulnerability

detection [4], [19]. Researchers continually devise new methods and strategies to enhance machine

learning’s capabilities in tackling cybersecurity problems. However, the rapid advancement of tech-

nology has provided criminals with the opportunity to target frequent and sophisticated threats

that were previously unattainable. The attacks on AWS [3] and Google [18] serve as a lesson of

how modern cyber threats can be carried out with unprecedented speed and efficiency.

Cyberattacks are increasing in frequency and complexity. Therefore, protecting systems is now

vital. By allowing for a more efficient and context-aware examination of whole text sequences [35],

transformer models have greatly improved Natural Language Processing (NLP). Traditional models,

such as Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs), consider

an input in a specific order or focus on local features. On the other hand, transformers utilize

self-attention methods to determine the importance of each word in a given phrase, and therefore

have evolved into a fundamental component of modern NLP systems.

Inspired by a previous study by Datta et al. [10], where the application of CNN and LSTM mod-

els for multi-label classifications was explored to predict consequences of cyberattacks, this paper

introduces a hybrid approach that combines these deep architectures with attention mechanisms

and ensemble learning through transformer-based models such as BERT transformer models and

Hierarchical Attention Networks (HAN) with the objective of enhancing the accuracy of predict-

ing consequences of cyberattacks. The goal is to improve the accuracy of consequence prediction,
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particularly for consequences modeled through mainstream threat modeling schema such as CIR

(i.e., Confidentiality, Integrity, and Availability). This paper specifically focuses on predicting

multiple labels, including Availability, Access Control, Confidentiality, Integrity, and Other associ-

ated with each textual description drawn from MITRE’s Common Weakness Enumeration (CWE)

dataset. [28] The real-world results of our study demonstrate that both the Hierarchical Attention

Networks (HANs) deep neural network model and the BERT transformer model outperform the

state-of-the-art CNN and RNN-based models.

This study addresses the critical challenge of predicting the consequences of cyberattacks that

have implications for end-users, a task complicated by the multi-label nature of cybersecurity

vulnerabilities and the limitations of existing models in handling such complexity. Traditional

methods, such as CNN, RNN, and knowledge graph-based approaches, often overlook the complex

relationships in textual data, despite the models’ need to understand the broader context. By

examining these issues, the study helps to enhance threat modeling techniques and improve the

accuracy of predictions about potential outcomes following a cyberattack incident. The paper

makes the following key contributions:

– Transformer-based BERT multi-label Classification. We introduce a transformer-

based BERT model fine-tuned for predicting five key labels representing consequences of

cyberattacks, such as Availability, Access Control, Confidentiality, Integrity, and Other, using

textual descriptions from the MITRE CWE dataset [28].

– Hierarchical Attention Networks (HAN). The study demonstrates the effectiveness of

HANs in capturing document-level semantics, enhancing the precision of multi-label classifi-

cation for two labels, i.e., Access control and Integrity.

– Improved Performance. Empirical results show that the BERT-based model significantly

outperforms traditional CNN-LSTM architectures, achieving superior accuracy and F1-scores

across all labels. Notably, BERT achieves the best performance overall, while HAN excels in

specific categories (i.e., two labels).

– Practical and Scalable Solution. This work offers a scalable alternative to knowledge

graph-based methods, providing a streamlined approach suitable for real-world applications

in cybersecurity.

The paper is organized as follows. Section 2 introduces the related work. Section 3 provides

a brief overview of the technical methodologies adopted in this paper. Section 4 presents the

architecture and implementation of the proposed models. Section 5 provides the details of the

dataset preprocessing techniques and experimental setup. The methodology employed in this paper

is described in Section 6. Section 7 discusses the analysis and results. Section 8 compares the

proposed approach with previous work. Section 9 concludes the paper and outlines future research

directions.
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2 Related work

Various deep learning models, such as Long Short-Term Memory networks (LSTMs), Recurrent

neural network (RNN), Convolutional Neural Networks (CNNs), and hybrid models have been

extensively applied in cybersecurity for tasks like anomaly detection [36], Entity recognition [17]

and threat mitigation [39]. These models often face challenges when analyzing complex textual

data inherent in cybersecurity contexts [16]. With its self-attention methods, transformer-based

models are known as a major development as they provide better performance on several NLP

tasks, including text categorization. This section provides an overview of current deep learning

techniques, Hybrid-LSTM and RNN, and transformer-based models that are initially used for

various applications mitigating cyberattacks.

Hui et al. [24] proposed a fusion model that combines the attention mechanism with Bi-LSTM

and BERT, which significantly outperforms single-model approaches. Their model achieved an ac-

curacy of 89.52% on short medical text from Traditional Chinese Medicine (TCM) medical records,

highlighting the potential of combining contextual embeddings with sequential learning. Their

work is limited to short medical texts, which may not generalize well to longer, more complex

documents. Additionally, their study does not address challenges in multi-label texts, which may

not be generalized constraints such as cybersecurity.

Mahdaouy et al. [14] used a pre-trained BERT-based encoder designed for detecting and clas-

sifying suspicious or malicious domain names and URLs. For pre-training, the Masked Language

Modeling (MLM) objective was applied to a large multilingual dataset that included URLs, domain

names, and Domain Generation Algorithm (DGA) data. The authors evaluated the performance

of their models on various classification tasks, including phishing, malware detection, and DNS

tunneling. The result showed DomURLs BERT outperforms state-of-the-art character-based deep

learning models across multiple datasets. The study does not thoroughly address its vulnerability

to adversarial attacks.

Cheng et al. [8] proposed a Hierarchical Attention Network in cyberbullying detection (HANCD)

that captures temporal behavior patterns of cyberbullying detection. A real-world Instagram

dataset from [23] demonstrates that incorporating temporal dynamics improves performance by

5.3% compared to the Hierarchical Attention Network with Temporal Features (HANT). The

study is limited to Instagram, and the approach may not be readily generalized to other social

media platforms, such as Facebook and X.

Xu et al. [38] introduced a dual-domain intrusion detection (DDT) model that combines Tem-

poral Convolutional Networks (TCN) to extract local and global features, addressing the growing

complexity of network attacks. Their work not only focuses on intrusion detection but also high-

lights the potential of Transformer-based models in cybersecurity applications. The DTT model

exhibits improvements in F1-score ranging from 0.6 to 6.8 on the NCCI dataset and from 0.4 to 3.5

on the NUB dataset compared to other models. The model requires extensive pre-training, making

it less suitable for real-time intrusion detection scenarios.

Nguyen et al. [30] proposed an approach to improve the domain adaptation capability of Network
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Intrusion Detection Systems (NIDS) using Natural Language Processing (NLP) and the BERT

framework. The network traffic flows were organized as sequences, similar to sentences in language.

The authors trained the BERT model using the Masked Language Modeling (MLM) task and then

fine-tuned it with a linear layer and softmax output for intrusion detection. It achieved an F1-score

of 0.877 and an accuracy of 0.916. The model achieved positive results across different domains.

The model still relies on labeled data, which limits its scalability and applicability.

Deep learning models have been extensively utilized for multi-label text classification tasks.

Early works, such as Kim [25], employed a simple Convolutional Neural Network (CNN) with pre-

trained word2vec embeddings to predict sentiment and classify questions. This study highlighted

the effectiveness of CNNs in text classification and laid the groundwork for subsequent hybrid

models. Later methods combined CNNs and Recurrent Neural Networks (RNNs) to leverage the

strengths of both types of architecture.

In cybersecurity, knowledge graphs have emerged as a promising tool for modeling complex rela-

tionships among vulnerabilities, threats, and consequences. Han et al. [21] constructed a knowledge

graph using CWE data to predict relationships between entities and classify cybersecurity conse-

quences. These efforts have automated processes such as assigning CWE-IDs to CWE entries and

have shown potential in organizing cybersecurity information more effectively. Their reliance on

structured graph representations contrasts with this study, which leverages deep learning techniques

to predict multi-label outcomes without the need for knowledge graphs.

Recent research has also explored machine learning techniques for predicting attack conse-

quences in cybersecurity. Datta et al. [11] applied machine learning models to analyze 93 attack

descriptions and predict 50 potential consequences from an end-user perspective. Similarly, Dass et

al. [9] utilized Hidden Markov Models (HMMs) to anticipate attack consequences from the victim’s

perspective, providing a proof-of-concept for spoofing attacks. These studies underscore the im-

portance of accurately modeling and predicting the impacts of attacks, yet they rely on traditional

techniques that may not scale effectively to larger datasets.

The work presented in this paper fills this gap by utilizing transformer-based models for multi-

label classification, which allows us to predict cybersecurity attack outcomes exclusively from tex-

tual descriptions. Previous research has primarily employed knowledge graphs or basic machine

learning techniques. This study, on the other hand, utilizes advanced attention and transformer-

based architectures, such as BERT and HAN, to enhance the accuracy and scalability of multi-label

classification in cybersecurity settings.

3 Preliminary

3.1 Transformers

The Transformer-based models, introduced by Vaswani et al. [35], have dramatically changed deep

learning, as a self-attention mechanism is able to capture long-range dependencies without dealing

with the inherent problems (e.g., vanishing gradient) that often occur in recurrent or convolutional
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neural networks. Unlike RNNs and LSTMs, which process input sequentially, transformers are

able to operate in parallel, resulting in huge efficiency and scalability benefits. The multi-head

self-attention is used to give the model the chance to assess the relevance of different words in

a sentence by itself. The model architecture utilizes ”position encoding” to preserve word order

information. This architecture has led to the most recent breakthroughs in multiple areas, such as

natural language processing [5, 31], time series forecasting [37], and computer vision [7, 13], with

models including BERT, GPT, and T5 demonstrating deeper contextual knowledge. Despite its

impressive performance, the Transformer’s high computational cost and memory usage severely

limit its capacity. This is the driving ongoing research into the domain of more efficient attention

techniques, such as sparse and linear attention mechanisms. As optimizations continue to improve

in terms of scalability, transformers are at the heart of modern AI research and applications.

3.2 Hierarchical Attention Network (HAN)

Hierarchical Attention Networks (HANs) is an effective model used in document-level representa-

tions, particularly for long-text classification tasks [40]. Unlike conventional deep learning models,

HAN leverages attention mechanisms at multiple levels words and sentences to capture contextual

meaning while focusing on the most relevant parts of the text. Given the multi-label nature of

cybersecurity vulnerability classification, HAN is a suitable choice because it can highlights infor-

mative contents from textual descriptions.

The architecture comprises word-level and sentence-level attention mechanisms that aggregate

meaningful representations for classification. The model begins by processing tokenized words

through an embedding layer, such as GloVe, followed by a bidirectional Gated Recurrent Unit

(GRU) that generates context-aware word embeddings. A word-level attention mechanism assigns

weights to words based on their importance in the classification task. The sentence-level attention

follows a similar approach, where word representations are aggregated into sentence embeddings,

processed again by a bidirectional GRU, and refined through attention to highlight significant

sentences. The final classification layer maps the attended sentence representations to multiple

labels using a fully connected dense layer with a softmax or sigmoid activation function. This

hierarchical approach enables HAN to efficiently capture contextual relationships within text and

improve classification accuracy.

4 Transformer-based Model Architectures for Predicting Conse-

quences of Cyberattacks

4.1 The BERT Model

The foundation of this model is based on the pre-trained “bert-base-uncased” [15], which is derived

from the BERT architecture initially proposed in [12]. This version is one of the first pre-trained

models that was made public and fine-tuned for classification tasks where the output can be any
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consequence (e.g., integrity, confidentiality, etc.). Because it can utilize contextual embeddings, it

is a suitable choice for many natural language processing applications. A pre-trained BERT (Bidi-

rectional Encoder Representations from Transformers) model (bert-base-uncased) was employed,

comprising the following components:

1. BERT Encoder. The encoder comprises 12 transformer layers that generate contextually

rich embeddings for input tokens, leveraging self-attention mechanisms to learn relationships

between words within the text.

2. Input Layer. The model processes tokenized sequences derived from cybersecurity vulner-

ability descriptions, with a maximum sequence length set of 256 tokens.

3. Dropout Layer. Applied with a probability of 0.3 to prevent overfitting.

4. Linear Layer. Maps the 768-dimensional pooled output of the BERT model to five output

neurons corresponding to the multi-label targets. A sigmoid activation function was applied

to each of the five output neurons to predict each label’s probability independently. The

sigmoid activation function is commonly used in binary classification tasks that require a

value between 0 and 1, making it ideal for predicting the likelihood of an event occurring [32].

(a) BERT-Based Model Architecture (b) HAN-Based Model Architecture

Figure 1: Architectural Diagrams of BERT and HAN Models Used for Predicting Cyberattack
Consequences

Figure 1a illustrates the architecture of the BERT transformer model with multi-labeled clas-

sification capability to predict the consequences of cyber attacks.

4.2 Hyper-parameter Tuning for BERT

Hyper-parameter tuning was crucial in fine-tuning the model for optimal performance. The follow-

ing key hyper-parameter tunings were applied to the BERT model:
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Algorithm 1 BERT-Based Classification Training Process.

1: Input: Training Dataset
2: Output: Trained BERT model
3: Split Data: Training, Validation, Testing.
4: procedure Train Model
5: Initialize BERT model with pre-trained weights
6: for each epoch e = 1 to E do
7: for each mini-batch B ∈ Training do
8: Tokenize B
9: Apply dropout and fully connected layers

10: end for
11: Evaluate validation performance
12: end for
13: Return trained BERT model
14: end procedure
15: procedure Predict(Testing Data Xtest)
16: Tokenize Xtest

17: Pass tokens through trained BERT model
18: Apply sigmoid activation
19: Convert scores to binary labels using a threshold
20: Return predicted labels Ŷ
21: end procedure

– Maximum Sequence Length: 256 tokens, ensuring that longer descriptions are fully cap-

tured without truncation.

– Batch Size: A batch size of 32 was utilized during both training and validation.

– Learning Rate: A learning rate of 1×10−5, optimized using the Adam optimizer, was found

to be the most effective after testing different values.

4.3 Algorithm for Predicting Consequences with BERT Layer

Algorithm 1 outlines the BERT-based training and prediction steps. Initially, the dataset is split

into training, validation, and testing subsets to ensure fair evaluation. Mini-batches generated

from the training data are used to fine-tune the model after it has been initialized with pre-

trained weights. Each mini-batch undergoes tokenization using the BERT tokenizer, after which

the tokenized input is fed through the encoder layers. A dropout regularization technique is then

applied, followed by a fully connected output layer for multi-label classification. During training,

the binary cross-entropy loss is calculated and backpropagated to update the model weights. In the

prediction phase, the trained model feeds test data through the same pipeline to get probability

distributions for all labels.
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4.4 The HAN Model

The foundation of this model is a Hierarchical Attention Network (HAN), which is designed to

capture document-level structures by leveraging both word-level and sentence-level attention mech-

anisms. Inspired by the work performed by Yang et al. [40], the HAN model is particularly effective

for text classification tasks, as it learns to focus on the most informative words and sentences when

making predictions. For this specific task, HAN was adapted for multi-label classification, pre-

dicting consequences such as Integrity, Confidentiality, Availability, Access Control, and Other. A

Hierarchical Attention Network consists of the following key components:

1. Word Encoder. A bidirectional Gated Recurrent Unit (Bi-GRU) was employed to learn

the contextual representation of each word within a sentence. The embedding layer converts

tokenized words into dense vectors, which are then passed through the Bi-GRU.

2. Word-Level Attention. An attention mechanism is applied at the word level to assign

weights to words based on their importance within the sentence. This allows the model to

focus on key terms that contribute most to classification.

3. Sentence Encoder. The weighted word representations are aggregated into a sentence

vector, which is then passed through another Bi-GRU layer to learn sentence dependencies.

4. Sentence-Level Attention. Similar to word-level attention, a sentence-level attention

mechanism is employed to assess the significance of each sentence within the overall doc-

ument, thereby enhancing classification accuracy.

5. Fully Connected Layer. The final document representation is passed through a fully

connected layer with five output neurons, each representing a multi-label category.

6. Sigmoid Activation. A sigmoid activation function is applied to each of the five output

neurons to produce independent probabilities for each consequence label.

Figure 1b illustrates the Hierarchical Attention Network architecture for predicting cyber attack

consequences.

4.5 Hyper-parameter Tuning for HAN

Hyperparameter tuning was crucial for fine-tuning the HAN model to achieve optimal performance.

The following key hyperparameters were used:

– Maximum Sequence Length: 256 tokens, ensuring adequate representation of cybersecu-

rity vulnerability descriptions.

– Batch Size: A batch size of 32 was used for both training and validation.

– Learning Rate: 1 × 10−4, optimized using the Adam optimizer.

– GRU Units: The GRU layers at the word level and sentence level consist of 64 hidden units.
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Algorithm 2 HAN-Based multi-label Classification Training.

1: Input: Training Dataset
2: Output: Predicted labels for test data
3: Split Data: Training, Validation, Testing.
4: procedure Train Model
5: Initialize word and sentence Bi-GRU layers with attention mechanisms
6: for each epoch e = 1 to E do
7: for each mini-batch B ∈ Training do
8: Tokenize and embed words
9: Encode words using Bi-GRU

10: Apply attention layer
11: Pass fully connected layer
12: end for
13: Validate Model performance
14: end for
15: end procedure

4.6 Algorithm for Predicting Consequences with HAN Model

Figure 2: A sample of CWE dataset with the original description and description after cleaning.

Algorithm 2 outlines the HAN-based training and prediction steps. The training corpus is first

divided into stratified subsets to preserve the distribution of multi-label classes. The model is then

initialized with Bi-GRU encoders at both the word and sentence levels, each followed by dedicated

attention modules. Pre-trained word vectors are used to tokenize and embed input text during each

training cycle. The word sequences in each sentence are passed through a word-level Bi-GRU, where

an attention mechanism assigns weights to their contextual embeddings, prioritizing semantically

relevant tokens. The aggregated weighted word embeddings were then used to construct sentence

representations, which a sentence-level Bi-GRU processed.

5 Experimental Setup

5.1 Data Pre processing

The dataset used in this study is derived from an enhanced version of the MITRE Common Weak-

ness Enumeration (CWE) dataset [28]. The CWE database is continuously updated and maintained
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to reflect newly identified attacks. At the time of data collection, it contained 1, 016 distinct CWE

entries. The task is set up as a multi-label classification problem because we need to predict the

outcome based on text descriptions, and each CWE entry can be linked to more than one outcome.

Initially, there were six labels. However, to balance the dataset, we retained five columns: avail-

ability, access control, confidentiality, integrity, and non-repudiation, among others. To ensure a

balanced distribution of the multi-label classes across the subsets, the dataset was divided using

stratified sampling. After filtering the dataset, 895 rows remained, each containing descriptions

of cybersecurity vulnerabilities labeled with one or more consequences. The five target labels for

this study were: Availability, Access Control, Confidentiality, Integrity, and Other.

5.2 Data Cleaning

The initial dataset includes raw text data, which may contain unnecessary symbols, stop words,

and inconsistent capitalization. These artifacts needed to be cleaned for efficient processing. Figure

2 depicts a sample of the CWE dataset before preprocessing of the description and the cleaning

stage. Once the necessary preprocessing techniques, such as removing stopwords, tokenization, and

normalizing the text, was applied, the dataset was cleaned and made ready for model training.

Prior to training, the following preprocessing steps were applied to the dataset:

– Text Cleaning. Descriptions were cleaned using Python-based NLTK (Natural Language

Toolkit), removing irrelevant information such as punctuation, stopwords, and non-text sym-

bols. The text was also converted to lowercase to standardize the input.

– Target Labels. Only five key target labels were retained (Availability, Access Control,

Confidentiality, Integrity, Other), and redundant fields like id, name, and extended description

were excluded to focus the dataset on the most relevant information.

After the cleaning process and the removal of labels associated with smaller subsets, Figure 3

depicts a cleaned CWE description paired with its corresponding five multi-label classifications.

5.3 Tokenization

The BertTokenizer from the Hugging Face transformer library [15] was used to tokenize the text

descriptions. The text was encoded into input tokens with padding and truncation applied to

ensure a uniform sequence length MAX LEN = 256.

5.4 Performance Metrics

Metrics such as accuracy, precision, recall, and F1-score were calculated for both micro and

macro averages. These metrics were computed using the Scikit-learn library [33]. Validation was

carried out at the end of each epoch to monitor performance. The model performance evaluation

details are as follows:
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Figure 3: A sample of the CWE dataset with the clean description and five labels.

• Accuracy: The proportion of correctly classified labels over the total number of labels.

• Precision: The ratio of true positives to all predicted positives, relevant in cases of imbal-

anced data.

• Recall: The ratio of true positives to all actual positives, indicating the model’s ability to

capture relevant instances.

• F1-Score: The harmonic mean of precision and recall, calculated for both micro and macro

averages.

6 Methodology

6.1 Training Process

The training loop involved minimizing the binary cross-entropy loss between predicted and actual

labels. Model checkpoints were saved at each epoch if the validation loss improved, and early

stopping was employed to prevent overfitting. A validation set was used at the end of each epoch

to monitor performance and prevent overfitting. The model was trained on an NVIDIA A100

GPU for accelerated processing.

6.2 Data Splitting

The train test split function from Scikit Learn was used with the stratify parameter to split the

dataset while preserving the class proportions. The dataset consisted of a total of 895 rows with a

total of 1626 multi-label compositions across the samples.

The data composition shown in Figure 4 represents the distribution before stratified sampling.

The initial distribution of multi-label classes was done before the dataset was divided. The dataset
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Figure 4: Data Composition by Label in the CWE Dataset (Total: 1626)

was first divided into a training set 80% and a combined validation and test set 20% while main-

taining the proportional distribution of the multi-label classes. The validation and test sets were

then further split into 15% and 5%, respectively, ensuring that the distribution remained consistent

across all subsets. The stratified sampling method made sure that the training, validation, and test

sets all had the same proportional class distribution. The dataset comprises five multi-label classes,

each representing distinct cybersecurity consequences. The distribution of these labels is as fol-

lows: Availability (247 instances), Access Control (255 instances), Confidentiality (403 instances),

Integrity (439 instances), and Other (282 instances). The total number of labeled instances in the

dataset is 1,626, as illustrated in the figure.

7 Analysis and Results

7.1 Label-Wise Performance

To provide a deeper insight into the model’s performance, evaluation metrics were calculated for

each individual label. Table 1 reports these metrics, demonstrating that the model achieved the

highest F1-scores for Confidentiality and others.

From the table, it is evident that the Confidentiality and Other labels exhibit the highest F1-

scores, indicating superior model performance in predicting these categories. The Access Control

label also performed commendably, with an F1-score of 0.9060. However, the Integrity label
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Table 1: Label-Wise Performance Metrics of BERT Model

Label Accuracy Precision Recall F1-Score

Availability 0.9330 0.8627 0.8980 0.8800

Access Control 0.9385 0.8833 0.9298 0.9060

Confidentiality 0.9609 0.9538 0.9394 0.9466

Integrity 0.9050 0.8125 0.9123 0.8595

Other 0.9665 0.9625 0.9625 0.9625

showed a relatively lower F1-score, suggesting room for improvement in this area. The observed

improvements are primarily attributed to the enhanced contextual understanding of BERT, which

is crucial for interpreting cybersecurity texts that contain domain-specific terminology and complex

sentence structures.

(a) BERT Confusion Matrix (b) HAN Confusion Matrix

Figure 5: Confusion Matrices of Models on Five Labels

7.2 Confusion Matrix and Comparative Analysis

As shown in Figure 5, both the BERT model and the HAN was evaluated using confusion matrices.

We analyzed the confusion matrix to gain further insight into the model’s classification performance.

BERT model 5a demonstrates exceptional accuracy, correctly classifying 48 instances of availability

with only four misclassifications, while access control, confidentiality, integrity, and others were

classified with perfect accuracy, showing zero misclassifications.

In contrast, the HAN model 5b struggles with high misclassification rates, which is evident from

the figure. Correctly identified 24 instances of availability but misclassified 26 others, primarily

confusing them with Access Control 10 and Other 10. The Access Control category also performed

poorly, with 29 correct predictions but 41 misclassifications, often mistaken for Availability 19

times. The figure further highlights HAN’s difficulty in classifying Confidentiality and Integrity,

with only 7 and 3 correct classifications, respectively, and frequent misclassifications into other

categories. Even the Other category, which had 20 correct classifications, still showed significant

confusion across multiple labels.

This suggests that BERT effectively distinguishes between categories, handling the classification
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task with remarkable precision, as illustrated in the figure. Overall, the figure confirms that BERT

significantly outperforms HAN, making far fewer errors and classifying most categories correctly.

8 Performance Comparison

In this section, we compare the performance of our BERT-based model with the results obtained

in the original paper [10], which used LSTM and CNN architectures for multi-label classification of

cyberattack consequences. The comparison focuses on key metrics, including accuracy, precision,

recall, and F1-score, for the five predicted labels: Availability, Access Control, Confidentiality,

Integrity, and Other.

8.1 Overall Performance Comparison

The original paper [10] explored multiple architectures, including LSTM with multiple outputs,

LSTM with a single output, CNN, CNN-LSTM, and CNN-BiLSTM. Table 2 shows the overall

performance of the best model in the original paper (CNN-LSTM with random search) compared

to our BERT-based model. Our BERT-based model outperformed the best model from the original

paper in all metrics, particularly the F1-score.

Table 2: Overall Performance Comparison

Metric CNN-LSTM (Original [10]) BERT (Ours)

Accuracy 0.4357 0.9722

Precision 0.64 0.9864

Recall 0.68 0.9731

F1-Score 0.72 0.9797

As shown in Table 2, our model achieves a significantly higher accuracy of 0.9722 compared to

the 0.4357 obtained by the CNN-LSTM architecture. Similarly, our BERT model significantly im-

proves precision, recall, and F1 score, demonstrating its superior ability to capture the relationships

between labels.

8.2 Label-Wise Performance Comparison

Our models were evaluated on five cybersecurity consequence labels: availability, access control,

confidentiality, integrity, and other—using precision, precision, recall, and F1 score as key evaluation

metrics. Table 3 presents a comprehensive comparison of three models: the original CNN-LSTM-RS

model and our fine-tuned BERT and HAN models for predicting the consequences of cyberattacks.

The BERT-based model demonstrates significant improvements over CNN-LSTM-RS, achiev-

ing an overall accuracy of 0.972, which is a substantial increase from the 0.436 reported in the

original study. Its strongest performance gains are observed in Confidentiality and Other, where

it attains F1-scores of 0.95 and 0.96, respectively. BERT’s transformer-based architecture enables
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Table 3: Label-Wise Performance Comparison

Label Metric Original Paper (CNN-LSTM-RS) [10] BERT (Ours) HAN (Ours)
Availability Accuracy 0.681 0.933 0.773

Precision 0.53 0.86 0.61
Recall 0.36 0.90 0.61

F1-Score 0.42 0.88 0.61
Access Control Accuracy 0.765 0.939 0.778

Precision 0.56 0.88 0.64
Recall 0.49 0.93 0.67

F1-Score 0.52 0.91 0.65
Confidentiality Accuracy 0.703 0.961 0.758

Precision 0.73 0.95 0.79
Recall 0.56 0.94 0.87

F1-Score 0.63 0.95 0.83
Integrity Accuracy 0.720 0.905 0.758

Precision 0.78 0.81 0.77
Recall 0.64 0.91 0.83

F1-Score 0.70 0.86 0.80
Other Accuracy 0.787 0.967 0.758

Precision 0.64 0.96 0.59
Recall 0.83 0.96 0.56

F1-Score 0.72 0.96 0.57

Overall Accuracy 0.436 0.972 0.444
Precision (Micro) 0.64 0.99 0.71

Recall (Micro) 0.68 0.97 0.75
F1-Score (Micro) 0.72 0.98 0.73
F1-Score (Macro) - 0.98 0.69

it to effectively capture intricate contextual relationships in cybersecurity text, which enhances

classification accuracy across all labels. By leveraging pre-trained embeddings and deep contextual

representations, BERT effectively models the semantic dependencies between cyber vulnerabilities

and their consequences, surpassing the capabilities of traditional deep learning models such as CNN

and LSTM.

The HAN model, while not as dominant as BERT in overall classification, exhibits notable

strengths in specific labels. With an overall accuracy of 0.444, HAN does not outperform BERT,

but it exceeds CNN-LSTM-RS in the Confidentiality and Integrity categories. This suggests that

HAN’s hierarchical attention mechanisms are particularly effective for cybersecurity text analy-

sis, where the data exhibits structural and contextual dependencies. By processing key textual

components and emphasizing essential phrases and dependencies, the HAN model effectively cap-

tures hierarchical relationships and salient features more effectively than sequence-based models

like LSTM.

The confidential category score of 0.95 is a significant leap over the 0.63 achieved by CNN-

LSTM-RS, further emphasizing the effectiveness of transformer models in extracting meaningful

cybersecurity features from text descriptions. These results highlight the superiority of BERT

in predictive accuracy when compared to conventional deep learning architectures that rely on

sequential modeling.

Despite HAN’s moderate overall performance across all five labels, it delivers noteworthy im-

provement in two key categories: confidentiality and integrity, where its F1-scores surpass those of

CNN-LSTM-RS. This suggests that HAN’s hierarchical structure and attention-based framework
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are particularly well-suited for specific classification tasks, especially when structured text repre-

sentations are crucial. Although BERT remains the most effective model for classifying general

cybersecurity consequences, the targeted strengths of HAN suggest its potential for hybrid ap-

proaches, where its hierarchical capabilities could be leveraged in conjunction with state-of-the-art

transformer models to enhance cybersecurity text classification.

9 Conclusion and Future Work

The paper presents the BERT-based Model and HAN model for predicting cyberattacks with five

labels (i.e., Availability, Access Control, Confidentiality, Integrity, and Other) and two labels (i.e.,

Access Control and Integrity), respectively. In five labels, the BERT model achieved an accuracy

of 0.972, precision of 0.99, recall of 0.97, and F1 score of 0.98. The HAN model achieved an 0.44

in accuracy, 0.71 in precision, 0.75 in recall and 0.73 in F1 score. The BERT-based model for

predicting cyberattack consequences demonstrates significant improvements over previous methods

CNN-LSTM-RS [10], particularly in terms of precision, recall, F1 score and accuracy.

The comparison between the original paper and our approach demonstrates the significant

improvement brought by the BERT-based model. The original paper employed a combination

of CNN and LSTM architectures, which struggled to capture complex relationships in text data.

In contrast, the BERT model’s pre-trained transformer architecture is better suited for handling

long-range dependencies in text, resulting in improved generalization and enhanced multi-label

classification performance. Furthermore, using the BERT tokenizer and embeddings also helped

people understand the descriptions better by providing more context, which led to higher F1-scores

and overall metrics. The superior handling of complex cyberattack descriptions by the BERT model

resulted in more accurate predictions of attack consequences across all five labels.

Despite the strong performance, the model has certain limitations. One notable challenge is

data imbalance, where the Integrity label exhibited relatively lower performance, likely due to an

uneven distribution of labels in the dataset. Techniques such as data augmentation) to balance the

dataset and enhance performance for minority labels. Another limitation is related to long sequence

handling, as the BERT model is constrained to processing sequences of up to 256 tokens. This poses

a challenge for cybersecurity descriptions that exceed this length. Future research directions include

exploring other transformer-based models, such as Alberta, TinyBert, and Roberta, and employing

transfer learning techniques to enhance performance on smaller, imbalanced datasets.
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