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Abstract—Recent advancements in money laundering detection
have demonstrated the potential of using graph neural networks
to capture laundering patterns accurately. However, existing
models are not explicitly designed to detect the diverse patterns
of off-chain cryptocurrency money laundering. Neglecting any
laundering pattern introduces critical detection gaps, as each
pattern reflects unique transactional structures that facilitate
the obfuscation of illicit fund origins and movements. Failure
to account for these patterns may result in under-detection
or omission of specific laundering activities, diminishing model
accuracy and allowing schemes to bypass detection. To address
this gap, we propose the MPOCryptoML model to effectively
detect multiple laundering patterns in cryptocurrency transac-
tions. MPOCryptoML includes the development of a multi-source
Personalized PageRank algorithm to identify random laundering
patterns. Additionally, we introduce two novel algorithms by
analyzing the timestamp and weight of transactions in high-
volume financial networks to detect various money laundering
structures, including fan-in, fan-out, bipartite, gather-scatter, and
stack patterns. We further examine correlations between these
patterns using a logistic regression model. An anomaly score
function integrates results from each module to rank accounts
by anomaly score, systematically identifying high-risk accounts.
Extensive experiments on public datasets including Elliptic++,
Ethereum fraud detection, and Wormhole transaction datasets
validate the efficacy and efficiency of MPOCryptoML. Results
show consistent performance gains, with improvements up to
9.13% in precision, up to 10.16% in recall, up to 7.63% in F1-
score, and up to 10.19% in accuracy.

Index Terms—Off-chain crypto money laundering, multi-
pattern detection, graph anomaly detection.

I. INTRODUCTION

CRYPTO money laundering involves disguising the ori-
gins of illegally obtained cryptocurrency to make it

appear legitimate [1]. This process leverages complex trans-
action chains and obfuscation strategies, often exploiting
the decentralized, borderless, and pseudonymous nature of
blockchain technologies [2]. As cryptocurrency adoption
accelerates across financial ecosystems, so does its abuse
for illicit purposes, including money laundering, fraud, and
sanctions evasion. The global financial and legal implications
are profound, necessitating advanced approaches to track and
disrupt these activities at scale. A typical example of a
crypto money laundering process is illustrated in Figure 2,
where layered transactions obscure the flow from source to
destination addresses.

While crypto laundering retains the classical stages of
placement, layering, and integration, it departs significantly
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Fig. 1. An illustration of cryptocurrency money laundering, which is a series
of digital wallet transactions resulting in a complex, multi-pattern subgraph.
Sources on the left are used to initiate the money laundering process, which
is then carried out through a series of digital wallet stages in the middle
to conceal the money’s origin and destinations on the right. The amount of
money transferred is indicated by the color of the edge.

from traditional bank-based laundering in both execution
and traceability. Traditional anti money laundering (AML)
frameworks rely heavily on centralized oversight, customer
verification, and transaction monitoring, typically confined
to one jurisdiction. In contrast, cryptocurrency networks are
decentralized, span multiple regulatory zones, and operate
pseudonymously [3]. Furthermore, crypto transactions can
be automated and executed at scale using scripts and bots,
with minimal barriers to entry. These features fundamentally
undermine the effectiveness of conventional banking AML
mechanisms, rendering many legacy solutions obsolete in
crypto contexts.

Crypto transactions can occur both “on-chain” (visible and
verifiable on the blockchain ledger) and “off-chain” (occurring
outside the blockchain, often through centralized exchanges,
peer-to-peer platforms, or fiat conversion mechanisms). While
“on-chain” activities provide transparency and immutability,
“off-chain” transactions remain opaque, fragmented, and ju-
risdictionally complex. “Off-chain” laundering lacks standard-
ized monitoring, making it harder to detect than its “on-chain”
counterpart. Due to these unique characteristics, “off-chain”
laundering often becomes the gateway for illicit crypto assets
to re-enter the legitimate financial system.

Existing crypto AML tools primarily target “on-chain”
activities using blockchain analysis, anomaly detection, and
graph-based learning models [4], [5]. However, these meth-
ods struggle with obfuscation techniques, lack visibility into
centralized platforms, and are largely ineffective against laun-
dering strategies that span “off-chain” domains. Conventional
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models often depend on static laundering patterns or trans-
action thresholds and fail to adapt to evolving laundering
tactics, especially in environments without direct blockchain
traceability. Moreover, most prior works focus on wallet
security [6], protocol-level vulnerabilities, or generalized fraud
detection without addressing the nuanced nature of “off-chain”
laundering.

To address these challenges, we propose MPOCryptoML,
a novel “off-chain” money laundering detection framework.
Our approach models laundering behaviors as multi-source
heterogeneous graphs and applies a multi-stage detection
architecture. It begins by using a multi-source Personalized
PageRank (PPR) algorithm to trace random laundering flows.
Then, it applies temporal, structural, and transactional features
captured via a Timestamp algorithm, a Weight algorithm, and a
Logistic Regression model to identify suspicious patterns such
as fan-in/fan-out, bipartite, stack, and gather-scatter. Lastly,
an anomaly scoring function aggregates and ranks entities by
laundering likelihood.

This paper makes the following contributions:
• We present the first end-to-end method, MPOCryptoML,

tailored for identifying multiple laundering patterns in
“off-chain” cryptocurrency laundering, bridging a critical
research gap.

• We develop a multi-source Personalized PageRank (PPR)
algorithm that captures hidden and random laundering
paths in cross-platform transaction graphs.

• We introduce a multi-pattern laundering detection algo-
rithm capable of identifying complex transaction patterns
such as fan-in/fan-out, bipartite, gather-scatter, and stack
formations.

• We design a novel anomaly score function for ranking
laundering suspects based on multiple behavioral and
topological features in graph space.

• We demonstrate the scalability and effectiveness of our
approach on real-world datasets from Ethereum fraud
detection, Wormhole, and Elliptic++, achieving signifi-
cant improvements of up to 9.13% in precision, 10.16%
in recall, 7.63% in F1-score, and 10.19% in accuracy,
compared to seven state-of-the-art baselines.

The rest of this paper is structured as follows: Section II
provides an extensive review of related works, while Sec-
tion III covers preliminaries on “off-chain” crypto money
laundering workflow and patterns. Section IV introduces the
problem formulation, followed by Section V, which details
MPOCryptoML architecture. Section VI presents the experi-
ments, results, and an ablation study to evaluate the model’s
performance. Section VII discusses the application scenarios.
Finally, Section VIII concludes the paper with key insights
and future directions.

II. RELATED WORK

In this section, we review various methods for detecting
anomalies and outliers, as well as identifying patterns of
money laundering.
Anomaly Detection Approaches: Anomaly detection aims to
identify data instances that deviate significantly from estab-
lished normal patterns. Given the scarcity of labeled data in

real-world scenarios, unsupervised and semi-supervised meth-
ods are widely employed. Unsupervised techniques encompass
a range of strategies, each based on different assumptions
about the nature of anomalies. Isolation-based methods (e.g.,
Isolation Forest [7]) detect anomalies by recursively parti-
tioning data and isolating points that require fewer splits,
assuming that anomalies are few and different. Density-based
methods (e.g., Local Outlier Factor [8]) consider instances in
sparse regions as anomalies, relying on the assumption that
normal points lie in dense clusters. Distance-based methods
(e.g., Deep SVDD [9]) measure how far a point deviates
from others or a learned center, identifying distant points as
anomalies. Probability-based approaches (e.g., ECOD [10])
model the underlying data distribution and flag instances
with low probability density as outliers. Reconstruction-based
methods (e.g., Deep Autoencoding Gaussian Mixture Model
[11]) train models to reconstruct normal instances accurately,
and instances with high reconstruction error are treated as
anomalies. Despite their flexibility, these unsupervised meth-
ods often suffer from high false positive rates due to the
absence of ground truth and variability in real-world data.

To address these limitations, semi-supervised methods have
emerged as a promising alternative by incorporating limited
labeled data to guide the anomaly detection process. For
example, positive-unlabeled (PU) learning [12], [13] assumes
that labeled anomalies are rare and attempts to identify outliers
from a large pool of unlabeled data, though it often relies
on assumptions (e.g., uniformity of anomalies) that may not
hold in practice. GAN-based techniques [14], [15] learn to
distinguish real data from data generated by a generative
adversarial network, with anomalies detected based on the
discrepancy. Notably, PIAWAL [15] enhances this by intro-
ducing weighted adversarial learning to amplify anomalous
signal strength. Other approaches, such as MACE [16], utilize
spectral representations of transaction behavior, enabling effi-
cient and robust anomaly detection through frequency-domain
feature extraction.
Anti money Laundering approaches (AML): Machine learn-
ing algorithms are also employed for the detection of money
laundering activities. In [17], Support Vector Machines (SVM)
were utilized to process large datasets, achieving higher accu-
racy. The authors of [18] applied fuzzy matching to identify
subgraphs containing suspicious accounts. In [19], the authors
determined the involvement of capital flow in ML activities
using Radial Basis Function (RBF) neural networks calculated
over time. Paula et al. [20] demonstrated some success in
using deep neural networks for this purpose. However, these
algorithms generally detect ML activities in a supervised
manner, which can be problematic due to imbalanced labels
and limited adaptability. Moreover, ML detection is often an
adversarial task, and deep models may lack robustness when
facing adversarial attacks.

Graph-based models are particularly effective in detecting
complex and non-obvious laundering patterns by capturing
structural and temporal relationships between entities. These
models typically represent entities (e.g., accounts, addresses)
as nodes and interactions (e.g., transactions, fund transfers)
as edges, enabling the detection of anomalous substructures
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within the graph. FlowScope [21] models financial transactions
as directed graphs and applies flow tracking to trace the
movement of funds across accounts, identifying suspicious
routing behaviors indicative of layering stages in money
laundering. DiGA [22] leverages graph mining techniques to
extract subgraphs with characteristics typical of anti-money
laundering (AML) scenarios, such as fan-in/fan-out or circu-
lar patterns, which are often manually curated in traditional
systems. AMAP [23] utilizes attributed heterogeneous graphs
to detect illicit sub-networks by learning node embeddings that
reflect both structural roles and attribute similarities, enabling
the detection of laundering patterns involving identity obfus-
cation or account reuse. MoNLAD [3] integrates real-time
transaction streams into a dynamic graph model and applies
temporal anomaly detection to flag accounts that suddenly
exhibit behaviors inconsistent with their historical profile.

While traditional graph-based AML models demonstrate
strong performance in capturing relational structures, they
are primarily designed for regulated banking systems and
face limitations when applied to decentralized, large-scale
cryptocurrency environments. To address this gap, several
graph-based methods have been proposed specifically for
cryptocurrency anti-money laundering (AML). ComGA [24]
integrates deep multi-layer perceptrons (MLPs) with graph
neural networks (GNNs) to learn node representations that
capture both transaction features and structural context in
crypto networks. AEGIS [25] employs adversarial learning
to detect anomalies by modeling node behaviors under dis-
tributional shifts, but its application is hindered by high com-
putational costs in large transaction graphs. Clustering-based
approaches, such as DeepFD [26] and semi-GCN [27], utilize
GNN embeddings to group similar nodes and detect outliers.
However, these methods struggle with defining clear cluster
boundaries in highly dynamic and noisy crypto networks,
often resulting in elevated false positive rates. Despite these
advancements, no existing method has demonstrated robust
and scalable detection of crypto money laundering patterns in
real-world, high-volume blockchain data, highlighting the need
for more effective graph-based models tailored to the unique
characteristics of decentralized financial systems.

Decentralized transactions in blockchain systems present
unique challenges for money laundering detection due to
their irreversible execution, lack of centralized oversight, and
pseudonymous identities. These properties hinder traditional
anomaly detection methods, which often rely on centralized
monitoring, identifiable entities, and reversible audit trails.
Additionally, standard AML frameworks are typically tailored
for regulated environments, where transaction semantics, user
identities, and activity histories are accessible assumptions that
do not hold in permissionless blockchain ecosystems. Tracing
illicit fund flows across decentralized networks requires not
only anomaly detection but also pattern recognition across
multi-hop, temporally dynamic graphs. Existing models in
both anomaly detection and AML are often designed to detect
only limited laundering patterns (e.g., fan-out, fan-in, stack,
gather-scatter, random walks, or bipartite flows). These mod-
els typically encode strong prior assumptions, making them
ineffective at generalizing to unseen or evolving laundering

strategies in the wild. As a result, they exhibit limited accuracy
and high false negative rates, leaving significant detection gaps
when applied to complex, multi-pattern, and “off-chain” laun-
dering behaviors common in real-world crypto environments.

III. PRILIMINARIES

Crypto money laundering, driven by blockchain technol-
ogy, exhibits unique features while sharing similarities with
traditional laundering techniques [1], [28], [4], [29], [30],
[21], [22], [3]. The decentralized and pseudonymous nature
of blockchain introduces new challenges, such as anonymity
of addresses, decentralized networks complicating oversight,
and the speed and irreversibility of transactions, which reduce
intervention opportunities. Criminals often use mixing services
or tumblers to obscure transaction trails, while rapid cross-
border transactions and the emergence of DeFi platforms
and smart contracts create additional laundering opportunities.
Centralized and decentralized exchanges are key for converting
illicit funds into other assets, necessitating monitoring of
trading and withdrawal behaviors. Effective detection requires
advanced methods, including graph-based analysis, machine
learning, and blockchain forensics, to process large volumes
of data in real time and adapt to evolving laundering tactics.
Developing robust cryptoAML systems tailored to these chal-
lenges is essential for addressing cryptocurrency laundering
effectively.

A. Crypto Money Laundering Workflow

Cryptocurrency money laundering typically follows three
core stages that mirror conventional laundering processes:
placement, layering, and integration. In the placement stage,
illicit funds are introduced into the cryptocurrency ecosystem
by converting fiat currency into digital assets or vice versa. The
layering stage involves transferring these assets across multiple
accounts, wallets, or platforms often across jurisdictions to
obscure the origin of the funds. This can include complex
patterns such as rapid trades, mixing services, and cross-
asset swaps. Finally, the integration stage entails reintroducing
the laundered funds into the legitimate economy, either by
converting them back to fiat or using them for legal purchases
in digital form [28].

Exchange platforms play a pivotal role throughout this
cycle, facilitating both the conversion of fiat to cryptocur-
rency and the disbursement of laundered assets. Digital wallet
addresses serve as intermediaries, allowing illicit actors to
move tainted funds through multiple hops before arriving at a
final deposit address associated with an exchange. Notably,
such laundering activity can be confined entirely within a
single blockchain ecosystem, underscoring how decentralised
platforms can be exploited for illicit financial flows [28].

To mitigate these risks, cryptocurrency exchanges and
forensic analytics firms actively monitor trading activity and
trace the flow of suspicious funds. For instance, Chainalysis
provides investigative support by labeling wallet addresses
involved in reported suspicious activity, allowing law enforce-
ment and financial institutions to follow the trail of illicit
assets [28], [31]. Regulatory frameworks increasingly require
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platforms to implement address monitoring and reporting
mechanisms, though limitations persist depending on the type
of cryptocurrency, the exchange infrastructure, and jurisdic-
tional compliance requirements [29], [32]. These complexities
make detection and prevention of cryptocurrency money laun-
dering a critical challenge for financial crime investigators and
compliance professionals alike.

B. Difference Between On-chain and Off-chain Transactions

Understanding the fundamental distinctions between “on-
chain” and “off-chain” transactions is essential for analysing
the behavior of illicit financial activities in blockchain ecosys-
tems. These two transaction types differ significantly in
terms of transparency, scalability, execution mechanisms, and
susceptibility to abuse. On-chain transactions are inherently
traceable and governed by the blockchain’s consensus pro-
tocol, whereas “off-chain” transactions bypass direct ledger
recording, enabling faster and more private exchanges. This
difference is particularly consequential in the context of
crypto money laundering, where criminals may exploit “off-
chain” mechanisms to evade detection. Table I summarises
the key characteristics that differentiate “on-chain” and “off-
chain” transactions, highlighting their respective implications
for forensic analysis and anti-money laundering efforts.

C. Off-chain Crypto Money Laundering Patterns

Malicious node behaviors in cryptocurrency networks can
be modeled as distinct graph problems, which are crucial
for addressing money laundering in real-world scenarios and
on exchange platforms. These behaviors often manifest as
anomalies within groups of nodes in local subgraphs, deviating
from typical single-node or individual transaction patterns.
User groups typically form discrete but internally dense sub-
graphs, which helps address the issue of intrinsic sparsity.
Transactions can be represented as weighted directed graphs,
where nodes represent accounts or parties, and edges represent
asset transfers. The direction of an edge indicates the source
and destination of the transfer, while the weight quantifies
the value of the transfer. Analyzing transactions as weighted
directed graphs provides a robust framework for understanding
asset movement, detecting anomalies, and identifying money
laundering patterns in cryptocurrency networks. This approach
reveals various patterns of cryptocurrency money laundering,
as illustrated in Figure 2.

When exploring deeper into the intricacies of crypto money
laundering, it is imperative to comprehend the laundering pat-
terns, that criminals employ to hide their operations. Fan-in is
a prevalent pattern in which money is sent from several sources
to one location, combining money from different sources into
one account. On the other hand, the fan-out pattern entails
a single source sending money to several locations, distribut-
ing money among different accounts to make tracing more
difficult. These strategies are combined in the gather-scatter
pattern, which distributes the aggregated amount to several
accounts after sending several tiny amounts to one account in
the gathering phase (scattering phase). The bipartite pattern
is another advanced technique that isolates direct contacts

Fan-out Fan-in Gather-scatter

Random Stack Bipartite

Fig. 2. Crypto money laundering patterns [30]

and hides account links. It consists of two sets of nodes
with transactions happening only between nodes of distinct
sets. Furthermore, the random pattern involves transactions
that appear to happen at random, which makes it difficult to
detect using conventional analytical techniques. Last, the stack
pattern is continuously moving money through a sequence of
intermediate accounts in a stacked, linear manner, producing
a trail of transactions that essentially hides the original source
of the money. The mentioned laundering patterns -fan-in, fan-
out, bipartite, gather-scatter, and stack— are suggested by
IBM [30]. Comprehending these trends is essential to creating
effective techniques to identify and stop cryptocurrency money
laundering.

IV. PROBLEM DEFINITION

For the crypto money transfers, let G = (V,E,W, T ) be a
directed graph, with V representing the vertex set. The digital
wallets’ accounts are represented by V , the set of edges by
E, the total amount of money in each account by W , and the
timestamp at which the edges are added to each node by T . In
our case, we refer to the vertex and account interchangeably
throughout the study.

Definition 1 (Off-chain crypto money laundering Detection).
Given a graph of transactions G = (V,E,W, T ), the primary
objective is to detect and identify multiple “off-chain” crypto
money laundering patterns. These patterns are specific sub-
graphs G ′ = (V ′, E ′), where V ′ ⊆ V and E ′ ⊆ E, that
exhibit particular structural characteristics indicative of “off-
chain” crypto money laundering activities. The detection of
these patterns involves analysing the topological features such
as fan-in where a vertex v ∈ V is the number of incoming
edges to v. It is defined as fan-in(v) = |{u ∈ V |(u, v) ∈ E}|.

fan-in(v) = di
−(S) = Σvk∈Ml−1∧(k,v)∈Eekv (1)

The fan-out of a vertex v ∈ V is the number of outgoing
edges from v. It is defined as fan-out(v) = |{w ∈ V |(v, w) ∈
E}|.

fan-out(v) = di
+(S) = Σvj∈Ml+1∧(v,j)∈Eevj (2)

The gather-scatter metric for a vertex v ∈ V combines both
the fan-in and fan-out characteristics to evaluate the overall
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TABLE I
MAJOR DIFFERENCES BETWEEN ON-CHAIN AND OFF-CHAIN TRANSACTIONS

Aspect On-Chain Transactions Off-Chain Transactions
Execution Location Performed directly on the blockchain ledger Occurs outside the blockchain ledger

Consensus Involvement Requires consensus (e.g., PoW, PoS) for validation Does not require blockchain consensus
Transparency Publicly visible and auditable Hidden from public view; often private
Immutability Immutable once confirmed on the blockchain Can be modified or reversed before final settlement

Scalability Limited by block size and network throughput Highly scalable and faster
Fees Subject to transaction fees (e.g., gas fees) Typically low or no blockchain fees

Latency Can be delayed due to network congestion Enables near-instant settlement
Security Guarantees Secured by cryptographic consensus protocols Relies on trust, escrow, or external enforcement

Use in Illicit Activities Easier to trace using blockchain analytics Commonly exploited for laundering due to reduced traceability

connectivity of v. It is defined as gather-scatter(v) = fan-in(v)
+ fan-out(v).

gather-scatter(v) = d−i (S) + d+i (S) =( ∑
vk∈Ml−1∧(k,v)∈E

ekv

)
+

( ∑
vj∈Ml+1∧(v,j)∈E

evj

)

The random refers to the randomness in the occurrence of
transactions. For a vertex v ∈ V , the randomness of edges
can be represented by the probability of an edge occurrence
as random(v) = Probability ((v, w) ∈ E).

random(v) =

∑
w∈Ml+1∧(v,w)∈E evw

|Ml+1|
(3)

The stack feature is represented by a directed path of nodes
connected in a specific order. For a path P = (v1, v2, . . . , vk)
of length k, where each (vi, vi+1) ∈ E, vi ∈ Ml, vi+1 ∈
Ml+1, and P is defined as:

P = (v1, v2, . . . , vk)

A graph is bipartite if its vertex set V can be partitioned
into two disjoint sets V1 and V2 such that every edge connects
a vertex in V1 to a vertex in V2 and is defined as

∀(u, v) ∈ E, u ∈ Ml ⇒ v ∈ Ml+1 and vice versa

Table II presents the notations and their meanings used in
algorithms.

TABLE II
TABLE OF NOTATIONS AND MEANINGS

Notation Description
ui A node of user account
Ml Set of nodes at layer l
α Decay factor (the probability that a random walk terminates at a step)

K(s) Total number of random walks for source node
d(s) Number of out-degrees of the node s

d(ui) Number of out-degrees of the node ui

δ, ϵ, Pf Parameters of an approximate PPR where, δ is threshold, ϵ is error
bound, pf is failure probability

Nm
s Number of m-hop out-neighbors of the source node s

r(s, ui) Residue value of node ui w.r.t source node s

σ(vi) Anomaly score
Nθ(vi) Normalized θ score for node vi
Nω(vi) Normalized ω score for node vi

F(θ,ω)(vi) Set of new features

V. MPOCRYPTOML

This section presents the general framework of the proposed
model MPOCryptoML, as shown in Figure 3. The primary
goal of MPOCryptoML is to identify multiple patterns of
“off-chain” crypto money laundering. To track potential laun-
dering routes in a large transaction graph, the Multi-source
PPR algorithm is applied to source nodes [22], [33], [34],
uncovering random connections and paths between nodes and
sources. The PPR scores of each visited node are stored in
a tuple called the set of PPR scores (SPS), which is later
used in the anomaly score function. Next, the model evaluates
the set of normalized timestamp scores (NTS) and normalized
weight scores (NWS) to detect additional laundering patterns.
Timestamp scores capture anomalies in transaction timing,
while weight scores highlight imbalances in transaction vol-
umes. Normalizing these scores ensures comparability and
accurate anomaly detection. The NTS and NWS values are
analyzed using the multi-pattern crypto money laundering
detection algorithm, which trains a logistic regression (LR)
model to identify laundering patterns. The resulting pattern
scores, denoted as F(θ,ω), are then input into the Anomaly
Score Function. This comprehensive feature set, including both
SPS and F(θ,ω), enables the detection of suspicious accounts
by identifying various laundering patterns such as fan-in, fan-
out, gather-scatter, bipartite, and stack structures, providing
a robust method for spotting potential money laundering
activities within cryptocurrency transactions.

A. Multi-Source Personalized PageRank Algorithm

Detecting “off-chain” cryptocurrency money laundering is
critical due to its significant economic and legal implications.
To uncover these hidden laundering techniques, identifying
random patterns in transaction graphs is essential, as launder-
ers often use complex strategies to obscure illicit payments.
The PPR algorithm excels at detecting such random patterns
by highlighting potential laundering paths that might otherwise
go unnoticed. PPR ranks nodes based on their relevance to
source nodes, focusing on the likelihood of visiting nodes
from multiple starting points specifically, the nodes initiating
transactions. This probabilistic approach identifies nodes with
strong transactional links to the source nodes, assigning them
higher relevance scores within dense transactional clusters.
By iteratively updating residue and reserve values through
random walks, PPR effectively identifies nodes frequently vis-
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Node Attributes 

Multi-source PPR
Algorithm

Anomaly Score Function

Logistic
Regression

 Model

Malicious Subgraph

Normalised Timestamp
 Scores Algorithm

Graph of Transactions

Finding Source Nodes

Normalised Weight
 Scores Algorithm

Set of New Features 

Fig. 3. Crypto-AML inference with MPOCryptoML involves several steps: The multi-source Personalised PageRank algorithm first identifies random laundering
patterns. Nodes identified in this stage are then evaluated using a normalized timestamp score algorithm and a normalized weight score algorithm. The scores
from these components, along with laundering patterns, are input into a logistic regression model to generate new features for each node to detect additional
laundering patterns. These PPR scores and new features are then used by an anomaly score function to compute the anomaly score for each node, ultimately
identifying those involved in off-chain cryptocurrency money laundering.

ited, increasing the likelihood of detecting money laundering
activities [22] [34].

The primary objective of using the PPR algorithm is to
detect malicious nodes that randomly connect to user ac-
counts (source nodes s). Given the computational expense
of performing random walks on large transaction networks,
we optimize the process by reducing the number of ran-
dom walks and employing forward pushes to compute PPR
scores more efficiently through a k-hop PPR approach. To
identify random patterns, Algorithm 1 assigns personalised
probabilities to multiple sources, representing suspicious nodes
within the transaction network. Nodes with high PageRank
scores are likely involved in laundering activities, as their
close connections to the initial suspicious nodes enable the
identification of hidden and randomly dispersed laundering
patterns across the network.

To address the CryptoAML detection problem, Algorithm 1
is applied to estimate the multi-source Personalized PageRank
(PPR) scores across the transaction network. The algorithm is
initiated by identifying all source nodes—i.e., addresses that
initiate transactions but do not receive any—by locating nodes
with outgoing edges but zero in-degree (lines 3–4). These
nodes are central to laundering behaviors and are used as seed
points for propagation.

Following source identification, Algorithm 1 initializes two
vectors: a residual vector r(s, ·) and an intermediate score
vector π◦(s, ·) for each source node s and its neighbors
(lines 5–7). This initialization is necessary to prepare for
propagation, where the residual vector reflects the remaining
probability mass to be distributed and the score vector accu-
mulates PPR scores.

For each source node s, the walk budget K(s) is computed
using the Monte Carlo approximation method from [34] (line

9):

K(s) =
(2/3ϵ+ 2) · d(s) · log

(
2
pf

)
ϵ2 · α(1− α)

(4)

where d(s) denotes the out-degree of node s, ϵ is the relative
accuracy guarantee, pf is the failure probability, and α ∈ (0, 1)
is the teleport probability. This formulation ensures that highly
connected nodes receive a proportionally higher number of
walks, increasing statistical robustness in score estimation.

The algorithm’s core propagation stage (lines 10–14) ex-
ecutes a forward push from each node ui whose residual
exceeds a dynamic threshold d(ui)

α·K(s) . When this condition is
met, the residual at ui is distributed to its out-neighbors (line
12), and a portion (proportional to α) is added to its own
score vector (line 13), followed by resetting the residual at ui

to zero (line 14). This stage reflects a localized score prop-
agation mechanism, ensuring nodes with strong transactional
ties accumulate higher scores.

Once no more nodes exceed the residual threshold, the
temporary scores are copied to the final score vector π̂(s, ·)
and stored in the result set SPS (lines 15–18). All nodes with
nonzero scores are added to the visited node set SVN, which
tracks coverage of the transaction subgraph.

To account for remaining residuals, the algorithm proceeds
with a Monte Carlo refinement phase (lines 19–24). For each
node with residual mass, r(s, vi) · K(s) random walks are
simulated. If a random walk terminates at node vi ∈ Nm

s , a
score increment of 1

K(s) is added to π̂(s, vi) (line 24). This
reinforces the ranking of nodes frequently reached by random
walks, capturing diffusion-based anomalies not propagated in
earlier steps.

The final PPR scores (SPS) and visited nodes (SVN) are
returned (line 28), completing the estimation procedure. The
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pseudocode is shown in Algorithm 1 and follows the original
PPR formulation with adaptations for multi-source laundering
detection [22], [34].

Algorithm 1: Multi-Source PPR Algorithm
Input: Graph G = (V,E,W, T ), source node s, PPR relative accuracy

guarantee ϵ, failure probability pf , proportion allocation α, Hop K
Output: A set of PPR scores (SPS), a set of visited nodes (SVN)

1 s1,2,..,n ← 0;
2 foreach vi ∈ V do
3 if in-degree (vi) = 0 then
4 Add vi to the list of source nodes ; // Identify source

nodes with no incoming edges
5 r(s, s)← 1; π◦(s, s)← 0 ; // Initialize residual and score

for source node s
6 foreach ui ∈ Nm

s do
7 r(s, ui)← 0, π◦(s, ui)← 0 ; // Initialize neighbors of

s with 0 residual and score
8 foreach s do

9 K(s)←
( 2
3
ϵ+2)d(s) log

(
2
pf

)
ϵ2α(1−α)

; // Compute walk count

based on accuracy, α, and degree

10 while exists ui such that r(s, ui) >
d(ui)

α·K(s)
and d(ui) > 0 do

11 foreach vj that is an out-neighbor of ui do
12 r(s, vj)← r(s, vj) + (1− α) · r(s,ui)

d(ui)
; // Push

residual to out-neighbors
13 π◦(s, ui)← π◦(s, ui) + α · r(s, ui) ; // Update

score with α portion
14 r(s, ui)← 0 ; // Reset residual after push
15 foreach vi ∈ Nm

s do
16 π̂(s, vi)← π◦(s, vi) ; // Copy temporary score to

final score
17 Add π̂(s, vi) to SPS ; // Store score in the result

set
18 Add vi to SV N ; // Mark node as visited
19 foreach vi ∈ Nm

s and r(s, vi) > 0 do
20 for i = 1 to (r(s, vi) ·K(s)) do
21 Conduct a random walk from vi: (1− α) · r(s, ui) ·K(s)

; // Simulate diffusion via random walk
22 if the random walk terminates at vi and vi ∈ Nm

s then
23 K(ui)← r(s, ui) ·K(s) ; // Update walk

budget
24 π̂(s, vi)← π̂(s, vi) +

1
K(s)

; // Increment

score based on walk result
25 Add π̂(s, vi) to SPS ; // Store updated score
26 Add vi to SV N ; // Add node to visited

list
27 return SPS and SV N ; // Return final scores and visited

nodes

B. Multi-Pattern Crypto Money Laundering Algorithm
Money laundering accounts often exhibit distinctive behav-

ior, such as receiving a large number of transactions within
a short period and quickly transferring the funds to other
accounts. This pattern is indicative of attempts to obscure the
origins and destinations of illicit funds. Unlike conventional
accounts, money laundering accounts tend to show high trans-
actional activity, both in volume and frequency. Additionally,
these accounts typically transfer nearly the same amount
of money in and out, creating a symmetry in transaction
amounts. This symmetry is a deliberate strategy to maintain
the appearance of regular, balanced activity while avoiding
detection. By closely matching the amounts of incoming and
outgoing transactions, these accounts make it difficult to iden-
tify suspicious activity based solely on volume discrepancies.
Moreover, the high transaction turnover and volume contribute
to the high density of these nodes within the transaction graph,
complicating their detection.

Algorithm 2 computes the Normalized Timestamp Score
(NTS) for each node by capturing the temporal asymmetry

between its incoming and outgoing transactions. This metric
is particularly effective for identifying transient intermediary
accounts—commonly used in money laundering—where funds
are rapidly cycled through addresses to conceal origin and
destination. These accounts typically exhibit minimal temporal
separation between incoming and outgoing activity.

The algorithm operates on the set of visited nodes SVN,
identified by the Personalized PageRank (PPR) algorithm,
along with two auxiliary mappings: the in-degree timestamp
set SITS and the out-degree timestamp set SOTS. For each
node vi ∈ SVN, the goal is to derive a normalized timestamp
deviation score Nθ(vi) ∈ [0, 1] representing how temporally
unbalanced the node’s transaction behavior is.

The procedure begins by computing the temporal spread
of the in-degree timestamps Tsin(vi) ∈ SITS(vi) using the
difference between maximum and minimum timestamps (lines
3–8):

θin(vi) = maxTsin(vi)−minTsin(vi) (5)

Similarly, it computes the temporal spread of the out-degree
timestamps Tsout(vi) ∈ SOTS(vi) (lines 9–14):

θout(vi) = maxTsout(vi)−minTsout(vi) (6)

The core measure of temporal irregularity is then calculated
as the absolute difference between the two spreads (line 15):

θ(vi) = |θout(vi)− θin(vi)| (7)

This raw difference score θ(vi) is stored in a temporary set
STS (line 16) for later normalization. To facilitate comparison
across nodes with diverse activity patterns, the algorithm
applies min-max normalization over all nodes (lines 18–21):

Nθ(vi) =
θ(vi)−minv θ(v)

maxv θ(v)−minv θ(v)
(8)

The resulting score Nθ(vi) indicates how temporally asym-
metric a node’s behavior is. Nodes with low scores are indica-
tive of quick-turnaround behavior—characteristic of launder-
ing intermediaries—while high scores suggest delayed redis-
tribution or asset holding, which are less indicative of illicit
flow.

The full pseudocode for this timestamp scoring mechanism
is presented in Algorithm 2.

Algorithm 3 computes the Normalized Weight Score (NWS)
for each node by capturing the discrepancy between the
aggregated weights of incoming and outgoing transactions.
This score quantifies how unbalanced a node’s transaction
behavior is in terms of transaction volume or value, providing
a structural signal for identifying potential laundering inter-
mediaries.

The algorithm operates on the set of visited nodes SVN
obtained from the Personalized PageRank (PPR) stage, along
with two associated mappings: the set of in-degree weights
SIW and the set of out-degree weights SOW. For each node
vi ∈ SVN, the algorithm first sums the total weight of all
incoming transactions (lines 3–6):

ωin(vi) =
∑

Win(vi) (9)
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Algorithm 2: Normalised Timestamp Score Algorithm
Input: A set of visited nodes SV N , a set of in-degree timestamps for all

nodes SITS, a set of out-degree timestamps for all nodes SOTS,
where SITS(vi) ∈ SITS represents the SITS for node vi, and
SOTS(vi) ∈ SOTS represents the SOTS for node vi

Output: A set of normalized timestamp scores
NTS = {Nθ(v1), Nθ(v2), . . . , Nθ(vi)}

1 foreach vi ∈ SV N do
// Iterate over each visited node

// --- Compute in-degree timestamp range ---
2 ∀TSin(vi) ∈ SITS(vi) Max TSin(vi)← −∞ Min

TSin(vi)← +∞;
3 foreach TSin(vi) ∈ SITS(vi) do

// Iterate over in-degree timestamps if
TSin(vi) > Max TSin(vi) then

4 Max TSin(vi)← TSin(vi)
5 if TSin(vi) < Min TSin(vi) then
6 Min TSin(vi)← TSin(vi)

// --- Compute out-degree timestamp range ---
7 ∀TSout(vi) ∈ SOTS(vi) Max TSout(vi)← −∞ Min

TSout(vi)← +∞
8 foreach TSout(vi) ∈ SOTS(vi) do

// Iterate over out-degree timestamps if
TSout(vi) > Max TSout(vi) then

9 Max TSout(vi)← TSout(vi)
10 if TSout(vi) < Min TSout(vi) then
11 Min TSout(vi)← TSout(vi)
12 θin(vi)← Max TSin(vi)− Min TSin(vi) ; // Compute

in-degree timestamp spread
13 θout(vi)← Max TSout(vi)− Min TSout(vi) ; // Compute

out-degree timestamp spread
14 θ(vi)← |θout(vi)− θin(vi)| ; // Absolute difference

between out- and in-degree spreads
15 Add θ(vi) to STS ; // Store the unnormalized score
16 foreach θ(vi) ∈ STS do

// Normalize all timestamp scores

Nθ(vi)←
θ(vi)−Min θ(v)

Max θ(v)−Min θ(v)
; // Apply min-max

normalisation
17 Add Nθ(vi) to NTS ; // Store the normalised score
18 return NTS ; // Return the set of normalized timestamp

scores

and separately sums the total weight of all outgoing transac-
tions:

ωout(vi) =
∑

Wout(vi) (10)

To measure the imbalance, the absolute difference between
incoming and outgoing weights is calculated for each node
(line 7):

ω(vi) = |ωin(vi)− ωout(vi)| (11)

This raw difference score ω(vi) is stored in a temporary set
SWS (line 8). To normalize and standardize the scores across
the entire set of nodes, min-max normalization is applied (lines
9–11):

Nω(vi) =
ω(vi)−minv ω(v)

maxv ω(v)−minv ω(v)
(12)

The resulting value Nω(vi) ∈ [0, 1] captures how uneven
a node’s transaction volume is, with low values indicating
balanced flow and high values potentially flagging nodes that
act as transactional funnels or relays—common roles in money
laundering circuits.

The full pseudocode of this weight scoring mechanism is
provided in Algorithm 3.

Algorithm 4 introduces a supervised learning framework
for detecting diverse money laundering patterns by leverag-
ing two anomaly-based indicators: the Normalized Timestamp
Score (NTS) and the Normalized Weight Score (NWS). These
features, derived from Algorithms 2 and 3, are combined into
a unified representation:

Algorithm 3: Normalised Weight Score Algorithm
Input: Set of visited nodes SV N , set of in-degree weights

SIW = {Win(v1),Win(v2), . . . ,Win(vi)}, set of out-degree
weights SOW = {Wout(v1),Wout(v2), . . . ,Wout(vi)}

Output: Set of normalised weight scores
NWS = {Nω(v1), Nω(v2), . . . , Nω(vi)}

1 foreach vi ∈ SV N do
// Iterate over each visited node

2 foreach Win(vi) ∈ SIW do
// Iterate over in-degree weights of vi

ωin(vi) =
∑

Win(vi) ; // Sum all in-degree
weights for node vi

3 foreach Wout(vi) ∈ SOW do
// Iterate over out-degree weights of vi

ωout(vi) =
∑

Wout(vi) ; // Sum all out-degree
weights for node vi

4 ω(vi) = |ωin(vi)− ωout(vi)| ; // Calculate absolute
difference between in- and out-degree weights

5 Add ω(vi) to SWS ; // Store the unnormalszed weight
score

6 foreach ω(vi) ∈ SWS do
// Normalise all weight scores

Nω(vi) =
ω(vi)−minω(v)

maxω(v)−minω(v)
; // Apply min-max

normalisation
7 Add Nω(vi) to NWS ; // Store normalised weight score
8 return NWS ; // Return all normalised weight scores

F(θ,ω)(vi) = [Nθ(vi), Nω(vi)] (13)

This fused feature vector captures both temporal irreg-
ularities and transactional imbalances for each node vi in
the transaction network. A logistic regression (LR) classifier
is then trained on this feature set to distinguish between
normal and suspicious node behaviors. The trained model is
capable of recognizing a wide range of laundering patterns:
Fan-in / Fan-out: Detected via sharp disparities in ωin(vi)
vs. ωout(vi) and in θin(vi) vs. θout(vi). Bipartite: Identified
through intermediate NTS/NWS values in nodes bridging dis-
joint sets. Gather-Scatter: Indicated by high variance in both
θ(vi) and ω(vi) scores. Stack: Revealed through sequences
of nodes with consistent θ and ω values representing rapid
fund relay. By encoding structural and temporal behavior
into an interpretable model, Algorithm 4 provides a scalable
and effective mechanism for identifying complex laundering
activities in transaction networks.

Algorithm 4: Multi-pattern Crypto Money-laundering
Detection Algorithm

Input: Set of normalized timestamps NTS, set of normalized weight scores
NWS

Output: New set of features F(θ,ω)(vi)
1 Function TrainModel(NTS, NWS):
2 Combine NTS and NWS into a single feature set F
3 Train a logistic regression model LR using F to identify laundering

patterns
4 Use the trained model LR to generate predictions and identify laundering

patterns in the data
5 return F(θ,ω)(vi)

C. Anomaly Score Function

The Anomaly Score Algorithm (AS) aims to identify ma-
licious nodes involved in cryptocurrency money laundering
by assigning an anomaly score to each node in the network.
This score aggregates data from multiple sources, including
random scores from the multi-source PPR algorithm π(vi)
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and money laundering scores from the multi-pattern crypto
money laundering algorithm F(θ,ω), based on NWS and NTS
values. The goal is to compute an anomaly score σ(vi) for
each node. For each node vi ∈ SV N , the algorithm retrieves
the suspicious pattern score σ(vi) from SPS which is a set
of PPR scores for each visited node in the transaction graph
and a set of features from normalised timestamp, normalised
weight scores, and money laundering patterns F(θ,ω). It then
calculates the anomaly score σ(vi) using the equation (14).
A set of anomaly scores (SAS) identifying nodes possibly
involved in illegal activity is eventually generated.

σ(vi) =
π(vi)

F(θ,ω)(vi)
(14)

This formula integrates the calculated scores, amplifying
the anomaly score for nodes that exhibit strong indications of
suspicious behaviour across multiple metrics.

VI. EXPERIMENTS AND RESULTS

This section outlines the experimental parameters and com-
pares the proposed method and state-of-the-art techniques.

A. Experimental Settings

1) Dataset: We use three real-world “off-chain” datasets:
Bitcoin payment flows in wallets from “Elliptic++”1, wallet
addresses from “Ethereum Fraud Detection”2, and the “Worm-
hole”3 dataset on Ethereum. We use three real-world datasets
as described below:
• Elliptic++: Bitcoin payment flows recorded in the ”El-

liptic++” dataset, utilizing wallet addresses provided by
Elliptic to track “off-chain” transactions. We select the
transaction period before time step 42 to mitigate the ef-
fects of a whole reconfiguration of the network topology,
which results from an abrupt closing of the dark market
at time step 43 (see [22] and [35]).

• Ethereum Fraud Detection: The ”Ethereum Fraud De-
tection Dataset” is another dataset that provides wallet
addresses recording “off-chain” transactions. This im-
balanced dataset includes rows including legitimate and
known fraudulent Ethereum transactions and is unbal-
anced when modeling. The number of unique addresses
(nodes) is to be greater than the number of edges
(transactions) in the Ethereum transaction graph. This
relationship is characteristic of many real-world networks
and datasets.

• Wormhole: The ”Wormhole Hack” on Ethereum oc-
curred in February 2022, targeting the Wormhole cross-
chain bridge, which facilitates interoperability between
Ethereum and other blockchains. Since cross-chain trans-
actions involve both “on-chain” and “off-chain” compo-
nents, we specifically extracted the “off-chain” transac-
tions for our analysis. The hacker exploited a vulnerabil-
ity in the bridge’s smart contract to mint 120,000 wrapped

1https://www.elliptic.co
2https://www.kaggle.com/datasets/vagifa/ethereum-frauddetection-dataset
3https://rekt.news/wormhole-rekt/

Ethereum (wETH) on Solana without having the required
Ethereum backing it, resulting in a loss of about 325
million. This exploit exposed the security risks of cross-
chain protocols, as they rely on the integrity of wrapped
tokens to ensure assets are properly backed. Jump Crypto,
Wormhole’s parent company, later replenished the stolen
funds to restore the bridge’s liquidity.

All three real-world datasets are labeled, with ground truth
available for analysis. The statistical data from the three
datasets are listed in Table III.

TABLE III
STATISTICS OF DATASETS

Dataset Elliptic++ Ethereum Wormhole
Nodes 203,769 9816 219581
Edges 234,555 9265 236295

Node features 166 51 9
Anomalies 4,545 2179 158

Avg. Degree 1.15 1.85 1.076

2) Evaluation Metrics: We employ five metrics that are
frequently utilised in AML detection: The probability that the
model will give a randomly chosen anomaly sample a higher
score than a randomly chosen normal sample is represented
by the Area Under the ROC Curve or AUC [36] [37]. When
the class is unbalanced, AUC has more robustness and is not
affected by threshold selection [38]. As a result, we follow
the majority of earlier research and employ AUC for ranking-
based evaluation [39]. Precision@K is the proportion of cor-
rectly identified anomaly samples out of the top@K samples
predicted as anomalies, ranked by the anomaly score. Here,
K corresponds to the total number of anomalies predicted by
the model. Precision is crucial in anomaly detection scenarios
where the cost of false positives such as wrongful accusations
in fraud detection or unnecessary treatment in disease diagno-
sis can be substantial. Thus, high precision ensures the model’s
predictions are reliable and minimizes false alarms [40] [41].
Recall@K refers to the fraction of correctly identified anomaly
samples within the top@K ranked anomalies based on their
anomaly scores [42]. In this context, K represents the total
number of anomalies in the dataset. The consequences of
missing anomalies are critical in fields like fraud detection
and disease diagnosis [36], [43]. Therefore, achieving a high
recall rate is crucial for the effectiveness of a detection model.
We calculated the F1-score and accuracy to evaluate the
model’s performance. The F1-score balances precision and
recall, making it especially useful for imbalanced datasets
where anomalies are rare [44]. It helps assess the trade-off
between correctly identifying anomalies and minimizing false
positives and negatives. Accuracy, while measuring overall
correctness, may not fully capture the model’s ability to detect
anomalies in such cases, so the F1-score provides a more
nuanced evaluation [45], [46].

3) Baselines: The proposed model is compared to seven
cutting-edge baselines, including traditional supervised ma-
chine learning models and advanced GNN-based anomaly
detection methods. Specifically, we evaluate it against XG-
BOOST, DeepFD, OCGTL, ComGA, FlowScope, GUDI, and
MACE.
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XGBooST [47] is a boosting supervised technique based on
decision trees. By analyzing the importance of features, XG-
Boost exhibits great classification accuracy and interpretability
when used as the supervised machine learning baseline.

DeepFD [26] is a baseline for unsupervised learning.
Subgraph-level anomaly detection implies that anomaly-dense
blocks in the embedding space can be found to address
fraud detection issues such as AML. As a result, it employs
Autoencoder to embed the graph and DBSCAN to cluster the
dense areas.

OCGTL [48] is the benchmark for graph-level anomaly
detection, which achieves the SOTA performance in social
network and molecular datasets by combining graph transfor-
mation learning and one-class pooling.

ComGA [24] is a deep graph convolution network incorpo-
rated as the state-of-the-art GNN-based baseline to encapsulate
the finished attributed graph and reconstruct the network
using attribute and structure decoders. As a result, it may
calculate the anomalous score using the feature matrix and
the reconstructed neighboring matrix.

Flowscope [21] can identify the entire money flow from
source to destination by modeling transactions with a multi-
partite graph.

GUDI [49] is a pioneering supervised framework that
combines self-supervised pre-training to capture broad graph
patterns with few-shot learning to classify domain-specific
anomalies. Its guided diffusion mechanism synthesizes pre-
trained and domain-specific model outputs during inference,
bypassing fine-tuning and enabling efficient domain adapta-
tion.

MACE [16] is a multi-normal-pattern unsupervised
anomaly detection approach for time series in the frequency
domain, characterized by a pattern extraction mechanism for
diverse normal patterns, a dualistic convolution mechanism for
amplifying short-term anomalies and hindering reconstruction.

B. Experimental Setup

All experiments are conducted on an AWS EC2
g4dn.2xlarge instance equipped with 1 NVIDIA T4 Ten-
sor Core GPU, 32 GiB memory, and 225 GB NVMe SSD
local storage, running Ubuntu Linux. The proposed model
is implemented in Python using the PyTorch and Scikit-learn
libraries.

C. Hyperparameter Tuning

To ensure a fair and reproducible evaluation, we initialise
key hyperparameters in accordance with the empirical design
guidelines proposed in [34]. Specifically, we set the restart
probability ρ = 1, the failure probability pf = 1, and
the random walk weighting factor α = 0.5 in the multi-
source Personalized PageRank (PPR) algorithm. These values
were determined via sensitivity analysis to balance detection
performance against computational cost.

Effect of Random Walk Weighting Factor α: The parame-
ter α governs the balance between global exploration and local
reinforcement in the multi-source PPR. Lower values (e.g.,

α = 0.3) promote deeper exploration by allowing longer ran-
dom walks, while higher values (e.g., α = 0.7) favor returning
to the source node, reinforcing the local neighborhood. We
evaluated α ∈ {0.3, 0.5, 0.7} across the Elliptic++, Ethereum,
and Wormhole datasets. As shown in Table IV, α = 0.5
consistently yields the highest Precision@K and AUC scores.
This choice offers a balanced trade-off, effectively capturing
laundering behaviors that are neither strictly local nor globally
diffused.

Effect of Maximum Iterations maxiter: We varied the
maximum number of iterations for logistic regression train-
ing, maxiter ∈ {500, 1000, 2000}, to analyse the effect on
convergence and performance. While increasing maxiter from
500 to 1000 improves both AUC and Precision@K, further
increase to 2000 yields only marginal gains with a notable
increase in training time. Thus, we select maxiter = 1000 as
a computationally efficient and stable configuration.

Effect of Solver Choice: We compared three solvers for
logistic regression: liblinear, lbfgs, and saga. The
liblinear solver, designed for binary classification and
sparse data, outperforms both lbfgs and saga across all
datasets in terms of Precision@K and AUC, as shown in Ta-
ble IV. This superior performance stems from its compatibility
with high-dimensional sparse features derived from transaction
subgraphs. Conversely, saga shows slower convergence and
lower accuracy, indicating limited suitability for the laundering
detection task.

Effect of Sampling Ratios: To evaluate robustness under
limited supervision, we trained the model using varying sam-
pling ratios of the labeled training data: 50%, 60%, 80%,
and 100%. While performance slightly degrades at 50% due
to reduced supervision, the proposed MPOCryptoML model
maintains competitive results across all settings. This robust-
ness demonstrates the model’s inductive generalisation ability
in sparse and partially labeled environments, which is critical
for real-world deployments.

A detailed ablation study is presented in Table IV, sum-
marising the influence of each hyperparameter across multiple
datasets. The optimal configuration—α = 0.5, maxiter =
1000, and solver = liblinear offers a balanced ap-
proach for effective money laundering detection in complex
off-chain transaction graphs, combining detection accuracy
with computational efficiency.

TABLE IV
HYPERPARAMETER TUNING ACROSS DATASETS

Parameter Setting Elliptic++ Ethereum Wormhole
Pre@K AUC (%) Pre@K AUC (%) Pre@K AUC (%)

α = 0.3 93.11% 93.80 95.02% 96.10 90.12% 92.15
α = 0.5 95.43% 94.21 97.39% 97.40 92.55% 93.75
α = 0.7 94.05% 93.90 95.88% 96.42 91.06% 92.10

maxiter = 500 94.32% 93.45 96.40% 96.85 91.02% 92.35
maxiter = 1000 95.43% 94.21 97.39% 97.40 92.55% 93.75
maxiter = 2000 95.50% 94.22 97.45% 97.42 92.60% 93.79
solver = saga 93.60% 93.55 96.11% 96.90 90.15% 91.70
solver = lbfgs 94.85% 93.88 96.72% 97.05 91.33% 92.44

solver = liblinear 95.43% 94.21 97.39% 97.40 92.55% 93.75

D. Overall Performance Comparison

Table V compares the overall performance of anomaly
detection. We used 80% for training, 10% for validation, and
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10% for testing. All results were averaged over three runs.
The proposed methodology outperforms several benchmarks
across different datasets, with varying degrees of success. The
following observations are made from various perspectives:

Table V compares the overall performance of anomaly
detection. Over three runs, all of the results are averaged. The
suggested methodology beats seven benchmarks with varying
degrees of success. The findings from various aspects includ-
ing overall comparative performance, supervised vs. semi-
supervised approaches, and off-Chain laundering detection
performance are summarised as follows:

(1) Overall Comparative Performance: MPOCryptoML
consistently outperforms existing benchmarks across the El-
liptic++, Ethereum, and Wormhole datasets. This superior
performance stems from its multi-pattern and node-level focus,
which enables fine-grained detection of anomalous behaviors.
In contrast, OCGTL performs well on Elliptic++ due to its
global graph-level modeling but struggles with Ethereum and
Wormhole, where sparse topologies reduce the effectiveness
of broad graph transformations. ComGA, a subgraph-level
GNN, similarly underperforms on sparse graphs, indicating
challenges in applying GNN-based detection to low-density
networks.

XGBoost achieves strong performance (85.70% precision,
84.20% recall on Ethereum) but lags behind MPOCryptoML
in the Precision@K metric due to its weaker anomaly ranking
capability. DeepFD, based on unsupervised clustering, under-
performs on Ethereum and Wormhole, as its assumption that
anomalies form dense clusters fails in dynamic laundering
contexts. GUDI achieves moderate precision on Elliptic++
(74.69%) but shows limited generalizability due to reliance
on pre-trained graph patterns. Flowscope yields the weakest
results across all datasets. Although MACE achieves high
precision on Wormhole (96.03%), it is less effective than
MPOCryptoML at ranking anomalies.

(2) Supervised vs. Semi-supervised and Unsupervised Ap-
proaches: Semi-supervised methods, particularly MPOCryp-
toML, outperform both unsupervised (DeepFD, MACE) and
supervised (XGBoost, GUDI) baselines in AML anomaly de-
tection. MPOCryptoML leverages weak supervision combined
with graph reconstruction to support inductive learning and
effectively mitigate label imbalance, a common issue in fraud
detection. DeepFD’s reliance on density-based clustering fails
to align with the irregular structure of laundering behaviors.
GUDI, while moderately effective on Elliptic++, struggles
with Ethereum and Wormhole due to its general-purpose pre-
trained graph templates.

Although XGBoost performs well overall, it ranks anoma-
lous accounts less effectively than MPOCryptoML. The latter’s
hybrid learning strategy combining structure-aware graph en-
coding with label guidance demonstrates robustness in mod-
eling transaction complexity and outperforming both conven-
tional classifiers and unsupervised techniques in Precision@K
and detection accuracy.

(3) Off-Chain Laundering Detection Performance:
MPOCryptoML demonstrates strong capabilities in detecting
off-chain laundering behaviors through its integration of the

Personalized PageRank algorithm and multi-pattern analysis.
This enables the model to rank suspicious accounts with
high fidelity, achieving superior performance in Precision@K.
In comparison, ComGA, which uses GANs for anomaly
detection, offers limited effectiveness due to its generalized
learning objective. MACE, despite showing high precision
and recall, lacks detailed multi-pattern modeling, leading to
reduced effectiveness in prioritizing anomalies.

Overall, MPOCryptoML’s ability to capture both random
and structured laundering behaviors across heterogeneous
transaction patterns enables superior identification of illicit
activities when compared to state-of-the-art methods.

E. Ablation Study

To assess each module’s functionality in the proposed
model, we run an ablation study on anomaly detection per-
formance in this section. We create two ablation models and
assess how well they work from an effective and efficient
standpoint. Each multi-pattern and random cryptoML account
detection module is executed independently.

In the multi-pattern cryptoML model, we remove the lo-
gistic regression component from the Normalised Time and
Weight algorithm, resulting in the model called the Nor-
malised T/W model. Additionally, we modify the multi-
pattern cryptoML model to only test the effect of finding
random accounts recognized by the Personalised PageRank
algorithm, resulting in the Random cryptoML model. This
assessment primarily assesses each module’s ability to identify
hidden abnormal patterns in a strictly supervised setting.
Table VI displays a comparison of their results with the entire
proposed model architecture.

Overall, our design aims are validated by the average
gain of the proposed “off-chain” cryptoML when compared
to each ablation. The combination of two modules has a
considerable improvement over finding cryptoML accounts as
each separately can only address specific patterns of cryptoML
in the graph of transactions.

VII. APPLICATION SCENARIOS

For financial firms like JPMorgan Chase or Goldman Sachs,
MPOCryptoML model can be extremely helpful in combating
illegal activity in the cryptocurrency market. These multina-
tional financial behemoths are subject to strict anti-money
laundering (AML) standards and are increasingly handling
transactions involving cryptocurrencies. The model can spot
suspicious trends that point to money laundering by examining
particular blockchain nodes, such as wallets or addresses. For
instance, the model flags activities for more examination if a
wallet often exchanges money with several addresses without
a clear, valid reason or conducts a lot of little transactions that
might be an attempt to hide the source of funds. By automating
the identification of suspicious transactions, financial institu-
tions can reduce the risk of regulatory fines and maintain their
standing as complying organisations.

Due to their significant user numbers and the decentralised
nature of cryptocurrency transactions, exchange platforms like
Binance and Coinbase are especially susceptible to money
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TABLE V
OVERALL GRAPH ANOMALY DETECTION PERFORMANCE COMPARISON

Dataset Elliptic++ Ethereum Wormhole
Metrics Pre@K Recall@K F1-score ACC(%) AUC(%) Pre@K Recall@K F1-score ACC(%) AUC(%) Pre@K Recall@K F1-score ACC(%) AUC(%)
XGBoosT 81.30% 80.35% 80.05% 81.30% 81.80% 85.70% 84.20% 84.50% 85.70% 93.90% 82.50% 81.20% 82.50% 82.50% 85.30%

DeepFD 68.80% 67.30% 67.50% 68.20% 72.30% 57.10% 55.24% 56.01% 57.10% 67.46% 62.50% 61.47% 61.52% 62.49% 69.05%

OCGTL 91.20% 90.28% 90.57% 91.23% 90.03% 75.42% 74.27% 74.56% 75.01% 85.05% 79.05% 78.12% 78.56% 79.93% 86.11%

ComGA 85.50% 84.34% 84.53% 85.22% 85.20% 73.21% 72.22% 72.55% 73.02% 74.07% 78.55% 74.41% 77.61% 78.49% 79.50%

Flowscope 51.90% 50.29% 51.03% 51.77% 68.30% 49.65% 48.18% 48.48% 49.58% 67.95% 35.85% 34.49% 34.50% 35.51% 63.55%

GUDI 74.69% 73.19% 73.52% 74.24% 88.01% 64.84% 63.42% 63.05% 65.01% 86.50% 52.25% 51.39% 51.52% 52.24% 60.55%

MACE 94.23% 91.10% 92.02% 93.05% 95.02% 96.03% 89.03% 92.03% 93.04% 95.03% 90.02% 84.05% 86.01% 87.03% 92.03%

MPOCrpytoML 95.43% 94.23% 94.51% 95.41% 94.21% 97.39% 96.16% 96.48% 97.39% 97.40% 92.55% 91.11% 90.89% 92.57% 93.75%

TABLE VI
PERFORMANCE COMPARISON OF ABLATION MODELS

Dataset Ethereum Elliptic++ Wormhole
Normalised T/W model 74.90% 69.10% 66.75%

Random cryptoML model 67.81% 67.97% 63.50%

MPOCrpytoML 97.40% 94.21% 91.85%

laundering activities. Wallet operations can be monitored using
the MPOCryptoML, which can identify suspicious activity
such as transactions to high-risk jurisdictions or large-scale,
quick fund transfers in chains. A model like this would be
beneficial in detecting and stopping behaviours that are fre-
quently used in money laundering schemes, such as the usage
of mixers, decentralised exchanges (DEXs), or unlawful asset
conversions. By doing this, these platforms would be able to
improve their AML procedures and better identify laundering
strategies like integration and layering before illegal monies
enter the legal economy.

To improve their oversight of cryptocurrency transactions,
regulatory bodies like the Financial Action Task Force (FATF)
or national organisations like the U.S. Securities and Exchange
Commission (SEC) could incorporate node-level crypto money
laundering detection models into their blockchain analytics
platforms. These agencies can use these models to track
illegal assets that have been laundered through cryptocurrency
gambling sites like Stake.com, exchanges, or mixing services
like Tornado Cash. For instance, the model may be able to
identify the source of stolen funds if they pass through several
cryptocurrency exchanges. This would help law enforcement
spot illicit activities, trace the source of funding, and take
the necessary legal action to stop criminal enterprises from
operating in the crypto space.

VIII. CONCLUSION

In this study, we present MPOCryptoML, a novel “off-
chain” crypto-AML method that is the first to address crypto
money laundering using an “off-chain” strategy. Our approach
is designed to handle large-scale, benign cryptocurrency trans-
actions while accurately identifying various money laundering
patterns. Due to the confidential nature of transaction data, a
comprehensive statistical evaluation of the explanation quality
will be deferred, as a thorough human-involved assessment is
currently impractical. Future work will extend this approach
to fraud detection in cross-chain financial transactions and
emerging events on social networks.
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