
CHAMALEONET: Programmable Passive Probe
for Enhanced Visibility on Erroneous Traffic

Zhihao Wang
University of Electronic Science and Technology of China

Alessandro Cornacchia
KAUST

Andrea Bianco
Politecnico di Torino

Idilio Drago
Università di Torino

Paolo Giaccone
Politecnico di Torino

Dingde Jiang
University of Electronic Science and Technology of China

Marco Mellia
Politecnico di Torino

Abstract
Traffic visibility remains a key component for manage-

ment and security operations. Observing unsolicited and er-
roneous traffic, such as unanswered traffic or errors, is fun-
damental to detect misconfiguration, temporary failures or
attacks. CHAMALEONET transforms any production network
into a transparent monitor to let administrators collect unso-
licited and erroneous traffic directed to hosts, whether offline
or active, hosting a server or a client, protected by a firewall,
or unused addresses. CHAMALEONET is programmed to ig-
nore well-formed traffic and collect only erroneous packets,
including those generated by misconfigured or infected inter-
nal hosts, and those sent by external actors which scan for
services. Engineering such a system poses several challenges,
from scalability to privacy. Leveraging the SDN paradigm,
CHAMALEONET processes the traffic flowing through a cam-
pus/corporate network and focuses on erroneous packets only,
lowering the pressure on the collection system while respect-
ing privacy regulations by design. CHAMALEONET enables
the seamless integration with active deceptive systems like
honeypots that can impersonate unused hosts/ports/services
and engage with senders. The SDN in-hardware filtering re-
duces the traffic to the controller by 96%, resulting in a scal-
able solution, which we offer as open source. Simple analytics
unveil internal misconfigured and infected hosts, identify tem-
porary failures, and enhance visibility on external radiation
produced by attackers looking for vulnerable services.

1 Introduction

Network monitoring has always been the first step to imple-
ment any network management or security policy. Most moni-
toring systems offer visibility on regular traffic to derive statis-
tics on performance and application usage [24, 31, 53, 58, 59];
focus on protecting the network infrastructure [7, 36, 45]; or
log unsolicited traffic, e.g., like network telescopes [43, 46].1

1A network telescope records all packets destined to an unused subnet
with no connected hosts, recording the so-called Internet radiation.

These systems mostly ignore the erroneous traffic, i.e., re-
quests to regular hosts that go unanswered, or that generate
error messages at the network layer. These include the cases
of external or internal clients trying to connect to offline or
firewalled systems, misconfigured hosts reaching the wrong
servers, routing issues, and malicious actors that look for their
next targets.

In this paper, we propose CHAMALEONET, a flexible sys-
tem that opportunistically permits the collection of this er-
roneous traffic in an operational network. CHAMALEONET
logs the Internet radiation generated by external hosts by op-
portunistically observing unanswered requests destined to
addresses assigned to regular hosts but that are turned off,
temporary disconnected, or protected by firewalls. This mix
of live and unused addresses makes attackers more engaged
than in classic telescopes [49, 52].

Likewise, CHAMALEONET logs requests originated by in-
ternal hosts, offering visibility on misconfigured clients, in-
fected hosts, and unveiling issues with external services.

At last, CHAMALEONET can transform itself in an active
responder, enabling the personification of inactive hosts or
services, further engaging with senders as a honeypot system.

Engineering CHAMALEONET requires ingenuity. We lever-
age Software Defined Networks (SDN) and programmable
switches to transform a live network into a flexible monitor.
In a nutshell, when services or hosts are not respondents, we
forward their traffic to a back-end collector, either a simple
passive collector or an active responder that can imperson-
ate the original destination. Conversely, when observing a
regular flow, the programmable switch filters all subsequent
packets to reduce the collector load and preserve live traffic
privacy.2 In summary, CHAMALEONET transforms any net-
work into a flexible and transparent monitor for erroneous
traffic, enabling visibility on a wide range of management
and cybersecurity events coming from external and internal
hosts, without affecting regular network operations. We offer

2Here we refer to a flow as identified by the classic 5-tuple to uniquely
identify a TCP or UDP flow.

1

ar
X

iv
:2

50
8.

12
49

6v
1

 [
cs

.C
R

]
 1

7
A

ug
 2

02
5

https://arxiv.org/abs/2508.12496v1

Table 1: Scope of CHAMALEONET

Traffic Focus Pkt Flow Alert Reply SDN
Telescope In Dark ✓
Reactive
Telescope In Dark ✓ ✓
Flow
monitor In/Out All ✓
IDPS In/Out Malicious ✓ ✓ ✓
Ours In/Out Erroneous ✓ ✓ ✓

CHAMALEONET to the community as open source.3

We design CHAMALEONET following the data minimi-
sation principle to respect privacy regulations and ethical
principles. We collect only erroneous packets – suspicious by
definition – and avoid logging all well-formed traffic. Further-
more, we collect only the data strictly required for analysis,
removing any application layer payload and anonymising
internal IP addresses, unless needed to generate a response.
By offloading the filtering and anonymisation features to the
programmable switch, CHAMALEONET enables monitoring
several tens of Gbps of traffic with an off-the-shelf server.
Traditional sharding and flat controller solutions can be eas-
ily adopted [35] to scale the system. We deploy and oper-
ate CHAMALEONET at our University campus network for
months and present simple analytics to expose some findings
CHAMALEONET enables.

In summary, we contribute the following:
• We introduce the concept of erroneous traffic and design

CHAMALEONET, a system that transforms any private net-
work into a flexible monitor to capture all erroneous traffic.

• We implement CHAMALEONET atop SDN principles to
transparently filter, anonymise, and steer traffic, respecting
users’ privacy. Offloading the filtering of regular traffic to
the switch reduces the controller load by 94-98%.

• CHAMALEONET improves visibility on external Internet
radiation while empowering the administrators to engage
with scanners by selectively enabling responders.

• Simple analytics immediately expose suspicious inter-
nal hosts, misconfigured systems, routing issues, etc., that
would otherwise go unnoticed.

2 Background and Motivation

Several mechanisms exist to passively monitor traffic, from
simple network telescopes to Intrusion Detection/Prevention
Systems (IDS/IPS or IDPS). Telescopes collect all packets
sent to unused subnets where neither servers nor clients are
connected (i.e., a darknet). Post-processing the collected Inter-
net background radiation [43, 46] gives visibility on Internet
scanners, botnets, coordinated attacks, failures, routing issues
and even censorship policies [9,22,23,26,33,51]. Telescopes
ignore regular and erroneous traffic and waste precious re-
sources due to the need to leave unused large ranges of IP

3https://github.com/zhihao1998/ChamaleoNet

addresses [16]. Recent works have explored more flexible
telescope designs. The work in [49] leveraged CDN infrastruc-
ture to study unsolicited traffic reaching production servers,
showing how this traffic differs from traditional telescopes.
Attracted by the live CDN nodes, attackers send a variety of
packets that are not observed in classic telescopes. Similarly,
DScope [48] places telescopes in cloud data centres. Reac-
tive telescopes such as Spoki [30] and others [52] augment
telescopes with the ability to respond to incoming requests
through simple responders, e.g., opening the TCP connection
to capture the first payload.

On the other extreme, IDPSes analyse live traffic in real
time and block malicious or suspicious activities, eventually
producing alerts for administrators [7, 36, 45]. Snort, Suricata
and Zeek are popular open-source solutions [55]. IDPSes
react to attacks and system abuses, using known signatures
or anomaly detection systems. They offer partial ability to
collect packet traces, selectively logging only packets causing
the incident [29] or logging all packets.

In between, network flow loggers offer visibility on opera-
tional traffic [24, 31, 53, 58, 59], with a focus on well-formed
traffic for application classification, performance monitoring,
and network management in general. They process packets in
real time and generate logs at the flow level. They offer very
limited packet capture capabilities, typically meant to capture
some samples of traffic or some specific protocols.

Table 1 summarises the CHAMALEONET scope. All moni-
toring platforms process incoming traffic, i.e., traffic initiated
by an external host and directed to an internal host. Flow mon-
itors, IDPSes and CHAMALEONET offer visibility on traffic
initiated by internal hosts (outgoing traffic) too. Telescopes
focus only on dark traffic, flow monitors summarize all traffic,
while IDPSes are usually set to look for malicious traffic. Tele-
scopes capture packets, while flow monitors log information
at the flow level. IDPSes produce alerts based on rules, and
have limited packet capture abilities. Only reactive telescopes
can reply to incoming requests, e.g., by completing the TCP
three-way handshake.

CHAMALEONET differs in several key aspects. First, it
focuses specifically on erroneous traffic, mostly ignored by
previous systems. Second, it offers visibility on both incoming
and outgoing traffic. Third, it operates on live production
networks and transparently exploits any unused addresses as
a dark address, including hosts that are temporarily off-line.
Fourth, it logs information at the packet level while preserving
privacy through data minimisation principles. Furthermore,
CHAMALEONET can selectively impersonate inactive hosts or
specific services. At last, CHAMALEONET leverages the SDN
programmability to scale. In a nutshell, CHAMALEONET is
the only system that explicitly targets erroneous traffic that
traditional systems mostly ignore. It places itself between
passive telescopes and advanced flow monitors and IDPSes,
offering visibility on both external and internal erroneous
traffic while ignoring well-formed traffic.

2

https://github.com/zhihao1998/ChamaleoNet

3 CHAMALEONET design principles and ar-
chitecture

We show an overview of CHAMALEONET in Fig. 1. We
design it as a pluggable network system (blue box) with min-
imal configuration requirements. Connected to the campus
network border router(s), CHAMALEONET observes all traffic
entering/leaving the network and forwards only the erroneous
portion to the collectors, eventually letting them impersonate
the destination host or service. Observed the first packet of a
new flow, it must determine whether the destination service
is active, and eventually forward traffic destined to inactive
services or hosts to the backend collectors. CHAMALEONET
must not cause any disruption or interference to the active ser-
vices, nor forward production traffic payload to the collectors.
Hence, we design the system to be transparent to services and
benign traffic. We implement CHAMALEONET as a network
function that takes advantage of the flexibility of the SDN
paradigm. Next, we elaborate on the various components and
their interactions.

3.1 The CHAMALEONET architecture
CHAMALEONET is based on an SDN-capable switch and a
centralised SDN controller. We here assume an out-of-path
deployment (see Sec. 7 for a discussion of the in-path alterna-
tive). All ingress and egress traffic, destined to and coming
from the campus network, is mirrored to the SDN switch via
either span ports or physical layer splitters. In case of multi-
ple upstream providers, we assume all traffic is forwarded to
handle asymmetric routing cases.

We define a flow via the usual 5-tuple, up to the transport
layer. Flows are bi-directional: packets matching the same
5-tuple belong to the same flow, regardless of their direction
(incoming and outgoing). The switch implements a static per-
service filter and a dynamic per-flow filter. When a packet
arrives and does not match any filter, the switch forwards it
to the SDN controller. Such a packet may either belong to a
new legitimate flow or be potentially erroneous. Since both
cases are plausible a priori, initially we denote these packets
as suspicious packets (A).

The SDN controller runs the logic to determine whether
the destination of a suspicious packet (host and service) is
answered or unanswered. Recall CHAMALEONET must not
log any traffic destined/received to/from active services which
reply to requests. For this, the controller runs a dedicated user-
space Flow-State Detection Network Function (FSD-NF). It
buffers the suspicious packet for a pre-defined DeTection (DT)
timeout during which it waits for an eventual response packet
that matches the same flow. Two cases can occur:
1. A response packet is received within the DT timeout: the

service is deemed active and the suspicious packet (and all
following packets) are part of the legitimate flow. The con-
troller drops the suspicious packet and installs a new rule

Known Benign
Packets

Drop

Suspicious
Packets

Benign Flow
Rules

Erroneous
Packets

Border
Router

Firewall
Campus Network

Traffic Mirroring

Deceptive Response

InternetInternet

Impersonators

Collectors

Hosts and
Servers

C
A

B

D

SDN Control
Plane

FSD-NF

Anonymized

Figure 1: Overview of CHAMALEONET architecture.

on the SDN switch in the benign flow table (B) to drop all
matching packets. The SDN switch will discard any sub-
sequent flow packet, avoiding overflowing the controller
(C).4

2. The DT timeout expires: the service is deemed inactive
and the suspicious packet is classified as erroneous. The
controller forwards the original packet buffered at the FSD-
NF to the cybersecurity collectors (D), which may log or
eventually reply to such requests to engage with potential
attackers acting as a honeypot.

Albeit easy to implement, we intentionally do not consider
ICMP errors, like port, host or network unreachable messages,
as a valid answer to form a flow. CHAMALEONET will thus
consider both the first packet and the ICMP message as erro-
neous packets and send them to the collectors.

By observing all initial flow packets and responses,
CHAMALEONET can easily keep track of which internal hosts
are alive: Whenever the sender IP address corresponds to
an internal host, CHAMALEONET marks the sending host
as alive for the next Talive period. This allows it to distin-
guish cases where external requests go unanswered because
the destination is not alive (or dark, as in the case for tele-
scopes) or present but refusing to answer (e.g., firewalled
service or rebooting hosts). CHAMALEONET can take de-
cisions on whether to respond to a packet, log or ignore it
accordingly.

The time diagram in Fig. 2 shows an example of how
CHAMALEONET works. The switch receives traffic from the
traffic mirror. It receives three packets belonging to three
different flows (f1, f2, f3). No rule matches these packets,
so the switch forwards them to the FSD-NF, which buffers
them and sets a DT timer to wait for more packets of the
same flow to eventually arrive. Next, the FSD-NF observes a
second request packet belonging to f1 (e.g., a retransmission
from the same sender), and drops it.5 Then, a response packet

4Due to delays and unknown sender policies, the controller shall drop any
additional packets that may still be forwarded to the controller while waiting
for the rule to be installed in the switch – see Sec. 6.1.

5Eventually, this second packet could be stored at the FSD-NF and sent
to the cybersecurity collector too.

3

FSD-NF

Req. f1, f2, f3

Buffer f1,
f2, f3

Req. f1

Resp. f2

Rule f2

Traffic
Mirror

Req. f1, f2, f3

Req. f1

Resp. f2

Req. f2

Resp. f2

Drop

Drop

Drop

SDN Switch Traffic
Collectors

Send f1

Send f3

Figure 2: Expected behaviour of CHAMALEONET.

for f2 arrives and is forwarded to FSD-NF, which deems
the service and the host as active. FSD-NF marks the flow
f2 as “benign” and installs a rule in the switch to drop all
subsequent packets belonging to f2. In the meantime, FSD-
NF drops all f2 packets that may still be forwarded by the
switch. At last, f1 and f3 DTs expire. The FDN-NF sets the
corresponding buffered packets as “erroneous” and sends
them to the telescope collectors, removing any internal state
related to them.

3.2 Design goals and ethics
Privacy. As the mirrored traffic includes legitimate traffic,
privacy is of utter importance. We consider an “honest but
curious” scenario where the person in charge of processing
the data (the data processor) will not deviate from the defined
goals, and will attempt to learn possible information only
from legitimately received information. For this, we adopt a
data minimisation approach: To minimise the information the
controller and the collectors process and store, we keep only
headers up to the transport protocol and remove any upper-
layer information. We support IP address anonymisation for
the internal network IP addresses by using a simple obfusca-
tion mechanism. We leverage the data-plane programmability
features offered by P4 [14] to perform the anonymisation step
directly at the switch (see Sec. 4.3 for details).6

Impersonating not-responding servers or services. A fun-
damental requirement for CHAMALEONET is to avoid inter-
fering with regular network activity and production traffic.
Logging erroneous packets is not critical. Conversely, imper-
sonating non-responding servers or services requires partic-
ular attention. When a regular service hosted on the campus
network goes offline for maintenance or temporary failures,
legitimate users could find themselves interacting with the
honeypot. Likewise, impersonating an internal client when
offline (e.g., a personal computer turned off at night) poses
legal and security concerns if the honeypot starts interacting

6The anonymisation can also be performed on a separate device under the
management of the IT network and security group if required. In this case,
Cryptography-based Prefix-preserving Anonymisation [56] could be applied.

with malicious senders. This calls for strong safeguarding
policies. For these reasons, we limit ourselves to demonstrat-
ing the CHAMALEONET impersonating ability with some
pre-determined off-line addresses, leaving its extensive usage
for future analysis. Notice that the privacy features must be
explicitly disabled for the hosts/services CHAMALEONET
will impersonate so that the original IP addresses and payload
are exposed to the responder.

4 Implementation

Fig. 3 shows the CHAMALEONET data structures and process-
ing. Suspicious packets arriving from the switch are managed
by a Packet Reception thread (pkt_rx) that stores packets and
handles the logic. In Sec. 4.1, we detail its implementation
within the FSD-NF. A separate Control Plane thread (cnt_tr)
manages the rule insertion and eviction at the switch, de-
scribed in Sec. 4.2. Finally, we describe the implementation
of the anonymiser in Sec. 4.3.

4.1 FSD-NF: a deep dive

To implement the FSD-NF, we rely on state-of-the-art per-
flow monitoring based on multithreaded programming, which
has been shown to cope with several tens of Gbps on off-the-
shelf hardware [53]. For packet reception, CHAMALEONET
hooks on libpcap to receive packets. We configure libpcap
with “immediate mode”, which disables packet batching and
makes packets available to upper layers upon arrival to handle
them to the FSD-NF. We set the capture buffer size to 2 GB to
handle traffic bursts and periods in which the capture thread
is stopped.7

Packet buffering and data structures. There are four main
data structures in FSD-NF: a hash table to store flow states; a
packet descriptor queue to manage timeouts; a packet buffer
to cache raw packets; two bitmaps to keep track of which
internal hosts are alive. We describe them in the following.

The FSD-NF buffers suspicious packets and waits for a
response (benign flow case) or the DT timer to expire (erro-
neous packet case). By construction, DT timeouts for suspi-
cious packets expire in the same order in which the packets
are received. This allows us to implement a single and lazy
timer and avoid the burden of managing a per-packet timer.
We store packets in the FSD-NF memory, whose position is
stored in descriptors that form a ring buffer queue as shown
in Fig. 3. The descriptor stores also the packet arrival time
tArr and a pointer to the entry in the flow hash table.
Benign flow detection. When the FSD-NF receives a re-
sponse packet, it deems the service as active and the flow as
benign. To optimise the lookup when matching responses
to past suspicious packets, the hash table (with linked lists

7A DPDK [2] stack is compatible with the CHAMALEONET structures
and transparent to FSD-NF.

4

pkt_rxSwitch

Hash Table Pkt.
Descriptor

Queue

Rule
Queue

Rule Installation

Suspicious
Packets

Collectors/
Impersonators

Erroneous
Packets

User-space
Thread FSD-NF

Control Plane

Idle
Notification

Rule
Deletion

Benign Rules

Data Path

Hash Table
Pkt. Descriptor

Queue (pd)

(1) Buffering suspicious packets for flows f1,f2,f3.

(2) Answered packet f2. Discard f2 entry after Tinst.

p*tArr

t3

t1

t2

H(f)

H(f3)

H(f1)

H(f2)

Flow pd
*tResp

f1 -1

f3 -1

f2 -1 HoL

Raw Pkt. (p)

(3) Unanswered packet f1. Discard f1 entry;
Send f1 to collector.

f2 tResp(f2)

f1 -1

NULL
HoL

NULL

f2 pkt

f1 pkt

f3 pkt

f1 pkt

f2 pkt

Figure 3: Implementation of CHAMALEONET and its user-space packet processing workflow.

to handle collisions in the same bucket) stores a pointer to
the packet descriptor position within the ring buffer. When
a response packet matches a suspicious packet entry in the
hash table, the FSD-NF deletes the corresponding suspicious
packet from the packet descriptor and installs an entry in the
switch to filter all future packets of this benign flow. At the
same time, it marks the arrival time of the response tResp
in the hash table to cope with the latency required to install
the entry. During this transient phase, the FSD-NF drops any
eventual other packets belonging to the benign flow.

Periodically, a cleaning routine scans the hash table and
removes all the entries corresponding to benign flows whose
response arrived earlier than a threshold Tinst . We choose Tinst
larger than the maximum time required to install a new entry
in the switch rule set. For scalability, the cleaning routine
scans only a fraction αHT ∈ (0,1] of the whole hash table to
avoid blocking the main thread for a long time. Event (2) in
Fig. 3 (right) shows the deletion of flow f2 packet after Tinst .
DT timer management. When a new packet arrives and does
not match any entry in the hash table, we store it in memory,
create a new packet descriptor, insert it in the queue, and set
tArr to the current time.

When the packet descriptor queue is not empty, with pe-
riodicity PDT we check the tArr of the oldest entry. Starting
from it, we keep checking which descriptors to process by
comparing the current time with its tArr. If the elapsed time
is greater than the DT timer, we delete the hash table entry,
send the packet to the collector and free the corresponding
descriptor and buffer. We stop at the first descriptor that is
younger than the DT timeout. To limit the computation cost
of this linear search operation, we allow a maximum search
depth equal to dmax positions.8

Event (3) in Fig. 3(right) illustrates this removal mecha-
nism. In this case, when the f1 timer expires, the packet is

8While this check could be done in a separate thread, it would create
race conditions on the ring buffer and introduce synchronisation overheads.
Experimental results confirm that this is detrimental and not needed (see
Sec. 5).

marked erroneous and sent to the collector.
Host liveness monitoring. To enable the controller to dis-
tinguish between erroneous packets sent to live versus dark
internal destinations, CHAMALEONET tracks the liveness of
each internal host. A host is “alive” if we observe at least
one packet from such a host – either filtered by the SDN
switch in ongoing flows, or mirrored to FSD-NF in case no
valid flow rule is present. To handle this, FSD-NF maintains
two bitmaps to track the status of each internal host. Each
bit indicates whether the associated host is live (1) or dark
(0). The first bitmap records whether FSD-NF has processed
any outgoing packet from the host. The second bitmap tracks
whether any active flow rule matches the host in the SDN
switch. This is done using the rule installation and cleaning
messages described afterwards, which synchronises rule state
of the SDN switch with FSD-NF. The FSD-NF merges the
two bitmaps via a bitwise OR operation to define the status
of the host. For each bitmap, when an entry is not refreshed
for Talive, its bitmap status is reset to 0.

4.2 P4 switch control plane highlights
The control plane thread cnt_tr manages flow rule installation
and eviction from the P4 switch using a separate thread. Our
implementation is based on the Intel Tofino switch and devel-
opment kit. We use gRPC for control plane communication
with the P4 switch.
Static per-service rule filter. To reduce the load on the
controller, we support a static rule set that the network admin-
istrator can compile to let the switch filter all known benign
flows related to known services, in the form {dstIP, port}.
For instance, this set can include well-known and benign ser-
vices frequently visited by internal clients, e.g., popular cloud
or CDN services. This saves unnecessary overheads in the
FSD-NF and in the control plane that should install a per-flow
rule for each flow involving these known benign services.
Populating this list with the top-400 most popular external
services like CDNs and video servers, we whitelist up to 30%

5

of traffic.
Dynamic benign flow rule installation. Whenever a be-
nign flow is detected, the pkt_rx thread pushes a rule to be
installed to the control plane via a shared message-passing
FIFO queue. The thread cnt_tr asynchronously pops the rules
from this queue and installs them on the switch. We batch
rule installation to amortise gRPC communication overheads.

We use two exact-matching rules with key (dst IP, dst port,
proto) and (src IP, src port, proto) to filter all packets of a given
flow independently from their direction.

All in all, the filtering mechanisms let the switch discard
95-98% of the benign traffic, with the controller that has to
manage just 3% in our deployment – see App. A for details.
Idle rule cleaning. The switch stores flow rules in Match-
Action Tables (MAT), whose capacity is typically limited, thus
the control plane thread must evict rules by periodically delet-
ing idle entries for (likely) terminated flows. We implement
the entry eviction based on the idle notification mechanism
provided by Intel Tofino architecture. Each entry in the MAT
maintains a TTL (Time To Live) field. The switch periodically
controls the rules every Query_interval and marks those
rules for which there was no match in the previous interval as
“idle”. Then, it decrements the rule TTL by Query_interval.
During the countdown, any new packet matching the rule
resets the TTL to its initial value. When the TTL reaches zero,
the switch triggers an idle timeout notification and sends it to
the controller via the gRPC channel (managed in a publish-
subscribe fashion). The controller receives the notifications
and groups them into batches to send multiple rules deletion
commands within a single gRPC call for better performance.
This message is also used to reset to 0 the status of switch
host aliveness bitmap. We tune the batch size in Sec. 6.

4.3 Traffic anonymizer
Privacy regulations such as GDPR [25], CCPA [17] consider
“personal information” any information which can identify
a person via an ID number, and information specific to the
person. IP addresses are considered personal IDs, and the
application layer payload may contain personal information.
Given CHAMALEONET processes traffic generated by people
connected to the campus network, we must adhere to the
privacy regulations and access only the information we need
for the specific task.9 For this, CHAMALEONET supports
configurable levels of anonymisation, directly implemented
in P4 language for scalability. It supports internal IP address
obfuscation and transport layer (L4) payload removal.

We leverage the Tofino Native Architecture (TNA) [4, 32].
In such architecture, packets first traverse the ingress pipeline
before being buffered at the Traffic Manager (TM) and pro-
cessed at the egress pipeline. Packet processing through a
sequence of MATs may happen at the ingress and egress

9These privacy policies have been discussed and validated by our Data
Protection Officer (DPO).

Ingress Pipeline

Egress Pipeline

Traffic Manager

Mirror & Truncation
Mirror

drop

OriginalMirror

Tofino

L2 POriginal

Ingress
Packet

Src IP Dst IP (Internal)
1.1.1.1 2.2.2.2.. L4 Payload

1.1.1.1 5.6.7.8..Ether L4 Header

L3L2 L4 HeaderL3

L4 Header

L4

Anonymized Egress Packet

Ether

Figure 4: P4-based traffic anonymiser implemented on a Intel
Tofino [4] programmable chipset.

stages pipeline, with the possibility to add some metadata to
coordinate the processing.

Considering IP address obfuscation of internal host IP
addresses, we rely on consistent obfuscation by xoring the
original value with a predetermined key salted with the last
byte of the address itself. More complex techniques can be
adopted [18, 38].

Conversely, supporting L4 anonymisation through packet
truncation requires some ingenuity. We leverage mirroring
sessions. For each packet to be truncated, mirroring permits
the creation of a packet copy up to a specified length. We
use ingress-to-egress mirroring mode to create such a packet
copy at the ingress pipeline. Referring to Fig. 4, the P4 pro-
gram assigns a mirror session_id for each packet. When
the ingress pipeline parses the original packet, it creates a
copy with attached the session_id metadata header. The
SDN controller configures the input port with a mirror ses-
sion, sets the output port of this mirror session to the switch
port connected to the controller, and configures the output of
the original packet as DROP. When the mirrored packet ar-
rives at the traffic manager, it uses the session_id metadata
to truncate the packet to the desired length. Next, the egress
pipeline receives both the original and the truncated version
of the packet. We forward the former to the output port and
drop the original one. To distinguish the two replicas, we add
an internal header field, denoted as Mirror and Original
in Fig. 4, which is not serialized in the egress packet by the
egress deparser.

To truncate packets differently for different protocols, we
define the truncation sizes either by matching the correct
length in the protocol headers or by assigning pre-defined val-
ues (e.g., for unknown/unsupported protocols), each matching
a different mirror session.

5 CHAMALEONET in action

We implemented the CHAMALEONET switch functionalities
using 413 lines of P416 [14] code, using C/C++ and Python

6

Probes ASs IPs Acknowledged
Scanners Ports IP σIP σPort

/23 telescope 715 7k 708 1k 203 11 77
CHAMALEONET 2310 17k 935 62k 203 28 210

Table 2: Quantitive comparison between traffic collected by
CHAMALEONET and pure telescope every hour.

to implement the FSD-NF and controller functionalities. The
controller leverages the Barefoot Runtime Interface (BRI) to
program the Tofino switch and communicates via a gRPC [3]
channel. We use the SUP4RNET [6] platform on a Debian 12
server equipped with 2 Intel Xeon Gold 6252N 24-core CPUs
and 128 GB of RAM, connected to the P4 switch equipped
with 6.5 Tbps Wedge 100BF-32X Intel Tofino ASIC [4]. We
run the FSD-NF and CHAMALEONET controller on a virtual
machine (VM) featuring 16 logic cores and 16 GB RAM.

We have deployed CHAMALEONET in our campus network
for 5 months. Our network is connected to the Internet with
a 20 Gbps bidirectional link. At peak time, the border router
forwards to CHAMALEONET around 16 Gbps of total traffic.
During this period, CHAMALEONET collects data involving
34,304 internal IPv4 addresses.10 Most of these addresses are
allocated to desktops and laptops that go intermittently offline.
NAT is heavily used for both the WiFi and some department
networks. Several campus servers offer regular services on the
Internet. A border firewall protects all internal hosts, allowing
incoming connections only to a subset of servers and services.
As such, most internal hosts and services look unreachable
from remote hosts. At last, a /23 subnet serves as a traditional
telescope with no service attached. It has been operating for
more than 7 years to observe only Internet radiation.

Below, we report some findings obtained by running simple
analytics on the collected traces.

5.1 External erroneous radiation

CHAMALEONET offers visibility on external erroneous traf-
fic, behaving as a hybrid telescope that mixes dark and live
hosts. To this end, we investigate whether and how the ad-
dresses monitored by CHAMALEONET attract different traffic
compared to the pure telescope. For this study, we sample 25
days of data collected from December 7 to 31, 2024.
Number of external senders. Table 2 shows the average
amount of external erroneous traffic observed every hour.
CHAMALEONET captures traffic from substantially more
senders: 3.2× more unique Autonomous System (AS), 2.4×
more unique IP addresses, and 1.3×more acknowledged scan-
ners11. This is expected since CHAMALEONET observes a
larger network (/17 vs /23 of the telescope). Yet, senders in

10Our campus uses one /17 subnet and 6 /24 subnets, for a total of 34,304
addresses.

11Ground truth information from https://gitlab.com/mcollins_at_
isi/acknowledged_scanners

101 102 103

Unique Src IPs

10−2

CC
DF ChamaleoNet

Telescope

Figure 5: Unique source IPs per host distribution.

CHAMALEONET are also significantly more aggressive, con-
tacting almost the whole port range (62×).

Let us now focus on the number of external senders that
contact each internal IP address. On average, each internal
host receives traffic from 203 unique external senders, de-
noted as IP in both deployments. This is expected because
the majority of hosts in the campus network function as “dark”
hosts. Yet, the variance in the number of external senders per
internal host, σIP, and in the number of contacted ports, σport ,
is much larger in CHAMALEONET. This happens because
external senders get more engaged with some specific desti-
nations observed only by CHAMALEONET. The CCDF of IP
in Fig. 5 shows that the most frequently targeted hosts see
one order of magnitude more unique senders. Those are the
internal campus servers that expose active services.

Fig. 6 shows the number of packets per port observed in
the top three Telescope receivers (top), active receivers (mid-
dle), and dark receivers (bottom) within CHAMALEONET
over one day. The figure clearly shows that external senders
target different port ranges with different intensities. While
well-known ports and low port numbers receive more radia-
tion [51], the presence of active services causes a significant
increase in unsolicited traffic, causing the per-port probability
to change.

In a nutshell, CHAMALEONET collects much more Internet
radiation than a pure telescope. As [48, 49] transformed a
CDN and a cloud provider into a telescope, CHAMALEONET
transforms any live network into a better telescope, without
the need to reserve precious IP addresses for this.
Temporal evolution. We now examine the temporal evolu-
tion of external erroneous radiation using two representative
/24 subnets monitored by CHAMALEONET. ServerNet is a
/24 subnet hosting 10-15 campus servers, the other addresses
acting as dark hosts. UserNet is a /24 subnet with client hosts
that are unreachable from outside. For comparison, we also in-
clude one /24 telescope subnet. Fig. 7 illustrates the erroneous
packets for each adress in ServerNet, UserNet, and Telescope,
separated by solid blue lines.

Scan pattern is very similar, with different intensities – no-
tice the 48-hour intensive scanning event during Dec. 23th-
24th period. Yet, the ServerNet shows clearly some different
pattern: The continuous horizontal line refers to active servers
that external actors keep scanning on several ports. Some
intermittent pattern related to human activity emerges. Here,
thousands of external addresses send erroneous packets to the

7

https://gitlab.com/mcollins_at_isi/acknowledged_scanners
https://gitlab.com/mcollins_at_isi/acknowledged_scanners

100

102

104

Telescope

100

102

104
ChamaleoNet
(Active Hosts)

0 10000 20000 30000 40000 50000 60000
Port Number

100

102

104
ChamaleoNet
(Dark Hosts)

To

ta
l P

ac
ke

ts

Figure 6: Erroneous packets per destination port on the tele-
scope, active hosts and dark hosts.

Fri 06 Tue 10 Sat 14 Wed 18 Sun 22 Thu 26 Mon 30

Ds
t I

Ps
Se

rv
er
N
et

U
se
rN
et

Te
le
sc
op

e

103 104 105

Packets

Figure 7: Comparison of incoming traffic collected by CHAMA-
LEONET and pure telescope on a 1-hour time interval. Blue lines
separate the three /24 subnets.

public addresses allocated to the campus WiFi network NAT.
These packets are due to ongoing connections where the inter-
nal WiFi host results suddenly unreachable, and the external
senders keep retransmitting packets. At last, in the ServerNet
we observe some sudden and prolonged increase in erroneous
traffic (small red horizontal bars). These are external scanners
that look for other servers in this /24 subnet.
External senders targeting only campus addresses. Dur-
ing the study period, we observed a total of 436k unique
external senders. Among them, 56.7% exclusively target cam-
pus addresses and avoid any telescope address (while only
0.3% interact solely with the telescope). By analysing the
top-senders, we identify a variety of behaviours, including
attack patterns, scanning activities, misconfigurations, etc. We
describe some notable findings below (with anonymized ad-
dresses), showing the temporal evolution of these external
senders in Appendix B.

0 10000 20000 30000 40000 50000 60000
Dst Port

1
2
3
4
5
6
7
8
9

10

To
p

In
te

rn
al

 S
en

de
r R

an
k

100 101 102 103 104 105 106

Packets

Figure 8: TCP destination ports of internal erroneous traffic
generated by the top-10 contributors.

• IP 5.96.X.X: This is the most active sender. It generates an
average of 3,000 packets per hour for the entire period. All
packets go to UDP/port 123 on a specific internal server,
strongly suggesting a Network Time Protocol (NTP) attack.

• IP 188.92.X.X: This sender scans ports 37215, 52869, and
49152 on thousands of hosts, hinting at a Satori bot [8]. It
also scans other ports, such as 1900, and 2048, indicating
broader scanning behaviour. The sender is present in online
blocklists.

• IP 193.X.X.X: This sender belongs to the campus network
provider. It keeps sending more than 1 000 ICMP Time Ex-
ceeded messages per hour, targeting 336 internal addresses.
This suggests a routing issue (or blackholed destination).
Internal clients cannot reach the final destination.

• IP 94.143.X.X: This sender consistently contacts port 53137
on the same internal server from source port 57498. It sends
about 720 packets per hour. This indicates a possible mis-
configured or failed service.

• 38 IP addresses (e.g., 49.232.X.X) conduct synchronised
ICMP scans throughout the period, sending an average
of 394 ICMP Echo Requests per hour to 20 internal IP
addresses. The campus firewall blocks ICMP echo requests.

Firing responders to engage with scanners. To understand
which services the scanners are interested in, we activate im-
personating TCP responders on some unused IP addresses on
the campus for three hours. These responders complete the
TCP three-way handshake, observe the first application mes-
sage, if any, and tear down the connection. We run nDPI [24]
to extract the application protocol classification of captured
traffic, focusing on traffic to ports in the [30000,61000] range.
Results show a mix of different protocols, the majority un-
known to nDPI (45%) (because only the first payload is cap-
tured), or has no payload (21%) (because of client-initiated
protocol), with HTTP (18%), TLS (4%), LDAP, DRDA, DRP,
SQL, PRTP and other protocols being probed (<1%). This
confirms that the external scanners probe for various services
on non-standard ports once they find the host alive [52]. The

8

Fri 06 Tue 10 Sat 14 Wed 18 Sun 22 Thu 26 Mon 30
100

101

102

103

Pa

ck
et

s

DNS_Srv1
DNS_Srv2

DNS_Srv3
DNS_Srv4

DNS_Srv5
DNS_Srv6

Figure 9: Erroneous DNS traffic sent by the campus DNS servers
to external DNS servers.

impersonating ability of CHAMALEONET is fundamental for
exploring the intention of senders.

5.2 Internal erroneous radiation

Let us focus on the erroneous packets generated by internal
hosts that CHAMALEONET captures. Recall that a pure tele-
scope will not collect any information on this. On average,
we observe approximately 40 k outgoing erroneous packets
per hour, consisting of roughly 40% TCP packets, 36% UDP
packets, and 24% ICMP packets. Again, we use simple ana-
lytics to quickly highlight suspicious behaviours.
Top senders of internal erroneous traffic. We look at those
hosts that contribute the most to the erroneous radiation. We
consider one day of traffic. Each of the top senders contributes
tens of thousands of erroneous packets. Fig. 8 shows the desti-
nation ports targeted by the top-10 senders, the most active on
the bottom. Two patterns emerge: (i) horizontal scan patterns
that target all (e.g., 1st, 4th-6th senders) or most ports (e.g.,
9th sender); (ii) vertical scan patterns, targeting few ports
(e.g., 3rd, 7th senders). Some vertical scanners constantly
send thousands of unanswered requests per hour to very few
IP addresses in a cloud system. This hints at misconfigured
systems that keep sending traffic to non-existent servers (some
examples later). For horizontal scanners, some target a few
external hosts while others contact hundreds of different desti-
nations. This hints at bots or malicious scanning activities that
we signalled to our IT security team. For completeness, we
plot the temporal evolution of the radiation traffic generated
by 5 of these internal hosts in Appendix C, along with some
possible explanations.
Erroneous DNS traffic. By looking at the most targeted
ports, we notice a lot of erroneous UDP traffic destined to
port 53/DNS and sent by the campus official DNS resolvers.
Digging into this, we observe that most of this traffic is di-
rected to a few authoritative DNS resolvers (in Iran, China,
India), which never responded to our resolvers. We report the
temporal evolution of this erroneous traffic in Fig. 9. We sus-
pect this suspicious activity is part of attacks where infected
internal clients send DNS requests to our resolvers that route
them to the authoritative resolvers. Again, we signalled the

incident to our IT security team.
Other findings. Among the recurrent patterns CHAMALE-
ONET exposes, we notice some seldom peaks of unanswered
traffic going to popular external servers, likely hinting at tem-
porary failures of some services. For instance, we observe a
steady stream of TCP SYN packets – approximately 3.7k per
hour – originating from a specific internal server and directed
at a remote HPC repository. Upon investigation, we discov-
ered that the remote repository had been decommissioned, but
its DNS name remained registered. As a result, the internal
server continued attempting to reconnect to it.

Understanding the precise reasons for these erroneous be-
haviours is outside the scope of this work. However, these
simple findings illustrate the benefits of the visibility CHAMA-
LEONET provides.

6 CHAMALEONET parameter analysis

We now present results collected in controlled experiments to
optimise the CHAMALEONET design.

We set up a second VM to run a traffic generator. The
VM is bridged to the server E810 NIC in PCIe passthrough
mode, using a separate SR-IOV [21] virtual function. We
make sure packets transmitted from the traffic generator VM
are forwarded to the P4 switch before coming back to the
FSD-NF VM.12 The traffic generator replays real-world traffic
traces captured on our campus network. They contain about 6
million flows and 152 million packets and last 10 minutes in
total. We use up to 10 tcpreplay [54] instances to generate
different amounts of traffic and observe how CHAMALEONET
behaves under different traffic loads. We split and multiplex
the traces over time and replay them in parallel to mimic real-
world traffic patterns. When using 10 tcpreplay instances
we reach 7 Gbps and 1.3 Mpps, the maximum our setup allows.
The goal of these experiments is to understand and optimise
the internal CHAMALEONET parameters rather than stressing
its scalability, which would be highly dependent on the used
hardware and traffic.

6.1 Parameter setting

DeTection (DT) timeout. Setting the DT timeout requires
some ingenuity. For this, we observe the empirical response
delay statistics of actual flows. We expect it to be related to
the internal and external Round Trip Time (RTT). We anal-
yse the campus traces to measure the first response delay of
answered flow, i.e., the time elapsed between the first request
packet and the first response packet. We observe more than
100,000, 72,000 and 1,000 TCP, UDP and ICMP flows, respec-
tively. About one-tenth are incoming, i.e., requests launched
by external clients targeting internal services.

12We assign to the SR-IOV VFs two MAC addresses and never use those
as destination MACs in the generated packets.

9

Incoming Outgoing Timeout

10 2 100 102 104

First Response Delay (ms)

0.00
0.25
0.50
0.75
1.00

CD
F

(a) TCP

10 2 100 102 104

First Response Delay (ms)

0.00
0.25
0.50
0.75
1.00

CD
F

(b) UDP

10 2 100 102 104

First Response Delay (ms)

0.00
0.25
0.50
0.75
1.00

CD
F

(c) ICMP

Figure 10: First response delay of incoming and outgoing flows,
measured in our campus network.

100 101 102 103 104

Batch Size

10 2

10 1

100

No
rm

al
ize

d
Pe

r-R
ul

e
Ti

m
e

Install
Notify+Delete
Install(BL)
Notify+Delete(BL)

(a) Rule installation/deletion.

100 101 102 103 104

Batch Size

103

104

105

106

Pe

nd
in

g
Ru

le
s

(b) Pending rule queue.

Figure 11: Efficiency of updating switch rules from remote BFrt
clients for various batch size settings.

Fig. 10 shows the Cumulative Distribution Function (CDF)
of the response delay for TCP, UDP, and ICMP, respectively.
The CDFs show that about 80% of incoming requests are
answered in a few ms. This is expected since internal hosts lo-
cated within the main campus LAN have a short RTT. Because
our campus also includes some remote laboratories connected
with VPNs over the Internet, some clients and servers suffer
longer RTT. Looking instead at outgoing flows, the response
time is significantly higher as it includes the RTT to servers
located anywhere on the Internet.

The choice of a proper DT timeout is a balance between
accuracy and system load: increasing the timeout improves
flow identification accuracy, but impacts system load and scal-
ability.13 In our setting, we set the timeout to 1s to correctly
classify over 99.9% incoming and 99.8% outgoing answered
flows. Note that CHAMALEONET could be easily extended to
support multiple timeouts by simply splitting traffic to sepa-
rate NFs, e.g., using different DTs for incoming and outgoing
requests, as done in telescope-like systems [28, 30, 49].
Optimising flow table updates in the switch. As described
in Sec. 4, CHAMALEONET control plane runs in a separate
thread and installs/deletes the rules in batches to amortise
the time-consuming BFrt gRPC call. We use a FIFO queue
to store pending rules generated by the pkt_rx thread while
the controller processes and installs them in the switch. We
preliminary measured the time to install and delete a single
rule through one gRPC call, pinpointing a bottleneck.

To cope with this problem, we adopt batching operations in

13In case the collector has to impersonate a not-responding host, we lower
the DT timer for these hosts to avoid making the sender suspicious with
delayed answers.

In Use Pool Size

1 2 3 4 5 6 7
Traffic Rate (Gbps)

1k

10k
20k
40k

Ri

ng
 e

nt
rie

s

(a) Ring queue usage

In Use Pool Size

1 2 3 4 5 6 7
Traffic Rate (Gbps)

10k

50k

100k

Ha

sh
 e

nt
rie

s

(b) Hash table usage

Ring Queue Hash Table

0 4 8 12 16 20 00
Hours

1k

10k

50k
100k

En

tri
es

(c) Real deployment

Figure 12: Resource utilization of FSD-NF for replayed traces
(a)–(b) and real deployment (c).

a single gRPC call. To optimise the batch size, we randomly
generate a batch of k new rules, with k ∈ [1,104]. Given a
batch, we install all k rules within a single gRPC call. Then,
we wait for k notifications to be received from the switch
before deleting all installed rules in a batch. We measure the
time spent installing or deleting one rule on average, and the
average queue length storing the pending rules.

We run CHAMALEONET with the traffic generator running
10 tcpreplay instances. Fig. 11a shows the average per-rule
installation time (red) and the average per-rule deletion time
(blue), normalized to the maximum measured latency. The
circled lines measure at FSD-NF, so include the NF-controller
interaction time and the gRPC call time. The squared lines
measure at controller as pure gRPC call time and are referred
as BaseLine (BL).

Results show that the batch processing policy allows us to
amortise the cost of the gRPC calls very efficiently, with a
speed-up factor of up to 20× when k is in the [200 ∶ 1000]
range. We observe an interesting trade-off. The system im-
proves its performance with k up to 800. Then, the additional
delay it takes the switch to install a large number of rules
cancels the benefit of sending all k rules with a single gRPC
call. This is even worse for rule deletion because the con-
trol plane consumes time to process idle notifications, which
arrive at irregular intervals. To complement this finding, we
report the number of pending rules in the queue in Fig. 11b.
The results confirm the need to properly choose the batch size
k: if too small or too large, the system becomes unstable and
the number of rules in the FIFO queue grows uncontrolled.
Clearly, the smaller the batch, the more efficient the switch
filtering is. We set k = 200, and the maximum latency Tinst
equal to 1 s, large enough to let the switch install the new rule.
Resource utilization. As described in Sec. 4.1, we use three
main data structures, i.e., the hash table, the packet descriptor
queue and the packet buffer. To evaluate the resource utilisa-
tion under different traffic loads, we periodically sample the
amount of allocated memory pool and the currently in-use ac-
tive entries of the ring queue and hash table. Fig. 12a and 12b
show the usage of packet buffer (equal by construction to the
descriptor queue) and hash table, respectively. Notably, we
collect results at CHAMALEONET with all filtering mecha-
nisms enabled. As expected, with increasing load, the memory
usage grows to 20K ring entries and 80K hash table entries.

10

With this, we set the hash table size equal to 20M buckets and
αHT = 10−3. For completeness, Fig. 12c reports these figures
in the real deployment. Since the number of entries depends
on the number of erroneous packets, some spikes may re-
flect the intensification of erroneous activities. All in all, the
memory management does not pose particular challenges.
Impact of synchronous periodic timeout checking. As
elaborated in Sec. 4, we adopt a single thread pkt_rx both to
process incoming suspicious packets and manage DT timeout
expiration. Every PD seconds, we halt the packet reception
routine to check if the timer for the HoL descriptor has ex-
pired and start popping entries from the ring queue until the
expiration time is smaller than DT or we reach the maximum
scanning depth dmax. While executing this lazy strategy, we
may pop several null packet descriptors corresponding to pack-
ets that were answered since the last periodic check. We skip
them until a valid HoL descriptor comes at hand. The time
CHAMALEONET spends in the timer check routine directly
affects the per-packet processing time, with incoming packets
that are buffered at the libpcap buffer while we halt pkt_rx
for a while. Notice that the buffering delay does not alter the
system functionality as long as no packet is dropped.

We measure the per-packet processing time of the controller
by computing the elapsed time from when it arrives at the
controller until we finish its processing. We sample 1 out of
10,000 packets to not alter the regular processing.

Under 10 tcpreplay load, we configure the system to per-
form checks at a rate of dmax/PD = 1 million per second, and
repeat the experiment three times to mitigate randomness. We
show results in the top plot of Fig. 13 for different combina-
tions of PD and dmax and for the 75, 95 and 99 percentiles. As
expected, CHAMALEONET processes the majority of packets
within a relatively short time frame. Notably, we observe that
dividing timeout checking into more frequent, smaller-scale
operations significantly improves per-packet performance.
Choosing PD = 0.01 ms and dmax = 10 provides the best trade-
off. Specifically, 99% of packets are processed within 3 ms –
with no packet loss, compared to 55 ms when checking up to
10,000 descriptors every 10 ms.

For completeness, the rightmost plot shows the packet pro-
cessing time distribution under real traffic trace. The bursti-
ness of real traffic even improves the overall results.

Let us now focus on the amount of time suspicious packets
are stored in the ring queue. Ideally, they should stay there for
DT so that when the timer expires, they are removed and sent
to the collectors. However, the lazy processing of the timer
may cause packets to be buffered longer than DT. To gauge
this, we measure the per-packet buffering time under different
timeout-checking settings. We show results in the bottom plot
of Fig. 13. The configuration with PD = 0.1 ms and dmax = 100
achieves the best performance, with approximately 99% of
packets being buffered for 1.005 seconds, showing negligible
deviation from the predefined DT timeout. This observation
is further supported by the results from real trace data.

10−2

10−1

100

101

102

103

Pr
oc

es
sin

g
Ti

m
e

(m
s)

0.0
0.3

3

0.1
0.6
3

0.1
0.6

8

0.5
3

55

0.0
0.1
0.5

75% 95% 99%

(0.01,10) (0.1,100) (1,1k) (10,10k) real
(Interval(ms), Maximum Scanning Depth)

1.000

1.005

1.010

1.015

Bu
ffe

rin
g

Ti
m

e
(s

)

1.006 1.005 1.006

1.013

1.001

TIMEOUT

Figure 13: Periodic check of timeout expiration within pkt_rx
thread for various configurations of (PD,dmax), with DT timeout
set to 1s. “Real” refers to the deployment in our campus network.

In general, splitting timeout checks into more frequent,
smaller-scale operations improves per-packet performance
and precision in managing DT timeouts. Notice that the longer
DT causes only some additional memory usage without pos-
ing functional issues. Only when CHAMALEONET activates
backend responders, the excessive buffering delay results in
delayed replies and may limit the engagement with attackers.
In this case, we reduce the DT timeout for the impersonated
hosts to 70 ms.

7 Discussion

Scalability. CHAMALEONET can easily scale out by repli-
cating the FSD-NF and the pending rule queue (Sec. 3.1) on
multiple cores, e.g., with RSS [5] enabled. The control plane
thread can then cycle through these queues in a round-robin
fashion. We run a maximum throughput test on a single FSD-
NF instance, following RFC 2544 [1] recommendations. With
the current implementation, we achieve a peak throughput of
around 180k flows/s during a synthetically injected DDoS at-
tack.14 DDoS attacks or horizontal scanning attacks represent
worst case scenarios for CHAMALEONET, as all incoming
packets correspond to a new flow, translating into a large burst
of suspicious packets to be processed at FSD-NF. Notice that
scaling to line rate worst case is not an imperative requirement
for CHAMALEONET, which focuses on enhancing visibility
and may drop excess traffic during attacks – e.g., in the switch
itself [15, 19, 20, 41, 50] – once collected enough evidence.
Offloading FSD-NF to programmable dataplanes. We
deploy a single FSD-NF instance and successfully operate it

14We stopped the DDoS upon the first packet loss at the FSD-NF and
measured peak throughput.

11

with live traffic for months. We found the major scalability bot-
tleneck for CHAMALEONET is not packet processing through-
put at FSD-NF, but rather the limit switch Match Action Table
(MAT) size and the speed in updating stored rules [57], which
bounds the number of benign flow rules we can install.

Implementing FSD-NF in the dataplane diminishes the
pressure on switch MATs due to benign flow rules. Indeed,
if the detection of benign flows (i.e., FSD-NF) ran in the
dataplane, one could directly cache the inactive services in
SRAM registers, either bypassing the installation of MAT
rules entirely, or balancing entries across MATs and SRAMs.
There are at least two fundamental challenges in this design.
First, how to access and discard suspicious packets when
receiving a matching response is non-trivial, given the lack
of random access memory on programmable switch ASICs.
Exploring CHAMALEONET integration with state-of-the-art
work in this space, such as PayloadPark [27], is left as a future
direction. Second, buffering suspicious packets for tens of
milliseconds on constrained on-chip memory at today’s link
speeds remains infeasible. As an example, a 10MB buffer (in
line with the available memory on a datacenter switch [37,44])
would be filled up in about a millisecond at 100Gbps. Thus,
despite today’s programmable switch ASICs deliver Tbps
throughput, CHAMALEONET cannot fully benefit from it.
In-path deployment. The proposed architecture (Sec. 3.1)
relies on mirroring ingress/egress traffic from the campus
network to the SDN switch, resulting in an out-of-path de-
ployment. Alternatively, CHAMALEONET could be deployed
in-path on SDN-capable border router (or any downstream
switch on the ingress/egress path). In such cases, the SDN
controller shall observe all suspicious packets and install a
rule to forward benign flow packets to the campus network
instead of dropping them. Network administrators may be
reluctant to introduce CHAMALEONET on the live traffic
path. The out-of-path design illustrated in Fig. 1 offers a less
intrusive and pluggable solution.

8 Related work

We complement the overview of monitoring solutions pro-
vided in Sec. 2, focusing on works that leverage SDN solu-
tions. A recent survey summarises past works that leveraged
the use of SDN as a Defence Mechanism (SaaDM) [10]. The
authors provide a comprehensive taxonomy of past works
based on many classification categories and approaches. The
most relevant works to our are related to honeypot techniques
that are deployed to detect, deflect, or stop attempts at unau-
thorised usage of a system. The study in [40] introduced a
honeynet based on SDN, akin to CHAMALEONET, which
duplicates traffic to the honey-network for further examina-
tion. In [34], authors proposed a solution where the controller
inspects suspicious traffic packets and redirects them to the
honeypot for additional scrutiny. Some methods integrate
Moving Target Defence (MTD) with honeypots to counteract

attacks. For instance, [11] proposed a virtual network archi-
tecture that utilises the controller to dynamically generate and
manage flow rules to direct and control network traffic. The
work in [39] targeted a DDoS mitigation system that leverages
programmable data planes to adapt to dynamic attacks. It pro-
vides a tailored abstraction to express DDoS defence policies,
shielding the underlying hardware complexities from pro-
grammers. All the previous works did not exploit the synergy
between programmable switches and the transparent logic
adopted in CHAMALEONET logic to redirect only a fraction
of the traffic to the telescope nodes, by keeping a basic flow
state machine in the FSD-NF.

In CHAMALEONET, the combination of the SDN switch
and the FSD-NF enables a stateful processing of the incom-
ing traffic. Some past works have focused on implementing
a stateful processing only in the SDN switch, enabled by
P4 [14] or OpenState [12]. The work in [13] proposed a reac-
tive traffic control application that redirect traffic in real-time
to a traffic classification engine. Differently from out FSD-NF,
the stateful logic is implemented internally to the SDN switch.
The work in [47] considers a cybersecurity application lever-
aging a stateful approach directly in data plane. The work
focuses only on the detection of TCP SYN flood attacks. The
work in [42] proposes Detection as a Service (DaaS) archi-
tecture, in which the traffic is mirrored to a cluster of IDS
engines. The SDN controller interacts with the IDS engines
and with the switch to eventually block attack flows. The pro-
posed architecture is similar to CHAMALEONET, but the IDS
application has a different traffic control logic.

9 Conclusions

We presented CHAMALEONET, a novel system that trans-
forms any production network into a passive yet pro-
grammable probe to monitor erroneous traffic – such as unan-
swered, misrouted, or malformed packets – typically over-
looked by conventional monitoring solutions. By leveraging
SDN principles and programmable data planes, CHAMALE-
ONET offers scalable, privacy-compliant traffic visibility with-
out disrupting normal network operations. It operates transpar-
ently in live environments, collecting only erroneous traffic,
anonymising sensitive information at the switch, and enabling
both passive observation and active engagement through hon-
eypot integration.

Our deployment over five months demonstrated CHAMA-
LEONET effectiveness in uncovering external scanning be-
haviours and internal misconfigurations, outperforming tradi-
tional telescope setups in data richness and insights. It filtered
up to 96% of benign traffic at the hardware level, ensuring
scalability with minimal resource requirements. CHAMALE-
ONET is open source, modular, and ready for deployment in
various environments, offering a practical and ethical solution
to enhance network visibility and threat intelligence without
requiring dedicated addresses or additional instrumentation.

12

References

[1] Benchmarking methodology for network interconnect
devices. https://www.ietf.org/rfc/rfc2544.txt,
accessed on Apr. 2025.

[2] Data Plane Development Kit (DPDK*). https://
www.intel.com/content/www/us/en/developer/
topic-technology/networking/dpdk.html, ac-
cessed on Apr. 2025.

[3] gRPC. https://grpc.io, accessed on Apr. 2025.

[4] Intel® Tofino™ series. https://www.intel.com/
content/www/us/en/products/details/network-
io/intelligent-fabric-processors/tofino.
html, accessed on Apr. 2025.

[5] Receive side scaling on Intel® network adapters. https:
//www.intel.com/content/www/us/en/support/
articles/000006703/ethernet-products.html,
accessed on Apr. 2025.

[6] SUP4RNET: an experimental platform running on
P4 switches inside the PROGNOSE lab. https://
sup4rnet.github.io, accessed on Apr. 2025.

[7] Oluwadamilare Harazeem Abdulganiyu, Taha
Ait Tchakoucht, and Yakub Kayode Saheed. A
systematic literature review for network intrusion
detection system (IDS). Springer International Journal
of Information Security, 2023.

[8] Arwa Abdulkarim Al Alsadi, Kaichi Sameshima, Jakob
Bleier, Katsunari Yoshioka, Martina Lindorfer, Michel
van Eeten, and Carlos H. Gañán. No spring chicken:
Quantifying the lifespan of exploits in iot malware using
static and dynamic analysis. In ASIA CCS, 2022.

[9] Manos Antonakakis, Tim April, Michael Bailey,
Matthew Bernhard, Elie Bursztein, Jake Cochran, Za-
kir Durumeric, J. Alex Halderman, Luca Invernizzi,
Michalis Kallitsis, Damian Kumar, Chad Lever, Zane
Ma, Joshua Mason, David Menscher, Chris Seaman,
Nick Sullivan, Kurt Thomas, and Yi Zhou. Understand-
ing the Mirai Botnet. In USENIX Security Symposium,
2017.

[10] Believe Ayodele and Victor Buttigieg. SDN as a de-
fence mechanism: A comprehensive survey. Springer
International Journal of Information Security, 2024.

[11] Ilias Belalis, Georgios Kavallieratos, Vasileios Gkioulos,
and Georgios Spathoulas. Enabling defensive deception
by leveraging software defined networks. In IARIA
INTERNET, 2020.

[12] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and
Carmelo Cascone. OpenState: programming platform-
independent stateful openflow applications inside the
switch. ACM SIGCOMM Computer Communication
Review, 2014.

[13] Andrea Bianco, Paolo Giaccone, Seyedaidin Kelki, Nico-
las Mejia Campos, Stefano Traverso, and Tianzhu Zhang.
On-the-fly traffic classification and control with a state-
ful SDN approach. In IEEE ICC, 2017.

[14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: programming protocol-independent packet
processors. ACM SIGCOMM Computer Communica-
tion Review, 2014.

[15] Valerio Bruschi, Salvatore Pontarelli, Jerome Tollet,
Dave Barach, and Giuseppe Bianchi. FlowFight: High
performance–low memory top-k spreader detection. El-
sevier Computer Networks, 2021.

[16] CAIDA. The UCSD Network Telescope. https://
www.caida.org/projects/network_telescope/,
accessed on Apr. 2025, 2024.

[17] California State Legislature. California Consumer Pri-
vacy Act of 2018. https://leginfo.legislature.
ca.gov/faces/billTextClient.xhtml?bill_id=
201720180AB375, accessed on Apr. 2025.

[18] Xiaoqi Chen. Implementing AES encryption on pro-
grammable switches via scrambled lookup tables. In
ACM SPIN, 2020.

[19] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman,
and Jennifer Rexford. Beaucoup: Answering many net-
work traffic queries, one memory update at a time. In
ACM SIGCOMM, 2020.

[20] Alessandro Cornacchia, Giuseppe Bianchi, Andrea
Bianco, and Paolo Giaccone. Staggered HLL: Near-
continuous-time cardinality estimation with no overhead.
Elsevier Computer Communications, 2022.

[21] Intel Corporation and contributors. SDN-NFV Hands-
on Samples. https://github.com/intel/SDN-NFV-
Hands-on-Samples, accessed on Apr. 2025, 2024.

[22] Alberto Dainotti, Alistair King, and Kimberly Claffy.
Analysis of Internet-wide probing using darknets. In
ACM BADGERS, 2012.

[23] Alberto Dainotti, Claudio Squarcella, Emile Aben, Kim-
berly C. Claffy, Marco Chiesa, Michele Russo, and Anto-
nio Pescapé. Analysis of country-wide Internet outages
caused by censorship. In ACM IMC, 2011.

13

https://www.ietf.org/rfc/rfc2544.txt
https://www.intel.com/content/www/us/en/developer/topic-technology/networking/dpdk.html
https://www.intel.com/content/www/us/en/developer/topic-technology/networking/dpdk.html
https://www.intel.com/content/www/us/en/developer/topic-technology/networking/dpdk.html
https://grpc.io
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/support/articles/000006703/ethernet-products.html
https://www.intel.com/content/www/us/en/support/articles/000006703/ethernet-products.html
https://www.intel.com/content/www/us/en/support/articles/000006703/ethernet-products.html
https://sup4rnet.github.io
https://sup4rnet.github.io
https://www.caida.org/projects/network_telescope/
https://www.caida.org/projects/network_telescope/
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://github.com/intel/SDN-NFV-Hands-on-Samples
https://github.com/intel/SDN-NFV-Hands-on-Samples

[24] Luca Deri, Maurizio Martinelli, Tomasz Bujlow, and
Alfredo Cardigliano. ndpi: Open-source high-speed
deep packet inspection. In IEEE IWCMC, 2014.

[25] European Parliament and Council of European Union.
Directive 95/46/EC. General Data Protection Regula-
tion.
http://data.consilium.europa.eu/doc/
document/ST-5419-2016-INIT/en/pdf, accessed
on Apr. 2025.

[26] Luca Gioacchini, Luca Vassio, Marco Mellia, Idilio
Drago, Zied Ben Houidi, and Dario Rossi. i-DarkVec: In-
cremental embeddings for darknet traffic analysis. ACM
Transactions on Internet Technology, 2023.

[27] Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan
Beschastnikh, and Margo Seltzer. Parking packet pay-
load with P4. In ACM CoNEXT, 2020.

[28] Harm Griffioen, Georgios Koursiounis, Georgios
Smaragdakis, and Christian Doerr. Have you SYN me?
Characterizing ten years of Internet scanning. In ACM
IMC, 2024.

[29] Pynbianglut Hadem, Dilip Kumar Saikia, and Soumen
Moulik. An SDN-based intrusion detection system us-
ing SVM with selective logging for IP traceback. Else-
vier Computer Networks, 2021.

[30] Raphael Hiesgen, Marcin Nawrocki, Alistair King, Al-
berto Dainotti, Thomas C. Schmidt, and Matthias Wäh-
lisch. Spoki: Unveiling a new wave of scanners through
a reactive network telescope. In USENIX Security, 2022.

[31] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio
Drago, Ramin Sadre, Anna Sperotto, and Aiko Pras.
Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix. IEEE Communications
Surveys & Tutorials, 2014.

[32] Intel. Tofino native architecture – OpenTofino.
https://github.com/barefootnetworks/Open-
Tofino/blob/master/PUBLIC_Tofino-Native-
Arch.pdf, accessed on Apr. 2025, 2021.

[33] M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto,
and A. Dainotti. Millions of targets under attack: A
macroscopic characterization of the DoS ecosystem. In
ACM IMC, 2017.

[34] Meatasit Karakate, Hiroshi Esaki, and Hideya Ochiai.
SDNHive: A proof-of-concept SDN and honeypot sys-
tem for defending against internal threats. In ACM IC-
CNS, 2022.

[35] Murat Karakus and Arjan Durresi. A survey: Con-
trol plane scalability issues and approaches in software-
defined networking (SDN). Computer Networks, Else-
vier, 2017.

[36] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and
Joarder Kamruzzaman. Survey of intrusion detection
systems: techniques, datasets and challenges. Springer
Cybersecurity, 2019.

[37] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Se-
shan. TEA: Enabling state-intensive network functions
on programmable switches. In ACM SIGCOMM, 2020.

[38] Hyojoon Kim and Arpit Gupta. ONTAS: Flexible and
scalable online network traffic anonymization system.
In ACM NetAI, 2019.

[39] Guanyu Li, Menghao Zhang, Shicheng Wang, Chang
Liu, Mingwei Xu, Ang Chen, Hongxin Hu, Guofei Gu,
Qi Li, and Jianping Wu. Enabling performant, flexible
and cost-efficient DDoS defense with programmable
switches. IEEE/ACM Transactions on Networking,
2021.

[40] Ruidong Li, Minjiao Zheng, Donglin Bai, and Zhengduo
Chen. SDN based intelligent honeynet network model
design and verification. In IEEE MLISE, 2021.

[41] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In ACM SIGCOMM.
2019.

[42] Mehrnoosh Monshizadeh, Vikramajeet Khatri, and
Raimo Kantola. Detection as a service: An SDN appli-
cation. In IEEE ICACT, 2017.

[43] David Moore, Colleen Shannon, Geoffrey M. Voelker,
and Stefan Savage. Network telescopes. Tech. report,
https://escholarship.org/uc/item/1405b1bz,
accessed on Apr. 2025.

[44] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. SCREAM: sketch resource allocation
for software-defined measurement. In ACM CoNEXT,
2015.

[45] Merve Ozkan-Okay, Refik Samet, Ömer Aslan, and
Deepti Gupta. A comprehensive systematic literature
review on intrusion detection systems. IEEE Access,
2021.

[46] Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern
Paxson, and Larry Peterson. Characteristics of Internet
background radiation. In IMC, 2004.

14

http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://escholarship.org/uc/item/1405b1bz

[47] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti,
F. Cugini, and P. Castoldi. P4 edge node enabling state-
ful traffic engineering and cyber security. Optica JOCN,
2019.

[48] Eric Pauley, Paul Barford, and Patrick McDaniel.
DScope: A cloud-native Internet telescope. In USENIX
Security, 2023.

[49] Philipp Richter and Arthur Berger. Scanning the scan-
ners: Sensing the internet from a massively distributed
network telescope. In ACM IMC, 2019.

[50] Cha Hwan Song, Pravein Govindan Kannan, Bryan
Kian Hsiang Low, and Mun Choon Chan. FCM-sketch:
generic network measurements with data plane support.
In ACM CoNEXT, 2020.

[51] Francesca Soro, Idilio Drago, Martino Trevisan, Marco
Mellia, João Ceron, and José J. Santanna. Are darknets
all the same? On darknet visibility for security monitor-
ing. In IEEE LANMAN, 2019.

[52] Francesca Soro, Thomas Favale, Danilo Giordano, Idilio
Drago, Tommaso Rescio, Marco Mellia, Zied Ben
Houidi, and Dario Rossi. Enlightening the darknets:
Augmenting darknet visibility with active probes. IEEE
Transactions on Network and Service Management,
2023.

[53] Martino Trevisan, Alessandro Finamore, Marco Mellia,
Maurizio Munafò, and Dario Rossi. DPDKStat: 40Gbps
statistical traffic analysis with off-the-shelf hardware.
Tech. Report, https://nonsns.github.io/paper/
DPDKStat-techrep.pdf, accessed on Apr. 2025, 2016.

[54] Aaron Turner and contributors. Tcpreplay: Pcap edit-
ing and replay tools for network testing. https:
//tcpreplay.appneta.com/, accessed on Apr. 2025,
2000–2024.

[55] Abdul Waleed, Abdul Fareed Jamali, and Ammar Ma-
sood. Which open-source IDS? snort, suricata or zeek.
Elsevier Computer Networks, 2022.

[56] Jun Xu, Jinliang Fan, Mostafa H Ammar, and Sue B
Moon. Prefix-preserving IP address anonymization:
Measurement-based security evaluation and a new
cryptography-based scheme. In IEEE ICNP, 2002.

[57] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong
Wang, Luyang Li, Wenchen Han, Nan Chen, Lebing
Wan, Lichao Liu, Zhipeng Ding, Xiongfei Geng, Tao
Feng, Feng Ning, Kai Chen, and Chuanxiong Guo. Tiara:
A scalable and efficient hardware acceleration architec-
ture for stateful layer-4 load balancing. In USENIX
NSDI, 2022.

[58] Tianzhu Zhang, Leonardo Linguaglossa, Massimo
Gallo, Paolo Giaccone, and Dario Rossi. FlowMon-
DPDK: Parsimonious per-flow software monitoring at
line rate. In IFIP TMA, 2018.

[59] Tianzhu Zhang, Leonardo Linguaglossa, Massimo
Gallo, Paolo Giaccone, and Dario Rossi. FloWatcher-
DPDK: Lightweight line-rate flow-level monitoring in
software. IEEE Transactions on Network and Service
Management, 16(3):1143–1156, 2019.

15

https://nonsns.github.io/paper/DPDKStat-techrep.pdf
https://nonsns.github.io/paper/DPDKStat-techrep.pdf
https://tcpreplay.appneta.com/
https://tcpreplay.appneta.com/

1 2 3 4 5 6 7 16real

Input traffic (Gbps)

0
1
2
3
4
5
6
7
8

%
 o

f I
np

ut
 Tr

af
fic

Traffic to FSD-NF

(a) Under different traffic load.

0 200 400 600 800 1000
Whitelist Entries

60

80

100

%
 o

f I
np

ut
 Tr

af
fic

(b) With different numbers of
whitelist entries.

Figure 14: Filtered traffic to FSD-NF. “Real” refers to the de-
ployment in our campus network.

A Filtering efficiency

For completeness, Fig. 14 shows the efficiency of the flow
filters at the switch. The left plot reports the percentage of
traffic (in packets) that the controller receives under different
replayed traffic loads and in real deployment. All in all, the
per-flow and whitelist filters are very efficient and remove
94-96% of traffic. The service whitelist contributes up to 30%
when we include the top-400 or more popular services.

B Radiation traffic by 5 selected external
senders

Fig. 15 shows the radiation generated by the 5 selected exter-
nal senders over time. We add a brief description of the traffic
they generate in the figure caption.

Fri 06 Tue 10 Sat 14 Wed 18 Sun 22 Thu 26 Mon 30

1000

2000

3000

Pa

ck
et

s p
er

 h
ou

r

(a) 5.96.X.X - possible NTP amplification attack. All pack-
ets are UDP/123, come from the same sender and go to the
same internal server.

Fri 06 Tue 10 Sat 14 Wed 18 Sun 22 Thu 26 Mon 30

2500

5000

7500

10000

12500

Pa

ck
et

s p
er

 h
ou

r

(b) 188.92.X.X - Possible Satori bot scanner. Packets go to
known Satori ports and try to reach a lot of internal IP
addresses (which are protected by the firewall).

Fri 06 Tue 10 Sat 14 Wed 18 Sun 22 Thu 26 Mon 30

1000

1500

2000

Pa

ck
et

s p
er

 h
ou

r

(c) 193.X.X.X - ICMP Time Exceeded messages sent to
more than 300 internal client. Likely a routing issue that
makes the final destination unreachable for internal hosts.

Fri 06 Tue 10 Sat 14 Wed 18 Sun 22 Thu 26 Mon 30

550

600

650

700

Pa

ck
et

s p
er

 h
ou

r

(d) 94.143.X.X - possible misconfiguration or service fail-
ure. All packets come from the same sender and port, and
are destined to the same host and port.

Fri 06 Tue 10 Sat 14 Wed 18 Sun 22 Thu 26 Mon 30

300

400

500

600

Pa

ck
et

s p
er

 h
ou

r

(e) 49.232.X.X - one of the 38 ping scanners. ICMP echo
requests are directed to 20 internal IP addresses.

Figure 15: Temporal evolution of 5 selected campus-specific
senders. Y-axis shows the average packet number for all destina-
tion (internal) IP addresses.

16

C Radiation traffic by top-5 internal scanners

Fig. 16 shows the radiation generated by 5 example internal
scanners (among top 10) over time. As before, we add a brief
description in the figure caption.

Fri 06 Tue 10 Sat 14 Wed 18 Sun 22 Thu 26 Mon 30
0

1000

2000

3000

Pa

ck
et

s p
er

 h
ou

r

(a) 1th internal scanner - horizontal/a period/all ports -
likely misconfigured repository.

Fri 06 Tue 10 Sat 14 Wed 18 Sun 22 Thu 26 Mon 30
0

500

1000

Pa

ck
et

s p
er

 h
ou

r

(b) 4th internal scanner - horizontal/a period/all ports -
likely a scanning bot

Fri 06 Tue 10 Sat 14 Wed 18 Sun 22 Thu 26 Mon 30
0

100

200

Pa
ck

et
s p

er
 h

ou
r

(c) 9th internal scanner - horizontal/mostly on working
hours/most ports.

Fri 06 Tue 10 Sat 14 Wed 18 Sun 22 Thu 26 Mon 30
0

200

400

600

Pa

ck
et

s p
er

 h
ou

r

(d) 3th internal scanner - vertical/all time/few ports.

Fri 06 Tue 10 Sat 14 Wed 18 Sun 22 Thu 26 Mon 30

50

100

150

Pa

ck
et

s p
er

 h
ou

r

(e) 7th internal scanner - vertical/all time/few ports.

Figure 16: Temporal evolution of 5 example internal scanners
(among top 10). Y-axis shows the total packet number for all
destination (external) IP addresses.

17

	Introduction
	Background and Motivation
	ChamaleoNet design principles and architecture
	The ChamaleoNet architecture
	Design goals and ethics

	Implementation
	*nf: a deep dive
	P4 switch control plane highlights
	Traffic anonymizer

	ChamaleoNet in action
	External erroneous radiation
	Internal erroneous radiation

	ChamaleoNet parameter analysis
	Parameter setting

	Discussion
	Related work
	Conclusions
	Filtering efficiency
	Radiation traffic by 5 selected external senders
	Radiation traffic by top-5 internal scanners

