arXiv:2508.12885v1 [cs.LG] 18 Aug 2025

One-Class Intrusion Detection with Dynamic
Graphs *

Aleksei LiuhakOV[0000—0003—4676—9272}, Alexander Schulz[0000_0002_0739_612X],
Luca Herrnes[0000700027756877981]7 and Barbara Hammer[0000700027093575591]

Machine Learning Group, Bielefeld University, Germany
{aliuliakov|aschulz|lhermes|bhammer}@techfak.uni-bielefeld.de

Abstract. With the growing digitalization all over the globe, the rel-
evance of network security becomes increasingly important. Machine
learning-based intrusion detection constitutes a promising approach for
improving security, but it bears several challenges. These include the
requirement to detect novel and unseen network events, as well as spe-
cific data properties, such as events over time together with the inherent
graph structure of network communication.

In this work, we propose a novel intrusion detection method, T'GN-
SVDD, which builds upon modern dynamic graph modelling and deep
anomaly detection. We demonstrate its superiority over several baselines
for realistic intrusion detection data and suggest a more challenging vari-
ant of the latter. Our implementation is available onlineﬂ

Keywords: Temporal dynamic graph - One class classification - Intru-
sion detection.

1 Introduction

The field of anomaly detection deals with detecting rare observations, sometimes
also referred to as outliers or novelties, that differ substantially from the major-
ity of samples. This is approached (mostly) in a fully unsupervised fashion with
only regular samples being available. The interest in this problem has been in-
creasing in recent years due to a growing potential impact in different areas, such
as security, medicine or finance. A variety of successful models for this problem
has been proposed, ranging from shallow approaches like the One-Class Support
Vector Machine (OCSVM), the Support Vector Data Description (SVDD), Iso-
lation Forest (IF') or Local Outlier Factor (LOF) [T6JI9I712], over deep methods
like Deep SVDD or Deep OCSVM [15)3], to graph based ones like the Temporal
Hierarchical One-Class (THOC) network or Event2Graph [1822]. Several more
have been discussed in survey articles focusing on specific aspects, such as deep
or graph based models [I4J6/9]. This field has been investigated from different
areas, including automated machine learning based approaches [g].

* We gratefully acknowledge funding by the BMBF within the project HAIP, grant
number 16KIS1212
! Thttps://github.com/AlekseiLiu/tgn _svdd

https://github.com/AlekseiLiu/tgn_svdd
https://arxiv.org/abs/2508.12885v1

2 A. Liuliakov et al.

In the present work we want to focus on the subfield of intrusion detection in
computer networks. Specifically, we aim to detect abnormal network traffic that
constitutes an attack by an intruder. This is a relevant topic, because the size
and abundance of computer networks keeps increasing. Accordingly, the depen-
dence of the public and the private sector on the former is ever-growing. This
makes the potential danger and costs of attacks on such networks, such as net-
work intrusion attacks, evident. In this domain, specific properties of the data
are present that are not necessarily typical for classical anomaly detection: First,
network communication appears sequentially over time, making dynamical data
structures promising candidates; second, communication has the structure of a
sender, a recipient and a communication message [I7], which can be most natu-
rally represented as graphs. For this purpose, Dynamic Graph Neural Networks
are a promising model class, including the approaches [I3[5J20/23121]. In a recent
study [12], the Temporal Graph Network (TGN) [I3], has shown to be particu-
larly successful in modelling dynamical network data. However, empirically, the
TGN is not sufficient for intrusion detection. Hence, we propose an extension of
this model and evaluate it in the context of intrusion detection.

Our contributions are the following:

— We propose a new fully unsupervised end-to-end trainable intrusion detec-
tion model, that we call TGN-SVDD, which utilizes dynamic graph mod-
elling and combines the two approaches TGN and Deep SVDD.

— We demonstrate that the vanilla TGN is not sufficient for intrusion detec-
tion in realistic benchmark data [I7], while performing better than shallow
models. Both are outperformed by our proposed TGN-SVDD.

— We analyze the dataset [17] in depth and detect a potential easy workaround
that could be used by models for intrusion detection. We suggest a solution
to this problem making the dataset more challenging and show that our
proposed method still achieves a high performance level.

2 Fundamentals

Network traffic and more specifically internet traffic refers to the collective flow
of data packets transmitted, received, and routed between interconnected devices
and systems. This traffic encompasses various data types, including text, multi-
media, and control information exchanged through a diverse set of application-
layer protocols such as HT'TP, FTP, SMTP, etc. Internet traffic can be repre-
sented as a set of network flows, where each is a sequence of data packets that
share common attributes, such as the source IP address, destination IP address,
source port, destination port, and protocol. It can be further conceptualized
as dynamic temporal graphs. In this representation, source and destination are
represented as nodes and identified by their respective IP address and the con-
nections between these nodes, defined by network flows, act as the edges or
links. Note that each edge is associated with a timestamp that reflects when
that particular network flow appeared.

One-Class Intrusion Detection with Dynamic Graphs 3

2.1 Continuous-Time Dynamic Graphs (CTDG)

Continuous-time dynamic graphs (CTDG) are represented as timed event lists,
including edge or node addition/deletion and feature transformations. Temporal
(multi-)graphs are sequences of time-stamped events G = {x(t1), z(t2), ...}, with
events z(t) adding/changing nodes or interactions. There are two event types:
1) node-wise events v;(t) such as creating a node i or updating its features, and
2) interaction events in the form of directed temporal edges e;;(t).

Denote V(T') = {i: 3v;(t) € G,t € T} and E(T) = {(i,j) : Je;5(t) € G,t €
T} as temporal vertex and edge sets, and NV;(T) = {7 : (i,7) € E(T)} as node ¢’s
neighborhood in time interval T. N (T) is the v-hop neighborhood. A snapshot
of graph G at time ¢ is the (multi-)graph G(¢) = (V ([0, ¢]), E([0,¢])).

2.2 Temporal Graph Network (TGN)

One popular framework to model dynamic graphs is the TGN [I3]. TGN model
with graph attention mechanism consists of an encoder-decoder pair for dynamic
graph analysis. The TGN encoder for continuous-time dynamic graphs generates
node embeddings that capture long-term dependencies. The decoder uses the
embeddings to make task-specific predictions.

The model maintains a vector for each node as memory which represents the
compressed history. Messages are computed for each node participating in the
event. Separate message functions for source, target, and node-wise changes are
used. After each event node memory is updated by means of a learnable mem-
ory function (e.g. GRU) with messages and previous memory states as inputs
respectively. This enables the model to capture long-term dependencies.

In a given interaction event between nodes ¢ and j at time step ¢, a Temporal
Graph Attention Module effectively incorporates the historical events of either
node. For node ¢, the module retrieves its current representation along with its
previous interactions with other nodes. These past interactions are then weighted
according to the attention mechanism and subsequently aggregated to provide
a representation of the node’s temporal dynamics. The output of this module
results in an embedding vector for a particular node i in time t.

To define the model we use the same notation as above for CTDG. G =
{z(t1),...,x(tp)} is a sequences of time-stamped and time-ordered interaction
events x(t), where D is the number of events in the data. For every t, with
k € {1,.., D}, we have certain source and destination nodes pairs (7, 7) € E(ty),
and corresponding event feature vectors e;;(ty). We denote a TGN memory
state s;(t,) of the node 7 at the time ¢, < t, which gets updated every time
when node ¢ appears in an event. We denote TGN encoder functional module
z(i,s;(t;,), Ni(tr,), W), which provides a vector representation of the node i in
embedding space F C R? with respect to the past temporal events at time ¢,
the history of this node s;(¢,) and with respect to its temporal neighborhood
N;(tr). W are TGN’s encoder model parameters.

In the original work, a multi-layer perceptron (MLP) decoder is employed by
the authors for self-supervised next edge (event) prediction task. In our work we

4 A. Liuliakov et al.

only utilize TGN’s encoder part to obtain node embeddings that we complement
with a decoder specialized for one-class classification (s. Sec. .

2.3 Deep Support Vector Data Description (Deep SVDD)

One-Class classification focuses on learning the target class representation to
identify novel or outlier instances. Traditional shallow methods like OCSVM and
SVDD [I6JT9] face scalability issues and struggle in complex high-dimensional
scenarios. Deep SVDD [I5] addresses these limitations by learning a feature space
representation in an end-to-end setting with a deep network. It also improves per-
formance and scalability in one-class classification and anomaly detection tasks.
Deep SVDD can be integrated with various deep learning encoder architectures,
leveraging recent successes in deep representation learning.

For a given input space X C R? and output space F C RP?, let ¢(-; W) :
X — F represent a deep neural network with parameters W. For any test point
x € X, an anomaly score s is defined by calculating the squared distance between
the point and the center of a hypersphere c. This can be expressed as:

s(x) = [l o(x; W) — ¢ (1)

The training data is represented as D,, = {x1,...,x,}, where x; € X,Vi €
{1,...,p}. Where u € N is a number of data points. The objective of Deep
SVDD can be formulated as following:

Ll 2)
g o 106 W)~ + AW,)
aims to minimize the sum of the squared distances between the network represen-
tations of input data points ¢(x;; W) and the center ¢ € F of the hypersphere,
along with a weight decay regularizer term for model parameters W, which is
controlled by the hyperparameter . Note that c is optimized jointly with the
network parameters.

3 Owur Proposed Model: TGN-SVDD

In the application case of cybersecurity and Network Intrusion Detection Systems
(NIDS) usually only normal/benign data is available. At the same time attacks
exhibit a wide range of characteristics and new attack types may be found.
Thus, training data cannot be assumed to cover all possible attacks. This makes
standard supervised Machine Learning techniques suboptimal for such data and
applications. We introduce a novel end-to-end trainable unsupervised approach
which is best suited for, but not limited to, cybersecurity and NIDS applications.

For the TGN encoder functional module, from section 2.2] we will use the
notation z;(tg, W) for brevity. The rest of the notation remains unchanged.

We apply a modified Deep SVDD decoder to compute an anomaly score for
each given interaction event z(t) as follows:

One-Class Intrusion Detection with Dynamic Graphs 5

s(x(tr)) = | (zi(te, W) & ;(te, W) — %, (3)

where z; and z; are the temporal node embeddings of nodes i and j that par-
ticipate in event x(¢x), @ denotes concatenation, and, as in Deep SVDD, c is
a trainable vector that points to the center of a hypersphere. At initialization
time, the node’s memory states are set to zero-vectors. The end-to-end training
objective is defined as

D
. 1
B 2t W) @ 2,1, W) — e AW (4)

which aims to minimize the sum of the squared distances between the concate-
nated TGN encoder representations of source node ¢ and destination node j
and the center ¢ € R?*P of the hypersphere, along with a weight regulariza-
tion term for TGN encoder model parameters W, and corresponding trade-off
hyperparameter \.

4 Experiment

In the following, we describe our performed experimentation, including the setup,
the utilized data and pre-processing as well as the final results.

4.1 Dataset and Experimental Setup

Dataset To evaluate our proposed model, we employed the CIC-IDS2017 dataset
[17], which was created by the University of New Brunswick. This publicly avail-
able dataset offers realistic intrusion detection scenarios for evaluation. The
dataset was generated by designing two separate networks: the Victim-Network
and the Attack-Network. The authors proposed a B-profile system to replicate
background traffic, capturing the abstract behavior of 25 users based on HT'TP,
HTTPS, FTP, SSH, and email protocols for normal traffic. The attack traffic
incorporates six attack profiles, including Brute Force, Heartbleed, Botnet, DoS,
DDoS, Web, and Infiltration attacks. Data collection encompasses data gather-
ing over five working days Monday to Friday, with Monday featuring only benign
traffic and the other days containing various attacks.

To format the raw PCAP files provided by the authors for compatibility
with the model, we pre-processed the data. As dynamic temporal graphs require
a sequence of timestamped events as input data, it is common to use a temporal
adjacency list table format. This table includes columns for source node ID,
destination node ID, timestamp, and a vector of features corresponding to the
event. If applicable, an additional column for event labels may be included.
We choose Network Flows (NetFlow) as source of the timestamped sequence of
events, with source and destination IP addresses as unique node IDs.

To convert raw traffic into an adjacency list of timestamped NetFlow events,
we utilised the NFStream framework [I]. This allows us to extract a list of

6 A. Liuliakov et al.

Table 1: Statistics of the resulting data for the days that includes attacks.

Name Events Nodes Features
Tuesday 572087 12972 61
Wednesday 597202 13595 61
Thursday 614336 13611 61
Friday 753468 13314 61

timestamped NetFlows along with 61 custom statistical 'core’ and 'postmortem’
features. Raw IP addresses are enumerated to unique IDs, and the timestamp is
set to the first appearance of the first flow’s packet. All continuous features are
scaled to the [0, 1] interval. We labeled the data according to the attacker IP,
victim IP, and time frame during which each attack was conducted, resulting in
timestamped NetFlow event lists for each working day of the experiment.

Our model requires a strict sequential order, with normal data streams oc-
curring earlier in the training phase and actual attacks appearing later in the
testing phase. To accomplish this, we modified the data as follows. Since Monday
only included normal traffic activities, we concatenated Monday’s event list with
one of the other working days (Tuesday, Wednesday, Thursday, or Friday) while
respecting the timestamps. This resulted in four temporal dynamic graphs, each
starting with Monday’s events and continuing with malicious traffic from one of
the subsequent working days.

We subtracted the largest timestamp from every event’s timestamp in both
parts of each data day-pair and added the largest timestamp from the first
part (Monday) to the second part (one of the malicious days). This eliminates
temporal discontinuity in the data (night gap between working days activity),
and results in timestamps starting at 0 and monotonically increasing up to the
end of the dataset. This modification is considered valid without significantly
affecting the data pattern, as we are interested in intraday activity rather than
intra -week, -month, or -year scales. We assume that events within days are
similarly distributed over time. Details about the data are provided in Table

In this study, we partitioned the data into train, validation, and test subsets
for each day, adhering to a consistent split criterion across all four datasets. The
train subset comprises the initial 200,000 events, while the validation subset
encompasses the subsequent 70,000 events. The remaining events constitute the
test subset. The data splitting was conducted with respect to the timeline to
ensure that the train and validation subsets contain only normal events, with all
attacks appearing only in the test set.

Experimental Setup The proposed model was implemented in Python 3.9
using the Pytorch [10] and PyG [4] packages.

The baselines LOF and IF are provided in the sckit-learn package [I1], the
vanilla TGN baseline algorithm by the PyG package example implementations.

For our model implementation we use the TGN’s encoder part from PyG,
with the following parameters: time embedding dimension 200, memory and node

One-Class Intrusion Detection with Dynamic Graphs 7

embedding dimensions both 200. The remaining parameters are chosen as they
were provided by the default model. TGN-SVDD was trained over 25 epochs.

The number of neighbors in LOF was 20, the remaining parameters default.
For IF default parameters are employed. We ran a vanilla TGN model as an
additional baseline using the default parameters provided in PyG.

4.2 Results

In this section, we present the evaluation results of our TGN-SVDD model and
the baseline models: Vanilla TGN, LOF (novelty), LOF (outlier) and IF. The
evaluation metrics, including precision, recall, F1-score and ROC AUC, are pro-
vided in the Table[2} Figures [I] and [2] illustrate the performance of our model.

We conducted the evaluation under two different scenarios. In the first sce-
nario, we used temporal event data with features as input for our TGN-SVDD
model and the baseline vanilla TGN model. In the second scenario, we set all
event-related features to 0, which is equivalent to the case without features at
all. In this scenario TGN-SVDD and vanilla TGN rely solely on the temporal
graph dynamics of the data.

The other baseline models, LOF (novelty), LOF (outlier), and Isolation For-
est, were evaluated on the exact same data, including source/destination node
IDs and timestamps, both with and without features. The LOF (novelty) model,
as a novelty detector, was trained on the training data, and inference was per-
formed on the testing data. LOF (outlier) and Isolation Forest, as outlier detec-
tors, were evaluated directly on the testing data. The contamination parameter
was computed from the data as the ratio of inliers and outliers and explicitly
passed to both models.

For LOF (novelty), LOF (outlier), and Isolation Forest, we used default in-
ference settings from the scikit-learn library. For the TGN-SVDD model and the
baseline vanilla TGN model, we applied a 0.99 percentile threshold obtained on
the training set and used this threshold to infer labels on the test set.

ROC AUC metrics require the model to output scores for inference. For LOF
(novelty), LOF (outlier), and Isolation Forest, we used local outlier factor and
Isolation Forest anomaly score as measures of data point anomaly. As TGN-
SVDD directly computes anomaly scores, we were able to compute ROC AUC
directly. For the baseline vanilla TGN model, we chose score = 1 — p, where p
is the probability of the event to occur, meaning the higher this score, the more
likely the event is an outlier.

Results are shown in the Table [2] Proposed TGN-SVDD model outperforms
all baseline models in both scenarios and on all datasets. In the scenario with
features, Isolation Forest performed remarkably close to our method in terms of
ROC AUC metric on the Wednesday dataset. LOF (novelty) for Friday showed
the second-best result, significantly outperforming other baseline models. In the
scenario without features, remarkable second-best ROC AUC results were shown
by LOF (novelty) on Friday and Isolation Forest on Monday and Thursday.

The Attack class in the CIC-IDS2017 dataset comprises multiple specific
attacks. To demonstrate the performance of our model across different Attack

8 A. Liuliakov et al.

KDE plot
Train/Validation/Test distances f1 score: 0.8814

- rormal

distance from ball center

[1 2 H a B 6 000 025 050 075 100 125 150 175
time, ms 1e7 Value of probability mass function

Fig. 1: Tuesday working hours. Illustration of TGN-SVDD performance. Left: On
the y-axis, the anomaly score is depicted as it described in the model description.
The two vertical lines imply the separation between training, validation and
testing data. The red line shows the 99th percentile from the train set as a
threshold. Right: Density estimation.

classes, we present the confusion matrix in Table [3] Given that TGN-SVDD is
a novelty detector, it only predicts "Normal’ or ’Attack’ classes for each network
event. As evident from the table, the model accurately predicts the majority of
Attacks, with the exceptions of 'Bot’ on Friday and ’Infiltration’ on Thursday.

4.3 Deeper Dive Into Data

The dataset is structured such that the majority of malicious activities originate
from a single source IP, often targeting the same destination IP - these nodes ids
are 32 and 11, respectively, in our dataset’s nodes enumeration. Upon further
investigation, it was found that while node 11 participated in numerous normal
events, node 32 was exclusively present during the testing phase, potentially
serving as a strong feature that could lead the model to a trivial solution.

To examine this potentially trivial model behavior, we modified the dataset
to include node 32 during training while mapping events with node 32 as normal.
We randomly selected 500 events from the training set with the source node 31
and created 500 additional identical events, replacing the normal source node 31
with our suspicious node 32. These 500 modified events were then injected into
the training data. If this alteration does not significantly reduce performance
or produce significantly different results, while simultaneously mapping injected
events closely to the enclosed ball centre in the training phase, our hypothesis
regarding the undesirable trivial model behavior would be refused.

As illustrated in Figure [3] (left), the model successfully learned to map in-
jected events indistinguishably from the remaining normal activities, maintaining
a good performance, as shown in Table [4

One-Class Intrusion Detection with Dynamic Graphs 9

KDE plot
Train/Validation/Test distances f1 score: 0.0698

- romal

distance from ball center

[1 2 3 a H B 000 025 050 075 100 125 150
time, ms 1e7 Value of probability mass function

Fig. 2: Thursday working hours. Illustration of TGN-SVDD performance. Left:
On the y-axis, the anomaly score is depicted as it described in the model de-
scription. The two vertical lines imply the separation between training, validation
and testing data. The red line shows the 99th percentile from the train set as a
threshold. Right: Density estimation.

Similarly to TGN-SVDD we provide visualisation of vanilla TGN in the Fig-
ure [3| (right). The results look noisy with many events assigned to a low prob-
ability. This does not allow to properly distinguish attack events from normal
ones. One possible explanation is the strong assumption over negative sampling,
which is made originally at random in the TGN paper and may lead to subop-
timal solutions. More discussions about that can be found in the article [12].

5 Conclusion

In this contribution, we presented a novel unsupervised model for intrusion de-
tection, TGN-SVDD, making explicit use of the dynamic graph based behaviour
of the data, by modelling network communications as a temporal dynamic graph.

Fig.3: Friday dataset. Left: TGN-SVDD with additional 500 events with the
node 31 as a source injected in train data and labeled with orange. Right: Vanilla
TGN with 1-p on the y-axis, where p is the probability of the event to occur.

10 A. Liuliakov et al.

Table 2: Resulting performance evaluated on several different metrics. Results
are for data with event features (left) and without (right).

with features without features

Precision Recall F1-score ROC AUC Fl-score ROC AUC

Tuesday
TGN-SVDD 0.783 1.000 0.878 0.999 0.931 0.999
LOF (novelty) 0.023 1.000 0.045 0.484 0.045 0.484
LOF (outlier) 0.044 0.044 0.044 0.615 0.044 0.615
Isolation Forest 0.000 0.000 0.000 0.760 0.000 0.701
TGN 0.000 0.000 0.000 0.690 0.000 0.173

Wednesday
TGN-SVDD 0.930 1.000 0.964 0.999 0.967 0.999
LOF (novelty) 0.072 1.000 0.134 0.354 0.134 0.354
LOF (outlier) 0.027 0.027 0.027 0.346 0.031 0.347
Isolation Forest 0.588 0.588 0.588 0.946 0.000 0.167
TGN 0.000 0.000 0.000 0.268 0.000 0.390

Thursday
TGN-SVDD 0.035 0.997 0.068 0.994 0.056 0.992
LOF (novelty) 0.005 1.000 0.011 0.209 0.011 0.209
LOF (outlier) 0.000 0.000 0.000 0.680 0.000 0.679
Isolation Forest 0.006 0.006 0.006 0.626 0.000 0.796
TGN 0.000 0.000 0.000 0.459 0.000 0.072

Friday
TGN-SVDD 0.992 0.993 0.993 0.995 0.991 0.994
LOF (novelty) 0.424 1.000 0.596 0.813 0.596 0.813
LOF (outlier) 0.291 0.291 0.291 0.449 0.244 0.411
Isolation Forest 0.237 0.237 0.237 0.222 0.006 0.005
TGN 0.000 0.000 0.000 0.613 0.000 0.295

For the evaluation, we pre-processed the public CIC-2017 dataset, which con-
sists of 4 different attack days which we treated as different datasets and various
modern attacks. We demonstrated that our method significantly outperforms
classical techniques, as well as the vanilla TGN model. We demonstrated that
our model can accurately identify the majority of specific attacks present in the
datasets, while maintaining a moderate level of false positives.

In our experiments, we investigate potential limitations of the utilised dataset
and suggest a possible remedy by including the attacker IP in the normal dataset,
making the dataset more challenging. Our proposed model, however, still obtains
high performance values as measured by our metrics. Future work includes the
evaluation of data from other domains of anomaly detection. Also, investigat-
ing a semi-supervised approach such as the Deep semi-supervised SVDD, is a
promising direction.

One-Class Intrusion Detection with Dynamic Graphs 11

Table 3: The confusion matrix for all attack classes is presented, corresponding
to the same experimental setup as previously described. To threshold the scores
from TGN-SVDD, we selected the 99th percentile from the training set.

True Class
Wednesday
Normal Golden Eye Hulk Heartbleed Slowloris Slow http test
Normal 301788 0 0 0 0 0
2 Attack 1764 2996 1 4217 3898 12538
g Friday Tuesday
—§ Normal Bot DDoS PortScan Normal ssh/ftp-Patator
'";ﬁ Normal 276697 1247 0 0 293213 0
& Attack 1471 0 44927 159126 1920 6954
Thursday
Normal Brute Force XSS SQL Injection Infiltration
Normal 287108 0 0 0 6
Attack 55184 1365 661 12 0

Table 4: Friday working hours. With additional 500 events with the node 31 as a
source in train data. In the table established TGN-SVDD performance applying
simple 99 percentile from train set on test set.

Friday Precision Recall Fl-score ROC AUC %
TGN-SVDD 0.995 0.999 0.997 0.999
References

1. Aouini, Z., Pekar, A.: Nfstream: A flexible network data analysis framework.
Computer Networks 204, 108719 (2022). https://doi.org/10.1016/j.comnet.2021.
108719, https://www.sciencedirect.com/science/article/pii/S1389128621005739

2. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based
local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference
on Management of data. pp. 93-104 (2000)

3. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and
large-scale anomaly detection using a linear one-class svm with deep learning.
Pattern Recognition 58, 121-134 (2016)

4. Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428 (2019)

5. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in
temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD inter-
national conference on knowledge discovery & data mining. pp. 1269-1278 (2019)

6. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep
learning-based network anomaly detection. Cluster Computing 22, 949-961 (2019)

https://doi.org/10.1016/j.comnet.2021.108719
https://doi.org/10.1016/j.comnet.2021.108719
https://doi.org/10.1016/j.comnet.2021.108719
https://doi.org/10.1016/j.comnet.2021.108719
https://www.sciencedirect.com/science/article/pii/S1389128621005739

12

7.

8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

A. Liuliakov et al.

Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 eighth ieee international
conference on data mining. pp. 413-422. IEEE (2008)

. Liuliakov, A., Hermes, L., Hammer, B.: Automl technologies for the identification
of sparse classification and outlier detection models. Applied Soft Computing 133,
109942 (2023)

Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection:
A review. ACM computing surveys (CSUR) 54(2), 1-38 (2021)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N.; Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32 (2019)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. the Journal of machine Learning research 12, 2825-2830 (2011)
Poursafaei, F., Huang, S., Pelrine, K., Rabbany, R.: Towards better evaluation for
dynamic link prediction (2022)

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., Bronstein, M.:
Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637 (2020)

Ruff, L., Kauffmann, J.R., Vandermeulen, R.A., Montavon, G., Samek, W., Kloft,
M., Dietterich, T.G., Miiller, K.R.: A unifying review of deep and shallow anomaly
detection. Proceedings of the IEEE 109(5), 756795 (2021)

Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A.,
Miiller, E., Kloft, M.: Deep one-class classification. In: International conference on
machine learning. pp. 4393-4402. PMLR (2018)

Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural computation 13(7),
1443-1471 (2001)

Sharafaldin, I., Lashkari, A.H., Ghorbani, A.: Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In: ICISSP (2018)

Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierar-
chical one-class network. Advances in Neural Information Processing Systems 33,
13016-13026 (2020)

Tax, D.M., Duin, R.P.: Support vector data description. Machine learning 54,
45-66 (2004)

Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: Dyrep: Learning representa-
tions over dynamic graphs. In: International conference on learning representations
(2019)

Wang, Y., Chang, Y.Y., Liu, Y., Leskovec, J., Li, P.: Inductive representa-
tion learning in temporal networks via causal anonymous walks. arXiv preprint
arXiv:2101.05974 (2021)

Wu, Y., Gu, M., Wang, L., Lin, Y., Wang, F., Yang, H.: Event2graph: Event-driven
bipartite graph for multivariate time-series anomaly detection. arXiv preprint
arXiv:2108.06783 (2021)

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., Achan, K.: Inductive representation
learning on temporal graphs. arXiv preprint arXiv:2002.07962 (2020)

	One-Class Intrusion Detection with Dynamic Graphs

