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ABSTRACT

Rule-based cloud security posture management (CSPM) so-
lutions are known to produce a lot of false positives based
on the limited contextual understanding and dependence on
static heuristics testing. This paper introduces a validation-
driven methodology that integrates active behavioral test-
ing in cloud security posture management solution(s) to
evaluate the exploitability of policy violations in real time.
The proposed system employs lightweight and automated
probes, built from open-source tools, validation scripts, and
penetration testing test cases, to simulate adversarial at-
tacks on misconfigured or vulnerable cloud assets without
any impact to the cloud services or environment. For in-
stance, cloud services may be flagged as publicly exposed
and vulnerable despite being protected by access control lay-
ers, or secure policies, resulting in non-actionable alerts that
consumes analysts time during manual validation. Through
controlled experimentation in a reproducible AWS setup,
we evaluated the reduction in false positive rates across var-
ious misconfiguration and vulnerable alerts. Our findings
indicate an average reduction of 93% in false positives. Fur-
thermore, the framework demonstrates low latency perfor-
mance. These results demonstrate a scalable method to im-
prove detection accuracy and analyst productivity in large
cloud environments. While our evaluation focuses on AWS,
the architecture is modular and extensible to multi-cloud
setups.
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1. INTRODUCTION

Cloud computing revolutionized application deployment
to ensure infrastructure becomes scalable, agile, and provi-
sioned quickly. But with this agility comes greater complex-
ity and risk, especially in securing dynamic configurations in
distributed environments. Typical problems like misconfig-
urations, excessive permissions, and public endpoints con-
tinue and are often raised as security warnings by Cloud
Security Posture Management (CSPM) solutions and Cloud-
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Native Application Protection Platforms (CNAPPs) [6, 17].
While worthwhile, these tools often rely on static, rule-
based detection methods with no contextual awareness of
the specific environment or business impact [2]. As a re-
sult, they generate large amounts of false positives. For
instance, critical severity risk alerts like publicly exposed
storage buckets or unused access keys may pose minimal risk
when compensating controls are implemented. This deluge
worsens analyst fatigue, decreases productivity, and inhibits
response to valid threats in a timely manner [1, §].

At scale, triaging that level of noise is costly. Current
research indicates that false positives waste analyst time and
disrupt remediation efforts [6, 9], diluting the effectiveness
of threat detection, particularly when critical alerts are lost
among noise [4, 5].

To address this challenge, we introduce a behavioral val-
idation mechanism that supplements static rule-based de-
tection with lightweight, runtime exploitability analysis. By
leveraging open source tool exploitation and automated val-
idation methods, our mechanism emulates true world anal-
ysis, e.g., examining suspected resources, ascertaining ex-
posure, and executing simple validation commands. This
strategy enables prioritization based on actual observed risk
instead of theoretical vulnerabilities [16].

This approach was evaluated by controlled experiments
run in Amazon Web Services (AWS), simulating real world
misconfigurations. The results show that behavioral val-
idation significantly reduces false positives, simplifies the
alert triage process, and enables analysts to prioritize alerts
with real security effects without sacrificing detection ac-
curacy, and ultimately improving cloud security controls.
Although our implementation and evaluation are conducted
within AWS, the underlying validation logic and modular ar-
chitecture are cloud-agnostic by design. With appropriate
provider-specific probes, the framework can be extended to
Azure, GCP, or hybrid environments without altering the
core methodology.

2. RELATED WORK

Cloud Security Posture Management (CSPM) and Cloud-
Native Application Protection Platforms (CNAPP) are the
building blocks of modern cloud security frameworks. How-
ever, a persistent problem identified by the corporate world
and by researchers too is the overwhelming number of false
positives with rule-based detection controls, which over-
whelm the security team and slow down timely actions [2,
9, 6].

Most rule-based scanners perform only static compliance
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checks or signature matches without accounting for contex-
tual security posture. For instance, a reported configuration
might already be addressed by upstream access control or
firewall rules unknown to the scanner [9, 13]. Efforts to im-
prove this involve augmenting rule engines with contextual
enrichment [1, 16] or alert prioritization schemes [5, 10].
However, these approaches remain passive as they do not
actively validate exploitability.

Machine learning (ML) algorithms have also been inves-
tigated to minimize false positives in cloud alerting [3, 6,
7]. Though promising, they typically demand enormous
amounts of labeled data, are not transparent, and pose
threats of false negatives, especially in mission-critical en-
vironments [13, 14].

Active validation i.e., checking whether a problem faced
can indeed be attacked, has been utilized in intrusion detec-
tion systems [14, 15] and explored in emerging cloud security
validation approaches [16, 17], with discussions on contex-
tual verification also noted in CSPM literature [13]. The ma-
jority of production tools, even open-source such as Prowler
and commercial CSPMs, remain dependent on static rules
based on compliance frameworks (e.g., CIS, NIST), and lit-
tle runtime probing [17].

Our solution addresses this important shortfall by pro-
viding an in-line, real-time behavioral validation layer that
complements rule-based alerts without modifying the un-
derlying scanning engine. In contrast to ML-based or
enrichment-only solutions, our solution actually verifies the
verifiability of reported misconfigurations (e.g., open S3
buckets, exposed credentials, insecure ports) as actually
reachable or exploitable. This reduces false positives with-
out sacrificing the explainability and regulatory compliance
of rule-based CSPM.

To the best of our knowledge, there is no existing work
that has demonstrated real-world behavioral validation on
top of production-level CSPM pipelines in real live clouds
with negligible overhead. We test our system on AWS, with
real misconfiguration scenarios, and measure its impact on
false positive reduction [16].

Table 1 provides a comparative summary of the pro-
posed behavioral validation method with earlier cloud secu-
rity alert reduction methods. Rule-based CSPM solutions
traditionally carry out static analysis and are plagued by
high false positive rates, with recent research suggesting es-
timated false alarm rates higher than 40% in enterprise en-
vironments [6, 9]. Context aware enrichment steps typically
a part of CNAPPs strive to enhance prioritization but do
not directly validate exploitability, and their effectiveness
remains largely untested in peer reviewed research [2, 5].
Machine learning—based methods have experienced partial
success in quieting alert noise [3, 7]; however, they need
enormous labeled datasets and tend to be black boxes, lead-
ing to explainability and reproducibility issues [13, 14]. Un-
like those alternatives, the proposed behavioral validation
framework achieves a 93% reduction in false positives using
lightweight, transparent, and reproducible runtime probes,
verified through controlled experimentation on AWS [16,
17].

3. RESEARCH QUESTIONS
METHODOLOGY

3.1 Research Questions
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Table 1: Comparison of Behavioral Validation with
Existing Alert Reduction Techniques
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This study examines how behavior validation can be
added into traditional rulebased CSPM systems in order to
minimize false positives. It also explores which lightweight
behavior analysis techniques can effectively separate valid
violations from harmless, non-exploitable misconfigurations.
Finally, it considers how adding this layer affects both de-
tection accuracy and how quickly alerts can be triaged.

3.2 Methodology

To address the limitations of traditional rule based Cloud
Security Posture Management (CSPM) scanners, we intro-
duce a validation first solution that augments static rule-
based detection with dynamic behavioral verification [9, 11].
In this work, behavioral validation refers to the execution of
targeted, automated probes that actively test whether a re-
ported cloud misconfiguration or exposure can be exploited
in practice, classifying each case as true positive, false pos-
itive, or inconclusive [9, 14]. This verification layer, built
using a combination of open-source and proprietary tools,
cross-verifies alerting with lightweight, context-aware probes
that mimic adversary behavior in a secure runtime environ-
ment [6, 16]. While traditional CSPM scanners have wide
visibility, pre-configured rule employment leads to high false
positive rates because of a lack of contextual knowledge [2,
5, 11]. Probes returning timeouts, inconsistent results, or
indeterminate permissions are marked as inconclusive and
excluded from precision/recall calculations.

The mapping in Table 2 is applied consistently across all
experiments to classify each finding and compute reported
metrics.

Table 2: Alert Types, Probes, and Classification
Criteria

Alert Type Probe Action(s) TP / FP Criteria

Public S3 Bucket HEAD/GET (auth & unauth) TP if unauth GET succeeds; FP if all blocked
EC2 Open Port nmap scan + service check TP if service responds; FP if closed/filtered

IAM Key Exposure get-access-key-last-used
Secret Leak Trufflehog scan

TP if key active & used; FP if inactive/denied
TP if secret valid; FP if revoked/invalid

Figure 1 shows a typical CSPM architecture that produces
large amounts of potentially irrelevant alerts through static
analysis [9, 11].

Our proposed solution is focused on lightweight, real-time
verification of cloud alerts based on simulation of attack be-
havior. This enhances detection and allows triage mecha-
nisms to determine if an alert is truly exploitable [2, 5].

3.2.1 Alert Categorization and Enrichment

The platform consolidates alerts from CSPM tools and
maps them to a vendor provider agnostic one schema. The
alerts are enriched with contextual metadata (e.g., times-
tamps, account IDs, resource types) and grouped into threat
categories: public resource exposure (e.g., EC2 with permis-
sive security groups), open storage (e.g., S3 buckets), and
credential leakage (e.g., keys in code repositories). This
schema-based grouping allows for efficient verification of
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Figure 1: Rule-based CSPM architecture static
detection-dependent, resulting in too many false
positives. Common in open-source and commercial
products.

high-impact risks [11].

3.2.2 Behavioral Validation Framework

Behavioral validation actively tests for exploitability with
light-weight probes simulating real-world attack behavior,
in contrast to static policy validation. These probes verify
whether misconfigurations are actually exploitable or miti-
gated by controls such as IAM policies or firewall rules [14].

Figure 2 shows how our architecture layers validation logic
on top of current rule-based detection.
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Figure 2: Improved CSPM with behavioral valida-
tion. Alerts are validated in real-time prior to esca-
lation.

Each validation question maps to some type of misconfig-
uration. For example: - S3 Exposure: Anonymous HEAD
and GET requests are issued, denial of access renders the
alert unexploitable. - EC2 Exposure: Port scans (e.g.,
22, 3389) with nmap confirm public access. - Credential
Leaks: AWS CLI verifies key use and performs scoped
sts:AssumeRole calls, disabled or least-privileged keys are
reported as false positives.

All the probes are run in isolated, transient environ-
ments in order to minimize any possible impact on running
systems. FEach test stores metadata that contains times-
tamps, command output, and result status (exploitable,
non-exploitable, or inconclusive).

Tools such as Nmap, AWS CLI, and TrufleHog are used
within test environments to execute lightweight simula-
tions. TAM-related notifications trigger privilege simulation
probes, and compromised credentials are verified through
sandboxed authentication attempts.

3.2.3  Effective, Real-Time Implementation

Each probe is time bounded and stateless. Validation
occurs in isolated machines or transient virtual machines,
isolated from CSPM scanning. With a 5-second per-probe
limit, the architecture can maintain broad, near real-time
analysis without bottlenecks [6, 17].

Current implementations use traditional computing in-
stances, but upcoming releases will take advantage of server-
less platforms and containerized probes to enable distributed
scalability. This aids performance flexibility in steady-state
and dynamic alerting patterns [17].

Figure 3 illustrates the end-to-end validation flow, where
CSPM results are enriched with behavioral metadata
through custom scripts and tools, then parsed into struc-
tured outputs for accurate classification.
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Figure 3: Validation flow: CSPM results are en-
riched with behavioral metadata and parsed into fi-
nal output.

3.2.4  Security Controls and Constraints

To reduce risks incurred due to active probing, the system
enforces various protections:

- Scoped TAM Roles: All probes run under least-
privilege policies, tightly scoped to avoid administrative ac-
cess or resource modification.

- Request Throttling: The rate limits avoid excessive
API calls that slow down performance.

- Tagging and Transparency: Probe requests include
tags that allow monitoring systems to distinguish valida-
tion traffic from real threats. These mechanisms enable safe
and responsible probe usage. Enhancements in the future
include anomalies in probe behavior detection and tighter
integration with cloud native security services [17].

3.2.5 |Integration and Output

Validated alerts are appended with a transparent ex-
ploitability status and accompanying metadata. Outputs
preserve the original CSPM data and include actionable val-
idation evidence [9]. It can be integrated with SIEMs and
incident response tools through webhooks and APIs so that
SOC teams can prioritize incidents based on confirmed ex-
ploitability [2, 5].

3.3 Environment Configuration

To validate our behavioral validation framework, we con-
structed a testbed within a standalone AWS account. The
configuration involved fundamental AWS services that are
typically utilized in CSPM. Configuration decisions were in-
formed by the CIS AWS Foundations Benchmark v1.4 and
AWS security best practices to optimize test cases against
broad threat models. We established fifty S3 buckets, fourty
EC2 instances, and thirty IAM users with common mis-
cofigurations in two AWS regions. Notifications were trig-
gered using the Prowler implementation, AWS Config rule,
and custom Python-based scanners that simulate CSPM
logic. The entire validation process was automated us-
ing python scripts, and the respective code is found at:
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3.3.1 Simulated Scenarios

To stress test the validation framework, we wrote diverse
misconfigurations corresponding to true and false positives.
We drew examples from real world incident reports and
CSPM data [9, 11]. Among the tests were public S3 bucket
policies, some readable, others set up to look open but locked
down by IAM or bucket conditions. Another test launched
EC2 instances with public IP addresses, but locked down
via Security Groups or NACLs, to test alerts against shal-
low exposure indicators.

Credential leak scenarios involved deliberately revealing
TAM access keys [15]. Few keys were enabled, while others
were disabled or had already expired, all for the sake of
simulating false positives. Secrets and high-entropy tokens
were cached to simulate accidental data leakage, including
decoy artifacts to test noise robustness.

We also simulated access keys found in public GitHub
repositories and derived variations with different statuses
(active, rotated, disabled). Each scenario was designed to
mimic error operations, not artificial test cases to benefit our
system. These configurations tested the framework to iden-
tify edge cases where static CSPM tools misclassify alerts
[14].

3.3.2 Tools and Automation

Baseline alerts were gathered from Prowler scans against
the CIS AWS Benchmark [17]. Probes were executed as
stateless scripts using the python scripts, AWS CLI and
command-line utilities like curl and nmap. Visibility of S3
buckets, for example, was probed with unauthenticated aws
s3api get-object-acl and curl; EC2 visibility was probed
with nmap -Pn port 22 and port 3389 scans. Access key
probes invoked iam get-access-key-last-used and tried
scoped sts:AssumeRole actions. We did use custom devel-
oped scripts for parsing the results of CSPM solutions (in-
cluding false positives) with the parser scripts as the part of
behavioral validation as discussed in Section 3.2.3.

3.4 Evaluation Standards

We assessed behavioral validation using standard security
analytics metrics [1, 7]. The main metrics were False Pos-
itive Rate (FPR) the proportion of benign alarms incor-
rectly labelled as threats and True Positive Rate (TPR)
the proportion of true threats correctly labelled.

To provide context for results, we also provide precision,
recall, and the Fl-score. Precision estimates the consis-
tency of signaled alarms; recall estimates coverage of actual
misconfigurations; and F1 is a balance of both. Addition-
ally, we also approximated Analyst Efficiency manual triage
time reduction per alert, using time savings seen in sim-
ulated workflows on 100 randomly selected alerts. Those
alerts that were marked by validation as not exploitable
were assumed to take very little analyst time, approximat-
ing real-world time savings. Together, these metrics provide
an overall evaluation of technical accuracy and operational
relevance, measuring not just the detection quality, but the
real-world utility in cloud alert fatigue reduction.

4. RESULTS AND DISCUSSION

4.1 False Positive Reduction

Before presenting quantitative results, we establish our
baseline choice. We contrast behavioral validation with a
popular rule-based CSPM scanner, Prowler, the de facto in-
dustry tool for cloud misconfiguration scanning. Al-powered
triage or graph-based prioritization is marketed by commer-
cial CNAPPs [12], but these are close-source tools with non-
reproducible approaches and no public data sets to compare
on a level playing field.

We know of no other existing open-source or academic
platform that provides post-scan behavioral validation of
CSPM alerts. Thus, our system is a first of its kind so-
lution, measured against the baseline standard of rule-only
scanning. This gives us a real-world, conservative bench-
mark for measuring the marginal value of behavioral probes
in minimizing false positives.

The addition of an active behavioral validation layer
atop standard Cloud Security Posture Management (CSPM)
alerts greatly reduced false positives for a wide range of test
cases. For example, publicly exposed S3 buckets that were
first identified as publicly exposed by rule-based scanning
were behaviorally validated, and this revealed that approx-
imately 93% of them were actually secured by object per-
missions, auth controls, or bucket policy. This provided sig-
nificant reduction in false alarms.

Similarly, EC2 instances with public IP addresses but
shielded by firewalls or restricted security group access con-
trols witnessed a 92% decrease in erroneous network expo-
sure alerting. Furthermore, access keys that were identified
as publicly exposed but were subsequently discovered to be
disabled experienced a 94% decrease in false positives in-
volving credentials.

Table 3: Behavioral Validation Impact on False Pos-
itives
Misconfigurations  Total Alerts FP (Before) FP (After) Reduction (%)

Public S3 1000 800 50 93.72%
Public EC2 300 280 20 92.88%
Exposed Access Keys 2000 1700 100 94.12%
Exposed Credentials 200 160 10 93.75%
Total 3500 2940 180 Avg. 93.88%

4.2 Detection Accuracy and Trade-offs

Quantitatively, we ascertained that the true positive rate
(TPR) was well above 0.91 across all test categories. Behav-
ioral validation did not hinder any of the discovered alerts
that were indeed exploitable during the time of ground-truth
annotation. Baseline CSPM alert sets comparison, with and
without the integrated behavioral validation, showed no loss
of measurable recall. This confirms the assertion that the
framework does not sacrifice detection accuracy while reduc-
ing the incidence of false positives.

Table 4: Validation Performance Metrics

Metric Value
True Positives (TP) 360

False Positives (FP) 180

True Negatives (TN) 2960
Precision 0.667
Recall (TPR) 0.911
False Positive Rate (FPR) | 0.058
F1-score 0.769
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We computed standard binary classification metrics from
the ground truth labels provided through the evaluation pro-
cess. Table 4 presents these metrics for each alert class. The
behavioral validation system had a recall of 0.911, which
indicates a high detection rate for real threats, with a pre-
cision of 0.667. The false positive rate decreased to 5.8%,
which indicates a notable reduction in noise. The F1-score
of 0.769 indicates a good balance between completeness and
correctness.

4.3 Overview of the contribution

To quantify analyst productivity savings, we modeled rep-
resentative triage workloads for each alert type with baseline
rule-based CSPM output and our system. In the baseline,
triage was done manually by examining alerts through the
AWS Console, examining bucket policies, IAM roles, access
key metadata, and firewalls processes typically taking 2-5
minutes per alert depending on complexity. Alerts identi-
fied by our behavioral validation system, however, already
had exploitability ratings and logs and less than 30 seconds
on average.

The time savings were measured across 100 sample alerts
with a script based stopwatch method with multiple mea-
surements to control for variability. The results showed an
observed average triage time reduction of 86.4%, with
certain high-volume kinds of alerts (e.g., public EC2 in-
stances or inactivated access keys) decreasing greater than
90%.

5. ANALYSIS AND LIMITATIONS

Our findings indicate that lightweight active behavioral
validation meaningfully augments rule-based CSPM tools
[9, 6]. Validating whether misconfiguration alerts are ex-
ploitable, the system significantly reduces false positives
and enables security teams to focus on actual threats. The
framework’s modular architecture makes it straightforward
to integrate into current security infrastructures without sig-
nificant architectural adjustments.

But there are some limitations must be considered. Be-
havioral validation is most effective for deterministic forms
of misconfigurations such as publicly accessible resources,
overly broad TAM policies, and breached credentials. These
are best resolved using active probing and regular verifica-
tion practices. On the other hand, the model is less effec-
tive for identifying intricate or indirect attacks such as time
based privilege escalation, insider threats, or lateral move-
ment that depend on dynamic runtime conditions not dis-
cernible through cloud APIs or config files. Additionally, be-
havioral probes cannot determine exploitability when com-
pensatory controls are applied outside of their scope, e.g.,
attack surface reduction products or multi-layered monitor-
ing systems. Encrypted communications channels and ob-
fuscation of services can also hinder the probes ability to
identify exposure correctly.

Another real-world limitation is scope: the existing imple-
mentation has been validated mainly in AWS environments.
Adding support for Azure, GCP, and hybrid clouds will in-
volve probe modifications to cloud-specific APIs, resource
models, and TAM infrastructures.

Finally, as cloud attackers evolve, the validation logic itself
may be targeted or evaded. Keeping the integrity and secu-
rity of the validation pipeline would demand constant tun-
ing, adaptive techniques, and incorporation with anomaly

detection or Al-driven techniques [4, 12].

6. CONCLUSION AND FUTURE DIREC-
TIONS

The paper proposes a new active behavioral validation
layer for minimizing false positives of cloud security alerts of
rule-based CSPM solutions. Lightweight goal-based probes
are employed for validating actual resource exposure and
credential status, and the solution significantly enhances
alert accuracy as well as analyst productivity without the
degradation of detection accuracy with cloud native or open
source solutions.

Experimental measurement in an AWS controlled envi-
ronment showed statistically significant reductions in false
positives in most typical situations of cloud misconfigura-
tion. The results offer the promise of behaviorally validat-
ing enhanced operational efficacy at the expense of reduced
alert fatigue in large-scale cloud security operations.

Future work will include extending behavioral validation
support to Azure and GCP. This will involve incorporating
cloud-specific probe implementations while preserving the
modular design principles demonstrated in the AWS eval-
uation. Adaptive, Al-driven validation methods may be
used to further improve alert prioritization and response au-
tomation. The proposed framework is a stepping stone to
more contextual, dynamic cloud security posture manage-
ment and reflects the need for ongoing collaboration between
practitioners and academic researchers towards solving new
cloud security challenges.
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