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Traditional countermeasures against security side channels in quantum key distribution (QKD)
systems often suffer from poor compatibility with deployed infrastructure, the risk of introducing
new vulnerabilities, and limited applicability to specific types of attacks. In this work, we pro-
pose an anomaly detection (AD) model based on one-class machine learning algorithms to address
these limitations. By constructing a dataset from the QKD system’s operational states, the AD
model learns the characteristics of normal behavior under secure conditions. When an attack oc-
curs, the system’s state deviates from the learned normal patterns and is identified as anomalous
by the model. Experimental results show that the AD model achieves an area under the curve
(AUC) exceeding 99%, effectively safeguarding the QKD system’s secure operation. Compared to
traditional approaches, our model can be deployed with minimal cost in existing QKD networks
without requiring additional optical or electrical components, thus avoiding the introduction of new
side channels. Furthermore, unlike multi-class machine learning algorithms, our approach does not
rely on prior knowledge of specific attack types and is potentially able to detect unknown attacks.
These advantages—generality, ease of deployment, low cost, and high accuracy—make our model a
practical and effective tool for protecting QKD systems against side-channel threats.

I. INTRODUCTION

Quantum key distribution (QKD), based on the quan-
tum mechanism, such as quantum no-cloning theo-
rem and Heisenberg’s uncertainty principle, enables the
information-theoretical security of distributing random
symmetric keys [1–4]. Compared to classical crypto-
graphic algorithms that rely on computational complex-
ity, QKD offers significant advantages in terms of secu-
rity, which have attracted widespread attention. How-
ever, in practical implementations, the physical devices
used in QKD often deviate from the idealized theoreti-
cal models. In recent years, extensive research into these
discrepancies has revealed various side channels, demon-
strating that an eavesdropper (Eve) can exploit such vul-
nerabilities to compromise the practical security of QKD
systems [5–24].

To address side channels arising from imperfections in
physical devices, researchers have explored multiple ap-
proaches to protect QKD systems from quantum hack-
ing. One such approach is the development of new
QKD protocols. For example, the measurement-device-
independent QKD (MDI QKD) protocol eliminates secu-
rity dependencies on imperfect measurement devices [25].
While MDI QKD offers higher security compared to the
decoy-state BB84 protocol [26–28], it also introduces
significantly higher implementation complexity. Impor-
tantly, since most practical QKD systems still rely on ma-
ture prepare-and-measure protocols [29–31] that remain
vulnerable to quantum attacks, it is crucial to develop
low-complexity countermeasures that can enhance their
security without changing existing infrastructures. One
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such strategy involves adding physical components to the
system—a “patching” approach designed to counter spe-
cific attacks [19, 32, 33]. While relatively easy to im-
plement, this method may inadvertently introduce new
side channels, potentially compromising the overall se-
curity of the QKD system [19, 34]. Another strategy
for enhancing security without altering existing infras-
tructures focuses on refining theoretical security models.
This involves analyzing Eve’s capabilities under specific
attacks and estimating the corresponding secure key rates
[22, 23, 32, 35–37]. By incorporating the characteristics
of known attacks into the theoretical framework, these
models aim to quantify potential key leakage. However,
such security models are inherently limited: they cannot
address unknown threats, and for certain practical at-
tacks—such as the calibration attack [9] or the muted at-
tack [38]—no effective theoretical descriptions currently
exist.

These limitations highlight the need for a more general
defense capability against a wide range of attack strate-
gies, while still minimizing changes to existing infras-
tructures. To address this challenge, this work proposes
an intelligent countermeasure for QKD systems based on
machine learning—an anomaly detection (AD). In partic-
ular, we employ Deep Support Vector Data Description
(Deep SVDD) [39], a one-class classification algorithm,
to achieve real-time monitoring of QKD systems and en-
sure their operation in a secure environment. Our AD
model is trained under unsupervised conditions, which
greatly simplifies dataset preparation. For instance, in
our experiment, the parameters from the calibration and
post-processing stages can be directly extracted during
the secure operation of the QKD system to construct the
training dataset. We constructed a test set by combining
QKD system parameters obtained under both secure con-
ditions and under attacks (specifically, the calibration at-
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tack [9] and the muted attack [38]) in a 1:1 ratio. Exper-
imental results demonstrate that Deep SVDD achieves
an area under the receiver operating characteristic curve
(AUC) exceeding 99%. This indicates that the AD model
can effectively detect anomalies using only QKD system
parameters.

Our AD model achieves anomaly detection solely by
analyzing parameters generated during system operation,
requiring no additional physical hardware. This not only
reduces implementation cost, but also avoids introducing
new side channels. Thus, the AD model is particularly
well-suited for deployment in existing QKD systems, as it
imposes no changes to the underlying protocol or hard-
ware. Furthermore, unlike multi-class classification ap-
proaches [40], which attempt to distinguish between spe-
cific attack types, our one-class AD model is designed to
flag any behavior that causes deviations in system param-
eters, regardless of the attack’s nature. This enables the
model could be able to detect even previously unknown
or unmodeled attack strategies, enhancing the robust-
ness and security performance of QKD system. Impor-
tantly, our experimental results show that the anomaly
detection performance of the AD model depends on the
richness of the training dataset. By feeding the model
with more diverse and representative training data, the
underlying neural network can learn a broader range of
system behavior patterns, thereby enhancing its anomaly
detection capability. Overall, our approach offers advan-
tages in generality, simplicity, low cost, and high accu-
racy, paving the way for more robust and scalable QKD
system security in future deployments.

The paper is structured as follows. Section II intro-
duces the construction of AD model, including the neu-
ral network architecture and dataset preparation. Sec-
tion III presents the training process and testing results
of the model. In Sec. IV, we provide a comparative
analysis between our AD approach and traditional coun-
termeasure strategies, as well as with machine-learning-
based multi-class classification models. Finally, Sec. V
concludes the study.

II. ANOMALY DETECTION MODEL DESIGN
AND DATASET CONSTRUCTION

In this section, we present the design of the AD model
and the construction of the corresponding dataset. The
dataset is built by capturing the operational states of the
QKD system. Parameters collected under secure condi-
tions are treated as normal data, while those recorded
during attacks are labeled as anomalies. Importantly,
the neural network is trained exclusively on the normal
dataset to learn representative features—without relying
on any anomalous samples. These features are then used
by the Deep SVDD algorithm to construct a hypersphere
that encloses the distribution of normal data, such that
anomalous inputs fall outside the hypersphere and can
be effectively detected. The overall concept of the AD

model is illustrated in Fig. 1.

Input Feature Learning Output

R

QKD system states
  under attack and
   under no attack

FIG. 1: The conceptual diagram of the AD model. Hol-
low circles represent the QKD system’s states under se-
cure conditions, while solid squares denote states gener-
ated under attack. These state parameters are extracted
to form the dataset for anomaly detection. During train-
ing, the neural network learns only from normal data to
construct a hypersphere that encloses their distribution.
Any anomalous data falling outside this hypersphere is
identified as abnormal, thus enabling effective anomaly
detection.

A. Deep Support Vector Data Description and
Neural Network Modeling

To achieve general and real-time monitoring of QKD
systems, we adopt the AD model based on Deep
SVDD [39], a deep one-class classification model. The
core idea of Deep SVDD is to extend traditional
SVDD [41] by integrating it with deep neural networks,
thereby enabling the learning of expressive feature rep-
resentations from structured or high-dimensional inputs.
Unlike multi-class classification approaches that require
labeled data from various attack types, Deep SVDD re-
quires only data collected under normal operating condi-
tions for training, without any prior knowledge of attack
behaviors. This makes it especially suitable for QKD
scenarios, where anomalous data (e.g., from new or rare
attacks) may be unavailable during training. During de-
ployment, the model learns a compact feature space for
normal data and identifies any significant deviations as
anomalies, regardless of the specific nature of the under-
lying attack. This generalization ability allows the model
to detect a broad range of potential threats—including
previously unknown attacks—by solely analyzing the op-
erational parameters of a running QKD system. A de-
tailed explanation of both SVDD and Deep SVDD is pro-
vided in Appendix A.
In our AD model, we consider that only a small number

of parameters can be extracted from the QKD system.
Therefore, we adopt the multilayer perceptron (MLP)
architecture as the backbone network for Deep SVDD,
due to its simplicity, low computational cost, and ef-
fectiveness in small-scale feature learning. To fit our
dataset, we adjust the input layer to match the dimen-
sionality of the QKD parameter vector and configure hid-
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den layers to extract representative features from nor-
mal data. These features are then used to construct a
hypersphere enclosing the distribution of normal sam-
ples. Leveraging the representation learning capability
of MLP, the customized Deep SVDD model transforms
normal QKD data into compact, informative latent rep-
resentations. Through forward propagation, each net-
work layer encodes progressively higher-level abstractions
of the QKD parameter space. The model is trained using
the Deep SVDD objective, which minimizes the volume
of a hypersphere enclosing the latent features of normal
data—ensuring that the network captures the typical be-
havior of secure QKD operation.

Training is performed via backpropagation, iteratively
updating the network weights to reduce the hypersphere
loss. As the model converges, it forms a reliable bound-
ary around the normal data distribution. At inference
time, any input whose representation falls outside this
hypersphere is flagged as anomalous, indicating a poten-
tial deviation from secure operation. This design enables
effective anomaly detection without relying on labeled
attack samples or prior knowledge of the attack method,
making it well-suited for real-world QKD systems.

B. Dataset Construction for Anomaly Detection

In this subsection, we describe the construction of the
datasets used to train and evaluate the AD model. The
guiding principle is that the parameters recorded during
the operation of the QKD system should faithfully re-
flect its internal state and behavior. By capturing these
operational characteristics, the dataset enables the AD
model to effectively detect anomalies introduced by ma-
licious attacks. From the perspective of Eve, we consider
how different attack strategies affect the QKD system
and accordingly propose two methods for constructing
datasets based on the nature of these attacks. In the
first type of active attack, Eve manipulates the system
by modifying its configuration parameters. For instance,
Eve may shift the timing of detector gate signals through
the calibration attack [9], change the bias voltage of in-
tensity modulators via the induced-photorefraction at-
tack [42–44]. To capture the effects of such intrusions, the
QKD system can be equipped with monitoring interfaces
that continuously record these configuration parameters
in real time, forming a dataset that reflects system behav-
ior under various conditions. In the second type of attack,
Eve may not alter any system configuration parameters
directly. This type of attacks, such as, the muted at-
tack [38] and the superlinear attack [45], manipulate the
single-photon detector (SPD) responses without chang-
ing the system’s internal settings. In these cases, we focus
on the SPD’s output behavior—particularly the timing
of detection events—and use the associated timestamps
to construct a dataset that captures anomalies induced
by this class of attacks.

For the construction of datasets based on QKD sys-

tem configuration parameters, we extract a wide range
of relevant information from as many stages of the QKD
operation as possible. As a concrete example, we consider
a discrete-variable QKD system employing polarization
encoding. The QKD process can be broadly divided into
three stages: the calibration stage, the raw key exchange
stage, and the post-processing stage. During the cal-
ibration stage, the receiver (Bob) continuously adjusts
the timing of the gate signals for his SPDs to synchro-
nize with the photon pulses sent by the transmitter (Al-
ice). Simultaneously, Bob tunes the internal polarization
controller (PC) to ensure proper alignment with Alice’s
polarization encoding. Both the gate timing values and
the PC settings are recorded as part of the AD dataset
during this stage. In the raw key exchange stage, Al-
ice and Bob perform quantum signal transmission and
reception to generate raw keys. No system configura-
tion parameters are typically adjusted during this phase.
In the post-processing stage, Alice and Bob perform a
series of statistical evaluations. These include the num-
ber of sifted keys, the ratio of signal detections to decoy
state emissions, the ratio of signal to decoy state detec-
tions, the detection efficiencies corresponding to signal,
decoy, and vacuum states, as well as the quantum bit
error rates (QBERs) for each polarization basis and the
overall QBER. During error correction and privacy am-
plification, additional parameters—such as privacy am-
plification factors—are also generated. Since these sta-
tistical quantities objectively reflect the operational state
of the QKD system, they are likewise included in the AD
dataset.

To construct the dataset for attacks that do not alter
system configuration parameters, we extract the times-
tamps of SPD responses as input data for anomaly de-
tection. Specifically, in our experimental setup, the
SPDs are connected to a time-to-digital converter (TDC),
which records the arrival time of each detection event.
The TDC operates with a 100 ns cycle, capturing the
precise time at which each SPD response occurs. As a
result, all data in this dataset represent detection times-
tamps, with values ranging from 0 to 100 ns. Unlike the
previous dataset based on system configuration and sta-
tistical parameters, this dataset is directly constructed
from individual SPD counts, allowing the feature dimen-
sion to scale with the number of detection events. In
our experiments, we generated datasets with feature di-
mensions corresponding to 100, 225, and 400 detection
events, respectively. These datasets were then used to
train and test the anomaly detection model. Based on
the performance of the AD model, we further identified
the optimal feature dimension for this type of dataset.

For normal data, both datasets are generated by op-
erating the QKD system in a secure environment. We
then select the calibration attack [9] and the muted at-
tack [38] to generate anomalous samples because these
attacks currently cannot be effectively mitigated through
adding physical components or refining theoretical secu-
rity model. Moreover, experimental results have shown
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that both attacks are capable of obtaining sifted keys
from the QKD system, thereby severely compromising its
security. Considering the nature of these two attacks, the
anomalous data for the first dataset are collected under
the calibration attack, while those for the second dataset
are collected under the muted attack. During the train-
ing of the AD model, only normal data are used, whereas
the testing phase involves datasets composed of normal
and anomalous samples in a 1:1 ratio.

III. MODEL TRAINING AND PERFORMANCE
EVALUATION

As described in Sec. II, we constructed two types of
datasets. Accordingly, the same AD model was trained
and evaluated separately on each dataset. The training
was performed using identical hyperparameter settings,
as summarized in Table I. To evaluate the model’s per-
formance in detecting anomalies, we used the AUC as
the evaluation metric [39, 46]. A detailed explanation of
the AUC is provided in Appendix B.

TABLE I: Training hyperparameters for the AD model.

Optimizer Learning Rate Batch Size Epochs
Adam 0.0001 128 150

We first train and evaluate the AD model using a
dataset consisting of configuration parameters extracted
from the calibration and post-processing stages of the
QKD system. To mitigate the influence of experimen-
tal randomness, the trained AD model is independently
tested on different test sets 100 times. The resulting AUC
values are shown in Fig. 2. Across these 100 tests, the
average AUC reached 99.03%, with the minimum value
still exceeding 92%. These results demonstrate that the
AD model, trained solely on parameters collected under
normal conditions, can effectively learn the characteris-
tics of legitimate system behavior. When subjected to
attacks that alter system parameters, such as the cali-
bration attack, the model achieves an anomaly detection
rate exceeding 99%, thereby enabling reliable identifica-
tion of Eve’s presence.

As discussed in Sec. II, we constructed the dataset us-
ing the timestamps of SPD counts and evaluated the
anomaly detection capability of the AD model against
the muted attack. Similarly, to ensure the robustness of
the results, the trained model was evaluated 100 times,
each with a different testing set. The resulting AUC
values are shown in Fig. 3 and Table II. It is demon-
strated that, the anomaly detection performance of the
AD model improves with the number of SPD counts used
in the dataset. When the detection events reach 400, the
average AUC value over 100 independent tests is 99.03%,
indicating a high detection accuracy. Moreover, the vari-
ance is only 1.09, demonstrating the stability of the AD
model.
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FIG. 2: AUC results obtained from 100 independent tests
using the configuration parameters dataset. The dataset
is constructed from the parameters of the calibration and
post-processing stages, while the anomalous data were
generated under the calibration attack. The black dots
represent the actual AUC values obtained from each test,
and the red dashed line indicates the average AUC across
all 100 runs.
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FIG. 3: AUC results obtained from 100 independent
tests using the dataset of SPD response timestamps. The
dataset is constructed from the timestamps correspond-
ing to SPD counts, with the anomalous data generated
under the muted attack. The black square dots repre-
sent the AUC values obtained by testing the AD model
trained on a dataset constructed using 100 SPD counts,
while the black dashed line indicates the average AUC
across the 100 tests. Similarly, the red circular dots and
the green triangular dots (along with their corresponding
dashed lines) represent the AUC values (and their aver-
ages across the 100 tests) when the dataset is constructed
using 225 and 400 SPD counts, respectively.
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TABLE II: The mean and variance of test AUC for
feature dimensions of 100, 225, and 400.

Feature dimension
Statistics 100 225 400
Mean(%) 93.35 95.65 99.03
Variance 8.07 12.45 1.09

To further investigate why a larger data sample size
enhances anomaly detection performance, we analyze the
structure of the dataset derived from TDC timestamps.
Each 100 ns cycle is divided into bins of 0.1 ns, and statis-
tical histograms of overlapping detection events are gen-
erated for sample sizes of 100, 225, and 400 counts, as
shown in Fig. 4. For comparison, we also present a his-
togram based on 4000 counts. From Fig. 4, we observe
that under attack-free conditions, SPD responses exhibit
an approximately uniform distribution, whereas under
the muted attack, the responses become more concen-
trated in specific regions as explained in Ref. [38]. When
the number of detection events is small [e.g., Fig. 4(a)],
the distribution difference between normal and anoma-
lous data is not particularly pronounced. However, as
the sample size increases, the discrepancy in the tem-
poral distribution becomes increasingly evident. This
divergence allows the AD model to extract more dis-
criminative features, thereby improving its ability to
detect anomalies. In this context, the feature dimen-
sion—determined by the number of detection events—is
positively correlated with detection performance. Never-
theless, as the AD model already achieves an AUC above
99% with low variance at 400 detection events, further in-
creasing the feature dimension would significantly raise
the complexity of data collection and the computational
cost of model training and inference. Therefore, we adopt
400 detection events as the input size for our AD model,
balancing detection accuracy with resource efficiency.

Through training and testing experiments on the AD
model using two different datasets, it is demonstrated
that the AD model can achieve excellent anomaly detec-
tion performance by training solely on datasets gener-
ated under secure conditions in the QKD system. The
average AUC values obtained over multiple tests exceed
99%, indicating that the ADmodel has effectively learned
the characteristics of normal QKD system. When Eve
launches an active attack, the AD model can promptly
and accurately detect the anomaly, thereby helping to
guard the practical security of the QKD system.

IV. DISCUSSION

In this section, we present a comparative analysis be-
tween the proposed ADmodel and conventional methods,
as well as a comparison with strategies based on multi-
class classification approaches.

Ensuring the practical security of existing QKD infras-
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FIG. 4: Timestamp distributions under different num-
bers of detection events. (a)–(d) show the histogram
of SPD timestamps within a 100 ns cycle, using a bin
size of 0.1 ns, for total detection counts of 100, 225, 400,
and 4000, respectively. The black histograms represent
data collected under secure conditions, while the red his-
tograms correspond to data collected under muted at-
tack.

tructures is essential. Unlike approaches that require the
design and deployment of new QKD protocols, the AD
method proposed here operates entirely within existing
systems and requires no additional optical or electrical
hardware. By extracting operational parameters directly
from deployed QKD systems, our model enables effec-
tive detection of anomalous behavior, helping to main-
tain system security in real time. Furthermore, since our
method leverages internally generated QKD data rather
than relying on specific implementation details, it pro-
vides strong portability and general applicability across
a wide range of QKD architectures.

Adding physical devices to defend against attacks is
a common “patching” strategy in QKD system design.
Such countermeasures are typically tailored to specific at-
tacks. However, while potentially effective against known
threats, this approach increases the physical complexity
and cost of QKD system implementation. Moreover, the
introduction of additional hardware components may it-
self create new, unforeseen side channels, thereby com-
promising the practical security of the system. For in-
stance, a countermeasure designed to detect the intensity
of injected light—intended to prevent detector blinding
attacks—was experimentally shown to be ineffective [34].
By contrast, our proposed AD model avoids these draw-
backs. It enables legitimate users to monitor the oper-
ational status of the QKD system in real time for signs
of abnormal behavior, without requiring any additional
optical or electrical hardware. As a result, it does not
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introduce new potential vulnerabilities that could be ex-
ploited by Eve. Furthermore, since the AD module is
deployed within the trusted environment (e.g., inside the
room of the legitimate parties), and in QKD, Eve is not
permitted to access this area physically, the security of
the AD model can be reasonably assumed.

Another line of countermeasure involves refining the
theoretical security models of QKD systems. This ap-
proach focuses on analyzing Eve’s ability to compromise
the key through specific attacks and estimating the corre-
sponding secure key rate. However, this approach has in-
herent limitations. It relies on prior knowledge of specific
attack mechanisms and explicitly incorporates the result-
ing information leakage into the security analysis. As a
result, it offers no protection against unknown or yet-to-
be-modeled attacks. For certain types of attacks—such
as the calibration attack and muted attack used in this
work to evaluate the AD model—there currently exist no
effective theoretical modeling tools. In contrast, our pro-
posed AD model does not rely on a priori modeling of
specific attack strategies. Instead, it identifies anomalies
by detecting deviations in QKD system parameters, re-
gardless of the underlying attack mechanism. This makes
the AD model not only effective against known and mod-
eled attacks, but also potentially capable of detecting
previously unknown or uncharacterized threats.

Similarly based on machine learning, our method
adopts a one-class anomaly detection approach rather
than a multi-class classification algorithm. This choice is
motivated by the fundamental principle that the primary
objective of intelligent countermeasure in QKD systems
is to detect the presence of attacks, rather than to iden-
tify or classify specific attack types. While multi-class
models can classify known types of attacks present in the
training dataset, they are ineffective against previously
unobserved attacks. In contrast, our AD model is specif-
ically designed with this limitation in mind. It does not
attempt to distinguish the type of attack but instead flags
any behavior that causes deviations in the system’s op-
erational parameters as anomalous. This design ensures
that the AD model possesses a degree of generalization,
enabling it to detect even unknown attack strategies.

Moreover, our AD framework can be trained in an un-
supervised manner, which greatly simplifies data prepa-
ration. For example, in practical experiments, raw data
such as time-stamped detector counts can be directly
used to construct the dataset without requiring manual
labeling or attack classification. The detection capability
of our AD model is closely linked to the richness and di-
versity of the training data. By feeding the model with a
more comprehensive dataset, the underlying neural net-
work can learn a broader and more nuanced representa-
tion of the system’s normal behavior, thereby enhancing
its ability to detect anomalies. This indicates that the
model’s detection performance is both scalable and de-

pendent on the quality of the training dataset. Therefore,
the design of a dataset that comprehensively captures the
characteristics of QKD system parameters is essential for
the effective and robust deployment of the AD model.

V. CONCLUSION

This paper proposes a machine learning-based AD
method to achieve real-time monitoring of QKD system
parameters. By building an AD model based on Deep
SVDD, we guard that the QKD system operates under
secure conditions. The datasets used for model training
and evaluation are constructed from parameters recorded
during the QKD system’s operational process, including
system configuration parameters and detector response
timestamps. The training set exclusively consists of data
collected when the QKD system operates securely. For
testing, we generate a balanced dataset (1:1 ratio) com-
bining data from both secure and attacked conditions.
Two classical attack strategies — the calibration attack
and the muted attack — are used to produce anomalous
data in the test set. Testing results show that it can
achieve an AUC of up to 99.03%, indicating a high capa-
bility to detect the presence of attacks. Our AD approach
offers generality, simplicity, low cost, and high accuracy,
making it a promising solution for ensuring the practical
security of QKD systems and providing valuable insights
for the design of future QKD architectures.
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Appendix A: Support Vector Data Description and
Deep Support Vector Data Description

Our AD model is based on SVDD and Deep SVDD
proposed in Ref. [41] and Ref. [39]. To make our paper
self-contained, we present the main results from Ref. [41]
and Ref. [39] in this section.
Traditional SVDD is a kernel-based method that maps

input data from the original feature space into a high-
dimensional feature space via a feature mapping func-
tion [41]. In this space, SVDD aims to find the smallest
hypersphere, with center c ∈ Fk and radius R > 0, that
encloses most of the normal data points. Data points
that lie outside the hypersphere are considered anoma-
lies. The objective function is formulated as:
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min
R,c,ξ

R2 +
1

νn

∑
i

ξi s.t. ∥ϕk(xi)− c∥2Fk
≤ R2 + ξi, ξi ≥ 0, ∀i (A1)

Here, the slack variables ξi > 0 allow for a soft boundary,
and the hyperparameter ν ∈ (0, 1] controls the trade-off
between the volume of the hypersphere and the penalty
for outliers. Points satisfying ∥ϕk(xi) − c∥2Fk

> R2 are
considered anomalous.

However, traditional SVDD heavily relies on the choice
of kernel functions, making it difficult to capture the in-
trinsic structure and features of complex nonlinear data.
In addition, the storage and computational complexity
of the kernel matrix is O(n2), which limits its scalabil-
ity to large datasets. Moreover, the hypersphere’s cen-
ter and radius typically need to be predefined, which re-
duces the model’s robustness to shifts in the data dis-
tribution [47, 48]. The Deep SVDD model differs from
traditional SVDD by replacing the kernel function map-
ping with a deep neural network [39]. It directly learns
nonlinear features in the original input space, enabling
automatic learning of hierarchical and abstract represen-

tations of the data. This forms an end-to-end deep one-
class classification framework that can more effectively
distinguish between normal and abnormal data.

In the following, we present the main principles of Deep
SVDD as introduced in Ref. [39]. For some input space
X ⊂ Rd and output space F ⊂ Rp, let ϕ(·;W) : X → F
be a neural network with L ∈ N hidden layers and a
set of weights W = {W1, . . . ,WL}, where Wℓ are the
weights of layer ℓ ∈ {1, . . . , L}. That is, ϕ(x;W) ∈ F is
the feature representation of x ∈ X given by the network
ϕ with parameters W. The aim of Deep SVDD is to
jointly learn the network parametersW while minimizing
the volume of a data-enclosing hypersphere in the output
space F , characterized by a radius R > 0 and center
c ∈ F , which is assumed to be fixed for now. Given some
training data Dn = {x1, . . . ,xn} ⊂ X , the soft-boundary
Deep SVDD objective is:

min
R,W

R2 +
1

νn

n∑
i=1

max
{
0, ∥ϕ(xi;W)− c∥2 −R2

}
+

λ

2

L∑
ℓ=1

∥∥Wℓ
∥∥2
F

(A2)

The first term minimizes the volume of the hypersphere,
while the second term penalizes data points that lie out-
side the hypersphere after passing through the network.
The hyperparameter ν ∈ (0, 1] controls the trade-off be-
tween the hypersphere volume and the violation of its
boundary, allowing some points to be mapped outside
the hypersphere. The final term is a weight decay regu-
larizer for the network parameters. This objective func-
tion is suitable for training scenarios where a small num-
ber of normal samples may lie outside the hypersphere
due to feature fluctuations, making it more applicable to
datasets that may contain slight anomalies.

Appendix B: The Area Under the Receiver
Operating Characteristic Curve and Its Calculation

In classification tasks within machine learning, predic-
tive models typically output numerical values represent-
ing prediction scores or estimated probabilities that a
sample belongs to a particular class. For one-class clas-
sification, a threshold must be predetermined to make
binary decisions: if a sample’s score exceeds this thresh-
old, it is classified as normal; otherwise, it is labeled
as anomalous. It is evident that the choice of thresh-
old directly affects the classification results and, conse-
quently, alters the composition of the confusion matrix,

which records the relationship between predicted labels
and ground truth.
The receiver operating characteristic curve demon-

strates the performance of a classifier by systematically
depicting the relationship between the true positive rate
(TPR) and the false positive rate (FPR) under different
thresholds. The formulas for TPR and FPR are given as
follows:

TPR =
TP

TP + FN
(B1)

FPR =
FP

FP + TN
(B2)

The meanings of TP, FN, FP, and TN are shown in Ta-
ble III.

TABLE III: Confusion matrix of classification results.

Predicted
Actual Positive Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

The AUC represents the area under the receiver op-
erating characteristic curve and provides a quantitative
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measure of the overall performance of the classifier. It is
defined as:

AUC =

∫ 1

0

TPR(FPR) dFPR (B3)

The AUC is fundamentally a probabilistic measure. It
represents the likelihood that, when randomly selecting
one normal and one anomalous sample, the classifier as-
signs a higher score to the normal sample than to the
anomalous one. From this definition, a higher AUC value
implies that the classifier is more capable of distinguish-
ing between normal and anomalous samples, thereby in-
dicating better classification performance.

The AUC is particularly suitable for imbalanced

datasets, as it is insensitive to the ratio of normal to
anomalous samples. Moreover, the AUC provides an in-
tuitive and interpretable metric to evaluate the classifier’s
discriminative power between the two classes. An AUC
value of 1 indicates that there exists at least one thresh-
old at which the classifier can perfectly separate all nor-
mal and anomalous samples—an ideal case that is rarely
achieved in real-world scenarios. When the AUC lies be-
tween 0.5 and 1, the classifier performs better than ran-
dom guessing, with performance improving as the value
approaches 1. Conversely, an AUC below 0.5 suggests
that the classifier performs worse than random guessing;
however, in such cases, inverting the prediction decisions
can result in performance better than chance.
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