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Security analysis is a critical part in any cryptographic protocol, may it be classical or quantum.
Without security analysis, one cannot ensure the secrecy of the distributed keys. To perform a con-
clusive security analysis, it is very often necessary to frame the problem as an optimization problem.
However, solving such optimization problems is quite challenging. In this article, we focus on the
security analysis of device-independent quantum key distribution (DIQKD) with random key basis
protocol. We show that the optimization cost of the existing security analysis can be reduced without
compromising the key rate. In particular, we reframe the entire security analysis of this protocol as a
strongly convex optimization problem and demonstrate that unlike the original security proof, opti-
mization of Bob’s measurement angles for finding a lower bound on Eve’s uncertainty about Alice’s
key generation basis can be done with lesser cost. We derive an explicit form of the pessimistic error
that arises while optimizing the measurement angles of both the parties. We also clarify a few parts
of the original security proof, making the analysis more rigorous and complete .

I. INTRODUCTION

Cryptographic protocols [Mam24] aid in establishing secure keys between two communicating parties, who later
use the keys to access the information that they share between them. However, before implementing such protocols,
it is necessary to perform their security analysis for avoiding any kind of potential unauthorized access of informa-
tion during communication. In particular, through a conclusive security analysis we can find out the necessary and
sufficient conditions for generating a positive secret key rate [Ren06] as well as its optimal lower bound. However,
finding such bounds often involves optimization of cost functions that are derived by mapping the security analysis
to an optimization problem.

Quantum cryptography offers non-trivial advantages over its classical counterpart due to the inherent random-
ness present in the state of the carrier of quantum information – qubit [NC10]. Moreover, the nonlocality [BCP+14]
feature of quantum mechanics enables us to design quantum key distribution protocols that do not rely on any as-
sumptions about the internal working of the quantum devices used in the protocols. Such key distribution protocols
are termed as device-independent quantum key distribution (DIQKD) [ABG+07]. Allowing relaxation of the secu-
rity assumptions made in usual quantum key distribution(QKD) [Ren06], DIQKD has made it possible to distribute
secret keys using untrusted devices between two users embedded in an untrusted network. Due to this counterin-
tuitive advantage over classical key distribution, this quantum cryptographic protocol is considered as the future of
key distribution.

In this quantum key distribution protocol, the nonlocal state shared between the communicating parties limits
the information that can be obtained by any third party. However, certification of nonlocality between the legitimate
parties requires verification of violation of Clauser-Horne-Shimony-Holt (CHSH) inequality. For such a purpose, a
sufficiently large number of entangled states has to be shared between the parties. This requirement is also necessary
for generation of secure keys. However, for the possibility of secure key distribution, mere violation of the CHSH
inequality with a large number of shared highly entangled state is not sufficient – the amount of violation must be
above a certain threshold that depends on the protocol as well as on the security proofs[PAB+09]. Until the discov-
ery of three variants of DIQKD [SGP+21],[XZZP22],[HST+20] unfortunately, the best known threshold so far was
beyond the range achievable by the present day state-of-the-art experiments despite of the methods, e.g., heralding-
type solutions [GPS10],[CM11],[KMS+20], local precertification [CS12],[MSMG+16], local Bell tests [LPT+13], and
so on, proposed to improve the robustness of DIQKD. One such variant of this quantum key distribution protocol
is DIQKD with random key basis [SGP+21]. As the name suggests, instead of a single measurement setting, more
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than one measurement settings are used for generating secret keys. The key idea is to add additional difficulty for
the eavesdropper by increasing the uncertainty about the measurement settings used to generate secret keys. In this
article, we focus on the security analysis of this quantum key distribution protocol. We find that the optimization
technique used in the existing security analysis to find secret key rate can be simplified, thereby reducing its compu-
tational cost. By framing the problem as a strongly convex optimization problem, we show that Bob’s measurement
angles can be optimized with lesser computational cost. We also find a closed form of the pessimistic error arising
while optimizing the measurement angles of the parties Alice and Bob. Moreover, we address few other points in
the original security analysis that demand clarification.

The rest of the article is arranged as follows. In Section (II), we briefly describe the quantum key distribution
protocol that we analyze. Section (III) contains the results and discussions. Finally, in Section (IV), we conclude our
work.

II. THE PROTOCOL

In the original DIQKD protocol [ABG+07], Eve knows the predetermined key generation basis. In particular, let
Alice’s and Bob’s measurement settings are denoted by X ∈ {0, 1} and Y ∈ {0, 1, 2}, respectively. The corresponding
outcomes are given by AX ∈ {0, 1} and BY ∈ {0, 1}, respectively. They derive the secret key from the measurement
rounds in which the settings A = 0 and B = 0, respectively, are chosen. The CHSH score is determined using the
remaining measurement combinations. Unlike this setting, in DIQKD with random key basis protocol, the secret
is generated using both the measurement settings of Alice. Therefore, to obtain correlated outcomes, Bob needs
an extra measurement setting, which is the proposed modification of the original protocol. Hence, in this variant
of DIQKD protocol, Alice and Bob choose the settings X = Y = 0 and X = Y = 1 for generating secret key.
The key intuition behind this protocol follows from the fact that the requirement of incompatible measurements for
violation of the CHSH inequality necessitates the Alice’s key generation measurements to be incompatible when the
CHSH score S > 2. This condition imposes additional difficulty on Eve because now she has to guess the secret key
from two randomly chosen incompatible measurements. For CHSH-based quantum key distribution protocols like
DIQKD, different measurements will generate different amount of side information for Eve [SGP+21]. Therefore,
Eve will fail to maximize her side information with at least one of the measurements, which in turn, provides an
advantage over protocols based only on a single key-generating measurement. Due to her ignorance about which
measurement setting will be chosen by Alice for key generation a priori, she will not be able to tailor her attack to the
measurement in each round individually.

The protocol can be divided into five parts – measurements, sifting, parameter estimation, one-way error cor-
rection and verification, and finally privacy amplification. The measurement step is carried out with asymptotically
large number of rounds N. In each measurement round, Alice and Bob choose their measurement settings X ∈ {0, 1}
and Y ∈ {0, 1, 2, 3}, respectively, following the probability distributions as defined: P(X = 0) = p, P(X = 1) = 1− p,
P(Y = 0) = qp, P(Y = 1) = q(1 − p) and P(Y = 2) = P(Y = 3) = (1 − q)/2, where 0 ≤ p, q ≤ 1. Once Alice
and Bob perform measurements with their respective devices and settings, they obtain outcomes AX ∈ {0, 1} and
BY ∈ {0, 1}, respectively. They begin the second step of the protocol by announcing their measurement inputs over
an authenticated public channel. Then using the inputs Y ∈ {0, 1} and X = Y and the corresponding outcomes,
they generate a pair of raw key of size ∼ q(p2 + (1 − p)2)N. Alice and Bob use the measurement settings X ∈ {0, 1}
and Y ∈ {2, 3} to extract a pair of parameter estimation data of size ∼ (1 − q)N. All other measurement data are
discarded. The third step of this key distribution protocol aims at computing and estimating the CHSH value. To do
so, Alice and Bob reveal their measurement outcomes from the parameter estimation data set. The CHSH parameter
can be expressed as,

S = max{0, C12 − C02 − C03 − C13} (II.1)

where CXY = P(AX = BY|X, Y)− P(AX ̸= BY|X, Y) quantifies the correlations between measurement outcomes AX
and BY. This step comprises the determining factor for continuation of the entire process. If S > Stol , then Alice
and Bob proceed to the next step, otherwise, they abort the protocol. Here Stol is a predetermined threshold value
of the violation of the CHSH inequality. A violation of the inequality beyond the threshold value confirms that the
generated raw keys are secure. After getting this confirmation, Alice and Bob perform one-way error correction and
verification, followed by privacy amplification.

Just like other DIQKD protocols, the security of this protocol can be quantified using the asymptotic secret key
rate. However, due to the use of two measurement key bases for key generation, the key rate is defined in a way
different from the existing DIQKD protocols,

K∞ = psr∞ (II.2)
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where ps := p2 + (1 − p)2 is the probability of Alice and Bob having matching key bases in the limit q → 1. This key
rate is the ratio of the extractable secret key length to the total number of measurement rounds N, which generally
tends to infinity, i.e., N → ∞. The second product term in the above equation is the secret fraction [SGP+21] and it
can be written in terms of entropic functions as,

r∞ := λH(A0|E) + (1 − λ)H(A1|E)
−λh(QA0B0)− (1 − λ)h(QA1B1) (II.3)

where λ := p2/ps and h(x) := −xlog(x) − (1 − x)log(1 − x) is the binary entropy function. The quantity in the
argument of the binary function quantifies the quantum bit-error rate (QBER) for X, Y and is given by QAX BY :=
P(AX ̸= BY|X, Y). The quantum side-information that Eve can gather just before the error-correction step is given by
E. From the secret fraction we can evaluate how much information Eve can get about Alice’s and Bob’s measurement
outcomes. The terms, conditional von Neumann entropy, comprising the first line of Eq.(3) measure the amount of
uncertainty Eve has about Alice’s measurement outcomes given her side-information E. The entropic terms in the
second line of the equation quantify the information that Eve can steal during the error-correction step by decoding
her side-information. If we denote U = λH(A0|E) + (1 − λ)H(A1|E), then Alice and Bob can generate a positive
secret key rate, provided they can put a reliable lower bound on U using solely the CHSH violation that they observe.
This task is quiet challenging, however, it has been shown that by employing a family of device-independent entropic
uncertainty relations[BCC+10][CBTW17], one can have[SGP+21],

λH(A0|E) + (1 − λ)H(A1|E) ≥ C⋆(S) (II.4)

where C⋆ is a function of the CHSH score S. Using U as a performance metric, it has been found that the uncertainty
of Eve in this protocol is always higher than the original protocol for all S ∈ (2, 2

√
2] [SGP+21]. In fact, given a fixed

S, for λ = 1
2 , the bound on U converges to its nearly optimal value, which is the fundamental upper limit of Eve’s

uncertainty [SGP+21]. In this work, our goal is to reduce the optimization cost of establishing a lower bound on
Eve’s uncertainty without compromising the secret key rate.

III. RESULTS AND DISCUSSIONS

Computation of the function C⋆(S) involves a refined version of Pinsker’s inequality [Wil13], semi-definite opti-
mization (SDP)[Sik12], and an ϵ-net approximation [SGP+21]. In the original security analysis of the protocol, to find
a lower bound on the function C⋆(S), three optimization steps have been followed – optimization of the joint state
ρ between Alice and Bob for fixed measurement angles on both sides, optimization of Bob’s angle, and optimization
of Alice’s angles. All the steps in the original analysis assume the worst-case scenario so that the final value is a strict
lower bound on the function. Here, we provide an improvised security analysis of the protocol.

It has been found that Alice’s and Bob’s measurement angles ϕi
A and ϕ

j
B appear as constraints in the optimiza-

tion problem – the SDP used to find out a lower bound on the function C⋆(S). The work of [SGP+21] showed that
the Alice’s angle ϕi

A can be optimized using ϵ - net approach. Here, we show that one can use a similar approach to

optimize the Bob angle ϕ
j
B, thus eliminating the polytope optimization used in the original protocol. The polytope

optimization step introduced in the original security analysis initialised the polytope P as a rectangle. P contain
the unit circle [SGP+21] of all the point that depends on Bob’s angle through sin and cos function. In this work, we
extend the idea of the ϵ−net approach to optimize Bob’s angle, thereby making the overall optimization process less
costly.

The standard cryptographic security analysis assume that the measurement angles of Alice and Bob are indepen-
dent variables. To begin with, let us divide the possible range of each angle, [0, π

2 ], into a set of discrete points, ϕi
Ak

for Alice and ϕ
j
Bl

for Bob, and choose the midpoint of each segment as k and l. Recognizing that the optimal angle
for either Alice or Bob could lie anywhere within the continuous range [0, π

2 ], a pessimistic error approach has been
adopted. This involves iteratively refining the angle for one party (either Alice or Bob) while keeping the other’s
angle fixed. In each iteration, the SDP is being evaluated at the midpoints of the current segments for both angles.
The segment that yields the smallest SDP value is then chosen for further subdivision. This process continues until a
point corresponding to a local minimum is reached for the chosen angle. During this minimization for one angle, a
pessimistic error estimate is subtracted from the SDP result to account for the continuous nature of the angle. Once
the optimal angle for one party is determined through this iterative refinement, this optimal value is then fixed. The
same iterative optimization process is then applied to find the optimal angle for the other party, now considering the
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previously determined optimal angle as a constant. This sequential optimization allows them to find a potentially
optimal solution for the SDP by iteratively minimizing with respect to one angle at a time.

Given the interval I = [0, π/2] and a desired precision ϵ0 > 0, without loss of generality, an ϵ0-net for the product
space I × I is a pair of finite sets of points {ϕi

Ak
}SA

k=1 ⊂ I and {ϕ
j
Bl
}SB

l=1 ⊂ I such that for any (ϕi
A, ϕ

j
B) ∈ I × I, there

exist ϕi
Ak

and ϕ
j
Bl

satisfying:

|ϕi
A − ϕi

Ak
| ≤ ϵ0 |ϕj

B − ϕ
j
Bl
| ≤ ϵ0 (III.1)

where SA and SB are the number of segments in the interval I. Each segment is centralized around the angles
ϕi

Ak
and ϕ

j
Bl

for kth and lth segments respectively. The pessimistic error term was introduced in the original protocol

[SGP+21] as a function of change ∆ in ϵ0 and ϕi
A(ϕ

j
B). In this work, a closed form of the same is derived.

Let us consider that f (ϕ) is a solution of the optimization problem for given angle. Each discrete angle ϕi
Ak

and ϕ
j
Bl

is being separated by a distance of 2ϵ0, thus representing two segments of the same width as,

IA =
[
ϕi

Ak
− ϵ0, ϕi

Ak
+ ϵ0

]
IB =

[
ϕ

j
Bl
− ϵ0, ϕ

j
Bl
+ ϵ0

] (III.2)

The pessimistic error terms ∆(ϵ0, ϕi
A) and ∆(ϵ0, ϕ

j
B) provide an upper bound on the absolute difference between the

values of the function at any point within these segments and at the representative discrete point. Hence, from the
definition of f (ϕ), we have,

| f (ϕi
A)− f (ϕi

Ak
)| ≤ ∆

(
ϵ0, ϕi

A

)
| f (ϕi

B)− f (ϕj
Bl
)| ≤ ∆

(
ϵ0, ϕ

j
B

)
, ∀ϕi

A ∈ IA and ∀ϕ
j
B ∈ IB

(III.3)

A. Modification of the optimization problem accommodating Lipschitz continuity

Proving the below mentioned theorem, we first modify the optimization problem.
Theorem : If f (ϕ) is a solution of an well-defined optimization problem, then it is Lipschitz continuous, i.e., there

exists a constant L f > 0 such that,

∥ f (ϕ1)− f (ϕ2)∥ ≤ L f ∥ϕ1 − ϕ2∥. (III.4)

The proof is provided in the Appendix section F 1. To make the objective function continuously differentiable with
respect to both the density operator and the measurement angles, the squared Frobenius norm is introduced. The
squared Frobenius norm is smooth and continuously differentiable at every point[PP08]. To make the objective
function strongly convex, it is necessary to add a strongly convex regularisation term. Therefore, the optimization
problem in the original security analysis of the protocol now becomes,

n∗(Sij) = inf λ
∥∥∥ρ

ij
AB − Λ0[ρ

ij
AB]
∥∥∥2

F
+ (1 − λ)

∥∥∥ρ
ij
AB − Λ1[ρ

ij
AB]
∥∥∥2

F
+

µ

2
∥ρ

ij
AB∥

2
F

s.t. Tr
(

ρ
ij
AB CHSH(ϕi

A, ϕ
j
B)
)
= Sij

ϕi
A, ϕ

j
B ∈ [0, π/2],

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

(III.5)

The modified version of the optimization problem can be reformulated into an SDP using Schur complements
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[BTN01]. Let us first express each Frobenius norm terms into the corresponding inner product form as,

n∗(Sij) = −maximize λTr(ρ0
†ρ0) + (1 − λ)Tr(ρ1

†ρ1) +
µ

2
Tr(ρ2

†ρ2)

s.t. Tr
(

ρ
ij
AB CHSH(ϕi

A, ϕ
j
B)
)
= Sij

ϕi
A, ϕ

j
B ∈ [0, π/2],

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

(III.6)

where ρ0 = ρ
ij
AB − Λ0[ρ

ij
AB] , ρ1 = ρ

ij
AB − Λ1[ρ

ij
AB] and ρ2 = ρ

ij
AB

Each inner product (ρk, ρk) for k ∈ {0, 1, 2} in the above equation is quadratic in ρk. The standard SDP formulation
requires that the objective function to be linear in its decision variables and the constraints to be in the form of linear
matrix inequalities. Let tk ≥ (ρk, ρk), then using Schur’s complement we get,(

tk vec(ρk)
†

vec(ρk) 1

)
⪰ 0 (III.7)

Since CHSH correlation operator is fixed for a given value of the angles ϕi
A and ϕ

j
B, the standard SDP formulation of

the optimization problem would be,

n∗(Sij) = −maximize λt0 + (1 − λ)t1 +
µ

2
t2

s.t.
(

t0 vec(ρ0)
†

vec(ρ0) 1

)
⪰ 0,

(
t1 vec(ρ1)

†

vec(ρ1) 1

)
⪰ 0,

(
t2 vec(ρ2)

†

vec(ρ2) 1

)
⪰ 0

Tr
(

ρ
ij
AB CHSH(ϕi

A, ϕ
j
B)
)
= Sij,

ϕi
A, ϕ

j
B ∈ [0, π/2],

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

(III.8)

B. Bounding the pessimistic error terms ∆
(

ϵ0, ϕi
A

)
and ∆

(
ϵ0, ϕ

j
B

)
The solution of the modified optimization problem, n∗(Sij), is thus established to be Lipschitz continuous. Now

one can proceed towards formulating a closed form for the pessimistic error terms, ∆
(
ϵ0, ϕi

A
)

and ∆
(

ϵ0, ϕ
j
B

)
. The

solution of the SDP gives an optimal value for the kth and lth segment centered around ϕi
Ak

and ϕ
j
Bl

for Alice and

Bob, respectively. The solution of the SDP is based on fixed ϕi
A and ϕ

j
B. Without loss of generality, we consider the

function f to be the solution of the optimization problem. Let denote two functions analogous to the solution of the
modified optimization problem for Alice’s and Bob’s angles as,

fA(ϕ
i
A) = RA, fB(ϕ

j
B) = RB (III.9)

where RA and RB give the optimal value of the SDP for the given parameterized angles.
Now, since the functions defined above are Lipschitz continuous, one can have the following relation for each seg-
ment, where ϕi

Ak
and ϕ

j
Bl

are the centres of the segments k and l, respectively.

| fA(ϕ
i
A)− fA(ϕ

i
Ak
)| ≤ LA|ϕi

A − ϕi
Ak
|

| fB(ϕ
j
B)− fB(ϕ

j
Bl
)| ≤ LB|ϕ

j
B − ϕ

j
Bl
|, ∀ϕi

A ∈ IA and ∀ϕ
j
B ∈ IB

(III.10)

The above inequalities put upper bounds on the absolute deviation in the solution of the optimization problem. The
supremum of the above functions are given as,

Mi
A = supϕi

A∈IA
fA(ϕ

i
A) and Mj

B = sup
ϕ

j
B∈IB

fB(ϕ
j
B) (III.11)
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Similarly, the infimum of the solutions are being given as,

mi
A = in fϕi

A∈IA
fA(ϕ

i
A) and mj

B = in f
ϕ

j
B∈IB

fB(ϕ
j
B) (III.12)

The Lipschitz continuity of the solution functions implies that they are continuous in the given interval. There-
fore, the supremums are the corresponding maximums and the infimum are the corresponding minimums. The
supremum and infimum guarantee that no number smaller than Mi

A and Mj
B can serve as an upper-bound, and

equivalently, no number larger than mi
A and mj

B can act as lower bound for fA(ϕ
i
A) and fB(ϕ

j
B), respectively. The

quantities that we are interested in bounding are,

supϕi
A∈IA

∣∣∣ fA(ϕ
i
A)− fA(ϕ

i
Ak
)
∣∣∣ and sup

ϕ
j
B∈IB

∣∣∣ fB(ϕ
j
B)− fB(ϕ

j
Bl
)
∣∣∣ (III.13)

where ϕi
Ak

and ϕ
j
Bl

represent the center of the segments k and l, respectively. We find that the deviation gets max-
imised at the boundary of the respective segments (Theorem 3 in Appendix F 3). Hence, we have,

supϕi
A∈IA

| fA(ϕ
i
A)− fA(ϕ

i
Ak
)| = LAϵ0

sup
ϕ

j
B∈IB

| fB(ϕ
j
B)− fB(ϕ

j
Bl
)| = LBϵ0, ∀ϕi

A ∈ IA and ∀ϕ
j
B ∈ IB

(III.14)

And from the definition of the pessimistic error terms ∆
(
ϵ0, ϕi

A
)

and ∆
(

ϵ0, ϕ
j
B

)
, we get,

∆
(

ϵ0, ϕi
A

)
= LAϵ0 and ∆

(
ϵ0, ϕ

j
B

)
= LBϵ0 (III.15)

Since the functions fA(ϕ
i
A) and fB(ϕ

j
B) are differentiable in the intervals IA and IB, respectively, we determine the

values of LA and LB using the following Taylor series as follows,

fA(ϕ
i
A) =

∞

∑
n=0

f n
A(ϕ

i∗
A)

n!
(ϕi

A − ϕi∗
A)

n

fB(ϕ
j
B) =

∞

∑
m=0

f m
B (ϕ

j∗
B )

m!
(ϕ

j
B − ϕ

j∗
B )

m, ∀ϕi∗
A ∈ IA and ∀ϕ

j∗
B ∈ IB

(III.16)

Now in this case, linear approximations of fA(ϕ
i
A) near ϕi

Ak
and fB(ϕ

j
B) near ϕ

j
Bl

are needed for small ϵ0. One can

neglect the higher-order derivatives terms because f 1
A(ϕ

i
Ak
)(ϕi

A − ϕi
Ak
) and f 1

B(ϕ
j
Bl
)(ϕ

j
B − ϕ

j
Bl
) dominate as |ϕi

A − ϕi
Ak
|

and |ϕj
B − ϕ

j
Bl
| tends to 0 for kth and lth segments of Alice and Bob, respectively. The necessity of incorporating the

higher-order terms in the error analysis arises when ϵ0 is nonnegligible, the underlying functions exhibit strong
non-linearity, or when a more precise and tighter bound on the error is desired. In such scenarios, only linear ap-
proximations are insufficient to accurately capture the function’s behaviour within the interval of width 2ϵ0. The
contributions from higher derivatives that are neglected in the first-order analysis become non-negligible and must
be accounted for to achieve the required accuracy in the error estimation. Thus, using the first order linear approxi-
mation, one can get an approximation of fA(ϕ

i
A) and fA(ϕ

j
B) near ϕi

Ak
and ϕ

j
Bl

as,

fA(ϕ
i
A) = fA(ϕ

i
Ak
) + f 1

A(ϕ
i
Ak
)(ϕi

A − ϕi
Ak
) +O((ϕi

A − ϕi
Ak
)2)

| fA(ϕ
i
A)− fA(ϕ

i
Ak
)| ≤ | f 1

A(ϕ
i
Ak
)||(ϕi

A − ϕi
Ak
)|+O((ϕi

A − ϕi
Ak
)2)

(III.17)

Similarly,

| fB(ϕ
j
B)− fB(ϕ

j
Bl
)| ≤ | f 1

B(ϕ
j
Bl
)||(ϕj

B − ϕ
j
Bl
)|+O((ϕ

j
B − ϕ

j
Bl
)2) (III.18)

The higher-order terms, represented by O((ϕi
A −ϕi

Ak
)2) and O((ϕ

j
B −ϕ

j
Bl
)2), are indeed positive if the second deriva-

tives are positive, indicating local convexity. While typically removing positive terms would weaken an inequality,
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the context of a pessimistic error bound requires careful consideration. The pessimistic error is designed to over-
estimate the potential deviation. By truncating the Taylor series and neglecting these positive higher-order terms,
we essentially underestimate the actual deviations | fA(ϕ

i
A)− fA(ϕ

i
Ak
)| and | fB(ϕ

j
B)− fB(ϕ

j
Bl
)|. Consequently, when

these underestimated deviations are used to construct a pessimistic error (which is subtracted from the SDP result),
the error itself becomes overestimated. This overestimation of the error leads to a more conservative (and potentially
less tight) lower bound on the true optimal value of the SDP. Thus, after first order linear approximation we get,

supϕi
A∈IA

| fA(ϕ
i
A)− fA(ϕ

i
Ak
)| ≤ | f 1

A(ϕ
i
Ak
)||(ϕi

A − ϕi
Ak
)|

sup
ϕ

j
B∈IB

| fB(ϕ
j
B)− fB(ϕ

j
Bl
)| ≤ | f 1

B(ϕ
j
Bl
)||(ϕj

B − ϕ
j
Bl
)|

(III.19)

The above relations hold good ∀ ϕi
A, ϕ

j
B ∈ I if,

∆
(

ϵ0, ϕi
A

)
= maxϕi

A∈I | f 1
A(ϕ

i
Ak
)|ϵ0 and ∆

(
ϵ0, ϕ

j
B

)
= maxϕi

A∈I | f 1
B(ϕ

j
Bl
)|ϵ0 (III.20)

where LA = maxϕi
A∈I | f 1

A(ϕ
i
A)| and LB = maxϕi

A∈I | f 1
B(ϕ

j
B)|. Thus, we evaluate the pessimistic errors involved in the

ϵ−net approximation used for optimizing Alice’s and Bob’s angles.

C. Alice’s and Bob’s measurement angles

The work of [SGP+21] shows that without loss of generality one can can reduce the problem to two-qubit space
C4×4 of Alice’s and Bob’s subsystem. From the result of [BS10] we can decompose a projector of higher dimension
into projectors of dimension 2 × 2 acting on either Alice’s or Bob’s state. Now the work[SGP+21] proposed that the
angles for Alice and Bob for choosing the projector and hence the observables are obtained from the spectrum of
P0|0
X + P0|1

X and P0|2
Y + P0|3

Y , respectively (C.2). Using this result, we find the explicit expression for Alice’s and Bob’s
measurement angles as,

ϕi
A = 2 arccos

(
λ1
X − λ2

X
2

)
and ϕ

j
B = 2 arccos

(
λ1
Y − λ2

Y
2

)
, (III.21)

where ϕi
A and ϕ

j
B are the angles corresponding to ijth two qubit space marked by ith and jth indices of Alice and Bob,

respectively. λ1
X , λ2

X and λ1
Y , λ2

Y are the eigen value of P0|0
X + P0|1

X and P0|2
Y + P0|3

Y , respectively. We find that such a
mapping is unique (See Lemma 1 in appendix C).

D. Dependence of CHSH operator on Alice’s and Bob’s angles

The optimisation problem presented in equation (F.19) exhibits a dependence on Alice’s angle, denoted as ϕi
A,

through the channel Λ1 as defined by equations (B.2), (C.1), (C.2), and (C.3). Additionally, it depends on the CHSH
operator, as specified in equations (C.26) and (F.19). Bob’s angle, ϕ

j
B, solely influences the CHSH operator. Notably,

variations in the CHSH operator are of particular interest due to their direct impact on the feasible solution set of the
optimisation problem. Furthermore, analysing the effect of changes in the feasible region holds greater significance
than examining alterations in the channel Λ1. This is because Alice’s and Bob’s parameters jointly determine the
feasible region, allowing for a more unified analysis concerning variations in the parameters.

Given discrete points ϕi
Ak

and ϕ
j
Bl

located at the midpoint of their respective intervals, the inherent symmetry of
the underlying function or data distribution implies that the maximum deviation from these discrete points will
occur symmetrically around them. Consequently, a small perturbation ϵ from the midpoint will result in equal
magnitudes of deviation, such that the deviation at ϕi

Ak+ϵ is equivalent to the deviation at ϕi
Ak−ϵ, and similarly for

ϕ
j
Bl

. The spectral norm of the difference between the CHSH operators evaluated at ϕi
Ak

and ϕi
Ak±ϵ (and similarly for

ϕ
j
Bl

and ϕ
j
Bl±ϵ) is equal to the largest singular value of this difference operator. Let us define the maximum of the
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spectral norms of the differences in the CHSH operator as,

δp = max
(
||CHSH(ϕi

A, ϕ
j
B)− CHSH(ϕi

A + ϵ, ϕ
j
B)||∞,

||CHSH(ϕi
A, ϕ

j
B)− CHSH(ϕi

A, ϕ
j
B + ϵ)||∞,

||CHSH(ϕi
A, ϕ

j
B)− CHSH(ϕi

A + ϵ, ϕ
j
B + ϵ)||∞

) (III.22)

Evaluating each term in the above equation F 4, we finally get,

δp ≤ max
(∥∥∥ϵ

(
cos

(
ϕi

A

)
σx − sin

(
ϕi

A

)
σz

) ∥∥∥
∞
·
∥∥∥2
(

Q
(

ϕ
j
B

)
−
(

1 0
0 0

))∥∥∥
∞

,∥∥∥2
(

Q
(

ϕi
A

)
−
(

0 0
0 1

))∥∥∥
∞
·
∥∥∥ϵ
(

cos
(

ϕ
j
B

)
σx − sin

(
ϕ

j
B

)
σz

) ∥∥∥
∞

,∥∥∥ϵ
(

cos
(

ϕi
A

)
σx − sin

(
ϕi

A

)
σz

) ∥∥∥
∞
·
∥∥∥ϵ
(

cos
(

ϕ
j
B

)
σx − sin

(
ϕ

j
B

)
σz

) ∥∥∥
∞

)
≤ max

(
ϵ · 2 sin

(
ϕ

j
B

2

)
, 2 cos

(
ϕi

A
2

)
· ϵ, ϵ2

)
≤ 2ϵ0

(III.23)

The equality holds for the spectral norm of Kronecker products, therefore, this upper bound is exact. Now in the

interval I, sin
(

ϕ
j
B

2

)
and cos

(
ϕi

A
2

)
functions are monotonically increasing and decreasing respectively. The first

term 2 sin
(

ϕ
j
B

2

)
is increasing from 0 to 1.414 and the second term 2 cos

(
ϕi

A
2

)
is decreasing from 2ϵ to 1.414. Thus,

the maximum deviation of the CHSH operator is achieved when ϕi
A is fixed at 0 but ϕ

j
B is increased by ϵ0.

E. Dependence of objective function on Alice’s angle

The objective function in (F.19) is a function of the density operator describing the joint state between Alice and Bob
and Alice’s angle ϕi

A. To analyse the dependency of the solution of the optimisation problem on ϕi
A, we reinterpret

the Frobenius norm terms in (F.19) using dual norms. Since the Frobenius norm is self-dual, this framework retains
the norm structure while emphasising its role as a maximiser of inner products. Now, as the objective function
depends only upon Alice’s angle, it is sufficient to consider only the perturbation of Alice’s angle ϕi

A. Moreover, in
the objective function, only one term is a function of the Alice’s angle; therefore, we consider only that term and
analyse the perturbation. The absolute change in the objective function can be written as,∣∣∣h(λ, ϕi

A, ρ
ij
AB)− h(λ, ϕi

A + ϵ, ρ
ij
AB)
∣∣∣ (III.24)

The first term can be expanded in the following way,

h(λ, ϕi
A, ρ

ij
AB) = (1 − λ)Tr

([
ρ

ij
AB −

(
1
2
{ρ

ij
AB, Q(ϕi

A)⊗ I} − 1
2
[ρ

ij
AB, Q(ϕi

A)⊗ I]

)
Q(ϕi

A)⊗ I

−
(

1
2
{ρ

ij
AB, (I − Q(ϕi

A)⊗ I)} − 1
2
[ρ

ij
AB, (I − Q(ϕi

A)⊗ I)]

)
{I − Q(ϕi

A)⊗ I}
]2
) (III.25)

In a similar way, we can expand the second term and finally get,∣∣∣h(λ, ϕi
A, ρ

ij
AB)− h(λ, ϕi

A + ϵ0, ρ
ij
AB)
∣∣∣

≤ (1 − λ)[4ϵ0 +O(ϵ2
0)]

(III.26)

The tighter bound of 4ϵ0 in the previous work is based upon assumption that ρ
ij
AB and Q(ϕi

A)⊗ I commute. Having
evaluated the change in the objective function with respect to Alice’s angle, we can now lower bound the maximal
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error in kth segment centered around ϕi
Ak

and get the modified optimization problem as,

n∗(Sij) ≥ inf λ
∥∥∥ρ

ij
AB − Λ0[ρ

ij
AB]
∥∥∥2

F
+ (1 − λ)

∥∥∥ρ
ij
AB − Λ1[ρ

ij
AB]
∥∥∥2

F

+
µ

2
∥ρ

ij
AB∥

2
F − 2(1 − λ)ϵ0

s.t. Tr
(

ρ
ij
AB CHSH(ϕi

A, ϕ
j
B)
)
= Sij − 2ϵ0

ϕi
A, ϕ

j
B ∈ [0, π/2],

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

(III.27)

F. Convex lower bound of C∗(S)

The optimization problem defining n∗(S) is given as,

n∗(Sij) = inf
{

λ
∥∥∥ρ

ij
AB − Λ0

[
ρ

ij
AB

]∥∥∥2

F
+ (1 − λ)

∥∥∥ρ
ij
AB − Λ1

[
ρ

ij
AB

]∥∥∥2

F
+

µ

2

∥∥∥ρ
ij
AB

∥∥∥2

F

}
s.t. Tr

(
ρ

ij
AB CHSH(ϕi

A, ϕ
j
B)
)
= Sij.

(III.28)

Now, the given objective function involving the Frobenius norm ∥·∥2
F is strongly convex in ρ. The term µ

2

∥∥∥ρ
ij
AB

∥∥∥2

F
introduces µ-strong convexity, and the linear constraints of the optimization problem preserve the strong convexity
on the feasible set. For fixed Sij, the objective function is strongly convex in ρ. The parameterized problem’s solution
function n∗(Sij) inherits convexity. Moreover, strong convexity implies quadratic dependence on the perturbations
in Sij. Thus, n∗(S) is strongly convex in S for S ∈ (2, 2

√
2] For the measure η with,

∫ 2
√

2

2
η(dS′) = 1, η ≥ 0,

∫ 2
√

2

2
η(dS′)S′ = S (III.29)

Now application of Jensen’s inequality for strongly convex functions yields,

∫ 2
√

2

2
η(dS′)n∗(S′) ≥ n∗

(∫ 2
√

2

2
η(dS′)S′

)
+

µ

2
Varη(S′) (III.30)

Since Varη(S′) ≥ 0,

∫ 2
√

2

2
η(dS′)n∗(S′) ≥ n∗(S). (III.31)

Substituting C(S′) = n∗(S′) into the original inequality, we get,

C∗(S) ≥
∫ 2

√
2

2
η(dS′)n∗(S′) ≥ n∗(S) (III.32)

Therefore, C(S) = n∗(S) is a valid convex lower bound.

IV. CONCLUSION

In most of the QKD protocols, Alice and Bob single out one of their measurement settings for key generation. This
strategy helps them improving the key rate of those protocols. In the original DIQKD protocol [ABG+07], Alice and
Bob chose a single measurement setting {A0, B0} with high probability for key generation, whereas, other measure-
ment settings with low probability for testing the channels. However, the security analysis of this protocol shows
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that there exists optimal attack such that H(A0|E) ≤ H(A1|E) [PAB+09]. In other words, as Eve has the information
about Alice’s measurement settings, she could focus on minimizing her uncertainty about the key generating mea-
surement A0 at the cost of having higher uncertainty about the other setting. To circumvent this problem (to increase
Eve’s uncertainty about the key generation measurement setting), DIQKD with random key basis is proposed. In
this variant of DIQKD protocol, as Alice uses two measurement settings for key generation, the uncertainty of Eve
about Alice’s measurement settings is now a combination of conditional entropies, λH(A0|E) + (1 − λ)H(A1|E),
where λ is the probability for choosing the measurement A0 and E is Eve’s side information. The main challenge in
the security analysis of this protocol is to find a reliable lower bound on this quantity using only the observed CHSH
violation. The authors in[SGP+21] have framed the problem onto an optimization problem and found a lower bound
C⋆(S), such that λH(A0|E) + (1 − λ)H(A1|E) ≥ C⋆(S). The results produced in this manuscript show that the opti-
mization cost involved in the security analysis of the DIQKD protocol can be reduced. In the original work, polytope
optimization has been used for finding Bob’s optimal angle in context to the main optimization problem. Our re-
sults show that reframing the security analysis as a strongly convex optimization problem can help in optimizing
Bob’s measurement angles using the same approach as used for Alice, i.e., ϵ-net approximation. Now, as polytope
optimization is costlier than ϵ-net approximation, substituting the earlier with the later in the main problem results
to lesser cost for the security analysis. Evaluation of the pessimistic error involved in the ϵ−net approximation is an
important task because in every iteration the error is being subtracted from the CHSH score S. However, so far, any
explicit expression for the pessimistic error has not been noticed in any literature. Here, we have derived an explicit
expression for the pessimistic error. It is found to be the maximised value of the product of two terms, namely,
desired precision of the angles ϕi

A and ϕ
j
B and the first-order derivative of the solution functions of the optimiza-

tion problem. Our result shows how Alice and Bob can determine their measurement angles ϕi
A and ϕ

j
B from the

spectrum of the projectors they chose for checking CHSH violation and generating secret keys. The dependence of
CHSH operator on the angles of the parties were not clearly explained in the original security analysis. Our results
also show how the operator varies with the change in the angles of Alice and Bob, determining the instance that
results to maximum deviation in the CHSH operator. Moreover, from the results derived in this manuscript, it can
be concluded that a convex lower bound on the uncertainty of Eve about Alice’s key generation measurements can
be derived analytically. We believe that our work has made the security analysis of the DIQKD with random key
basis more clear and complete.
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APPENDIX

Appendix A: Framework

We first describe the framework for phrasing the security analysis as an optimization problem. The aim of the
analysis is to establish a lower bound on the quantity C∗(S) [SGP+21], where S is the observed CHSH value for the
shared entangled state between the parties Alice and Bob, such that

λH(A0|E)ρA′BEA0
+ (1 − λ)H(A1|E)ρA′BEA1

≥ C∗(S), (A.1)

where AX is Alice’s outcome for her measurement setting X ∈ {0, 1} and H(AX |E)ρA′BEAX
signifies Eve’s uncertainty

about Alice’s outcomes given her side-channel quantum information E. The protocol assumes the measurement
setting for Bob to be Y ∈ {0, 1, 2, 3}. Let X and Y be the Hilbert spaces defining Alice’s and Bob’s subsystems,
respectively. Now consider OX

x ∈ Herm(X ) for x ∈ {0, 1} and OY
y ∈ Herm(Y) for y ∈ {0, 1, 2, 3}, respectively, to be

the observables corresponding to Alice’s and Bob’s measurement settings. The observables can be explicitly written
as A = {OX

0 , OX
1 } and B = {OY

0 , OY
1 , OY

2 , OY
3 }. These can be written in spectral form as,

OX
x = ∑

i
λx

i Px
i , OY

y = ∑
j

λ
y
j Py

j (A.2)

where λx
i and λ

y
j are eigenvalues corresponding to the projectors Px

i and Py
j , respectively. As the measurement

outcomes are dichotomic, we can also express the observables as,

OX
x = P0|x

X − P1|x
X , OY

y = P0|y
Y − P1|y

Y (A.3)

The measurements settings chosen by Alice and Bob to check the CHSH violation are {A0, A1} and {B2, B3}, respec-
tively. Therefore, the correlation measurement operators corresponding to the chosen measurement settings can be
defined as,

COX
0 = P0|0

X − P1|0
X and COX

1 = P0|1
X − P1|1

X ,

COY
2 = P0|2

Y − P1|2
Y and COY

3 = P0|3
Y − P1|3

Y

(A.4)

The correlation function defined in the main text, CXY = P(AX = BY|X, Y) − P(AX ̸= BY|X, Y), is related to the
correlation measurement operators via CXY = Tr(ρ Pa|x

X ⊗ Pb|y
Y ), where ρ is the state on which Alice and Bob perform

the measurement. Hence, the CHSH operator can be written in terms of correlation measurement operators as
[SGP+21],

CHSH := COX
1 ⊗ COY

2 − COX
0 ⊗ COY

2

− COX
0 ⊗ COY

3 − COX
1 ⊗ COY

3 (A.5)

Each term in the operator can be expressed in terms of the projectors defined above as [Wil13],

COX
x ⊗ COY

y = (P0|x
X − P1|x

X )⊗ (P0|y
Y − P1|y

Y )

= (P0|x
X ⊗ P0|y

Y )− (P0|x
X ⊗ P1|y

Y )− (P1|x
X ⊗ P0|y

Y ) + (P1|x
X ⊗ P1|y

Y )

= (P0|x
X ⊗ P0|y

Y + P1|x
X ⊗ P1|y

Y )− (P0|x
X ⊗ P1|y

Y + P1|x
X ⊗ P0|y

Y )

(A.6)

On the assumption that the state shared between Alice and Bob is a mixed state ρAB in general, and Eve holds the
purification of this state, the pure state is now described by ΨABE. A more particular description of the state may
include a fourth component – Alice’s outcome AX , which is initially associated with a pure quantum state ψ, and
hence the joint state between Alice, Bob, and Eve can be expressed as ΨABEAX . The dimension of Eve’s system is
unknown, and Eve has full control over all the devices, including Alice’s and Bob’s measurement devices. However,
in this protocol, Eve can not determine beforehand the measurement setting used by Alice to generate the secret key
– Alice now uses two random bases for key generation.

The purpose of optimising the objective function defined in (A.11) is to find a lower bound on the uncertainty of
Eve about Alice’s measurement outcomes. The conditional von Neumann entropy function defined in the Eq.(A.1)
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can be decomposed as H(AX |E)ρA′BEAX
= H(AX)ρA′BEAX

− χ(AX ; E), where χ(AX ; E) is the Holevo information
[Hol19] between Alice and Eve. Similarly, the von Neumann entropy can be expressed as H(AX)ρA′BEAX

=

I(AX ; B)ρA′BEAX
+ H(AX |B)ρA′BEAX

, where I(AX ; B)ρA′BEAX
and H(AX |B)ρA′BEAX

are respectively the mutual infor-
mation and conditional entropy between Alice and Bob. Using the above two relations, Eq. (A.1) can be rewritten
as,

C∗(S) ≤ λ
[

I(A0; B)ρA′BEA0
+ H(A0|B)ρA′BEA0

− χ(A0; E)
]

+ (1 − λ)
[

I(A1; B)ρA′BEA1
+ H(A1|B)ρA′BEA1

− χ(A1; E)
] (A.7)

Under the assumption of optimal error correction (H(AX |BY)ρA′BEAX
→ 0), the above inequality simplifies to:

C∗(S) ≤ λ
[

I(A0; B)ρA′BEA0
− χ(A0; E)

]
+ (1 − λ)

[
I(A1; B)ρA′BEA1

− χ(A1; E)
]

. (A.8)

The quantum-classical state obtained after Alice’s measurement is given by,

ρA′BEAX
= ∑

i∈{0,1}
ρψi ⊗ TrA((Pi|x

X ⊗ 1BE)ΨABE(Pi|x
X ⊗ 1BE)

∗) (A.9)

where A′, B, E, AX are Alice’s subsystem, Bob’s subsystem, Eve’s subsystem, and Alice’s measurement outcome
associated with pure quantum state ψ, respectively. Using this state, if the conditional Von Neumann entropy
H(AX |E)ρA′BEAX

is calculated, then we find that it essentially captures the change in entropy of the joint state of
Alice and Bob after and before Alice’s measurement,

H(AX |E)ρA′BEAX
= H(AXE)ρA′BEAX

− H(E)ρABEA′
X

= H(A′B)ρA′BEAX
− H(AB)ρABEA′

X

= ∆HX

(A.10)

The optimization problem includes a constraint that the reduced density operator of the joint subsystem comprising
Alice’s and Bob’s systems, denoted as ρAB, must be equal to the partial trace of the overall state ρABEA′

X
over the

environment (E) and Alice’s ancilla (A′
X), i.e., ρAB = TrEA′

X
(ρABEA′

X
). Now one can formally define the optimization

problem as

C∗(S) = inf λH(A0|E)ρA′BEA0
+ (1 − λ)H(A1|E)ρA′BEA1

s.t. Tr(ρAB · CHSH) = S
ρAB ⪰ 0
Tr(ρAB) = 1

or equivalently,

C∗(S) = inf λ
[

I(A0; B)ρA′BEA0
− χ(A0; E)

]
+ (1 − λ)

[
I(A1; B)ρA′BEA1

− χ(A1; E)
]

s.t. Tr(ρAB · CHSH) = S
ρAB ⪰ 0
Tr(ρAB) = 1

(A.11)

Appendix B: Reformulation of change in entropy ∆HX in terms of Alice and Bob subsystems

After formally defining the optimization problem, our first task is to reformulate the problem in terms of the
Alice’s and Bob’s subsystems A and B. The problem defined in (A.11) is defined in terms of Alice’s outcome AX and
Eve’s subsystem E. This setting has a serious flaw: inaccessibility to the Eve subsystem E. Although one can access
Alice’s outcome AX in the context of security analysis, access to the Eve subsystem is impractical and meaningless.
The Eve’s subsystem can be described by a vector space, whose dimension is unknown. If one has access to Eve’s
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subsystem, one can configure the protocol accordingly to bypass Eve’s intervention, which is not only practically
infeasible but also makes no sense in the DIQKD framework.

The global state ρ is a pure state; one may consider it as a bipartite state where AX and E are constitute one part,
and A and B the other. Now, from the result of Theorem 2.c of [AL70], one can easily find that the local entropy
production ∆HX on the two sides of the bipartition is essentially the same,

∆HX = H(A′B)ρA′BEAX
− H(AB)ρABEA′

X
(B.1)

Hence, using Eq. (A.10), one can perform the security analysis in terms of accessible Alice and Bob subsystems.[SGP+21]
The transformation can be seen as the transformation from the state ρABEA′

X
∈ R, where R defines the joint state

describing Alice’s system A, Bob’s system B, Eve’s system E, and the A′
X being Alice’s measurement outcome sub-

system before the effect of her chosen observables associated with pure quantum state ψ to ρA′BEAX
∈ H, where H

denotes the same as a joint state describing Alice Bob and Eve system except for the fact that here A′ denotes the
Alice subsystem after the transformation, and AX is the classical register storing the Alice’s measurement outcomes.
The work of [SGP+21] shows that this transformation can indeed be defined through pinching channels defined for
each observable as,

Λ0[ρABEA′
0
] = (P0|0

X ⊗ 1)ρABEA′
0
(P0|0

X ⊗ 1) + (P1|0
X ⊗ 1)ρABEA′

0
(P1|0

X ⊗ 1) = ρA′BEA0

Λ1[ρABEA′
1
] = (P0|1

X ⊗ 1)ρABEA′
1
(P0|1

X ⊗ 1) + (P1|1
X ⊗ 1)ρABEA′

1
(P1|1

X ⊗ 1) = ρA′BEA1

(B.2)

Now let us redefine the reduced joint state of Alice and Bob as,

TrEAX (Λ[ρABEA′
X
]) = ρA′B

TrEAX (ρABEA′
X
) = ρAB

(B.3)

1. Pinching Channel

The pinching channel Λ is defined as:

Λ[ρ] = ∑
i

PiρPi (B.4)

where {Pi} is a set of orthogonal projectors and ρ ∈ is a density operator.

Properties of Pinching Channels

1. Idempotence: The pinching channel is idempotent, i.e.,

Λ[Λ[ρ]] = Λ[ρ]. (B.5)

Proof:

Λ[Λ[ρ]] = ∑
i

Pi

(
∑

j
PjρPj

)
Pi. (B.6)

Using the orthogonality of the projectors (PiPj = δijPi), this simplifies to:

Λ[Λ[ρ]] = ∑
i

PiρPi = Λ[ρ]. (B.7)

Thus, Λ is idempotent.

2. Any pinching channel acts as an identity operator if ρ commutes with all Pi, i.e.,

Λ[ρ] = ρ, ∀ρ i f [ρ, Pi] = 0 (B.8)

Proof: If ρ commutes with Pi, then Piρ = ρPi. Substituting into the definition of Λ:

Λ[ρ] = ∑
i

PiρPi = ∑
i

PiPiρ = ∑
i

Piρ = ρ, (B.9)

where one can used P2
i = Pi (since Pi is a projector) and ∑i Pi = I.
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3. Pinching channel does not increase trace distance between any two states, i.e., for any two states ρ and σ,

∥Λ[ρ]− Λ[σ]∥1 ≤ ∥ρ − σ∥1. (B.10)

Proof: The trace distance is defined as:

∥ρ − σ∥1 = Tr|ρ − σ|, (B.11)

where |A| =
√

A∗A. The pinching channel Λ is a completely positive trace-preserving (CPTP) map, and all
CPTP maps are contractive concerning the trace norm. Thus:

∥Λ[ρ]− Λ[σ]∥1 ≤ ∥ρ − σ∥1. (B.12)

4. For any state ρ, the diagonal terms of ρ in the basis of {Pi} remain unchanged after applying Λ.
Proof: The diagonal terms of ρ in the basis of {Pi} are given by Tr(Piρ). Applying Λ:

Tr(PiΛ[ρ]) = Tr

(
Pi ∑

j
PjρPj

)
= Tr(PiρPi) = Tr(Piρ) (B.13)

one can use the trace’s cyclic property and PiPj = δijPi. Thus, the diagonal terms are preserved.

5. Pinching channel increases the von Neumann entropy, ie.,

S(Λ[ρ]) ≥ S(ρ), (B.14)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy.
Proof: The pinching channel Λ is unital (Λ[I] = I) and doubly stochastic. By the monotonicity of the von
Neumann entropy under doubly stochastic maps, one can have:

S(Λ[ρ]) ≥ S(ρ). (B.15)

6. The eigenvalues of Λ[ρ] are majorized by the eigenvalues of ρ, reflecting a redistribution of probabilities to-
wards uniformity.
Proof: Let λ(ρ) and λ(Λ[ρ]) denote the vectors of eigenvalues of ρ and Λ[ρ], respectively. The pinching chan-
nel Λ is an unital quantum channel, and by the Schur-Horn theorem, the eigenvalues of Λ[ρ] majorize the
eigenvalues of ρ:

λ(Λ[ρ]) ≺ λ(ρ). (B.16)

This means that the eigenvalues of Λ[ρ] are more uniformly distributed than those of ρ.

7. For any measurable function f , the pinching channel satisfies:

f (Λ[ρ]) = Λ[ f (ρ)]. (B.17)

Proof: The pinching channel Λ acts as a projection onto the diagonal basis defined by {Pi}. For any function
f , the action of f on ρ commutes with the pinching operation because f acts on the eigenvalues of ρ, and Λ
preserves the diagonal terms (eigenvalues) while removing off-diagonal terms. Thus:

f (Λ[ρ]) = Λ[ f (ρ)]. (B.18)

In quantum information theory, the dual (adjoint) of a map Φ, denoted Φ∗, is defined via the Hilbert-Schmidt inner
product:

Tr(A · Φ[ρ]) = Tr(Φ∗[A] · ρ), ∀A, ρ ∈ L(V), (B.19)

where A and ρ are Hermitian operators on a complex Euclidean space V . More generally, for any linear map Φ, the
adjoint satisfies:

Tr(A · Φ[B]) = Tr(Φ∗[A] · B), ∀A, B ∈ L(V), (B.20)

where A and B are Hermitian operators on a complex Euclidean space V . Now since pinching channel Λ are self
adjoint from (B.20) one can have,

Tr(A · Λ[ρ]) = Tr(ρ · Λ∗[A]) = Tr(ρ · Λ[A]) ∀A, ρ ∈ L(V) (B.21)
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2. Entropy production

Now, one can find a mathematical expression for the production of entropy ∆HX as

∆HX = H(A′B)ρA′BEAX
− H(AB)ρABEA′

X

= H(TrEAX (Λ[ρABEA′
X
]))− H(TrEA′

X
(ρABEA′

X
))

= H(Λ[ρAB])− H(ρAB) (B.22)

Using Eqs. ((B.5),(B.21)) and putting A = log2(Λ[ρAB]) and B = ρAB, we get,

∆HX = −Tr(Λ[ρAB] log2(Λ[ρAB])) + Tr(ρAB log2(ρAB))

= −Tr(ρABΛ∗(log2(Λ[ρAB]))) + Tr(ρAB log2(ρAB))

= −Tr(ρAB log2(Λ[ρAB)) + Tr(ρAB log2(ρAB))

= Tr(ρAB log2(ρAB))− Tr(ρAB log2(Λ[ρAB))

= Tr(ρAB(log2(ρAB)− log2(Λ[ρAB])))

= D(ρAB||(Λ[ρAB])) (B.23)

Here the relative entropy D is defined as D(ρ||σ) = Tr(ρ(log(ρ)− log(σ))) [Wil13]. Our main objective function in
(A.11) is a convex combination of conditional von Neumann entropies. Using (A.10) and (B.23) the objective function
can thus be reformulated as,

C∗(S) = inf λD(ρAB||(Λ0[ρAB)) + (1 − λ)D(ρAB||(Λ1[ρAB]))

s.t. Tr (ρAB · CHSH) = S
ρAB ⪰ 0
Tr(ρAB) = 1

(B.24)

Appendix C: Reduction of the optimization problem to two qubit space C4×4 of Alice and Bob

Let ρA′BEAx , ρABEA′
x
, ∈ D(P) for Hilbert space P over which the density operator space is defined. The dimension

of D(P) is unknown as the dimension of Eve’s subsystem E is unknown according to the standard assumptions of
security analysis. Analyzing the subsystem of Alice and Bob in a larger, unknown dimension is not only impractical
but also complicates the analysis – larger systems are inherently more susceptible to attacks due to their increased
complexity. The work of [SGP+21] shows that without loss of generality, one can can reduce the problem to two-
qubit space C4×4 of Alice and Bob. From the result of [BS10], one can decompose a projector of higher dimension
into projectors of dimension 2 × 2 acting on either Alice’s or Bob’s local states. Therefore, the four pairs of projectors
as in (F.7) can be decomposed accordingly. Let Lz

S be the set of pairwise-commuting projectors where S ∈ {A, B}
denotes the subsystem of either Alice or Bob and z ∈ {0, 1, 2, 3} corresponds to particular observables as stated
earlier. Specifically Lz

S = {L0
A, L1

A, L2
B, L3

B}. Now let us consider the following projector of dimension 2 × 2 and being
parameterized by angle θ

Q(θ) =

 cos2
(

θ
2

)
cos

(
θ
2

)
sin
(

θ
2

)
cos

(
θ
2

)
sin
(

θ
2

)
sin2

(
θ
2

)  (C.1)

Having defined the local projectors as above, one can decompose P0|0
X , P0|1

X , P0|2
Y and P0|3

Y as,

P0|0
X =

⊕
i

Q(0)⊕ L0
A, P0|1

X =
⊕

i
Q(ϕi

A)⊕ L1
A

P0|2
Y =

⊕
j

Q(0)⊕ L2
B, P0|3

Y =
⊕

j
Q(ϕ

j
B)⊕ L3

B

(C.2)

The remaining projectors can be obtained using the completeness property and thus,

P1|0
X = 1− P0|0

X , P1|1
X = 1− P0|1

X

P1|2
Y = 1− P0|2

Y , P1|3
Y = 1− P0|3

Y

(C.3)
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The angles {ϕi
A} and {ϕ

j
B} can be obtained from the spectrums of P0|0

X + P0|1
X and P0|2

Y + P0|3
Y , respectively. As

the projectors are block-diagonal operators, they are expressed as direct sum of commuting and noncommuting
parts. The commuting parts contribute discrete and angle-independent eigenvalues, while the noncommuting parts
contribute angle-dependent eigenvalues. Thus, the angles ϕi

A, ϕ
j
B can be uniquely determined from the non-integer

eigenvalues in the spectrum. Using Eq. (C.1,C.2), we compute the angles ϕi
A and ϕi

A from the eigenvalues as,

cos(ϕA/2) =
λ1
X − λ2

X
2

or, ϕA = 2 arccos

(
λ1
X − λ2

X
2

)
.

cos(ϕB/2) =
λ1
Y − λ2

Y
2

or, ϕA = 2 arccos

(
λ1
Y − λ2

Y
2

)
.

(C.4)

where λ1
X = 1 + cos(ϕi

A/2), λ2
X = 1 − cos(ϕi

A/2)
(

P0|2
Y + P0|3

Y

)
, λ1

Y = 1 + cos(ϕj
B/2), and λ2

Y = 1 − cos(ϕj
B/2).

The mapping ϕm
N 7→ 1 ± cos(ϕm

N/2) where N ∈ {X ,Y} and m ∈ {i, j}is bijective for ϕm
N ∈ [0, 2π) when restricted to

non-integer eigenvalues. Moreover the inverse function arccos is unique in [0, π].

Lemma 1: The mapping ϕm
N 7→ 1 ± cos(ϕm

N/2), where N ∈ {X ,Y} and m ∈ {i, j} is bijective for ϕm
N ∈ [0, π]

Proof: Let h(ϕm
N) = 1 ± cos(ϕm

N/2) where N ∈ {X ,Y} and m ∈ {i, j}

1. Proof of injectivity: Let us assume that ϕ1
N ̸= ϕ2

N ∈ [0, π] where ϕ1
N , ϕ2

N are arbitrarily two angles obtained from

spectrum of the sum of either
(

P0|0
X + P0|1

X

)
or
(

P0|2
Y + P0|3

Y

)
cos(ϕ1

N/2) ̸= cos(ϕ2
N/2)or, λ1

X ̸= λ2
X or (λ1

Y ̸= λ2
Y )or, h(ϕ1

N) ̸= h(ϕ2
N) (C.5)

Thus f is an injective function.

2. Proof of Surjectivity: The eigenvalues λ1
X , λ2

X or (λ1
Y , λ2

Y ) ∈ [0, 2] with λ1
X + λ2

X = 2 or (λ1
Y + λ2

Y ) and λ1
X > λ2

X
or (λ1

Y > λ2
Y ) there exists a unique ϕm

N ∈ [0, π] where m ∈ {i, j} such that the eigenvalues corresponding to ϕm
N are

λ1
X , λ2

X or (λ1
Y , λ2

Y ) for N = A or B respectively.
The condition of λ1

X + λ2
X = 2 or (λ1

Y + λ2
Y ) arises from a fundamental result of matrix algebra, trace of a matrix is the

sum of its eigenvalues and using this result we get,

Tr(L) = 1 + cos2(ϕi
A/2) + sin2(ϕi

A/2)
= 2

= λ1
X + λ2

X

(C.6)

and equivalently

λ1
Y + λ2

Y = 2 (C.7)

Given the above three criteria, one can have,

cX =
λ1
X − λ2

X
2

cY =
λ1
Y − λ2

Y
2

(C.8)

Compute cX : Since λ1
X > λ2

X and λ1
X , λ2

X ∈ [0, 2], one can have λ1
X − λ2

X > 0 and λ1
X = 2 − λ2

X . Thus,

cX =
2 − λ2

X − λ2
X

2
=

2 − 2λ2
X

2
= 1 − λ2

X (C.9)

Since λ1
X > λ2

X and λ1
X + λ2

X = 2, we have 2λ2
X < 2, so λ2

X < 1. Therefore, cX = 1 − λ2
X > 0. Also, since λ1

X < 2,
one can have λ1

X − λ2
X < 2 − λ2

X . Since λ2
X ≥ 0, λ1

X − λ2
X < 2. Thus cX < 1. Therefore, c ∈ (0, 1).
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Solve for the given angle ϕi
A: Now using (C.4) and (C.8) one can have,

ϕA = 2 arccos(cX ) (C.10)

Since cX ∈ (0, 1), arccos(cX ) ∈ (0, π
2 ). Therefore, ϕi

A = 2 arccos(cX ) ∈ (0, π).

3. Uniqueness: The function arccos(cX ) is strictly decreasing on the interval [0, 1]. Therefore, for each cX ∈ (0, 1),
there is a unique arccos(cX ) ∈ (0, π

2 ). Consequently, there is a unique ϕ = 2 arccos(cX ) ∈ (0, π).

4. Eigenvalues: The eigenvalues are given by,

λ1
X , λ2

X = 1 ± cos(ϕi
A/2)

λ1
Y , λ2

Y = 1 ± cos(ϕj
B/2)

(C.11)

Substituting ϕi
A = 2 arccos(cX ), one can get:

λ1
X , λ2

X = 1 ± cos(arccos(cX )) = 1 ± cX (C.12)

Thus, λ1
X = 1 + cX and λ2

X = 1 − cX . Substituting cX =
λ1
X−λ2

X
2 , one gets,

λ1
X = 1 +

λ1
X − λ2

X
2

or, 2λ1
X = 2 + λ1

X − λ2
X or, λ1

X = 2 − λ2
X

λ2
X = 1 −

λ1
X − λ2

X
2

or, 2λ2
X = 2 − λ1

X + λ2
X or, λ2

X = 2 − λ1
X

(C.13)

Therefore, for any non-integer pair λ1
X , λ2

X ∈ [0, 2] with λ1
X +λ2

X = 2 and λ1
X > λ2

X , there exists a unique ϕA ∈ (0, π)

such that the eigenvalues corresponding to ϕi
A are λ1

X and λ2
X . Similarly by substituting ϕ

j
B = 2arccos(cY ) in (C.11)

we prove the surjectivity of the mapping. Since the map is both injective and surjective, this completes the proof
that it is bijective.

1. Computing lower bound of C∗(S)

Having established the functional relationship between the angles ϕi
A and ϕ

j
B and characterized the spectral prop-

erties of the operators P0|0
X + P0|1

X (or equivalently, P0|2
Y + P0|3

Y ), we now proceed to find a lower bound of the function
C∗(S). Let ΛX and ΛY be the Pinching channels that act on Alice’s and Bob’s subsystems and decompose Alice’s
and Bob’s subsystems into block structures as would be obtained from the effect of the projectors in Eq. (C.2).

Now let ΛXY = ΛX ⊗ ΛY be the channel acting on the combined state ρABEA′
X

, resulting to a joint state of Alice

and Bob corresponding to the angles ϕi
A and ϕ

j
B and a commuting part obtained from either L0

A ⊗ L1
A or L2

B ⊗ L3
B. Let

P be the set of all states that can be obtained from the operator Q(ϕi
A)⊗ Q(ϕ

j
B) acting on the state ρABEA′

X
,

P = {ρ
ij
ABEA′

X
| Q(ϕi

A)⊗ Q(ϕ
j
B)(ρABEA′

X
) = ρ

ij
ABEA′

X
} (C.14)

Thus,

ΛXY [ρABEA′
X
] =

⊕
ij
(ηijρ

ij
ABEA′

X
)⊕ (ηcommρcomm

ABEA′
X
) (C.15)

where ηij are normalization factors obtained by normalizing each state ρ
ij
ABEA′

X
∈ P. Each of the states depends on

the operators Q(ϕi
A) ⊗ Q(ϕ

j
B) and consequently on the angles obtained from respective spectra. The ρcomm

ABEA′
X

are
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the projected blocks that commute with either Alice’s subsystem or Bob’s subsystem. Now, using the monotonicity
property of relative entropy, we get from Eq. (B.24),

C∗(S) = inf λD (ρAB ||Λ0[ρAB]) + (1 − λ)D (ρAB ||Λ1[ρAB])

≥ λD (ΛXY [ρAB] ||Λ0 ◦ ΛXY [ρAB])

+ (1 − λ)D (ΛXY [ρAB] ||Λ1 ◦ ΛXY [ρAB])

≥ ∑
ij

ηij

[
λD

(
ρ

ij
AB ||Λ0[ρ

ij
AB]
)

+(1 − λ)D
(

ρ
ij
AB ||Λ1[ρ

ij
AB]
)]

+ ηcomm [λD (ρcomm
AB ||Λ0[ρ

comm
AB ])

+(1 − λ)D (ρcomm
AB ||Λ1[ρ

comm
AB ])]

Tr(ρAB CHSH) = S
ρAB ⪰ 0
Tr(ρAB) = 1

(C.16)

where, ρ
ij
AB = TrEA′

X
(ρ

ij
ABEA′

X
) and Λ[ρ

ij
AB] = TrEAX (Λ[ρ

ij
ABEA′

X
])

ρcomm
AB = TrEA′

X
(ρcomm

ABEA′
X
) and Λ[ρcomm

AB ] = TrEAX (Λ[ρcomm
ABEA′

X
])

When Alice’s observables commute with that of and Bob, the joint probabilities of the measurement outcomes
can be factorized into local outcome probabilities. Using this fact, one can can similarly analyze the state ρcomm

ABEA′
X

,

where X ∈ {0, 1} represents the two measurement outcomes. Due to the classical nature of these probability distri-
butions, we can can disregard the contribution from the part ρcomm

ABEA′
X

in the violation of CHSH inequality, as it will

lead to Tr(ρcomm
AB CHSH) ≤ 2. Now, from the constraint of the optimization problem in (B.24), we can establish the

same for each state ρ
ij
ABEA′

X
∈ P as,

Tr(ρAB CHSH) = S

⇔ Tr(ρij
AB CHSH) = Sij and ∑

ij
ηijSij = S (C.17)

Having established the constraint for each state ρ
ij
ABEA′

X
∈ P , we can define the optimization problem for finding the

lower bound of the function C∗(S) as,

C∗(S) ≥ inf ∑
ij

ηij

[
λD

(
ρ

ij
AB ||Λ0[ρ

ij
AB]
)
+ (1 − λ)D

(
ρ

ij
AB ||Λ1[ρ

ij
AB]
)]

s.t. Tr((ρij
AB CHSH) = Sij

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

∑
ij

ηij ≤ 1

∑
ij

ηij Sij = S

(C.18)

The state ρABEA′
X

is first passed through the channel ΛXY , which essentially decomposes the state into blocks along
the principal diagonal as described in (C.16), before passing it through the pinching channel. Therefore, our objective
function in (C.18) is essentially lower bounded by the minimum values in each such block. Thus,[

λD
(

ρ
ij
AB ||Λ0[ρ

ij
AB]
)
+ (1 − λ)D

(
ρ

ij
AB ||Λ1[ρ

ij
AB]
)]

≥ C∗
C4×4(Sij) (C.19)
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where,

C∗
C4×4(Sij) = inf

[
λD

(
ρ

ij
AB ||Λ0[ρ

ij
AB]
)
+ (1 − λ)D

(
ρ

ij
AB ||Λ1[ρ

ij
AB]
)]

s.t. Tr(ρij
AB CHSH) = Sij

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

(C.20)

Thus using (C.18),(C.19) and (C.20), one can lower bound the function C∗(S) as,

C∗(S) ≥ ∑
ij

ηij inf
(
C∗

C4×4(Sij)
)

s.t. Tr(ρij
AB CHSH) = Sij

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

∑
ij

ηij ≤ 1

∑
ij

ηijSij = S

(C.21)

Now (C.21) is independent of the angles ϕi
A and ϕ

j
B as each states obtained from (C.14) are already optimized in

(C.20). Therefore, we can reduce the optimization of C∗(S) to optimizing only over to ηij as,

C∗(S) ≥
∫ 2

√
2

S′=2
C∗

C4×4(S′) · η(dS′)

≥
∫ 2

√
2

S′=2
η(dS′) · C∗

C4×4(S′)

s.t η([2, 2
√

2]) ≤ 1
η ≥ 0∫ 2

√
2

S′=2
η(dS′)S′ = S

(C.22)

Here, essentially one single block is considered and integrated over positive sub-normalized weights η in the interval
S′ = (2, 2

√
2] with the conditions,

C∗
C4×4(Sij) = 0 ∀Sij ≤ 0 (C.23)

2. Reformulating the CHSH operator in explicit matrix form

Having established the optimization problem in terms of two-qubit space C4×4 of Alice and Bob, we now find an
explicit matrix representation of the CHSH operator in (F.13) using (F.14),

CHSH = COX
1 ⊗ COY

2 − COX
0 ⊗ COY

2 − COX
0 ⊗ COY

3 − COX
1 ⊗ COY

3

=
[
(P0|1

X ⊗ P0|2
Y + P1|1

X ⊗ P1|2
Y )− (P0|1

X ⊗ P1|2
Y + P1|1

X ⊗ P0|2
Y )
]

−
[
(P0|0

X ⊗ P0|2
Y + P1|0

X ⊗ P1|2
Y )− (P0|0

X ⊗ P1|2
Y + P1|0

X ⊗ P0|2
Y )
]

−
[
(P0|0

X ⊗ P0|3
Y + P1|0

X ⊗ P1|3
Y )− (P0|0

X ⊗ P1|3
Y + P1|0

X ⊗ P0|3
Y )
]

−
[
(P0|1

X ⊗ P0|3
Y + P1|1

X ⊗ P1|3
Y )− (P0|1

X ⊗ P1|3
Y + P1|1

X ⊗ P0|3
Y )
]

(C.24)



21

Now using the explicit matrix form of the projectors in (C.2) and (C.3), the CHSH operator can further be decom-
posed as,

CHSH =
[(

Q(ϕi
A)⊗ Q(0)

)
+
(
(1− Q(ϕi

A))⊗ (1− Q(0))
)
−
(

Q(ϕi
A)⊗ (1− Q(0))

)
−
(
(1− Q(ϕi

A))⊗ Q(0)
)]

− [(Q(0)⊗ Q(0)) + (1− Q(0))⊗ (1− Q(0)))− (Q(0)⊗ (1− Q(0)))− (1− Q(0))⊗ Q(0))]

−
[(

Q(0)⊗ Q(ϕ
j
B)
)
+
(
(1− Q(0))⊗ (1− Q(ϕ

j
B))
)
−
(

Q(0)⊗ (1− Q(ϕ
j
B))
)
−
(
(1− Q(0))⊗ Q(ϕ

j
B)
)]

−
[(

Q(ϕi
A)⊗ Q(ϕ

j
B)
)
+
(
(1− Q(ϕi

A))⊗ (1− Q(ϕ
j
B))
)
−
(

Q(ϕi
A)⊗ (1− Q(ϕ

j
B))
)
−
(
(1− Q(ϕi

A))⊗ Q(ϕ
j
B)
)]

(C.25)
Solving the tensor products in each term above, one can explicitly write the CHSH operator as,

CHSH =

[
A B
C D

]
(C.26)

where

A =

(
cos(ϕi

A)− 1 − cos(ϕj
B)− cos(ϕi

A) cos(ϕj
B) − sin(ϕj

B)− cos(ϕi
A) sin(ϕj

B)

− sin(ϕj
B)− cos(ϕi

A) sin(ϕj
B) − cos(ϕi

A) + 1 + cos(ϕj
B) + cos(ϕi

A) cos(ϕj
B)

)
(C.27)

B =

(
sin(ϕi

A)− sin(ϕi
A) cos(ϕj

B) − sin(ϕi
A) sin(ϕj

B)

− sin(ϕi
A) sin(ϕj

B) sin(ϕi
A) cos(ϕj

B)− sin(ϕi
A)

)
(C.28)

C =

(
sin(ϕi

A)− sin(ϕi
A) cos(ϕj

B) − sin(ϕi
A) sin(ϕj

B)

− sin(ϕi
A) sin(ϕj

B) sin(ϕi
A) cos(ϕj

B)− sin(ϕi
A)

)
(C.29)

D =

(
− cos(ϕi

A) + 1 + cos(ϕj
B) + cos(ϕi

A) cos(ϕj
B) sin(ϕj

B) + cos(ϕi
A) sin(ϕj

B)

sin(ϕj
B) + cos(ϕi

A) sin(ϕj
B) cos(ϕi

A)− 1 − cos(ϕj
B)− cos(ϕi

A) cos(ϕj
B)

)
(C.30)

Here individual operators A, B, C and D are Hermitian and B = C∗ implies that CHSH operator in (C.26) is also
Hermitian. Now from Lemma 1, the mapping ϕm

N 7→ 1 ± cos(ϕm
N/2) is bijective for ϕm

N ∈ [0, π]. Since sin and cosine
functions are monotonous and continuous for ϕm

N ∈ [0, π/2], the mapping is also bijective in the subinterval of
[0, π/2]. In the first quadrant, both sin and cosine functions are positive; therefore, restricting the arguments of these
functions to the first quadrant ensures that the CHSH operator in (C.26) does not change. Moreover, since both sin
and cosine functions have unique values in the first quadrant, the optimization problem in Eq. (C.20) for each block
can be reformulated with the explicit matrix representation of CHSH operator in (C.26) as,

C∗
C4×4(Sij) = inf

[
λD

(
ρ

ij
AB ||Λ0[ρ

ij
AB]
)
+ (1 − λ)D

(
ρ

ij
AB ||Λ1[ρ

ij
AB]
)]

s.t. Tr
(

ρ
ij
AB ·

[
A B
C D

])
= Sij

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

ϕi
A, ϕ

j
B ∈ [0, π/2]

(C.31)

Appendix D: Formulation of the objective function in terms of trace norm using a modified form of Pinsker’s inequality

Having established the objective function in terms of a two-qubit vector space C4×4 describing a single block and
expressed the CHSH operator in its explicit matrix form (C.26), we now focus on finding a lower bound on the



22

relative entropies described in Eq. (C.31) through a modified form of Pinsker’s inequality[SGP+21]. The modified
version of Pinsker’s inequality, as shown in the original work, is stated in the following theorem,

Theorem 1: Let Q be a projector, not necessarily of rank 1, defines the action of a pinching channel Λ acting on a
state ρ as Λ[ρ] = QρQ + (1− Q)ρ(1− Q). Then the quantum relative entropy between ρ and Λ[ρ] is lower bounded
as,

D(ρ||Λ[ρ]) ≥ log2(2)− h
(

1 − ||ρ − Λ[ρ]||1
2

)
(D.1)

where h(p) = −∑1
i=0 pilog2(pi) is the binary Shannon entropy.

Proof : The pinching channel Λ is defined as,

Λ[ρ] = QρQ + (1− Q)ρ(1− Q)

= QρQ + (ρ − Qρ)(1− Q)

= QρQ + (ρ − ρQ − Qρ + QρQ)

= 2QρQ + ρ − {Q, ρ}

(D.2)

Now applying Theorem 1 in Eq. (C.31), we can have,

C∗
C4×4(Sij) = inf

[
λD

(
ρ

ij
AB ||Λ0[ρ

ij
AB]
)
+ (1 − λ)D

(
ρ

ij
AB ||Λ1[ρ

ij
AB]
)]

≥
[

λ

(
log2(2)− h

(
1 − ||ρij

AB − Λ0[ρ
ij
AB]||1

2

))

+(1 − λ)

(
log2(2)− h

(
1 − ||ρij

AB − Λ1[ρ
ij
AB]||1

2

))]

≥
[

λ log2(2)− λh

(
1 − ||ρij

AB − Λ0[ρ
ij
AB]||1

2

)

+(1 − λ) log2(2)− (1 − λ)h

(
1 − ||ρij

AB − Λ1[ρ
ij
AB]||1

2

)]

≥
[

log2(2)− λh

(
1 − ||ρij

AB − Λ0[ρ
ij
AB]||1

2

)

−(1 − λ)h

(
1 − ||ρij

AB − Λ1[ρ
ij
AB]||1

2

)]

s.t. Tr
(

ρ
ij
AB ·

[
A B
C D

])
= Sij

(D.3)

Let us now define two arguments a and b as,

a =
1 −

∥∥∥ρ
ij
AB − Λ0[ρ

ij
AB]
∥∥∥

1
2

,

b =
1 −

∥∥∥ρ
ij
AB − Λ1[ρ

ij
AB]
∥∥∥

1
2

(D.4)

As ∥·∥1 ≤ 1 is valid for normalized quantum states, one can have a, b ∈ [0, 0.5]. This ensures that the entropy
functions h(a) and h(b) are well-defined. The binary entropy function, defined as h(p) = −p log2 p− (1− p) log2(1−
p) for p ∈ [0, 1], is a concave function from Theorem 2.1 in [Ras15]. Thus from Jensen’s inequality [BV04], for λ ∈ [0, 1]
and a, b ∈ [0, 1], we have:

λh(a) + (1 − λ)h(b) ≤ h(λa + (1 − λ)b)
− [λh(a) + (1 − λ)h(b)] ≥ −h(λa + (1 − λ)b)

(D.5)
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Finally, using Eqns. (D.3), (D.4), and (D.5), we get the lower the bound on C∗
C4×4(Sij) as,

C∗
C4×4(Sij) ≥ log2(2)− h(λa + (1 − λ)b)

≥ log2(2)− h
(

1
2
− 1

2
n
) (D.6)

where

n =
(

λ
∥∥∥ρ

ij
AB − Λ0[ρ

ij
AB]
∥∥∥

1
+ (1 − λ)

∥∥∥ρ
ij
AB − Λ1[ρ

ij
AB]
∥∥∥

1

)
(D.7)

and it represents a convex combination of trace norms. Now, one may assume that there exists a function n∗(Sij) ≥ n,
which gives an upper bound on the given convex combination of trace norms (D.7). Hence, we can get the upper
bound by solving the below optimization problem,

n∗(Sij) = inf
[(

λ
∥∥∥ρ

ij
AB − Λ0[ρ

ij
AB]
∥∥∥

1
+ (1 − λ)

∥∥∥ρ
ij
AB − Λ1[ρ

ij
AB]
∥∥∥

1

)]
s.t. Tr

(
ρ

ij
AB ·

[
A B
C D

])
= Sij

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

ϕi
A, ϕ

j
B ∈ [0, π/2]

(D.8)

Appendix E: Semi definite programming formulation of the objective function for fixed ϕi
A and ϕ

j
B

A semidefinite program (SDP) is an optimisation problem of a linear function defined over a positive semidefinite
variable, subjected to affine constraints as [Sik12],

α = maximize ⟨A, X⟩
s.t. Φ(X) = B

X ∈ Pos(X )

(E.1)

where,

X ∈ CΣ, Y ∈ CΩ

A ∈ Herm(X), B ∈ Herm(Y)
Φ : Herm(X) → Herm(Y)
(A, B, Φ) problem’s data
⟨A, X⟩ is the objective function
Φ(X) = B, and X ∈ Pos(X )

α is the optimal value

(E.2)

The trace norm of a quadratic matrix M can be represented in the form of a trace of two additional matrices P and Q
[BV04] as,

||M||1 = in f
1
2

Tr(P + Q)

s.t.
(

P M
M∗ Q

)
⪰ 0

(E.3)
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Now the terms ρ
ij
AB − Λ0[ρ

ij
AB] and ρ

ij
AB − Λ1[ρ

ij
AB] in Eq. (D.8) can be decomposed using Eq. (D.2) and Eq. (B.2) as,

ρ
ij
AB−Λ0[ρ

ij
AB]

= ρ
ij
AB −

(
2Q(0)⊗ I ρ

ij
AB Q(0)⊗ I + ρ

ij
AB − {Q(0)⊗ I, ρ

ij
AB}

)
= ρ

ij
AB −

(
2Q(0)⊗ I ρ

ij
AB Q(0)⊗ I + ρ

ij
AB −

(
Q(0)⊗ I ρ

ij
AB − ρ

ij
AB Q(0)⊗ I

))
= −2Q(0)⊗ I ρ

ij
AB Q(0)⊗ I +

(
Q(0)⊗ I ρ

ij
AB + ρ

ij
AB Q(0)⊗ I

)
=
(

Q(0)⊗ I ρ
ij
AB + ρ

ij
AB Q(0)⊗ I

)
− 2Q(0)⊗ I ρ

ij
AB Q(0)⊗ I

(E.4)

In a similar fashion, we can also expand the other term in Eq. (D.8) as,

ρ
ij
AB−Λ1[ρ

ij
AB] =

(
Q(ϕi

A)⊗ I ρ
ij
AB + ρ

ij
AB Q(ϕi

A)⊗ I
)
− 2Q(ϕi

A)⊗ I ρ
ij
AB Q(ϕi

A)⊗ I (E.5)

The SDP formulation of the objective function can now be formally done using the results of (D.8),(E.1),(E.2),(E.3),(E.4),
and (E.5) as,

n∗(Sij) = −maximize
λ

2
⟨(P0 + Q0), X0⟩+

(1 − λ)

2
⟨(P1 + Q1), X1⟩

s.t. Tr
(

ρ
ij
AB

[
A B
C D

])
= Sij,(

P0 M0
M∗

0 Q0

)
⪰ 0,

(
P1 M1
M∗

1 Q1

)
⪰ 0,

Q(ϕi
A) =

[
q11 q12
q∗12 q22

]
, q11 + q22 = 1, q2

12 ≤ q11q22,

ρ
ij
AB ⪰ 0, Tr(ρij

AB) = 1

(E.6)

where

M0 = M∗
0 =

(
Q(0)⊗ I ρ

ij
AB + ρ

ij
AB Q(0)⊗ I

)
− 2Q(0)⊗ I ρ

ij
AB Q(0)⊗ I

M1 = M∗
1 =

(
Q(ϕi

A)⊗ I ρ
ij
AB + ρ

ij
AB Q(ϕi

A)⊗ I
)
− 2Q(ϕi

A)⊗ I ρ
ij
AB Q(ϕi

A)⊗ I
(E.7)

The projector Q(ϕi
A) follows the positive semi-definite condition (C.1).

Appendix F: Optimization of the angles ϕi
A and ϕ

j
B using ϵ - net approximation

Alice’s and Bob’s angles ϕi
A and ϕ

j
B appear as constraints in the optimisation problem in Eq. (D.8). The objective

function has been formulated in standard SDP form in Eq. (E.6) taking the assumption of fixed angles. In this section,
we optimize the angles ϕi

A and ϕ
j
B using ϵ - net approach. The work of [SGP+21] showed that the Alice’s angle ϕi

A
can be optimised using this approach. Here, we show that we can use the same approach to optimise Bob’s angle
ϕ

j
B, thus eliminating the polytope optimisation in the security analysis as done [SGP+21].
Given the interval I = [0, π/2] and a desired precision ϵ0 > 0, without loss of generality, an ϵ0-net for the product

space I × I is a pair of finite sets of points {ϕi
Ak
}SA

k=1 ⊂ I and {ϕ
j
Bl
}SB

l=1 ⊂ I such that for any (ϕi
A, ϕ

j
B) ∈ I × I, there

exist ϕi
Ak

and ϕ
j
Bl

satisfying:

|ϕi
A − ϕi

Ak
| ≤ ϵ0 |ϕj

B − ϕ
j
Bl
| ≤ ϵ0 (F.1)

where SA and SB are the number of segments in the interval I for Alice and Bob, respectively. Each segment is cen-
tralized around the angles ϕi

Ak
and ϕ

j
Bl

for kth and lth segments, respectively. The values of both the angles ϕi
A and ϕ

j
B
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are needed to solve any instance of the SDP and hence, it is solved for each discrete points ϕi
Ak

and ϕ
j
Bl

. An error
term known as pessimistic error [SGP+21] is being subtracted from each SDP’s result. The error term accounts for
the variation of the optimal value. The pessimistic error term ∆ is introduced in the original work[SGP+21] as a
function of ϵ0 and the angle ϕi

A orϕ
j
B. Iteratively, the segment that gives the smallest value of the objective function

in (D.8) is chosen until a point is reached that corresponds to the global minima. Here, we try to derive a closed form
of the pessimistic error.

Let us consider that f (ϕ) is a solution of the optimization problem in (D.8) for a given value of the angle ϕ. Now,
the discrete angles ϕi

Ak
and ϕ

j
Bl

corresponding to Alice’s and Bob’s measurement settings are being separated by a
distance of 2ϵ0. Thus each angle represents a segment of the same width as,

IA =
[
ϕi

Ak
− ϵ0, ϕi

Ak
+ ϵ0

]
and IB =

[
ϕ

j
Bl
− ϵ0, ϕ

j
Bl
+ ϵ0

]
(F.2)

Hence, the pessimistic error terms ∆(ϵ0, ϕi
A) and ∆(ϵ0, ϕ

j
B) provide an upper bound on the absolute difference be-

tween the values of the function at any point within these segments and the optimal one, i.e.,

| f (ϕi
A)− f (ϕi

Ak
)| ≤ ∆

(
ϵ0, ϕi

A

)
| f (ϕi

B)− f (ϕj
Bl
)| ≤ ∆

(
ϵ0, ϕ

j
B

)
, ∀ϕi

A ∈ IA and ∀ϕ
j
B ∈ IB

(F.3)

The iterative process involves selecting the segment that yields the minimum value of the objective function in Eq.
(D.8), continuing until the global minima is reached.

1. Lipschitz Continuity of f (ϕ)

Definition : A function f from S ⊂ Rn into Rm is Lipschitz continuous at x ∈ S if there is a constant L > 0 such that

∥ f (y)− f (x)∥ ≤ L∥y − x∥ (F.4)

for all y ∈ S sufficiently near x.[TBB08]

Theorem 2: If f (ϕ) is the solution of a well-behaved optimisation problem, then it is Lipschitz continuous

Problem setup To prove our claim, we first formally define the optimisation problem. Let f (ϕ) be defined as the
solution to the following optimization problem,

f (ϕ) =min g(x, ϕ)

s.t. x ∈ X (F.5)

where X ⊆ Rn is a compact and convex set, g(x, ϕ) is a continuously differentiable function in both x and ϕ, and
g(x, ϕ) is strongly convex in x with modulus µ > 0, i.e., for all x1, x2 ∈ X and ϕ ∈ Φ,

g(x1, ϕ) ≥ g(x2, ϕ) +∇xg(x2, ϕ)T(x1 − x2) +
µ

2
∥x1 − x2∥2 (F.6)

and ∇xg(x, ϕ) is Lipschitz continuous in ϕ with constant Lϕ, i.e.,

∥∇xg(x, ϕ1)−∇xg(x, ϕ2)∥ ≤ Lϕ∥ϕ1 − ϕ2∥. (F.7)

The optimisation problem is well-behaved in the sense that the solution f (ϕ) exists and is unique for all ϕ ∈ Φ and
the optimality condition ∇xg( f (ϕ), ϕ) = 0 holds.

Proof of Lipschitz Continuity of f (ϕ) The aim of the proof is to show that f (ϕ) is Lipschitz continuous, that is there
exists a constant L f > 0 such that:

∥ f (ϕ1)− f (ϕ2)∥ ≤ L f ∥ϕ1 − ϕ2∥. (F.8)
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Let us consider that for any two ϕ1, ϕ2 ∈ Φ there are two solutions f (ϕ1) and f (ϕ2). Therefore, we have,

∇xg( f (ϕ1), ϕ1) = 0 and ∇xg( f (ϕ2), ϕ2) = 0. (F.9)

Now since g( f (ϕ), ϕ) is strongly convex in f (ϕ) with modulus µ > 0, one can can have

g( f (ϕ1), ϕ1) ≥ g( f (ϕ2), ϕ2) +∇xg( f (ϕ2), ϕ2)
T( f (ϕ1)− f (ϕ2)) +

µ

2
∥ f (ϕ1)− f (ϕ2)∥2 (F.10)

and thus from Eq. F.9 we get,

g( f (ϕ1), ϕ2) ≥ g( f (ϕ2), ϕ2) +
µ

2
∥ f (ϕ1)− f (ϕ2)∥2. (F.11)

Now, as the the lower bound set up by the quadratic norm is symmetric in terms of the angles, we have,

g( f (ϕ2), ϕ1) ≥ g( f (ϕ1), ϕ1) +
µ

2
∥ f (ϕ2)− f (ϕ1)∥2. (F.12)

Adding the two inequalities F.11 and F.12 and rearranging the terms we get,

µ∥ f (ϕ1)− f (ϕ2)∥2 ≤ g( f (ϕ1), ϕ2)− g( f (ϕ1), ϕ1) + g( f (ϕ2), ϕ1)− g( f (ϕ2), ϕ2). (F.13)

Using the above equation and considering the fact that ∇xg(x, ϕ) in ϕ is Lipschitz continuous, one can have the
following two inequalities

|g( f (ϕ1), ϕ2)− g( f (ϕ1), ϕ1)| ≤ Lϕ∥ f (ϕ1)∥∥ϕ2 − ϕ1∥,

|g( f (ϕ2), ϕ1)− g( f (ϕ2), ϕ2)| ≤ Lϕ∥ f (ϕ2)∥∥ϕ1 − ϕ2∥.
(F.14)

Since the feasible solution set X is compact, F.13 and F.14 ∥ f (ϕ)∥ jointly yield,

µ∥ f (ϕ1)− f (ϕ2)∥2 ≤ 2Lϕ M∥ϕ1 − ϕ2∥. (F.15)

where M is a constant. Hence, simple algebra shows,

∥ f (ϕ1)− f (ϕ2)∥ ≤

√
2Lϕ M

µ
∥ϕ1 − ϕ2∥ (F.16)

Thus, f (ϕ) is Lipschitz continuous with constant,

L f =

√
2Lϕ M

µ
(F.17)

2. Modification of the optimization problem

In order to make the objective function in (D.8) continuously differentiable with respect to both the density oper-
ator ρ

ij
AB and the parameters ϕi

A, we introduce the squared Frobenius norm. The squared Frobenius norm is smooth
and continuously differentiable at every point [PP08]. For any operator X, this norm is defined as,

∥X∥F =
√

Tr(X∗X)

∥X∥2
F = Tr(X∗X)

(F.18)

where X∗ is the Hermitian conjugate of X. Replacing the l1 norm in the original objective function with the squared
Frobenius norm and adding a convex regularization term µ

2 ||ρ
ij
AB||

2
F, we define the modified optimisation problem
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as,

n∗(Sij) = inf λ
∥∥∥ρ

ij
AB − Λ0[ρ

ij
AB]
∥∥∥2

F
+ (1 − λ)

∥∥∥ρ
ij
AB − Λ1[ρ

ij
AB]
∥∥∥2

F
+

µ

2
∥ρ

ij
AB∥

2
F

s.t. Tr
(

ρ
ij
AB CHSH(ϕi

A, ϕ
j
B)
)
= Sij

ϕi
A, ϕ

j
B ∈ [0, π/2],

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

(F.19)

This modified version of the optimisation problem can be reformulated into an SDP using Schur complements. Let
us first decompose each Frobenius norm term into the corresponding inner product form as,

n∗(Sij) = −maximize λTr(ρ0
†ρ0) + (1 − λ)Tr(ρ1

†ρ1) +
µ

2
Tr(ρ2

†ρ2)

s.t. Tr
(

ρ
ij
AB CHSH(ϕi

A, ϕ
j
B)
)
= Sij

ϕi
A, ϕ

j
B ∈ [0, π/2],

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

(F.20)

where ρ0 = ρ
ij
AB − Λ0[ρ

ij
AB] , ρ1 = ρ

ij
AB − Λ1[ρ

ij
AB] and ρ2 = ρ

ij
AB

Here, each inner product term (ρk, ρk) for k ∈ {0, 1, 2} in (F.20) is quadratic in ρk. The standard SDP formulation
requires that the objective function is linear in its decision variables and the constraints are in the form of linear
matrix inequalities. Let tk ≥ (ρk, ρk), then using Schur’s complement[BTN01] one can have,(

tk vec(ρk)
†

vec(ρk) 1

)
⪰ 0 (F.21)

Since CHSH is fixed for given values of ϕi
A and ϕ

j
B, the standard SDP formulation would be as,

n∗(Sij) = −maximize λt0 + (1 − λ)t1 +
µ

2
t2

s.t.
(

t0 vec(ρ0)
†

vec(ρ0) 1

)
⪰ 0(

t1 vec(ρ1)
†

vec(ρ1) 1

)
⪰ 0(

t2 vec(ρ2)
†

vec(ρ2) 1

)
⪰ 0

Tr
(

ρ
ij
AB CHSH(ϕi

A, ϕ
j
B)
)
= Sij,

ϕi
A, ϕ

j
B ∈ [0, π/2],

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

(F.22)

In the below, we formally prove that the modified optimisation problem satisfies the conditions for being Lipschitz
continuous.

Lemma 4: The modified objective function is continuously differentiable with respect to the density operator ρ
ij
AB

and the parameter ϕi
A.

Proof: The squared Frobenius norm ∥X∥2
F = Tr(X†X) is smooth and infinitely differentiable. As the channels Λ0 and

Λ1 are linear maps, the action Λx[ρ] is linear in ρ. The regularization term µ
2 ∥ρ∥2

F is quadratic and smooth. Hence,
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the objective function in the modified optimization problem is continuously differentiable with respect to both the
density operator ρ

ij
AB and the parameters ϕi

A.

Lemma 5: The modified objective function is strongly convex in ρ
ij
AB

Proof: The objective function in Eq.(F.19) includes the term µ
2 ∥ρ

ij
AB|

2
F, which is µ-strongly convex. For any

ρ
ij
AB and ρkl

AB:

n
(

ρ
ij
AB, (ϕi

A)
)
≥ n

(
ρkl

AB, (ϕi
A)
)
+∇ρn

(
ρkl

AB, (ϕi
A)
)T

(ρ
ij
AB − ρkl

AB) +
µ

2
∥(ρij

AB − ρkl
AB)∥2

F. (F.23)

To rigorously establish the definition of strong convexity for the function, let us first calculate the gradient of the
objective function ∇ρn

(
ρkl

AB, (ϕi
A)
)

. The Fréchet derivative of ||A||2F is 2A[Wat18]. Thus,

∇ρn
(

ρkl
AB, (ϕi

A)
)

= ∇ρ

(
λ
∥∥∥ρkl

AB − Λ0[ρ
kl
AB]
∥∥∥2

F
+ (1 − λ)

∥∥∥ρkl
AB − Λ1[ρ

kl
AB]
∥∥∥2

F
+

µ

2
∥ρkl

AB∥2
F

)
= ∇ρ

(
λ
∥∥∥ρkl

AB − Λ0[ρ
kl
AB]
∥∥∥2

F

)
+∇ρ

(
(1 − λ)

∥∥∥ρkl
AB − Λ1[ρ

kl
AB]
∥∥∥2

F

)
+∇ρ

(µ

2
∥ρkl

AB∥2
F

)
= λ2

(
ρkl

AB − Λ0[ρ
kl
AB]
)
· ∇ρ

(
ρkl

AB − Λ0[ρ
kl
AB]
)

+ (1 − λ)2
(

ρkl
AB − Λ1[ρ

kl
AB]
)
· ∇ρ

(
ρkl

AB − Λ1[ρ
kl
AB]
)
+ µρ

= λ2
(

ρkl
AB − Λ0[ρ

kl
AB]
)
· (I − Λ∗

0) + (1 − λ)2
(

ρkl
AB − Λ1[ρ

kl
AB]
)
· (I − Λ∗

1) + µρ

= λ2
(

ρkl
AB − Λ0[ρ

kl
AB]− Λ∗

0

(
ρkl

AB − Λ0[ρ
kl
AB]
))

+ (1 − λ)2
(

ρkl
AB − Λ1[ρ

kl
AB]− Λ∗

1

(
ρkl

AB − Λ1[ρ
kl
AB]
))

+ µρ

= λ2
(

ρkl
AB − Λ0[ρ

kl
AB]
)
+ (1 − λ)2

(
ρkl

AB − Λ1[ρ
kl
AB]
)
+ µρ

(F.24)

Hence the objective function n
(

ρ
ij
AB, (ϕi

A)
)

is strongly convex with modulus µ > 0.

Lemma 6: The feasible set D of all density operator and the interval I = [0, π
2 ] is compact and convex

Proof: A set S is convex if for any x, y ∈ S and λ ∈ [0, 1], the convex combination λx + (1 − λ)y ∈ S . In finite-
dimensional spaces, a set is compact if it is closed (contains all its limit points) and bounded (fits within some
finite-radius ball). The constraints are, Tr

(
ρ

ij
AB CHSH(ϕi

A, ϕ
j
B)
)
= Sij, ϕi

A, ϕ
j
B ∈ [0, π/2], ρ

ij
AB ⪰ 0, Tr(ρij

AB) = 1

a) Proof of convexity: For ρ1, ρ2 ⪰ 0 and λ ∈ [0, 1],

ρ = λρ1 + (1 − λ)ρ2 ⪰ 0, Tr(ρ) = λTr(ρ1) + (1 − λ)Tr(ρ2) = 1. (F.25)

Thus the set of density operators ρ ⪰ 0 with Tr(ρ) = 1 is convex.[Wat18],[Wil13]

• Convexity of Angle Intervals: For ϕ1, ϕ2 ∈ [0, π/2],

λϕ1 + (1 − λ)ϕ2 ∈ [0, π/2] (F.26)

Thus the intervals [0, π/2] for ϕi
A, ϕ

j
B are convex.

• Linear Trace Constraint: For ρ1, ρ2 satisfying Tr(ρ1 · CHSH(ϕi
A, ϕ

j
B)) = Sij and Tr(ρ2 · CHSH(ϕi

A, ϕ
j
B)) = Sij,

Tr
(
(λρ1 + (1 − λ)ρ2) · CHSH(ϕi

A, ϕ
j
B)
)
= λSij + (1 − λ)Sij = Sij. (F.27)
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Thus the constraint Tr(ρ · CHSH(ϕi
A, ϕ

j
B)) = Sij is linear in ρ if M is fixed.

• Combined Convexity: The Cartesian product of convex sets (density matrices, angle intervals) under linear
constraints is convex.

b) Proof of compactness:

• Closedness: The set of all density operator D is closed because of positive semidefiniteness (ρ ⪰ 0) is preserved
under limits. The trace condition Tr(ρ) = 1 is preserved under limits. The constraint Tr(ρM) = Sij is closed
(as the preimage of a closed set under a continuous function)[Wat18].

The interval [0, π/2] is a closed interval in R.

• Boundedness: The Frobenius norm satisfies ∥ρ∥F ≤
√

Tr(ρ2) ≤
√

Tr(ρ) = 1.Thus, the set of all density opera-
tors D is bounded.[Wat18]

The interval [0, π/2] is bounded in R.

Lemma 7: ∇ρn
(

ρ
ij
AB, (ϕi

A)
)

is Lipschitz continuous in ϕi
A for x ∈ {0, 1}

Proof : From (F.24), one can have the gradient of ∇ρn
(

ρ
ij
AB, (ϕi

A)
)

. For a given segment ϕi
A parameterizes Λ0, Λ1

smoothly because for a particular segment its fixed, then ∇ρn
(

ρ
ij
AB, (ϕi

A)
)

depends smoothly on ϕi
A. Since cos(ϕi

A),

sin(ϕi
A), and their derivatives are bounded, ∇ρn

(
ρ

ij
AB, (ϕi

A)
)

is Lipschitz continuous in ϕi
A as,

∥∇ρn
(

ρ
ij
AB, (ϕi

A)
)
−∇ρn

(
ρkl

AB, (ϕk
A)
)
∥ ≤ LϕA∥ϕi

A − ϕk
A∥. (F.28)

where ρ
ij
AB and ρkl

AB are being two arbitrary states and ϕi
A and ϕk

A are associated angles.

Hence ∇ρn
(

ρ
ij
AB, (ϕi

A)
)

is lipschitz continuous in ϕi
A for x ∈ {0, 1}.

Lemma 8: Existence of Unique optima, ∇ρn
(
n∗(Sij), (ϕi

A)
)
= 0

Proof:
Strong convexity ensures a unique minimiser n∗(Sij) and Compactness of the feasible set guarantees existence. With
smoothness and strong convexity, the solution satisfies:

∇ρn
(

n∗(Sij), (ϕi
A)
)
= 0 (F.29)

Convex function: A function g : I −→ R, where I is an interval (or any convex set in general) in R, is said to be
convex if for any two points xa, xb ∈ I and for any t ∈ [0, 1], the following inequality holds,

g(txa + (1 − t)xb) ≤ tg(xa) + (1 − t)g(xb) (F.30)

The function g is defined on an interval I. For any xa, xb ∈ I and t ∈ [0, 1], the point ϕ = txa + (1 − t)xb also lies
within the domain I.ϕ represents any point on the line segment connecting xa and xb.
Now the term txa + (1 − t)xb represents a convex combination of xa and xb. As t varies from 0 to 1, this expression
covers all points on the line segment connecting xa and xb. For t = 0, we get xb, t = 1, we get xa and for 0 < t < 1,
we get a point strictly between xa and xb.
Now, finally the term tg(xa) + (1 − t)g(xb)represents the y-coordinate of the point on the secant line connecting the
points (xa, g(xa)) and (xb, g(xb)) at the x-coordinate ϕ = txa + (1 − t)xb.

Lemma 9: Given a convex function g defined on a domain containing distinct points x1 and x2, for any t ∈ [0, 1], let
ϕ = tx1 + (1 − t)x2 be a convex combination of x1 and x2. The y-coordinate of the point on the secant line passing
through (x1, g(x1)) and (x2, g(x2)) at the x-coordinate ϕ is given by the convex combination of the function values,
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tg(x1) + (1 − t)g(x2).

Proof: Let us have the convex function g in (F.30).For any two points xa and xb in the domain I of g, the Secant
line passing through (xa, g(xa)) and (xb, g(xb)) is,

y − g(xa) =
g(xb)− g(xa)

xb − xa
(x − xa) (F.31)

Now, let x = txa + (1 − t)xb. Then,

x − xa = txa + (1 − t)xb − xa

= (t − 1)xa + (1 − t)xb

= (1 − t)(xb − xa)

(F.32)

Substituting this into the equation of the secant line, in (F.31)

y − g(xa) =
g(xb)− g(xa)

xb − xa
(1 − t)(xb − xa)

y − g(xa) = (1 − t)(g(xb)− g(xa))

y = g(xa) + (1 − t)g(xb)− (1 − t)g(xa)

y = g(xa)− (1 − t)g(xa) + (1 − t)g(xb)

y = (1 − (1 − t))g(xa) + (1 − t)g(xb)

y = tg(xa) + (1 − t)g(xb)

(F.33)

Thus from Lemma 9, the inequality in (F.30) formally states that the value of the function g at any point x between xa
and xb is less than or equal to the corresponding y-value on the secant line connecting (xa, g(xa)) and (xb, g(xb)).

3. Bounding the pessimistic error terms ∆
(

ϵ0, ϕi
A

)
and ∆

(
ϵ0, ϕ

j
B

)
The solution of the modified optimisation problem in (F.19), n∗(Sij), is thus established to be Lipschitz continu-

ous. Now we proceed towards formulating a closed form for the pessimistic error terms ∆
(
ϵ0, ϕi

A
)

and ∆
(

ϵ0, ϕ
j
B

)
.

The solution of the SDP in (F.22) gives an optimal value for the kth and lth segment centered around ϕi
Ak

and ϕ
j
Bl

,

respectively. As the solution of the SDP is based on fixed ϕi
A, ϕ

j
B, to find the optimal value of the objective function

over the whole interval I, we need a slightly different approach from the one given in [SGP+21] because here we
optimize both the angles using the ϵ-net approach. The process begins by solving the SDP for each segment of Alice
(Bob), parameterised by discretised angles ϕi

Ak
(ϕ

j
Bl
). Subsequently, the segment that produced the minimum value

is iteratively refined. This refinement involves further subdivision of the segment’s angle range, and the SDP is
re-evaluated. This process continues until a global minimum is found for Alice or Bob. Then the optimal value with
respect to the angles of other party is determined by applying the same iterative refinement process, but with the
angle of the first party now fixed at their globally optimal value. Let us consider that fA(ϕ

i
A) and fB(ϕ

j
B) are the

solutions of the SDP in (F.22) or the optimization problem in (F.19) for the fixed angles ϕi
A and ϕ

j
B. Since it is proved

that the solutions are Lipschitz continuous, we have the following relations for each segment where ϕi
Ak

and ϕ
j
Bl

are
the centres of the segments k and l, respectively.

| fA(ϕ
i
A)− fA(ϕ

i
Ak
)| ≤ LA|ϕi

A − ϕi
Ak
|

| fB(ϕ
j
B)− fB(ϕ

j
Bl
)| ≤ LB|ϕ

j
B − ϕ

j
Bl
|, ∀ϕi

A ∈ IA and ∀ϕ
j
B ∈ IB

(F.34)

The above inequalities depict that the absolute value of the difference between the solutions for two different an-
gles is upper bounded by the absolute value of the difference between the respective angles times a constant. The
supremum of the functions fA(ϕ

i
A) and fB(ϕ

j
B) are given as,

Mi
A = supϕi

A∈IA
fA(ϕ

i
A)

Mj
B = sup

ϕ
j
B∈IB

fB(ϕ
j
B)

(F.35)
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Similarly, the infimum are given as,

mi
A = in fϕi

A∈IA
fA(ϕ

i
A)

mj
B = in f

ϕ
j
B∈IB

fB(ϕ
j
B)

(F.36)

The Lipschitz continuity of the functions implies that they are continuous in the given interval. Therefore, the supre-
mums in (F.35) are the corresponding maxima and the infimums in (F.36) are the corresponding minima. The supre-
mum and infimum guarantee that no number smaller than Mi

A(Mj
B) can serve as an upper bound, and equivalently,

no number larger than mi
A(m

j
B) can be the lower bound for fA(ϕ

i
A)( fB(ϕ

j
B)). The quantity that one is interested in

bounding is,

supϕi
A∈IA

∣∣∣ fA(ϕ
i
A)− fA(ϕ

i
Ak
)
∣∣∣

sup
ϕ

j
B∈IB

∣∣∣ fB(ϕ
j
B)− fB(ϕ

j
Bl
)
∣∣∣ (F.37)

The deviation in (F.34) is being maximised at the boundary of the respective segments.
Theorem 3: The values of | fA(ϕ

i
A) − fA(ϕ

i
Ak
)| and

∣∣∣ fB(ϕ
j
B)− fB(ϕ

j
Bl
)
∣∣∣ are maximum when ϕi

A = ϕi
Ak

± ϵ0 and

ϕi
B = ϕi

Bk
± ϵ0

Proof: Before proving the theorem, we focus on some important properties of the function f (ϕ). The results of
Theorem 2, and Lemma 4 to Lemma 8 show that the functions fA(ϕ

i
A) and fB(ϕ

j
B) are Lipschitz continuous in the

respective intervals IA and IB. The functions are strictly monotonous in the intervals due to the monotonicity of the
sin and cosine functions. Moreover, using the second derivative of the functions, one can find that these are concave
in the respective intervals. Having mentioned the properties of the solution functions, we now prove the theorem.

Let us assume that the quantity | fA(ϕ
i
A)− fA(ϕ

i
Ak
)| achieves its maximum at some ϕ∗i

A ∈ IA such that |ϕ∗i
A − ϕi

Ak
| <

ϵ0. From the definition of the segments, we can write the interval as, IA = [ϕi
Ak

− ϵ0, ϕi
Ak

+ ϵ0]. This means ϕ∗i
A lies

strictly within the open interval (ϕi
Ak

− ϵ0, ϕi
Ak

+ ϵ0). Since fA(ϕ
i
A) is strictly monotonic on the closed interval IA,

its maximum and minimum values on this interval must occur at the endpoints, ϕi
Ak

− ϵ0 and ϕi
Ak

+ ϵ0. Now, if we
consider the difference | fA(ϕ

i
A)− fA(ϕ

i
Ak
)|, its absolute values at the endpoints are,

| fA(ϕ
i
Ak

− ϵ0)− fA(ϕ
i
Ak
)|

| fA(ϕ
i
Ak

+ ϵ0)− fA(ϕ
i
Ak
)|

(F.38)

Now, for any ϕ∗i
A ∈ (ϕi

Ak
− ϵ0, ϕi

Ak
+ ϵ0) and ϕ∗i

A ̸= ϕi
Ak

, due to the strict monotonicity of fA, we have two cases;

• If fA is strictly increasing, then for ϕi
Ak

− ϵ0 < ϕ∗i
A < ϕi

Ak
+ ϵ0, we have fA(ϕ

i
Ak

− ϵ0) < fA(ϕ
∗i
A ) < fA(ϕ

i
Ak

+

ϵ0). This implies that either | fA(ϕ
i
Ak

+ ϵ0) − fA(ϕ
i
Ak
)| > | fA(ϕ

∗i
A ) − fA(ϕ

i
Ak
)| or | fA(ϕ

i
Ak

− ϵ0) − fA(ϕ
i
Ak
)| >

| fA(ϕ
∗i
A )− fA(ϕ

i
Ak
)| (or both).

• If fA is strictly decreasing, then for ϕi
Ak

− ϵ0 < ϕ∗i
A < ϕi

Ak
+ ϵ0, we have fA(ϕ

i
Ak

− ϵ0) > fA(ϕ
∗i
A ) > fA(ϕ

i
Ak

+ ϵ0).
Again, this implies that either | fA(ϕ

i
Ak

+ ϵ0)− fA(ϕ
i
Ak
)| > | fA(ϕ

∗i
A )− fA(ϕ

i
Ak
)| or | fA(ϕ

i
Ak

− ϵ0)− fA(ϕ
i
Ak
)| >

| fA(ϕ
∗i
A )− fA(ϕ

i
Ak
)| (or both).

In both cases (strictly increasing or strictly decreasing), the maximum deviation | fA(ϕ
i
A) − fA(ϕ

i
Ak
)| cannot occur

strictly within the interval (ϕi
Ak

− ϵ0, ϕi
Ak

+ ϵ0). Therefore, the maximum must occur at one of the endpoints,
ϕi

A = ϕi
Ak

− ϵ0 or ϕi
A = ϕi

Ak
+ ϵ0, which can be written as ϕi

A = ϕi
Ak

± ϵ0. A similar argument holds for

| fB(ϕ
j
B)− fB(ϕ

j
Bl
)|, with the maximum occurring at ϕ

j
B = ϕ

j
Bl
± ϵ0.
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We now combine the results of (F.37), (F.34) and Theorem 3 as,

supϕi
A∈IA

| fA(ϕ
i
A)− fA(ϕ

i
Ak
)| = LAϵ0

sup
ϕ

j
B∈IB

| fB(ϕ
j
B)− fB(ϕ

j
Bl
)| = LBϵ0

∀ϕi
A ∈ IA

and ∀ϕ
j
B ∈ IB

(F.39)

And from the definition of the pessimistic error terms ∆
(
ϵ0, ϕi

A
)

and ∆
(

ϵ0, ϕ
j
B

)
in (F.3), we have

∆
(

ϵ0, ϕi
A

)
= LAϵ0

∆
(

ϵ0, ϕ
j
B

)
= LBϵ0

(F.40)

Since fA(ϕ
i
A) and fB(ϕ

j
B) are differentiable in the interval I, the values of LA and LB can be evaluated using Taylor

series expansion of the functions as,

fA(ϕ
i
A) =

∞

∑
n=0

f n
A(ϕ

i∗
A)

n!
(ϕi

A − ϕi∗
A)

n

fB(ϕ
j
B) =

∞

∑
m=0

f m
B (ϕ

j∗
B )

m!
(ϕ

j
B − ϕ

j∗
B )

m

∀ϕi∗
A ∈ IA

and ∀ϕ
j∗
B ∈ IB

(F.41)

Now in this case, one needs a linear approximation of fA(ϕ
i
A) near ϕi

Ak
and fB(ϕ

j
B) near ϕ

j
Bl

for small ϵ0. One can

neglect the higher-order derivatives terms as f 1
A(ϕ

i
Ak
)(ϕi

A − ϕi
Ak
) and f 1

B(ϕ
j
Bl
)(ϕ

j
B − ϕ

j
Bl
) dominate as |ϕi

A − ϕi
Ak
| and

|ϕj
B − ϕ

j
Bl
| tend to 0 for kth and lth segments, respectively. The necessity of incorporating higher-order terms in the

error analysis arises when ϵ0 is significant, the underlying functions exhibit strong non-linearities, or when a more
precise and tighter bound on the error is desired. In such scenarios, relying solely on linear approximations becomes
insufficient to accurately capture the function’s behavior within the interval of width 2ϵ0. The contributions from
higher derivatives, which are neglected in a first-order analysis, become substantial and must be accounted for to
achieve the required accuracy in the error estimation. Thus, using the first order linear approximation one can get
an approximation of fA(ϕ

i
A) and fA(ϕ

j
B) near ϕi

Ak
and ϕ

j
Bl

as,

fA(ϕ
i
A) = fA(ϕ

i
Ak
) + f 1

A(ϕ
i
Ak
)(ϕi

A − ϕi
Ak
) +O((ϕi

A − ϕi
Ak
)2)

| fA(ϕ
i
A)− fA(ϕ

i
Ak
)| ≤ | f 1

A(ϕ
i
Ak
)||(ϕi

A − ϕi
Ak
)|+O((ϕi

A − ϕi
Ak
)2)

(F.42)

Similarly,

| fB(ϕ
j
B)− fB(ϕ

j
Bl
)| ≤ | f 1

B(ϕ
j
Bl
)||(ϕj

B − ϕ
j
Bl
)|+O((ϕ

j
B − ϕ

j
Bl
)2) (F.43)

The higher-order terms, represented by O((ϕi
A −ϕi

Ak
)2) and O((ϕ

j
B −ϕ

j
Bl
)2), are indeed positive if the second deriva-

tives are positive (indicating local convexity). While typically removing positive terms would weaken an inequality,
the context of a pessimistic error bound requires careful consideration. The pessimistic error is designed to over-
estimate the potential deviation. By truncating the Taylor series and neglecting these higher-order positive terms,
we are essentially underestimating the actual deviation | fA(ϕ

i
A)− fA(ϕ

i
Ak
)| and | fB(ϕ

j
B)− fB(ϕ

j
Bl
)|. Consequently,

when these underestimated deviations are used to construct a pessimistic error (which is subtracted from the SDP
result), the error itself becomes overestimated. This overestimation of the error leads to a more conservative (and
potentially less tight) lower bound on the true optimal value of the SDP. Thus after first order linear approximation,
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we get,

supϕi
A∈IA

| fA(ϕ
i
A)− fA(ϕ

i
Ak
)| ≤ | f 1

A(ϕ
i
Ak
)||(ϕi

A − ϕi
Ak
)|

sup
ϕ

j
B∈IB

| fB(ϕ
j
B)− fB(ϕ

j
Bl
)| ≤ | f 1

B(ϕ
j
Bl
)||(ϕj

B − ϕ
j
Bl
)|

(F.44)

Therefore, using Eqs. (F.44) and (F.40), we get the pessimistic error to be,

∆
(

ϵ0, ϕi
A

)
= maxϕi

A∈I | f 1
A(ϕ

i
Ak
)|ϵ0

∆
(

ϵ0, ϕ
j
B

)
= maxϕi

A∈I | f 1
B(ϕ

j
Bl
)|ϵ0

(F.45)

where LA = maxϕi
A∈I | f 1

A(ϕ
i
A)| and LB = maxϕi

A∈I | f 1
B(ϕ

j
B)|.

4. Relating the change in ϕi
A and ϕ

j
B to the optimization problem through CHSH operator

The feasible set in (F.19) can be relaxed by allowing all the density operators σ
ij
AB that achieve CHSH violation

greater than or equal to Sij [SGP+21],

Sϕi
A∪ϕ

j
B

ij =
{

σ
∣∣ ∃ ϕA with ϕB = ϕ

j
B : Tr[σ CHSH(ϕA, ϕ

j
B)] ≥ Sij

}
∪
{

σ
∣∣ ∃ ϕB with ϕA = ϕi

A : Tr[σ CHSH(ϕi
A, ϕB)] ≥ Sij

}
.

(F.46)

The above equation takes the union of two sets. The first set accounts for all those density operators σ
ij
AB in the block

specified by index i, j that achieve CHSH violation greater than Sij for fixed ϕ
j
B. The second set similarly accounts

for the case when ϕi
A is fixed . Now, consider the following set,

Mϕi
A∪ϕ

j
B

ij,ϵ :=
⋃

|δA |≤ϵ0

Sϕi
A+δA ∪ ϕ

j
B

ij ∪
⋃

|δB |≤ϵ0

Sϕi
A ∪ ϕ

j
B+δB

ij ∪
⋃

|δA |≤ϵ0
|δB |≤ϵ0

Sϕi
A+δA ∪ ϕ

j
B+δB

ij .
(F.47)

In the aforementioned equation, the analysis focuses on a set of density operators derived by introducing a parameter
ϵ to the initial angles ϕi

A and ϕ
j
B, both individually and concurrently. The defining characteristic of these modified

density operators is that the expected value of the CHSH operator evaluated on them remains greater than or equal
to the initial CHSH value Sij.

Given discrete points ϕi
Ak

and ϕ
j
Bl

located at the midpoint of their respective intervals, the inherent symmetry of
the underlying function or data distribution implies that the maximum deviation from these discrete points will
occur symmetrically around them. Consequently, a small perturbation ϵ from the midpoint will result in equal
magnitudes of deviation, such that the deviation at ϕi

Ak+ϵ is equivalent to the deviation at ϕi
Ak−ϵ, and similarly for

ϕ
j
Bl

. The spectral norm of the difference between the CHSH operators evaluated at ϕi
Ak

and ϕi
Ak±ϵ (and similarly for

ϕ
j
Bl

and ϕ
j
Bl±ϵ) is equal to the largest singular value of this difference operator. Let us define the maximum of the

spectral norms of the differences in the CHSH operator as,

δp = max
(
||CHSH(ϕi

A, ϕ
j
B)− CHSH(ϕi

A + ϵ, ϕ
j
B)||∞,

||CHSH(ϕi
A, ϕ

j
B)− CHSH(ϕi

A, ϕ
j
B + ϵ)||∞,

||CHSH(ϕi
A, ϕ

j
B)− CHSH(ϕi

A + ϵ, ϕ
j
B + ϵ)||∞

) (F.48)

This spectral norm corresponds to the largest singular value of these difference operators. For the Hermitian CHSH
operator, this largest singular value coincides with the absolute value of the largest eigenvalue of the respective
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difference operators. The spectral norm can be found as,

∥∥∥CHSH(ϕi
A, ϕ

j
B)− CHSH(ϕi

A + ϵ, ϕ
j
B)
∥∥∥

∞

=
∥∥∥(cos(ϕi

A + ϵ)− cos ϕi
A sin(ϕi

A + ϵ)− sin ϕi
A

sin(ϕi
A + ϵ)− sin ϕi

A − cos(ϕi
A + ϵ)− cos ϕi

A

)
⊗
(
−(1 − cos ϕ

j
B) sin ϕ

j
B

sin ϕ
j
B 1 − cos ϕ

j
B

)∥∥∥
∞

(F.49)

Now, one can use some simple trigonometric relations to decompose the relation ∆ cos = cos(ϕi
A + ϵ)− cos ϕi

A and
∆ sin = sin(ϕi

A + ϵ)− sin ϕi
A.

∆ cos = cos(ϕi
A + ϵ)− cos(ϕi

A) = −2 sin

(
(ϕi

A + ϵ) + ϕi
A

2

)
sin

(
(ϕi

A + ϵ)− ϕi
A

2

)
= −2 sin

(
ϕi

A +
ϵ

2

)
sin
( ϵ

2

)
∆ sin = sin(ϕi

A + ϵ)− sin(ϕi
A) = 2 cos

(
(ϕi

A + ϵ) + ϕi
A

2

)
sin

(
(ϕi

A + ϵ)− ϕi
A

2

)
= 2 cos

(
ϕi

A +
ϵ

2

)
sin
( ϵ

2

)
1 − cos ϕ

j
B = 2 sin2

(
ϕ

j
B

2

)

sin ϕ
j
B = 2 sin

(
ϕ

j
B

2

)
cos

(
ϕ

j
B

2

)
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From (F.50) and (F.49),

∥∥∥CHSH(ϕi
A, ϕ

j
B)− CHSH(ϕi

A + ϵ, ϕ
j
B)
∥∥∥

∞

=
∥∥∥(−2 sin

(
ϕi

A + ϵ
2
)

sin
(

ϵ
2
)

2 cos
(
ϕi

A + ϵ
2
)

sin
(

ϵ
2
)

2 cos
(
ϕi

A + ϵ
2
)

sin
(

ϵ
2
)

2 sin
(
ϕi

A + ϵ
2
)

sin
(

ϵ
2
))⊗

 −2 sin2
(

ϕ
j
B

2

)
2 sin

(
ϕ

j
B

2

)
cos

(
ϕ

j
B

2

)
2 sin

(
ϕ

j
B

2

)
cos

(
ϕ

j
B

2

)
2 sin2

(
ϕ

j
B

2

)
∥∥∥∞

=
∥∥∥2 sin

ϵ

2

(
cos(ϕi

A +
ϵ

2
)σx − sin(ϕi

A +
ϵ

2
)σz

)
⊗ 2

(
Q
(

ϕ
j
B

)
−
(

1 0
0 0

))∥∥∥
∞

=
∥∥∥2 sin

( ϵ

2

) [(
cos

(
ϕi

A

)
cos

( ϵ

2

)
− sin

(
ϕi

A

)
sin
( ϵ

2

))
σx −

(
sin
(

ϕi
A

)
cos

( ϵ

2

)
+ cos

(
ϕi

A

)
sin
( ϵ

2

))
σz

]
⊗ 2

(
Q
(

ϕ
j
B

)
−
(

1 0
0 0

))∥∥∥
∞

(F.51)

Using Taylor expansions for sin{ϕ} and cos{ϕ}, sin x = x − x3

3! +
x5

5! − · · · and cos x = 1 − x2

2! +
x4

4! − · · · If x ≪
1, cos x ≈ 1 and sin x ≈ x. Also using cos a + sin b · x ≈ cos a and sin a + cos b · x ≈ sin a for x ≪ 1, one can have

sin
( ϵ

2

)
≈ ϵ

2(
cos

(
ϕi

A

)
cos

( ϵ

2

)
− sin

(
ϕi

A

)
sin
( ϵ

2

))
≈ cos

(
ϕi

A

)
(

sin
(

ϕi
A

)
cos

( ϵ

2

)
+ cos

(
ϕi

A

)
sin
( ϵ

2

))
≈ sin

(
ϕi

A

) (F.52)

Now, combining the results of (F.51) and linear approximation for ϵ > 0 in (F.52) we get,

∥∥∥CHSH(ϕi
A, ϕ

j
B)− CHSH(ϕi

A + ϵ, ϕ
j
B)
∥∥∥

∞

≈
∥∥∥ϵ
(

cos
(

ϕi
A

)
σx − sin

(
ϕi

A

)
σz

)
⊗ 2

(
Q
(

ϕ
j
B

)
−
(

1 0
0 0

))∥∥∥
∞

(F.53)
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Similarly, one can find the spectral norm when only ϕ
j
B is being perturbated by ϵ as,

||CHSH(ϕi
A, ϕ

j
B)− CHSH(ϕi

A, ϕ
j
B + ϵ)||∞

=
∥∥∥
 2 cos2(

ϕi
A
2 ) 2 sin

(
ϕi

A
2

)
cos

(
ϕi

A
2

)
2 sin

(
ϕi

A
2

)
cos

(
ϕi

A
2

)
−2 cos2(

ϕi
A
2 )

⊗

 2 sin
(

ϕ
j
B + ϵ

2

)
sin
(

ϵ
2
)

−2 cos
(

ϕ
j
B + ϵ

2

)
sin
(

ϵ
2
)

−2 cos
(

ϕ
j
B + ϵ

2

)
sin
(

ϵ
2
)

−2 sin
(

ϕ
j
B + ϵ

2

)
sin
(

ϵ
2
)
∥∥∥

∞

=
∥∥∥2
(

Q
(

ϕi
A

)
−
(

0 0
0 1

))
⊗−2 sin

( ϵ

2

) [(
cos

(
ϕ

j
B

)
cos

( ϵ

2

)
− sin

(
ϕ

j
B

)
sin
( ϵ

2

))
σx −

(
sin
(

ϕ
j
B

)
cos

( ϵ

2

)
+ cos

(
ϕ

j
B

)
sin
( ϵ

2

))
σz

] ∥∥∥
∞

≈
∥∥∥2
(

Q
(

ϕi
A

)
−
(

0 0
0 1

))
⊗ ϵ

(
cos

(
ϕ

j
B

)
σx − sin

(
ϕ

j
B

)
σz

) ∥∥∥
∞
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The spectral norm when both ϕi

A and ϕ
j
B perturbated by ϵ is found to be,

||CHSH(ϕi
A, ϕ

j
B)− CHSH(ϕi

A + ϵ, ϕ
j
B + ϵ)||∞

=
∥∥∥( 2 sin

(
ϕi

A + ϵ
2
)

sin
(

ϵ
2
)

−2 cos
(
ϕi

A + ϵ
2
)

sin
(

ϵ
2
)

−2 cos
(
ϕi

A + ϵ
2
)

sin
(

ϵ
2
)

−2 sin
(
ϕi

A + ϵ
2
)

sin
(

ϵ
2
))⊗

 2 sin
(

ϕ
j
B + ϵ

2

)
sin
(

ϵ
2
)

−2 cos
(

ϕ
j
B + ϵ

2

)
sin
(

ϵ
2
)
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(

ϕ
j
B + ϵ

2

)
sin
(

ϵ
2
)

−2 sin
(

ϕ
j
B + ϵ

2

)
sin
(

ϵ
2
)
∥∥∥

∞

=
∥∥∥− 2 sin

( ϵ

2

) [(
cos

(
ϕi

A

)
cos

( ϵ

2

)
− sin

(
ϕi

A

)
sin
( ϵ

2

))
σx −

(
sin
(

ϕi
A

)
cos

( ϵ

2

)
+ cos

(
ϕi

A

)
sin
( ϵ

2

))
σz

]
⊗−2 sin

( ϵ

2

) [(
cos

(
ϕ

j
B

)
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( ϵ

2

)
− sin

(
ϕ

j
B

)
sin
( ϵ

2

))
σx −

(
sin
(

ϕ
j
B

)
cos

( ϵ

2

)
+ cos

(
ϕ

j
B

)
sin
( ϵ

2

))
σz

] ∥∥∥
∞

≈
∥∥∥ϵ
(

cos
(

ϕi
A

)
σx − sin

(
ϕi

A

)
σz

)
⊗ ϵ

(
cos

(
ϕ

j
B

)
σx − sin

(
ϕ

j
B

)
σz

) ∥∥∥
∞
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Hence, combining the results of (F.53), (F.54) and (F.55) into (F.48), we finally get,

δp ≈ max
(∥∥∥ϵ

(
cos

(
ϕi

A

)
σx − sin

(
ϕi

A

)
σz

)
⊗ 2

(
Q
(

ϕ
j
B

)
−
(

1 0
0 0

))∥∥∥
∞

,∥∥∥2
(

Q
(

ϕi
A

)
−
(

0 0
0 1

))
⊗ ϵ

(
cos

(
ϕ

j
B

)
σx − sin

(
ϕ

j
B

)
σz

) ∥∥∥
∞

,∥∥∥ϵ
(

cos
(

ϕi
A

)
σx − sin

(
ϕi

A

)
σz

)
⊗ ϵ

(
cos

(
ϕ

j
B

)
σx − sin

(
ϕ

j
B

)
σz

) ∥∥∥
∞

) (F.56)

One can provide an upper bound to the above relation using the property of submultiplicity of spectral norm[Wat18]
as,

δp ≤ max
(∥∥∥ϵ

(
cos

(
ϕi

A

)
σx − sin

(
ϕi

A

)
σz

) ∥∥∥
∞
·
∥∥∥2
(

Q
(

ϕ
j
B

)
−
(

1 0
0 0

))∥∥∥
∞

,∥∥∥2
(

Q
(

ϕi
A

)
−
(

0 0
0 1

))∥∥∥
∞
·
∥∥∥ϵ
(

cos
(

ϕ
j
B

)
σx − sin

(
ϕ

j
B

)
σz

) ∥∥∥
∞

,∥∥∥ϵ
(

cos
(

ϕi
A

)
σx − sin

(
ϕi

A

)
σz

) ∥∥∥
∞
·
∥∥∥ϵ
(

cos
(

ϕ
j
B

)
σx − sin

(
ϕ

j
B

)
σz

) ∥∥∥
∞

)
≤ max

(
ϵ · 2 sin

(
ϕ

j
B

2

)
, 2 cos

(
ϕi

A
2

)
· ϵ, ϵ2

)
≤ 2ϵ0

(F.57)

The equality holds for the spectral norm of Kronecker products, therefore, this upper bound is exact. Now in the

interval I, sin
(

ϕ
j
B

2

)
and cos

(
ϕi

A
2

)
functions are monotonically increasing and decreasing respectively. The first

term 2 sin
(

ϕ
j
B

2

)
is increasing from 0 to 1.414 and the second term 2 cos

(
ϕi

A
2

)
is decreasing from 2ϵ to 1.414. Thus,
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the maximum deviation of the CHSH operator is achieved when ϕi
A is fixed at 0 but ϕ

j
B is increased by ϵ0. Thus every

state ρ
ij
AB that would attain CHSH value Sij at ϕi

A = 0, ϕ
j
B = ϕ

j
Bl

(
ϕi

A = 0, ϕ
j
B = ϕ

j
B ± ϵ0

)
would attain CHSH value

Sij − 2ϵ0 at ϕi
A = 0, ϕ

j
B = ϕ

j
B ± ϵ0

(
ϕi

A = 0, ϕ
j
B = ϕ

j
Bl

)
. Thus, we finally have,

Tr
(
ρ CHSH(0, ϕ

j
B)
)
= Sij, Tr

(
ρ CHSH(0, ϕ

j
B + ϵ0)

)
= Sij − 2ϵ0, Tr

(
ρ CHSH(0, ϕ

j
B − ϵ0)

)
= Sij − 2ϵ0,

or Tr
(
ρ CHSH(0, ϕ

j
B)
)
= Sij − 2ϵ0, Tr

(
ρ CHSH(0, ϕ

j
B + ϵ0)

)
= Sij, Tr

(
ρ CHSH(0, ϕ

j
B − ϵ0)

)
= Sij,

∀ρ ∈ Mϕ
j
B

ij,ϵ.

(F.58)

where

Mϕ
j
B

ij,ϵ

=
{

ρ ∈ Mϕi
A∪ϕ

j
B

ij,ϵ

∣∣ Tr(ρ CHSH(0, ϕ
j
B)) = Sij

}︸ ︷︷ ︸
Case A

∪
{

ρ ∈ Mϕi
A∪ϕ

j
B

ij,ϵ

∣∣ ∃s ∈ {+1,−1} : Tr(ρ CHSH(0, ϕ
j
B + sϵ0)) = Sij

}︸ ︷︷ ︸
Case B

.

(F.59)
Thus, for each segment IB and IA being centralised around discrete ϕ

j
Bl

and ϕi
Ak

for lth and kth segment, respectively,
performing the optimisation with relaxed constraint value S − 2ϵ0 would take into account the dependency on ϕi

A

and ϕ
j
B through the maximum deviation in the CHSH value.

5. Relating the change in ϕi
A to the optimization problem

The objective function in (F.19) is a function of the density operator describing the joint state between Alice
and Bob and Alice’s angle ϕi

A. To analyse the dependency of the solution of the optimisation problem on ϕi
A, we

reinterpret the Frobenius norm terms in (F.19) using dual norms. Dual norm is an indispensable tool in quantum
information theory and semi-definite programming because they bridge the limits of quantum operations, e.g.,
distinguishability, entanglement, and convex optimisation via conic duality, enabling tractable solutions having
physical interpretability. Since the Frobenius norm is self-dual, this framework retains the norm structure while
emphasising its role as a maximiser of inner products. Specifically, translating the squared Frobenius differences
into their dual characterisation reveals how ϕi

A governs alignment conditions between the states ρ
ij
AB and the maps

Λ0, Λ1. The dual norm’s supremum property enables bounding critical trade-offs in the objective function, such as
the balance between state fidelity (λ, 1 − λ) and distinguishability µ, which directly depend on ϕi

A.

Theorem 4: The Frobenius norm ∥ · ∥F on m × n matrices is self-dual.

Proof: Let A ∈ Cm×n and A ∈ L(X ,Y) for some Hilbert spaces X ,Y . The Frobenius norm is given as[Wat18],

∥A∥F =
√

Tr
(

A† A
)
=
√
⟨A, A⟩, (F.60)

Now, from the definition of the dual of a norm,

∥A∥F,∗ = {sup ⟨Y, A⟩ : ∥Y∥F ≤ 1} (F.61)

where Y ∈ L(Y , X) Now from Cauchy–Schwarz inequality for ⟨·, ·⟩F

⟨Y, A⟩F ≤ ∥Y∥F ∥A∥F ≤ ∥A∥F (F.62)

Thus from (F.61) and (F.62),

∥A∥F,∗ ≤ ∥A∥F (F.63)

The equality will hold only when Y is aligned with A. Let Y = A/∥A∥F, then ∥Y∥F = 1 and

⟨Y, A⟩F =
1

∥A∥F
⟨A, A⟩F =

∥A∥2
F

∥A∥F
= ∥A∥F. (F.64)
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Therefore the supremum is attained when Y aligned with A and we have,

∥A∥F,∗ = ∥A∥F (F.65)

Now using the definition of channel Λ0 and Λ1 in (B.2), one can expand the modified optimisation problem in (F.19)
as,

n∗(Sij) = inf λTr
( [

ρ
ij
AB − Λ0[ρ

ij
AB]
]∗ [

ρ
ij
AB − Λ0[ρ

ij
AB]
] )

+ (1 − λ)Tr
([

ρ
ij
AB − Λ1[ρ

ij
AB]
]∗ [

ρ
ij
AB − Λ1[ρ

ij
AB]
])

+
µ

2
Tr
([

ρ
ij
AB

]∗ [
ρ

ij
AB

])
= inf λTr

( [
ρ

ij
AB − Λ0[ρ

ij
AB]
]2 )

+ (1 − λ)Tr
([

ρ
ij
AB − Λ1[ρ

ij
AB]
]2
)

+
µ

2
Tr
([

ρ
ij
AB

]2
)

= inf λTr
( [

ρ
ij
AB −

(
Q(0)⊗ I ρ

ij
AB Q(0)⊗ I + {I − Q(0)⊗ I} ρ

ij
AB {I − Q(0)⊗ I}

)]2 )
+ (1 − λ)Tr

([
ρ

ij
AB −

(
Q(ϕi

A)⊗ I ρ
ij
AB Q(ϕi

A)⊗ I

+{I − Q(ϕi
A)⊗ I} ρ

ij
AB {I − Q(ϕi

A)⊗ I}
)]2
)

+
µ

2
Tr
([

ρ
ij
AB

]2
)

s.t.

Tr
(

ρ
ij
AB CHSH(ϕi

A, ϕ
j
B)
)
= Sij

ϕi
A, ϕ

j
B ∈ [0, π/2],

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

(F.66)

We can also express the above optimization problem in terms of commutator and anti-commutator between the
density matrix and the projectors. The product of any density operator ρ and a projector can be decomposed using
commutator and the anti-commutator through the following Lemma.

Lemma 10: Pρ = 1
2{ρ, P} − 1

2 [ρ, P] for ρ ∈ D(X ) for some Hilbert space X and P ∈ Pos(X ).

Proof: Expanding the right-hand using the definition of anti-commutator and commutator, we get,

1
2
{ρ, P} − 1

2
[ρ, P]

=
1
2
(ρP + Pρ)− 1

2
[ρP − Pρ]

=
1
2
(Pρ) +

1
2
(Pρ)

=Pρ

(F.67)
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Now using the Lemma 10 in (F.66), one can have,

n∗(Sij) = inf λTr
([

ρ
ij
AB −

(
1
2
{ρ

ij
AB, Q(0)⊗ I} − 1

2
[ρ

ij
AB, Q(0)⊗ I]

)
Q(0)⊗ I

−
(

1
2
{ρ

ij
AB, (I − Q(0)⊗ I)} − 1

2
[ρ

ij
AB, (I − Q(0)⊗ I)]

)
{I − Q(0)⊗ I}

]2
)

+ (1 − λ)Tr
([

ρ
ij
AB −

(
1
2
{ρ

ij
AB, Q(ϕi

A)⊗ I} − 1
2
[ρ

ij
AB, Q(ϕi

A)⊗ I]

)
Q(ϕi

A)⊗ I

−
(

1
2
{ρ

ij
AB, (I − Q(ϕi

A)⊗ I)} − 1
2
[ρ

ij
AB, (I − Q(ϕi

A)⊗ I)]

)
{I − Q(ϕi

A)⊗ I}
]2
)

+
µ

2
Tr
([

ρ
ij
AB

]2
)

s.t. Tr
(

ρ
ij
AB CHSH(ϕi

A, ϕ
j
B)
)
= Sij

ϕi
A, ϕ

j
B ∈ [0, π/2],

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

(F.68)

a. Perturbing the parameter ϕi
A in Q(ϕi

A)

The projector Q(·) is of dimension 2 × 2 and orthogonal onto the one-dimensional subspace spanned by the unit

vectors v(θ) =
(

cos θ
2

sin θ
2

)
. Hence, we can write the projectors as Q(θ) = v(θ) v(θ)T . If Q(θ) is a smooth function, the

first-order Taylor expansion of this function about θ under a small increment ϵ ≪ 1 yields,

Q(θ + ϵ) = Q(θ) + ϵ Q′(θ) +O(ϵ2), (F.69)

where Q′(θ) is the first order derivative of the projector Q. As ϵ −→ 0, norm of the higher order terms in O(ϵ2) are
bounded by C ϵ2 . Thus, Q(ϕ + ϵ) is linearly approximated up to first order derivative of Q(ϕ) with respect to θ.

Q(θ + ϵ) ≈ Q(θ) + ϵQ′(θ) (F.70)

The first order derivative of the vector v(θ) is given as,

v′(θ) =
d
dθ

(
cos(θ/2)
sin(θ/2)

)
=

(
− 1

2 sin(θ/2)
1
2 cos(θ/2)

)
. (F.71)

Now from the definition of Q(θ) and matrix product rule one can have,

Q′(θ) =
d
dθ

(
v(θ)v(θ)T) = v′(θ) v(θ)T + v(θ)

(
v′(θ)

)T (F.72)

and finally,

Q′(θ) = v(θ)′v(θ)T + v(θ)(v(θ)′)T =

(
− cos(θ/2) sin(θ/2) 1

2 (cos2(θ/2)− sin2(θ/2))
1
2 (cos2(θ/2)− sin2(θ/2)) cos(θ/2) sin(θ/2)

)
. (F.73)

Using the identities sin θ = 2 sin(θ/2) cos(θ/2) and cos θ = cos2(θ/2)− sin2(θ/2), the above equation simplifies to
the following compact form,

Q′(θ) =
1
2

(
− sin θ cos θ

cos θ sin θ

)
(F.74)
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Hence, the first-order Taylor approximation of Q(θ) comes out to be,

Q(θ + ϵ) ≈ Q(θ) + ϵ Q′(θ)

≈

 cos2
(

θ
2

)
cos

(
θ
2

)
sin
(

θ
2

)
cos

(
θ
2

)
sin
(

θ
2

)
sin2

(
θ
2

) +
ϵ

2

(
− sin θ cos θ

cos θ sin θ

)

≈

 cos2
(

θ
2

)
− ϵ sin(θ)

2 cos
(

θ
2

)
sin
(

θ
2

)
+ ϵ cos(θ)

2

cos
(

θ
2

)
sin
(

θ
2

)
+ ϵ cos(θ)

2 sin2
(

θ
2

)
+ ϵ sin(θ)

2


(F.75)

After establishing an approximate value of Q(ϕ+ ϵ) one can proceed by expressing (Q(ϕi
A + ϵ)⊗ I)ρ

ij
AB in first order

linear approximation as,

(Q(ϕi
A + ϵ)⊗ I)ρ

ij
AB = (Q(ϕi

A)⊗ I)ρ
ij
AB + ϵ(Q′(ϕi

A)⊗ I)ρ
ij
AB +O(ϵ2) (F.76)

and terms of anti-commuting and commuting operators from the result of Lemma 10 and (F.69) as,

(Q(ϕi
A + ϵ)⊗ I)ρ

ij
AB =

1
2
{ρ

ij
AB, Q(ϕi

A + ϵ)⊗ I} − 1
2
[ρ

ij
AB, Q(ϕi

A + ϵ)⊗ I] (F.77)

We expand the commuting and the anti-commuting term individually as,

[ρ
ij
AB, Q(ϕi

A + ϵ)⊗ I] = ρ
ij
AB Q(ϕi

A + ϵ)⊗ I − Q(ϕi
A + ϵ)⊗ I ρ

ij
AB

= ρ
ij
AB

(
Q(ϕi

A)⊗ I + ϵ(Q′(ϕi
A)⊗ I) +O(ϵ2)

)
−
(

Q(ϕi
A)⊗ I + ϵ(Q′(ϕi

A)⊗ I) +O(ϵ2)
)

ρ
ij
AB

=
(

ρ
ij
AB Q(ϕi

A)⊗ I − Q(ϕi
A)⊗ I ρ

ij
AB

)
+ ϵ

(
ρ

ij
AB Q′(ϕi

A)⊗ I − Q′(ϕi
A)⊗ I ρ

ij
AB

)
+O

(
ϵ2
)

= [ρ
ij
AB, Q(ϕi

A)⊗ I] + ϵ[ρ
ij
AB, Q′(ϕi

A)⊗ I] +O(ϵ2) (F.78)

Similarly, for other terms we get,

{ρ
ij
AB, Q(ϕi

A + ϵ)⊗ I} = {ρ
ij
AB, Q(ϕi

A)⊗ I}+ ϵ{ρ
ij
AB, Q′(ϕi

A)⊗ I}+O(ϵ2)

[ρ
ij
AB, (I − Q(ϕi

A + ϵ)⊗ I)] = [ρ
ij
AB, (I − Q(ϕi

A)⊗ I)] + ϵ[ρ
ij
AB, (I − Q′(ϕi

A)⊗ I)] +O(ϵ2)

{ρ
ij
AB, (I − Q(ϕi

A + ϵ)⊗ I)} = {ρ
ij
AB, (I − Q(ϕi

A)⊗ I)}+ ϵ{ρ
ij
AB, (I − Q′(ϕi

A)⊗ I)}+O(ϵ2)

(F.79)

Now, let us consider the following function,

h : (λ, ϕi
A, ρ

ij
AB) 7→ R (F.80)

being defined as follows,

h(λ, ϕi
A, ρ

ij
AB) = (1 − λ)Tr

([
ρ

ij
AB −

(
1
2
{ρ

ij
AB, Q(ϕi

A)⊗ I} − 1
2
[ρ

ij
AB, Q(ϕi

A)⊗ I]

)
Q(ϕi

A)⊗ I

−
(

1
2
{ρ

ij
AB, (I − Q(ϕi

A)⊗ I)} − 1
2
[ρ

ij
AB, (I − Q(ϕi

A)⊗ I)]

)
{I − Q(ϕi

A)⊗ I}
]2
) (F.81)
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Now, one can bound the small perturbation ϵ in ϕi
A using triangular inequality as,

∣∣∣h(λ, ϕi
A, ρ

ij
AB)− h(λ, ϕi

A + ϵ, ρ
ij
AB)
∣∣∣

≤
∣∣∣h(λ, ϕi

A, ρ
ij
AB)
∣∣∣+ ∣∣∣h(λ, ϕi

A + ϵ, ρ
ij
AB)
∣∣∣

≤(1 − λ)Tr
([

ρ
ij
AB −

(
1
2
{ρ

ij
AB, Q(ϕi

A)⊗ I} − 1
2
[ρ

ij
AB, Q(ϕi

A)⊗ I]

)
Q(ϕi

A)⊗ I

−
(

1
2
{ρ

ij
AB, (I − Q(ϕi

A)⊗ I)} − 1
2
[ρ

ij
AB, (I − Q(ϕi

A)⊗ I)]

)
{I − Q(ϕi

A)⊗ I}
]2
)

+ (1 − λ)Tr
([

ρ
ij
AB −

(
1
2
{ρ

ij
AB, Q(ϕi

A + ϵ0)⊗ I} − 1
2
[ρ

ij
AB, Q(ϕi

A + ϵ0)⊗ I]

)
Q(ϕi

A + ϵ0)⊗ I

−
(

1
2
{ρ

ij
AB, (I − Q(ϕi

A + ϵ0)⊗ I)} − 1
2
[ρ

ij
AB, (I − Q(ϕi

A + ϵ0)⊗ I)]

)
{I − Q(ϕi

A + ϵ0)⊗ I}
]2
)

≤(1 − λ)
[
Tr
([

ρ
ij
AB −

(
1
2
{ρ

ij
AB, Q(ϕi

A)⊗ I} − 1
2
[ρ

ij
AB, Q(ϕi

A)⊗ I]

)
Q(ϕi

A)⊗ I

−
(

1
2
{ρ

ij
AB, (I − Q(ϕi

A)⊗ I)} − 1
2
[ρ

ij
AB, (I − Q(ϕi

A)⊗ I)]

)
(I − Q(ϕi

A)⊗ I)

]2

+

[
ρ

ij
AB −

(
1
2
{ρ

ij
AB, Q(ϕi

A + ϵ0)⊗ I} − 1
2
[ρ

ij
AB, Q(ϕi

A + ϵ0)⊗ I]

)
Q(ϕi

A + ϵ0)⊗ I

−
(

1
2
{ρ

ij
AB, (I − Q(ϕi

A + ϵ0)⊗ I)} − 1
2
[ρ

ij
AB, (I − Q(ϕi

A + ϵ0)⊗ I)]

)
(I − Q(ϕi

A + ϵ0)⊗ I)

]2
) ]

(F.82)

To simplify the calculation, we simplify the perturbing and non-perturbing terms separately as,

A =

[
ρ

ij
AB −

(
1
2
{ρ

ij
AB, P0} −

1
2
[ρ

ij
AB, P0]

)
P0 −

(
1
2
{ρ

ij
AB, (I − P0)} −

1
2
[ρ

ij
AB, (I − P0)]

)
(I − P0)

]2

=

[
ρ

ij
AB − 1

2
{ρ

ij
AB, P0}P0 +

1
2
[ρ

ij
AB, P0]P0 −

1
2
{ρ

ij
AB, (I − P0)}(I − P0) +

1
2
[ρ

ij
AB, (I − P0)](I − P0)

]2

=
[
ρ

ij
AB − (P0) ρ

ij
AB (P0)− (I − P0) ρ

ij
AB (I − P0)

]2

=
[
ρ

ij
AB P0 + P0 ρ

ij
AB − 2P0 ρ

ij
AB P0

]2

=
[
(I − P0) ρ

ij
AB (P0) + (P0) ρ

ij
AB(I − P0)

]2

=
(
(I − P0) ρ

ij
AB Q(ϕi

A)⊗ I ρ
ij
AB(I − P0) + P0 ρ

ij
AB(I − P0) ρ

ij
AB P0

)
= A0 + A1

(F.83)
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and

B =

[
ρ

ij
AB −

(
1
2

{
ρ

ij
AB, Q(ϕi

A + ϵ0)⊗ I
}
− 1

2

[
ρ

ij
AB, Q(ϕi

A + ϵ0)⊗ I
])

Q(ϕi
A + ϵ0)⊗ I

−
(

1
2

{
ρ

ij
AB, I − Q(ϕi

A + ϵ0)⊗ I
}
− 1

2

[
ρ

ij
AB, I − Q(ϕi

A + ϵ0)⊗ I
])

(I − Q(ϕi
A + ϵ0)⊗ I)

]2

=
[
{ρ

ij
AB, Q(ϕi

A + ϵ0)⊗ I} − 2Q(ϕi
A + ϵ0)⊗ Iρ

ij
ABQ(ϕi

A + ϵ0)⊗ I
]2

=

[(
{ρ

ij
AB, Q(ϕi

A + ϵ0)⊗ I}
)2

+
(
−2Q(ϕi

A + ϵ0)⊗ Iρ
ij
ABQ(ϕi

A + ϵ0)⊗ I
)2

−{ρ
ij
AB, Q(ϕi

A + ϵ0)⊗ I}2Q(ϕi
A + ϵ0)⊗ Iρ

ij
ABQ(ϕi

A + ϵ0)⊗ I

−2Q(ϕi
A + ϵ0)⊗ Iρ

ij
ABQ(ϕi

A + ϵ0)⊗ I{ρ
ij
AB, Q(ϕi

A + ϵ0)⊗ I}
]

=

[(
{ρ

ij
AB, P0}+ ϵ0{ρ

ij
AB, P1}+O(ϵ2

0)
)2

+
(

4ξρ
ij
ABξρ

ij
ABξ

)
−
(
{ρ

ij
AB, ξ}2ξρ

ij
ABξ

)
−
(

2ξρ
ij
ABξ{ρ

ij
AB, ξ}

)]
=
[(

{ρ
ij
AB, P0}2 + ϵ0

(
{ρ

ij
AB, P0}{ρ

ij
AB, P1}+ {ρ

ij
AB, P1}{ρ

ij
AB, P0}

)
+ ϵ2

0{ρ
ij
AB, P1}2

)
+
(

4ξρ
ij
ABξρ

ij
ABξ

)
−
(
{ρ

ij
AB, ξ}2ξρ

ij
ABξ

)
−
(

2ξρ
ij
ABξ{ρ

ij
AB, ξ}

)]
+O(ϵ3

0)

=
[(

{ρ
ij
AB, P0}2 + ϵ0

(
{ρ

ij
AB, P0}{ρ

ij
AB, P1}+ {ρ

ij
AB, P1}{ρ

ij
AB, P0}

)
+ ϵ2

0{ρ
ij
AB, P1}2

)
+4
(

P0ρ
ij
ABP0ρ

ij
ABP0 + ϵ0(P1ρ

ij
ABP0ρ

ij
ABP0 + P0ρ

ij
ABP1ρ

ij
ABP0 + P0ρ

ij
ABP0ρ

ij
ABP1)

+ϵ2
0(P0ρ

ij
ABP1ρ

ij
ABP1 + P1ρ

ij
ABP0ρ

ij
ABP1 + P1ρ

ij
ABP1ρ

ij
ABP0 + P1ρ

ij
ABP1ρ

ij
ABP1)

)
− C1 − C2

]
+O(ϵ3

0)

= B0 + ϵ0B1 + ϵ2
0B2 +O(ϵ3

0)

(F.84)

B0 = {ρ
ij
AB, P0}2 + 4P0ρ

ij
ABP0ρ

ij
ABP0 − 2{ρ, P0}P0ρP0 − 2P0ρP0{ρ, P0}

B1 = {ρ
ij
AB, P0}{ρ

ij
AB, P1}+ {ρ

ij
AB, P1}{ρ

ij
AB, P0}+ 4(P1ρ

ij
ABP0ρ

ij
ABP0 + P0ρ

ij
ABP1ρ

ij
ABP0 + P0ρ

ij
ABP0ρ

ij
ABP1)

− 2({ρ, P0}(P0ρP1 + P1ρP0) + {ρ, P1}P0ρP0)− 2((P0ρP1 + P1ρP0){ρ, P0}+ P0ρP0{ρ, P1})

B2 = {ρ
ij
AB, P1}2 + 4(P0ρ

ij
ABP1ρ

ij
ABP1 + P1ρ

ij
ABP0ρ

ij
ABP1 + P1ρ

ij
ABP1ρ

ij
ABP0 + P1ρ

ij
ABP1ρ

ij
ABP1)

− 2 ({ρ, P0}P1ρP1 + {ρ, P1}(P0ρP1 + P1ρP0))− 2 (P1ρP1{ρ, P0}+ (P0ρP1 + P1ρP0){ρ, P1})

where ξ = (P0 + ϵ0P1 +O(ϵ2
0)), P0 = Q(ϕi

A)⊗ I, P1 = Q′(ϕi
A)⊗ I

C1 = −2
[
{ρ, P0}P0ρP0 + ϵ0 ({ρ, P0}(P0ρP1 + P1ρP0) + {ρ, P1}P0ρP0) + ϵ2

0 ({ρ, P0}P1ρP1 + {ρ, P1}(P0ρP1 + P1ρP0))
]
+O(ϵ2

0)

C2 = −2
[

P0ρP0{ρ, P0}+ ϵ0 ((P0ρP1 + P1ρP0){ρ, P0}+ P0ρP0{ρ, P1}) + ϵ2
0 (P1ρP1{ρ, P0}+ (P0ρP1 + P1ρP0){ρ, P1})

]
+O(ϵ2

0)

Inserting the explicit forms of A and B in (F.82) yields,∣∣∣h(λ, ϕi
A, ρ

ij
AB)− h(λ, ϕi

A + ϵ0, ρ
ij
AB)
∣∣∣

≤ (1 − λ) [Tr(A + B)]

≤ (1 − λ)
[
Tr(A0) + Tr(A1) + Tr(B0) + ϵ0Tr(B1) + ϵ2

0 Tr(B2)
] (F.85)

Now, upon solving each of the term separately we have,

Tr(A0) = Tr((I − Q(ϕi
A)⊗ I) ρ

ij
AB Q(ϕi

A)⊗ I ρ
ij
AB(I − Q(ϕi

A)⊗ I))

= Tr((I − Q(ϕi
A)⊗ I) ρ

ij
AB (Q(ϕi

A)⊗ I) ρ
ij
AB)

= Tr( ρ
ij
AB (I − Q(ϕi

A)⊗ I) ρ
ij
AB (Q(ϕi

A)⊗ I))

≤ Tr( ρ
ij
AB (I − Q(ϕi

A)⊗ I) ρ
ij
AB)

(F.86)
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The inequality in the above equation arises from the Loewner order for two hermitian I and projector P = (Q(ϕi
A)⊗

I) as,

(I − P) ⪰ 0
P ⪯ I

YP ⪯ YI (for Y = ρ(I − P)ρ ⪰ 0)
YP ⪯ Y
Y − YP ⪰ 0
Tr(Y − YP) ≥ 0
Tr(Y)− Tr(YP) ≥ 0
Tr(Y) ≥ Tr(YP)
Tr(ρ(I − P)ρ) ≥ Tr(ρ(I − P)ρP)

(F.87)

for ρ = ρ
ij
AB.

Coming back to the proof for Tr(A0)

Tr(A0) ≤ Tr( ρ
ij
AB (I − Q(ϕi

A)⊗ I) ρ
ij
AB)

≤ Tr( ρ
ij
AB (I − Q(ϕi

A)⊗ I))

≤ Tr( ρ
ij
AB)− Tr( ρ

ij
AB(Q(ϕi

A)⊗ I)

≤ 1 − Tr( ρ
ij
AB(Q(ϕi

A)⊗ I)

≤ 1 ( as Tr( ρ
ij
AB(Q(ϕi

A)⊗ I) ≥ 0 )

(F.88)

Similarly,

Tr(A1) = Tr((Q(ϕi
A)⊗ I) ρ

ij
AB(I − Q(ϕi

A)⊗ I) ρ
ij
AB (Q(ϕi

A)⊗ I))

= Tr((Q(ϕi
A)⊗ I) ρ

ij
AB (I − Q(ϕi

A)⊗ I) ρ
ij
AB)

≤ 1

(F.89)

Now we can proceed towards computing other trace in a similar fashion.

Tr(B0) = Tr
(
{ρ

ij
AB, P0}2 + 4P0ρ

ij
ABP0ρ

ij
ABP0 − 2{ρ, P0}P0ρP0 − 2P0ρP0{ρ, P0}

)
= Tr

(
(ρ

ij
AB P0 + P0 ρ

ij
AB)

2 + 4P0ρ
ij
ABP0ρ

ij
ABP0 − 2{ρ, P0}P0ρP0 − 2P0ρP0{ρ, P0}

)
= Tr

(
(ρ

ij
AB P0)

2 + (P0 ρ
ij
AB)

2 + ρ
ij
AB P0P0 ρ

ij
AB + P0 ρ

ij
ABρ

ij
AB P0 + 4P0ρ

ij
ABP0ρ

ij
ABP0 − 2{ρ, P0}P0ρP0 − 2P0ρP0{ρ, P0}

)
=
(

Tr(ρij
AB P0 ρ

ij
AB P0) + Tr(P0 ρ

ij
ABP0 ρ

ij
AB) + Tr(ρij

AB P0 ρ
ij
AB) + Tr(P0 ρ

ij
ABρ

ij
AB P0) + Tr(4P0ρ

ij
ABP0ρ

ij
ABP0)

−2Tr((ρ P0 ρP0)− 2Tr(P0 ρ P0ρP0)− 2Tr(P0ρP0 ρ P0)− 2Tr(P0ρP0 ρ)))

=
(

Tr( P0ρ
ij
AB P0 ρ

ij
AB) + Tr(P0 ρ

ij
ABP0 ρ

ij
AB) + Tr(ρij

AB P0 ρ
ij
AB) + Tr(P0 ρ

ij
ABρ

ij
AB) + 4Tr(P0ρ

ij
ABP0ρ

ij
AB)

−2Tr((P0ρ P0 ρ)− 2Tr(P0 ρ P0ρ)− 2Tr(P0ρP0 ρ )− 2Tr(P0ρP0 ρ)))

=
(

Tr(P0 ρ
ij
ABρ

ij
AB)) + Tr(P0 ρ

ij
ABρ

ij
AB)− 2Tr(P0ρP0 ρ))

)
= 2(Tr(P0 (ρ

ij
AB)

2)− Tr((P0ρ
ij
AB)

2))
(F.90)

Using a similar form of Loewner order for two hermetian I and projector P it can be proven that 0 ≤ Tr(P0 (ρ
ij
AB)

2) ≤
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1 and Tr(P0 (ρ
ij
AB)

2) ≥ Tr((P0ρ
ij
AB)

2).

P ⪯ I

(ρ
ij
AB)

2 P ⪯ (ρ
ij
AB)

2 (Y = (ρ
ij
AB)

2 ⪰ 0)

(ρ
ij
AB)

2 − (ρ
ij
AB)

2 P ⪰ 0

Tr((ρij
AB)

2)− Tr((ρij
AB)

2 P) ≥ 0

1 − Tr((ρij
AB)

2 P) ≥ 0

0 ≤ Tr((ρij
AB)

2 P) ≤ 1 (since ρ
ij
AB ⪰ 0 and P ⪰ 0, lower bound by 0)

and ,
P ⪯ I

(ρ
ij
AB P ρ

ij
AB)P ⪯ (ρ

ij
AB P ρ

ij
AB) (Y = ρ

ij
AB P ρ

ij
AB ⪰ 0)

Tr(ρij
AB P ρ

ij
AB)− Tr((ρij

AB P)2) ≥ 0

Tr(ρij
AB P ρ

ij
AB) ≥ Tr((ρij

AB P)2)

(F.91)

Thus,

Tr(B0) ≤ 2 (F.92)

Tr(B1) can also be computed in a similar fashion.

Tr(B1) = Tr({ρ
ij
AB, P0}{ρ

ij
AB, P1}+ {ρ

ij
AB, P1}{ρ

ij
AB, P0}+ 4(P1ρ

ij
ABP0ρ

ij
ABP0 + P0ρ

ij
ABP1ρ

ij
ABP0 + P0ρ

ij
ABP0ρ

ij
ABP1)

− 2({ρ, P0}(P0ρP1 + P1ρP0) + {ρ, P1}P0ρP0)− 2((P0ρP1 + P1ρP0){ρ, P0}+ P0ρP0{ρ, P1}))

= Tr
(
(ρ

ij
AB P0 + P0 ρ

ij
AB)(ρ

ij
AB P1 + P1 ρ

ij
AB)
)
+ Tr

(
(ρ

ij
AB P1 + P1 ρ

ij
AB)(ρ

ij
AB P0 + P0 ρ

ij
AB)
)

+ 4 Tr
(

P1ρ
ij
ABP0ρ

ij
ABP0 + P0ρ

ij
ABP1ρ

ij
ABP0 + P0ρ

ij
ABP0ρ

ij
ABP1

)
− 2Tr ({ρ, P0}(P0ρP1 + P1ρP0) + {ρ, P1}P0ρP0)

− 2Tr ((P0ρP1 + P1ρP0){ρ, P0}+ P0ρP0{ρ, P1})

= Tr
(

ρ
ij
AB P0 ρ

ij
AB P1

)
+ Tr

(
ρ

ij
AB P0 P1 ρ

ij
AB

)
+ Tr

(
P0 ρ

ij
AB ρ

ij
AB P1

)
+ Tr

(
P0 ρ

ij
AB P1 ρ

ij
AB

)
+ Tr

(
ρ

ij
AB P1 ρ

ij
AB P0

)
+ Tr

(
ρ

ij
AB P1 P0 ρ

ij
AB

)
+ Tr

(
P1 ρ

ij
AB ρ

ij
AB P0

)
+ Tr

(
P1 ρ

ij
AB P0 ρ

ij
AB

)
+ 4Tr

(
P1ρ

ij
ABP0ρ

ij
ABP0

)
+ 4Tr

(
P0ρ

ij
ABP1ρ

ij
ABP0

)
+ 4Tr

(
P0ρ

ij
ABP0ρ

ij
ABP1

)
− 2Tr

(
ρ

ij
AB P0 ρ

ij
AB P1

)
− 2Tr

(
ρ

ij
AB P0 P1 ρ

ij
AB P0

)
− 2Tr

(
P0 ρ

ij
AB P0 ρ

ij
AB P1

)
− 2Tr

(
P0 ρ

ij
AB P1 ρ

ij
AB

)
− 2Tr

(
ρ

ij
AB P1 P0 ρ

ij
AB P0

)
− 2Tr

(
P1 ρ

ij
AB P0 ρ

ij
AB P0

)
− 2Tr

(
P0 ρ

ij
AB P1 ρ

ij
AB

)
− 2Tr

(
P0 ρ

ij
AB P1 P0 ρ

ij
AB

)
− 2Tr

(
P1 ρ

ij
AB P0 ρ

ij
AB P0

)
− 2Tr

(
P1 ρ

ij
AB P0 ρ

ij
AB

)
− 2Tr

(
P0 ρ

ij
AB P0 ρ

ij
AB P1

)
− 2Tr

(
P0 ρ

ij
AB P0 P1 ρ

ij
AB

)
= Tr

(
ρ

ij
AB P0 P1 ρ

ij
AB

)
+ Tr

(
P0 ρ

ij
AB ρ

ij
AB P1

)
+ Tr

(
ρ

ij
AB P1 P0 ρ

ij
AB

)
+ Tr

(
P1 ρ

ij
AB ρ

ij
AB P0

)
+ 4Tr

(
P0ρ

ij
ABP1ρ

ij
ABP0

)
− 2Tr

(
ρ

ij
AB P0 P1 ρ

ij
AB P0

)
− 2Tr

(
ρ

ij
AB P0 ρ

ij
AB P1

)
− 2Tr

(
ρ

ij
AB P1 P0 ρ

ij
AB P0

)
− 2Tr

(
ρ

ij
AB P0 ρ

ij
AB P1

)
− 2Tr

(
P0 ρ

ij
AB P1 P0 ρ

ij
AB

)
− 2Tr

(
P0 ρ

ij
AB P0 P1 ρ

ij
AB

)
= Tr

(
ρ

ij
AB ρ

ij
AB P0 P1

)
+ Tr

(
P0 ρ

ij
AB ρ

ij
AB P1

)
+ Tr

(
P0 ρ

ij
AB ρ

ij
AB P1

)
+ Tr

(
ρ

ij
AB ρ

ij
AB P0 P1

)
+ 4Tr

(
ρ

ij
ABP0ρ

ij
ABP1

)
− 2Tr

(
ρ

ij
AB P0 ρ

ij
AB P0 P1

)
− 2Tr

(
ρ

ij
AB P0 ρ

ij
AB P1

)
− 2Tr

(
P0 ρ

ij
AB P0 ρ

ij
AB P1

)
− 2Tr

(
ρ

ij
AB P0 ρ

ij
AB P1

)
− 2Tr

(
P0 ρ

ij
AB P0 ρ

ij
AB P1

)
− 2Tr

(
ρ

ij
AB P0 ρ

ij
AB P0 P1

)
= 2 Tr

(
ρ

ij
AB ρ

ij
AB P0 P1

)
+ 2 Tr

(
P0 ρ

ij
AB ρ

ij
AB P1

)
− 4Tr

(
ρ

ij
AB P0 ρ

ij
AB P0 P1

)
− 4Tr

(
P0 ρ

ij
AB P0 ρ

ij
AB P1

)
(F.93)
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The four trace term can’t be solve as the earlier three cases. P1 = Q′(ϕi
A)× I = Q′(θ) = 1

2

(
− sin θ cos θ
cos θ sin θ

)
is a

Hermitian operator but not a Positive semi-definite operator(eigenvalues are ± 1
2 ).

(I − P1) ⪰ 0
(

eigenvalues are
1
2

and
3
2

)
I ⪰ P1

ρ
ij
AB ρ

ij
AB P0 ⪰̸ ρ

ij
AB ρ

ij
AB P0 P1

(
Y = ρ

ij
AB ρ

ij
AB P0 does not commute with P1

) (F.94)

Since ρ
ij
AB ρ

ij
AB P0 and P1 does not commute we can’t use the above partial ordering but since P1 is hermitian we can

have spectral double sided spectral bound.

λmin(H) I ⪯ H ⪯ λmax(H) I (F.95)

Equivalently we can write,

λmin(H) Tr(Y) ≤ Tr(YH) ≤ λmax(H) Tr(Y) (F.96)

for Y ⪰ 0. Alternatively, (I − P1) is a Hermitian so we can the following spectral bound.

λmin((I − P1)) Tr(Y) ≤ Tr(Y(I − P1)) ≤ λmax((I − P1)) Tr(Y)
1
2

Tr(Y) ≤ Tr(Y)− Tr(YP1) ≤
3
2

Tr(Y)
(F.97)

The above relation requires Y to be a positive semi definite matrix. This possess a serious flaw. As per the given
setting this requires the complete knowledge of the density matrix and the projector operator which compromises
the generality of the proof. Alternatively we can can be upper bounded using the Holder inequality [Wat18] as,∣∣∣Tr

(
ρ

ij
AB ρ

ij
AB P0 P1

)∣∣∣
≤
∥∥∥ ρ

ij
AB ρ

ij
AB P0

∥∥∥
1

∥∥∥P1

∥∥∥
∞

≤ 1
2

∥∥∥(ρij
AB)

2
∥∥∥

1

∥∥∥P0

∥∥∥
∞

≤ 1
2

Tr(ρij
AB)

≤ 1
2

(F.98)

Similarly, ∣∣∣Tr
(

P0 ρ
ij
AB ρ

ij
AB P1

)∣∣∣
≤
∥∥∥P0 ρ

ij
AB ρ

ij
AB

∥∥∥
1

∥∥∥P1

∥∥∥
∞

≤ 1
2

(F.99)

Also, ∣∣∣Tr
(

ρ
ij
AB P0 ρ

ij
AB P0 P1

)∣∣∣
≤
∥∥ρ

ij
ABP0ρ

ij
AB
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1

∥∥P0P1
∥∥

∞

≤
∥∥ρ

ij
AB P0
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2

∥∥ρ
ij
AB

∥∥
2

∥∥P0P1
∥∥

∞

≤
∥∥ρ

ij
AB
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2

∥∥ρ
ij
AB

∥∥
2 ∥P0∥∞ ∥P1∥∞

= ∥ρ
ij
AB∥

2
2 ∥P0∥∞ ∥P1∥∞ = Tr

(
(ρ

ij
AB)

2) · 1 · 1
2

≤ 1
2

.

(F.100)
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Finally for Tr
(

P0ρ
ij
ABP0ρ

ij
AB P1

)
∣∣∣Tr
(

P0ρ
ij
ABP0ρ

ij
AB P1
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(ρ
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Coming back to evaluating Tr(B1)

Tr(B1) = 2x + 2y − 4u − 4v, |x|, |y|, |u|, |v| ≤ 1
2 , (F.102)

the worst-case bounds are

max Tr(B1) = 2
(

1
2

)
+ 2
(

1
2

)
− 4
(
− 1

2

)
− 4
(
− 1

2

)
= 6, (F.103)

min Tr(B1) = 2
(
− 1

2

)
+ 2
(
− 1

2

)
− 4
(

1
2

)
− 4
(

1
2

)
= −6. (F.104)

So,

|Tr(B1)| ≤ 6. (F.105)

A tighter bound exists but for that an additional assumption is needed.

supp(ρ) ⊆ ran(P0) (F.106)

Support of ρ is the span of all eigenvectors with non-zero eigenvalues. Range of the projector P0 is span of all nonzero
columns of P0. Following two relation can directly be followed from the given assumption.

ρ|ψ⟩ = λ|ψ⟩ ∀ (λ > 0) =⇒ ψ ∈ ran(P0)

P0|ψ⟩ = |ψ⟩ ∀|ψ⟩ ∈ supp(ρ) (P0 act as identity operator to ψ)
(F.107)

For any vector |ϕ⟩, decompose ρ|ϕ⟩:

ρ|ϕ⟩ = ∑
λk>0

λk⟨ψk|ϕ⟩|ψk⟩+ ∑
λk=0

0 · ⟨ψk|ϕ⟩|ψk⟩

= ∑
k

λk⟨ψk|ϕ⟩|ψk⟩, λk > 0, |ψk⟩ ∈ supp(ρ)

P(ρ|ϕ⟩) = P

(
∑
k

λk⟨ψk|ϕ⟩|ψk⟩
)

= ∑
k

λk⟨ψk|ϕ⟩P|ψk⟩

= ∑
k

λk⟨ψk|ϕ⟩|ψk⟩

= ρ|ϕ⟩ ∀|ϕ⟩
Pρ = ρ

(F.108)

ρ† = (Pρ)†

= ρ†P†

= ρP
= ρ

(F.109)
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From the last two equation,

ρ = Pρ = ρP = PρP (F.110)

Now using the above relation Tr(B1) bound can be tighten using the third term Tr(ρij
ABP0ρ

ij
ABP0P1).

Tr(ρij
ABP0ρ

ij
ABP0P1)

= Tr((P0ρ
ij
ABP0)P0(P0ρ

ij
ABP0)P1) (substitute ρ

ij
AB = P0ρ

ij
ABP0)

= Tr(P0(ρ
ij
ABP0ρ

ij
AB)P0P1)

= Tr((ρij
ABP0ρ

ij
AB)P0P1P0)

= Tr((ρij
ABP0ρ

ij
AB)(P0P1P0)).

(F.111)

Now, P0 = Q(θ), P1 = Q′(θ) we have,

P2
0 = P0

P0P0 = P0

P1P0 + P0P1 = P1

P0P1P0 + P0P0P1 = P0P1

P0P1P0 + P0P1 = P0P1

P0P1P0 = 0

(F.112)

thus,

Tr(B1) = 2x + 2y − 4v, |x|, |y|, |v| ≤ 1
2 ⇒ |Tr(B1)| ≤ 4. (F.113)

Since ϵ0 > 0 is a very small quantity, ϵ2
0 << ϵ0 we have B = B0 + ϵ0B1 +O(ϵ2

0). Now, from (F.85),∣∣∣h(λ, ϕi
A, ρ

ij
AB)− h(λ, ϕi

A + ϵ0, ρ
ij
AB)
∣∣∣

≤ (1 − λ) [Tr(A + B)]
≤ (1 − λ) [Tr(A0) + Tr(A1) + Tr(B0) + ϵ0Tr(B1)]

≤ (1 − λ)[1 + 1 + 2 + ϵ04]

≤ (1 − λ)[4 + 4ϵ0 +O(ϵ2
0)]

(F.114)

The above quantity is O(1) to make it O(ϵ) we can use the result ρ = Pρ = ρP = PρP.

Tr(A0) = Tr( ρ
ij
AB (I − P0) ρ

ij
AB)

= Tr( (I − P0) ρ
ij
AB)

= Tr( (I − P0)P0 ρ
ij
AB P0)

= Tr(P0 ρ
ij
AB P0 − P2

0 ρ
ij
AB P0)

= 0

(F.115)

Similarly,

Tr(B0) = 2(Tr(P0 ρ
ij
AB ρ

ij
AB)− Tr((P0ρ

ij
ABP0ρ

ij
AB)))

= 2(Tr(P0ρ
ij
AB P0ρ

ij
ABP0)− Tr((P0 ρ

ij
AB P0 ρ

ij
AB)))

= 2(Tr(P0ρ
ij
ABP0ρ

ij
AB)− Tr((P0 ρ

ij
AB P0 ρ

ij
AB)))

= 0

(F.116)

where P0 = Q(ϕi
A)⊗ I Thus finally, ∣∣∣h(λ, ϕi

A, ρ
ij
AB)− h(λ, ϕi

A + ϵ0, ρ
ij
AB)
∣∣∣

≤ (1 − λ)[4ϵ0 +O(ϵ2
0)]

(F.117)
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b. Modified optimization problem incorporating the change in Alice’s angle

Now we are at a point where we can lower bound the maximal error in kth segment centered around ϕi
Ak

. Using
Eqs. (F.117) and (F.57) in the modified objective function given in (F.19), we get the modified optimization problem
as,

n∗(Sij) ≥ inf λ
∥∥∥ρ

ij
AB − Λ0[ρ

ij
AB]
∥∥∥2

F
+ (1 − λ)

∥∥∥ρ
ij
AB − Λ1[ρ

ij
AB]
∥∥∥2

F

+
µ

2
∥ρ

ij
AB∥

2
F − 2(1 − λ)ϵ0

s.t. Tr
(

ρ
ij
AB CHSH(ϕi

A, ϕ
j
B)
)
= Sij − 2ϵ0

ϕi
A, ϕ

j
B ∈ [0, π/2],

ρ
ij
AB ⪰ 0

Tr(ρij
AB) = 1

(F.118)

By averaging multiple instances or scenarios in the optimisation problem, the maximum deviation of the objective
function’s value from its expected or central tendency is reduced. Specifically, in this case, the maximum deviation
has been halved from ϵ0 = 4 to ϵ′0 = 2. This reduction occurs because averaging tends to smooth out extreme values.
Given that the optimal value lies within a symmetric interval of ϕi

Ak
± ϵ0, averaging over multiple such intervals can

lead to a smaller overall range of uncertainty for the optimal value.

Appendix G: Creating a convex hull from all two qubit functions C∗(S) for all S ∈ (2, 2
√

2]

In Eq. (C.22), it had been shown that the function C∗(S) can be lower bounded as an integral of the function of

C∗(S) over two qubit blocks, C∗
C4×4(S′), over the range S ∈ (2, 2

√
2], i.e., C∗(S) ≥

∫ 2
√

2
S′=2 η(dS′) · C∗

C4×4(S′) such that

η([2, 2
√

2]) ≤ 1, η ≥ 0, and
∫ 2

√
2

S′=2 η(dS′)S′ = S. Moreover, it has been showed that each such two qubit function
C∗

C4×4(S′) can further be lower bounded through a strongly convex objective function n∗(Sij), using a modified
Pinsker’s inequality[SGP+21] and the results from Eqs. (D.6) (F.19). Now given values of C∗

C4×4(S) for all S ∈
(2, 2

√
2], one needs a convex function, say, C(S)[SGP+21] that would essentially give,

C∗
C4×4(Sij) ≥ C(Sij) (G.1)

for ijth block. Thus incorporating this into (C.22) as,

C∗(S) ≥
∫ 2

√
2

S′=2
η(dS′) · C(S′)

s.t η([2, 2
√

2]) ≤ 1
η ≥ 0∫ 2

√
2

S′=2
η(dS′)S′ = S

(G.2)

gives

C∗(S) ≥ C(S) (G.3)

The final task is to prove the existence of one such function C(S) that lower bounds C∗(S).

Theorem 6: n∗(S) is a valid lower bound for C∗(S).

Proof:
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a. Strong Convexity of the Objective Function

The optimization problem defining n∗(S) is given as,

n∗(Sij) = inf
{

λ
∥∥∥ρ

ij
AB − Λ0

[
ρ

ij
AB

]∥∥∥2

F
+ (1 − λ)

∥∥∥ρ
ij
AB − Λ1

[
ρ

ij
AB

]∥∥∥2

F
+

µ

2

∥∥∥ρ
ij
AB

∥∥∥2

F

}
s.t. Tr

(
ρ

ij
AB CHSH(ϕi

A, ϕ
j
B)
)
= Sij.

(G.4)

Now, the given objective function involving the Frobenius norm ∥·∥2
F is strongly convex in ρ. The term µ

2

∥∥∥ρ
ij
AB

∥∥∥2

F
introduces µ-strong convexity, and the linear constraints of the optimization problem preserve the strong convexity
on the feasible set. For fixed Sij, the objective function is strongly convex in ρ. The parameterized problem’s solution
function n∗(Sij) inherits convexity. Moreover, strong convexity implies quadratic dependence on the perturbations
in Sij. Thus, n∗(S) is strongly convex in S for S ∈ (2, 2

√
2]

b. Application of Jensen’s inequality

For the measure η with,

∫ 2
√

2

2
η(dS′) = 1, η ≥ 0,

∫ 2
√

2

2
η(dS′)S′ = S (G.5)

Now application of Jensen’s inequality for strongly convex functions yields,

∫ 2
√

2

2
η(dS′)n∗(S′) ≥ n∗

(∫ 2
√

2

2
η(dS′)S′

)
+

µ

2
Varη(S′) (G.6)

Since Varη(S′) ≥ 0,

∫ 2
√

2

2
η(dS′)n∗(S′) ≥ n∗(S). (G.7)

Substituting C(S′) = n∗(S′) into the original inequality, we get,

C∗(S) ≥
∫ 2

√
2

2
η(dS′)n∗(S′) ≥ n∗(S) (G.8)

Therefore, C(S) = n∗(S) is a valid convex lower bound.
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