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A B S T R A C T 
 

The increased Internet of Medical Things (IoMT) and the Industrial Internet of Things (IIoT) 
interconnectivity has introduced complex cybersecurity challenges, exposing sensitive data, patient 
safety, and industrial operations to advanced cyber threats. To mitigate these risks, this paper 
introduces a novel transformer-based intrusion detection system (IDS), termed BiGAT-ID—a hybrid 
model that combines bidirectional gated recurrent units (BiGRU), long short-term memory (LSTM) 
networks, and multi-head attention (MHA). The proposed architecture is designed to effectively 
capture bidirectional temporal dependencies, model sequential patterns, and enhance contextual 
feature representation. Extensive experiments on two benchmark datasets; CICIoMT2024 (medical 
IoT) and EdgeIIoTset (industrial IoT); demonstrate the model’s cross-domain robustness, achieving 
detection accuracies of 99.13% and 99.34%, respectively. Additionally, the model exhibits exceptional 
runtime efficiency, with inference times as low as 0.0002 seconds per instance in IoMT and 0.0001 
seconds in IIoT scenarios. Coupled with a low false positive rate, BiGAT-ID proves to be a reliable 
and efficient IDS for deployment in real-world heterogeneous IoT environments. 

 
 

1. Introduction 
The rapid expansion of Internet of Things (IoT) tech- 

nologies has significantly transformed various sectors, in- 
cluding healthcare, industry, agriculture, transportation, and 
smart cities, by offering enhanced services and improving 
operational efficiency [1]. With the continuous advancement 
of technology, the number of connected devices has grown 
substantially. This growth is largely driven by the integration 
of IoT and its associated communication systems, which 
now play a crucial role in both everyday applications and 
critical infrastructures across multiple domains. Within the 
healthcare sector, a specialized branch of IoT—commonly 
referred to as the Internet of Medical Things (IoMT), smart 
healthcare, or Healthcare 4.0, has emerged as a transforma- 
tive force. IoMT enables continuous, real-time monitoring 
through connected medical devices, supporting applications 
such as telemedicine, wearable sensors, and remote diagnos- 
tics. These technologies have significantly improved patient 
care by enabling proactive intervention and seamless health- 
care delivery. 

In both IIoT and IoMT, the system architecture is typ- 
ically structured into three primary layers: device layer, 
network layer, and application layer [2]. The device layer 
(or perception layer) comprises various sensors and smart 
devices responsible for data collection and environmental 
sensing. In IoMT, this includes patient monitoring devices, 
implantable sensors, and telemedicine equipment, while in 
IIoT it involves sensors from smart homes, vehicles, and in- 
dustrial equipment [2]. The network layer ensures secure and 
efficient data transmission between devices and platforms 
using protocols specific to each domain. In both IIoT and 
IoMT environments, communication relies on lightweight 
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and domain-specific protocols designed to support interop- 
erability, real-time monitoring, and system control. Typical 
protocols include Modbus, MQTT, and LoRaWAN in indus- 
trial applications, as well as Bluetooth low energy (BLE), 
Zigbee, and Wi-Fi in healthcare systems. These communi- 
cation technologies play a critical role in enabling seamless 
data exchange between devices and platforms, facilitating 
remote monitoring, and supporting the deployment of digital 
twins for smart factories, smart hospitals, and intelligent 
building management systems. At the top of the architec- 
ture, the application layer in both IIoT and IoMT systems 
enables intelligent decision-making, automation, and user 
interaction [3, 4]. In healthcare, this layer supports func- 
tionalities such as electronic health records, clinical decision 
support systems, and remote patient monitoring platforms 
[5]. Similarly, in industrial environments, the application 
layer integrates supervisory control and data acquisition 
(SCADA) systems, human-machine interfaces (HMI), and 
tools for real-time industrial process monitoring [6]. Across 
both domains, this layer transforms raw sensor data into ac- 
tionable insights, supporting the deployment of digital twins 
and enabling proactive, data-driven responses to dynamic 
environments [7, 8]. 

1.1. Motivation and research gap 
IoMT and IIoT technologies have enhanced interconnec- 

tivity and operational efficiency; however, this growing re- 
liance on interconnected networks has also heightened their 
vulnerability to sophisticated and targeted cyber-attacks. 
Each layer of the IIoT and IoMT architecture presents spe- 
cific security challenges and is exposed to various cyber 
threats. The device layer is vulnerable to physical attacks 
such as node tampering, fake node injection, replay at- 
tacks, and eavesdropping, targeting sensor data integrity 
and device functionality. The network layer is a primary 
target for communication-based attacks, including denial-of- 
service (DoS), distributed DoS (DDoS), man-in-the-middle 
(MITM) attacks, and unauthorized access, aiming to disrupt 
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data transmission and network availability [9]. Meanwhile, 
the application layer faces software-level threats such as 
malware, ransomware, SQL injection, and privacy breaches, 
which can compromise sensitive data, critical services, and 
decision-making processes[10, 11]. 

Motivated by these critical needs, intrusion detection 
system (IDS) solutions have been developed for industrial 
control environments, including control network analysis, 
protocol analysis, and traffic mining based on machine learn- 
ing or deep learning (DL) techniques [12]. However, tra- 
ditional IDS approaches often fall short in addressing the 
increasing complexity and sophistication of modern cyber- 
attacks. This limitation is particularly critical in sensitive 
environments such as healthcare and industry, where secu- 
rity breaches may result in severe consequences, including 
data leakage, service disruption, operational downtime, and 
safety risks. These challenges underscore the urgent need 
for advanced IDS frameworks capable of real-time threat 
detection and rapid response, in order to safeguard both 
IoMT and IIoT networks against emerging and evolving 
threats [13]. 

1.2. Our contribution 
This study proposes a hybrid DL-based IDS, named 

bidirectional GRU and Attention-based Transformer for in- 
trusion detection (BiGAT-ID). Within the proposed IDS, IoT 
traffic is modeled as a non-stationary sequence where attack 
semantics often depend on short transients (e.g., flag flips, 
rapid port scans) embedded in longer session patterns. To 
address this, a BiGRU encoder is employed for efficient 
past–future context capture, while an LSTM layer ensures 
long-range attack persistence through stable gradient flow 
that mitigates vanishing gradients. To enhance discrimina- 
tion, a multi-head attention (MHA) mechanism is applied, 
improving detection accuracy and reducing false positives 
by focus on salient patterns within the traffic sequence [14]. 
The main contributions of this study are summarized as 
follows: 

• To the best of the authors’ knowledge, BiGAT-IDS uniquely 
combines BiGRU, LSTM, and MHA to achieve outstand- 
ing intrusion detection performance. 

• BiGAT-IDS detects attacks across IIoT and IoMT do- 
mains, proving its versatility and strong generalization. 

• Leave-one-attack-out (LOAO) zero-day strategy testing 
confirms that BiGAT-IDS detects both signature-based 
and zero-day threats across distinct attack patterns. 

• BiGAT-IDS outperforms state-of-the-art models on both 
datasets, validating its superior detection accuracy. 

 
 

2. Related works 
Numerous techniques have been developed to combat 

intrusions in IoMT networks. For example, the work in 
[15] introduces a CNN-based IDS for IoMT networks that 
outperforms traditional ML methods in accuracy and ef- 
ficiency, demonstrating strong robustness and real-world 
applicability for healthcare cybersecurity. Moreover, both 
[17] and [16] utilize deep neural networks (DNN) for intru- 
sion detection but differ in focus and design. It integrates 

DNN within a federated learning framework for decentral- 
ized IoT, emphasizing scalability and privacy, while [17] 
employs a self-attention-based DL model for IoMT anomaly 
detection. Notably, [16] outperforms [17] in terms of F1- 
score, demonstrating superior effectiveness across the same 
dataset. LSTM-based approaches form the foundation of 
several studies [26, 27]. The DAG-LSTM model [28] en- 
hances intrusion detection in IoMT by incorporating feature 
optimization techniques, achieving an accuracy of 92%. In 
contrast, the EFL-LSTM model [29] leverages federated 
learning to enable decentralized detection, reaching a higher 
accuracy of 97.16%. Both schemes are evaluated solely on 
the ECU-IoHT benchmark dataset, which limits their ability 
to detect a wide range of unseen IoT attacks. Similarly, 
an advanced LSTM-based intrusion detection scheme is 
proposed in [18] to secure IoMT environments. By learn- 
ing from diverse equipment and attack patterns, the model 
effectively captures complex threat behaviors to safeguard 
sensitive medical data against evolving cybersecurity chal- 
lenges. However, the scheme has not been evaluated against 
IIoT-specific attacks. Stacking ensemble models combining 
LSTM, CNN, and DNN in [30] achieve high performance on 
the ECU-IoHT dataset for IoMT detection. However, the ap- 
proach incurs high computational cost and lacks evaluation 
on IIoT or general IoT datasets, raising concerns about its 
generalizability and real-world adaptability. Innovative ar- 
chitectures include CKANs, which embed the Kolmogorov- 
Arnold theorem with self-attention mechanisms to balance 
accuracy and interpretability in IoMT, though with trade- 
offs in resource efficiency [31]. Yet, CKANs aim to balance 
interpretability and accuracy; this trade-off might not hold 
across all datasets or intrusion types, leading to poten- 
tial performance drops. Meanwhile, FlowID [19] leverages 
a hypergraph-based DL framework combined with dual- 
contrastive self-supervised learning to effectively capture 
high-order traffic interactions. This design enhances its ro- 
bustness and generalization across diverse network scenarios 
and benchmark datasets. 

Researchers have shown increasing interest in develop- 
ing techniques to counter intrusions in IIoT networks com- 
pared to IoMT. For example, in [20] and [21], CNN-LSTM 
architectures are proposed for IIoT intrusion detection. The 
first employs LSTM only, while the second incorporates 
a self-attention layer to enhance accuracy. Both models 
are evaluated on the Edge-IIoTset dataset, demonstrating 
strong performance in binary and multiclass classification. 
The self-attention-based model achieves superior accuracy 
and low inference time, making it well-suited for real-time 
and robust IIoT cybersecurity applications. The simplest 
approach is observed in [32], which explores standard DL ar- 
chitectures such as artificial neural networks (ANN), LSTM, 
and GRU for attack classification. These models are applied 
independently and lack attention for contextual focus. A 
step further, [22] employs a dual recurrent approach by 
combining Bi-GRU with LSTM to improve the modeling 
of sequential dependencies in network traffic. This fusion 
enhances the learning of long-range temporal features while 
maintaining a focus on recurrent architectures. More ad- 
vanced still, [33] proposes the Magru-IDS model, which in- 
tegrates GRU with MHA to refine the extraction of relevant 
temporal features. This addition of attention mechanisms 
improves the model’s ability to selectively focus on critical 
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Table 1 
Comparative summary of state-of-the-art IDS solutions for IoMT and IIoT networks. 

 

 Ref Dataset DL method BP (%) Limitations  
Bi/GRU 

Employing 
LSTM MHA 

M
ed

ic
al

 d
om

ai
n 

[15] CICIoMT2024 CNN Acc=99.00 
F1= 98.00 

Absence of comparison with prior works, and eval- 
uation conducted on a single dataset ✗ ✗ ✗ 

[16] CICIoMT2024 DNN Acc=99.56 
Pr=94.59 

Lacks temporal awareness and generalizes poorly 
on sequences, and use imbalanced dataset ✗ ✗ ✗ 

[17] CICIoMT2024 Att-DNN Pr=84.43 
F1= 91.02 

Protocol diversity and data imbalance hinder robust 
cross-domain model generalization. ✗ ✗ ✓ 

[18] CICIoMT2024 L2D2 Acc=98.00, 
F1=98.00 

Not evaluated for delays, zero-day threats, or IIoT 
generalization. ✗ ✓ ✗ 

[19] CIC-IOMT2024 CNN-GNN Acc=95.27 High complexity limits deployment on resource- ✓ ✗ ✗ 
F1 = 90.36 constrained devices. 

In
du

st
ria

l 
do

m
ai

n 

[16] CICIoT2023 DNN Acc=99.09 
Pr=91.56 

Lacks temporal awareness and generalizes poorly 
on sequences, and use imbalanced dataset ✗ ✗ ✗ 

[17] MQTT-IoT-IDS Att-DNN Pr=92.14 
F1=95.53 

Protocol diversity and data imbalance hinder robust 
cross-domain model generalization. ✗ ✗ ✓ 

[20] EdgeIIoTset CNN-LSTM Acc=98.68 Evaluation based on limited metrics and a single 
dataset affects overall generalizability. ✗ ✓ ✗ 

[21] EdgeIIoTset LSTM-CNN- 
Att 

F1=99.04, 
FPR=0.002 

Lacks mechanism to emphasize key temporal pat- 
terns and cross-domain IIoT–IoMT applicability. ✗ ✓ ✓ 

[22] Edge-IIoTset BiGRU-LSTM Acc=98.32, Lacks attention mechanism to highlight important ✓ ✓ ✗ 
FPR=0.046 temporal features and patterns. 

[23] EdgeIIoTset CNN-GRU Acc= 98.70 Valid for single dataset, no advanced comparison, ✓ ✗ ✗ 
FPR=0.7 and high FPR. 

[24] EdgeIIoTset CNN-LSTM- Acc= 97.44 Limited metrics, single unbalanced dataset, no ✓ ✓ ✗ 
GRU dynamic focus on temporal patterns. 

[25] Edge-IIoTset BiGRU-CNN Acc=94.7 Limits capturing long-range dependencies, weaken- ✓ ✗ ✓ 
Pr=94.8 ing performance on extended or noisy sequences. 

Abbreviations: Best performance (BP); Attention (Att) 

 

time-dependent patterns. However, the model has limited se- 
quential dependency modeling capability. Another strategy, 
like [34] introduces a scheme that augments a conventional 
CNN by capturing global feature dependencies through self- 
attention. This work also applies data cleaning and mutual 
information-based feature filtering, enhancing the model’s 
feature selection without adding sequence modeling. How- 
ever, the scheme suffer from weak temporal sequence learn- 
ing ability. Increasing in complexity. Similarly, in [23], 
which combines CNN and GRU. The CNN component 
captures spatial patterns, while GRU processes temporal 
sequences, allowing the model to handle both static and 
dynamic data characteristics effectively. A more complex 
hybrid strategy is presented in [24], where CNN, LSTM, and 
GRU are combined into a triple-ensemble model. This struc- 
ture leverages the individual strengths of each DL block, 
spatial, sequential, and gated temporal processing, result- 
ing in a more expressive and robust intrusion detection 
framework. Finally, the most sophisticated architecture ap- 
pears in [25], which integrates self-attention mechanisms, 
BiGRU, and Inception-CNN. Beyond model complexity, 
this work incorporates advanced data handling techniques, 
including mixed sampling, denoising, and feature selection 
based on Pearson correlation and Random Forest. According 
to Table 1, many existing IDS models demonstrate strong 
performance but suffer key limitations. Most fail to inte- 
grate BiGRU, LSTM, and MHA in a unified framework, 
reducing their capacity to capture comprehensive temporal 
and contextual features. Additionally, many are domain- 
specific, limiting cross-environment generalization between 
IoMT and IIoT systems. Crucial deployment aspects such as 
inference time and runtime efficiency are often neglected, 
undermining real-world applicability. Finally, explainability 
is rarely addressed, despite its importance for transparency 
and trust in critical settings like healthcare. These limitations 

motivate the development of more holistic, generalizable, 
and interpretable IDS frameworks. 

 
3. Proposed Methodology 

The proposed model synergistically combines BiGRU 
for capturing forward-backward dependencies, LSTM for 
deep sequential feature extraction, and MHA for extracting 
long dependencies salient temporal features. Unlike existing 
models evaluated on single-domain datasets with shallow 
temporal encoding, BiGAT-ID enables robust intrusion de- 
tection across both IoMT and IIoT environments. This com- 
posite architecture enhances model interpretability, mini- 
mizes false alarms, and maintains low inference latency, 
ensuring scalability and real-time applicability in heteroge- 
neous operational settings. The following subsections detail 
the preprocessing pipeline and architectural components. 
The architecture of the proposed BiGAT-ID, illustrated in 
Figure 1, is organized into two main components: the data 
preprocessing pipeline and the model architecture. 

3.1. Pre-processing 
The preprocessing stage plays a crucial role in converting 

raw, heterogeneous network traffic data into a structured 
format suitable for DL-based IDS. The process typically 
involves several essential steps: 

• Data cleaning and label encoding: Dataset structure 
and labels are analyzed; categorical fields are numerically 
encoded using LabelEncoder for model compatibility. 

• Feature extraction and reshaping: Selected features are 
reshaped into 3D matrices to align with sequential model 
input and capture temporal dependencies. 
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Figure 1: The proposed BiGAT-IDS model. 

 

 
• Class imbalance mitigation: Random over sampler (RoS) 

addresses IoMT sparsity by duplicating existing mi- 
nority samples, while SMOTE enhances IIoT class bal- 
ance by synthetically generating new minority samples 
through feature-space interpolation, improving gener- 
alization compared to simple duplication [35]. Focal 
loss was further incorporated during training to down- 
weight well-classified examples and emphasize hard and 
minority-class samples, thereby improving sensitivity to 
subtle, rare attack patterns [36]. 

• Dataset splitting: Data is split into 80% training and 20% 
testing sets using stratified sampling via train_test_split 
for balance. 

• Label transformation: Response labels are one-hot en- 
coded using to_categorical to support categorical cross- 
entropy loss in multiclass classification. 

3.2. Model architecture 
The BiGAT-ID model processes sequential data shaped 

as (83,1) for IoMT and (60,1) for IIoT. Its dual-branch archi- 
tecture (Figure 1) captures complementary features. Table 2 
outlines the model structure and hyperparameters. 
- Branch 1: BiGRU with MHA: This branch uses a BiGRU 
layer (64 units) followed by Layer Normalization, multi- 
head attention (8 heads, 64 key dim), and Dropout (0.5). 
It captures bidirectional dependencies and highlights salient 
temporal patterns. Output is flattened for fusion. 
- Branch 2: LSTM with Dropout: A single LSTM layer (32 
units, return_sequences=False) extracts condensed temporal 
features, followed by Dropout (0.5). This setup ensures a 
compact embedding of input sequences suitable for classi- 
fication while reducing overfitting through neuron deactiva- 
tion during training. 
- Fusion and classification: Outputs from both branches are 
concatenated and passed through Dense layers (64, 32 units 

Table 2 
BiGAT-ID model summary and hyperparameters. 

 

 DL Layer Unit Output Shape Connected to 
   IoMT:  

1 Input – (None, 83, 1) – 
   IIoT:  
   (None, 60, 1)  

2 BiGRU 64 (None, 83, 128) Input_Layer[0][0] 
3 LayerNorm. - (None, 83, 128) BiGRU 

4 MHA - (None, 83, 128) LayerNorm. 

5 Dropout_1 - (None, 83, 128) MHA (8, 64) 
6 Flatten - (None, 10624) Dropout_1 
7 LSTM 32 (None, 32) Input_Layer[0][0] 
8 Dropout_2 - (None, 32) LSTM 
9 Concatenate - (None, 10656) Flatten, Dropout_2 
10 Dense - (None, 64) Concatenate 
11 Dense - (None, 32) Dense 
12 Dense - (None, 6) Dense 

Total parameters: 978,470 
Trainable parameters: 978,470 
Non-trainable parameters: 0 

 
- Model compilation and validation: The model is compiled 
with Adam optimizer and categorical cross-entropy loss. Per- 
formance is evaluated using accuracy, FPR, precision, recall, 
F1-score, and inference time [37], ensuring robust validation 
of classification effectiveness. 

 
4. Experimentation 
4.1. Datasets 

This study employs two publicly available benchmark 
datasets to evaluate the proposed BiGAT-ID model, summa- 
rized in Table 3. 

1. CICIoMT20241: Designed to strengthen IoMT security 
research, this dataset includes 18 attack types grouped 
into five (5) categories, captured from a testbed of 40 
devices (25 physical and 15 simulated). It features key 
IoMT protocols such as Wi-Fi, MQTT, and Bluetooth 
[38]. 

2. Edge-IIoTset2: Collected from a 7-layer IIoT testbed 
with 10 smart devices, this dataset contains 14 attack 
types across six (6) categories. It focuses on IIoT-specific 
traffic and protocols, using 61 selected features out of 
1,176 [39]. 

3. TON_IoT3: Encompasses heterogeneous data sources 
derived from telemetry records of IoT/IIoT services, op- 
erating system logs, and network traffic within an IoT 
environment. It comprises 44 features and incorporates 
benign, and nine (9) distinct categories of cyberattacks, 
namely scanning, DoS, DDoS, ransomware, backdoor, 
data injection, XSS, password cracking, and MITM; exe- 
cuted against various IoT and IIoT sensors across the IIoT 
network, captured from a testbed of more than 10 devices. 
This dataset is publicly accessible through the TON_IoT 
repository [40]. 

with ReLU). A final Dense layer (6 units, softmax) generates   
class probabilities for multiclass classification, leveraging 
learned features from both processing paths. 

1https://www.unb.ca/cic/datasets/tabular-iot-attack-2024.html 
2https://www.kaggle.com/datasets/cnrieiit/mqttset 
3https://www.kaggle.com/datasets/alaaelmor/ 

ton-iot-train-test-network 

https://www.unb.ca/cic/datasets/tabular-iot-attack-2024.html
http://www.kaggle.com/datasets/cnrieiit/mqttset
http://www.kaggle.com/datasets/alaaelmor/
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Table 3 
Datasets utilized in the study, along with their respective 
attack categories, types, and the number of samples. 

 

Data Category Samples Attack types 

CI
CI

oM
T2

02
4 

Normal 32620 – 
DDoS 
UDP 2576 DDoS SYN, DDoS TCP, DDoS 

ICMP, DDoS UDP 

DoS UDP 3115 DoS SYN, DoS TCP, DoS ICMP, 
DoS UDP 

MITM 1053 ARP Spoofing 
  Malformed Data, DoS Connected 

MQTT 953 Flood, DDoS Publish Flood, DoS 
Publish Flood 

Recon 8321 Ping Sweep, Recon VulScan, OS 
Scan, Port Scan 

Ed
ge

IIo
Ts

et
 

Normal 24301 – 
  DDoS_UDP, DDoS_TCP, 

DDoS 49396 DDoS_ICMP, DDoS_HTTP, 
DDoS_HTTP 

Info gath- 
ering 21148 Port Scanning, Fingerprinting, Vul- 

nerability_Scanner 
MITM 1214 DNS Spoofing, ARP Spoofing 
Injection 30632 SQL_Injection, XSS, UpLoading 
Malware 31109 Ransomeware, Backdoor, Password 

 
4.2. Obtained results 
- Accuracy and loss graph: Figure 2 illustrates the training 
and validation curves for the multiclass attack detection 
model. Subfigure (a) depicts the accuracy trends, while 
subfigure (b) shows the loss trajectories across epochs for 
both datasets. 

• Accuracy curves (Figure 2(a)): For the CICIoMT2024 
dataset, the training accuracy rapidly approaches 100%, 
and the validation accuracy follows closely, stabilizing 
at 99.13%, which indicates excellent generalization ca- 
pability. For the EdgeIIoTset dataset, both training and 
validation accuracy curves follow a consistently upward 
trajectory with minor oscillations, achieving a peak val- 
idation accuracy of 99.34%. These results confirm the 
model’s strong classification ability in both medical and 
industrial IoT environments. 

• Loss curves (Figure 2(b)): The training and validation 
loss curves for CICIoMT2024 demonstrate a steady de- 
cline, converging to a minimal loss value of 0.0257%. A 
similar downward trend is observed for the EdgeIIoTset 
dataset, where the final validation loss reaches 0.0158%. 
The consistent reduction in loss across both domains 
reflects effective learning and minimal overfitting. 

- Classification report analysis: Table 4 presents a detailed 
classification report for the proposed BiGAT-ID model on 
both CICIoMT2024 and EdgeIIoTset datasets, reflecting its 
robust performance across multiple cyberattack classes. 

• IoMT domain: BiGAT-ID achieves 100% F1-scores in 
4 of 6 classes, and 98% in others. With 39,144 validated 
samples, the model shows excellent precision and recall, 
effectively distinguishing normal and malicious IoMT 
traffic. 

• IIoT domain: On 59,276 validated samples, the model 
scores 100% F1 in MITM and Malware, and 97–99% in 
other attacks. BiGAT-ID maintains 99% accuracy, con- 
firming its robust detection capability across diverse IIoT 
attack types. 

Table 4 
Classification report for the proposed BiGAT-ID model on 
CICIoMT2024 and EdgeIIoTset datasets in percentage (%). 

 

CICIoMT2024 dataset EdgeIIoTset dataset 
Attack type Pr Rc F1 Attack type Pr Rc F1 
Normal 98 98 98 Normal 100 100 100 
DDoS UDP 100 100 100 DDoS 98 96 97 
DoS UDP 97 98 98 Info. gath. 98 99 99 
MITM 100 100 100 MITM 100 100 100 
MQTT 100 100 100 Injection 97 98 98 
Recon. 100 100 100 Malware 100 100 100 

Accuracy   99 Accuracy   99 
Macro avg 99 99 99 Macro avg 98 98 98 
Weighted avg 99 99 99 Weighted avg 99 99 99 

Abbreviation: Validation data (VD). 
 
 
 

Macro and weighted F1-scores between 98–99% confirm 
BiGAT-ID’s robustness against class imbalance and diverse 
attack types. 
- Confusion Matrix: Figure 3 presents the normalized 
confusion matrices for the CICIoMT2024 and EdgeIIoTset 
datasets, shown in subfigures (a) and (b), respectively. These 
matrices provide detailed insights into the classification 
performance of the BiGAT-ID model across all classes. 

• In Figure 3 (a), which presents results for the CICIoMT2024 
dataset, the model achieves high accuracy across all attack 
types. Benign traffic attains a TPR of 98% with only 
2% misclassified as MQTT, indicating strong separation 
between benign and malicious flows. MITM achieves a 
perfect TPR of 100%, reflecting excellent pattern capture. 
MQTT records a TPR of 97% but 2% are misclassified as 
benign, raising concern over false negatives and suggest- 
ing the need for improved feature extraction for this attack 
type. Recon, DDoS, and DoS all achieve a perfect TPR of 
100%, showing error-free detection. 

• In Figure 3 (b), which presents results for the EdgeI- 
IoTset dataset, the model maintains strong classification 
performance. Normal traffic achieves a TPR of 100% with 
no misclassifications, indicating highly reliable benign 
traffic detection. The DDoS attack is classified with 99% 
accuracy, with 1% misclassified into the injection class. 
The injection class shows a slight drop in precision, with 
3% of instances misclassified as DDoS, resulting in 97% 
accuracy. This minor weakness may stem from shared 
characteristics such as abnormal request rates between 
injection and volumetric attacks like DDoS. MITM, infor- 
mation gathering, and malware are classified with perfect 
accuracy of 100%, underscoring the model’s precision in 
detecting critical malicious traffic patterns and confirming 
its robustness. 

The minimal confusion observed between certain traf- 
fic types reflects realistic challenges in intrusion detection 
while still showcasing high generalization and discrimi- 
native power across diverse IoT/IIoT attack surfaces, with 
confusion in CICIoMT2024 limited to benign–MQTT cases 
and in EdgeIIoTset limited to the injection class. These 
confusions are minimal and acceptable given the complexity 
of multiclass classification in a medical IoT environment. 
The BiGAT-ID model demonstrates highly accurate detec- 
tion on CICIoMT2024, especially for MITM, Recon, DDoS, 
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Figure 2: Accuracy and loss metrics for the proposed BiGAT-ID model across both datasets. (a): Accuracy, (b): Loss. 

 

and DoS, and performs excellently across the EdgeIIoTset 
dataset. 

 

Figure 3: The confusion matrix of the BiGAT-ID model: (a) For 
the CICIoMT2024 dataset; (b) For the EdgeIIoTset dataset. 

 
Figure 4 illustrates the ROC curves, derived from the 

confusion matrix, for multi-class classification performance 
on two datasets. In both subfigures, the curves show almost 
perfect separation for all six attack classes, tightly concen- 
trated in the top-left corner, with each class achieving an 
AUC of 1.00. In Figure 4 (a) for the CICIoMT2024 dataset, 
this performance reflects ideal sensitivity and specificity 

across all classes, underscoring the model’s robustness in 
complex medical IoT scenarios where precise detection of 
various attack types or system states is critical. The sharp 
curve rise toward the top-left further indicates an extremely 
low false positive rate (FPRs) even at high TPRs. In Figure 4 
(b), for the Edge-IIoT dataset, the uniform ROC curves 
across classes confirm strong generalization and the ab- 
sence of class bias, which is crucial in real-world intrusion 
detection. These results highlight both the architecture’s 
discriminative strength and its ability to accurately identify 
diverse intrusion types. 

To address potential overfitting risks associated with 
oversampling minority classes, multiple mitigation strate- 
gies were implemented. The datasets chosen were accurately 
labeled and consistently structured in terms of features, 
while rigorous preprocessing, tailored to each dataset, was 
applied, including data cleaning and class imbalance han- 
dling as described in Section 3. Furthermore, a learning rate 
of 10−3 and a dropout rate of 0.5 were adopted to enhance 
generalization. Collectively, these measures ensured stable 
and robust performance, with no observable signs of over- 
fitting throughout the experiments. 
- Inference time: Inference time is vital for real-time IDS 
deployment. BiGAT-ID achieves impressive efficiency with 
0.0002s per instance in IoMT and 0.0001s in IIoT environ- 
ments. These results ensure rapid threat detection without 
latency, which is critical in healthcare systems to protect 
patient safety and in industrial systems to prevent costly dis- 
ruptions. The low inference times highlight the model’s suit- 
ability for real-world, resource-constrained settings where 
timely intrusion response is essential for operational conti- 
nuity and data security. 

4.3. Zero-day attack assessment 
To further evaluate the generalization capability of 

the proposed model in detecting previously unseen cyber 
threats, we conducted a LOAO zero-day simulation across 
the datasets considered in our study. This experimental 
setup involved completely excluding a specific attack class 
during the training phase, while retaining all other classes. 
The proposed model demonstrated strong zero-day detection 
capabilities across all evaluated datasets. In our experiments, 
the model achieved a maximum validation accuracy of 
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Figure 4: The ROC curves of the proposed BiGAT-ID model. 
(a) For the CICIoMT2024 dataset, (b) For the EdgeIIoTset 
dataset. 

 
 

98.50% with a corresponding validation loss of 0.04 on 
the EdgeIIoT dataset. For the CICIoMT2024 dataset, the 
proposed BiGAT-ID model attained a maximum validation 
accuracy of 99.23% with a loss of 0.01. On the TON_IoT 
dataset, the BiGAT-ID model reached a maximum validation 
accuracy of 98.07% with a loss of 0.06. These findings 
highlight the model’s resilience in detecting unseen attack 
behaviors and underscore its effectiveness for real-world 
deployment scenarios where novel attacks are likely to 
emerge. 

4.4. Ablation study 
Table 5 presents the comparative performance of ten 

architectural variants of the proposed model across both 
CICIoMT2024 and EdgeIIoTset datasets, evaluated before 
and after data balancing. The core objective of this ablation 
study is to identify the configuration that maintains high 
performance when the model is deployed across both the 
medical (IoMT) and industrial (IIoT) domains, as well as 
consistency under data imbalance, a frequent characteristic 
in real-world intrusion detection scenarios. 

The results reveal that configuration #4 (BiGRU+MHA)-LSTM, 
denoted as BiGAT-ID, consistently outperforms other vari- 
ants. Specifically, before data balancing, it achieves an accu- 
racy of 96.19% (CICIoMT2024) and 99.04% (EdgeIIoTset) 
with corresponding FPRs of 0.0211% and 0.0013%, respec- 
tively. After balancing, the same model further improves, 
reaching 99.13% accuracy on CICIoMT2024 and 99.34% on 
EdgeIIoTset, while maintaining an exceptionally low FPR 

of 0.0013% for both datasets. Although other configura- 
tions, such as #3 (BiGRU-LSTM-MHA) and #6 (BiGRU- 
(MHA+LSTM)), also show strong results, they exhibit ei- 
ther higher FPRs or less stability under balancing conditions. 
For instance, configuration #3 suffers a noticeable drop 
in performance on CICIoMT2024 after balancing (from 
95.30% to 94.73%) and shows a higher FPR of 0.0093%, 
making it less optimal for deployment in sensitive domains 
like healthcare. 

Furthermore, additional experiments (cases #7–#12) ex- 
plored the impact of varying attention heads, dropout rates, 
and unit configurations. We empirically evaluated configu- 
rations with 2, 4, and 8 heads, finding that 8 heads offered the 
best balance between accuracy and computational efficiency. 
Increasing beyond this point yielded no significant gains but 
increased complexity. Dropout rates of 0.2, 0.3, 0.5, and 0.7 
were tested, with 0.5 providing optimal regularization, effec- 
tively mitigating overfitting without inducing underfitting. 
Similarly, experiments with 64, 128, and 256 units showed 
that setting the LSTM to 32 units and the BiGRU to 64 
units resulted in a balanced architecture that sustained strong 
performance while improving training efficiency. 

4.5. BiGAT-ID explainability 
The Shapley additive explanations (SHAP) summary 

plot in Figure 5 illustrates the average contribution of each 
feature to the model’s output across IIoT and IoMT datasets. 
Feature importance is reflected by bar length, while colors 
denote class-specific impacts (class 0–5). The X-axis repre- 
sents the mean SHAP magnitude, and the Y-axis lists the 
model features [41]. 

In Figure 5 (a), feature 6 (Timestamp) emerges as the 
most influential, with a SHAP value magnitude around 10, 
strongly impacting class 0 and class 2. feature 72 (Bwd 
Init Win Bytes) is particularly relevant for class 4, while 
feature 20 (Flow Bytes/s) and feature 4 (Dst Port) show mod- 
erate contributions across several classes. Other features, 
such as feature 30 (Fwd IAT Min), feature 53 (ACK Flag 
Count), and feature 43 (Bwd Packets/s), provide smaller yet 
meaningful support, serving as secondary discriminators. 
The remaining features contribute minor but cumulative ef- 
fects, likely refining predictions and reducing false positives 
through added contextual information. 

In Figure 5 (b), feature 13 (http.request.uri.query) emerges 
as the most influential, particularly for class 4. Several fea- 
tures, such as feature 30 (tcp.len), feature 10 (icmp.unused), 
feature 14 (http.request.method), and feature 31 (tcp.options), 
also contribute significantly across multiple classes, while 
features 38 (dns.qry.name) and 44 (dns.retransmit_request_in) 
are dominant for benign traffic (class 0). Moderate features 
(e.g., frame.time, ip.src_host, tcp.dstport) strengthen pre- 
dictions, whereas lower-impact features (e.g., tcp. flags.ack, 
udp.port) play supportive roles. Globally, the SHAP analysis 
highlights the interpretability of BiGAT-ID, confirming its 
ability to capture both global and class-specific patterns 
across CICIoMT2024 and EdgeIIoT datasets, without bias 
toward any single class. 

4.6. Comparison with state-of-the-art 
As summarised in Table 6, several recent IDS mod- 

els demonstrate only moderate performance and are eval- 
uated on a single dataset, limiting their generalizability. 



A Robust Cross-Domain IDS using BiGRU-LSTM-Attention for Medical and Industrial IoT Security 

Table 5 

Gueriani et al.: Preprint submitted to Elsevier Page 8 of 10 

 

 

Performance of different variants of the proposed models in multiclass classification, with the endices indicating the 
hyperparameter values of each block. 

 

  Before balancing data 

 Model 
CICIoMT2024 EdgeIIoTset 

Acc. (%) Loss (%) FPR (%) Acc. (%) Loss (%) FPR (%) 
#1 BiGRU64 +MHA8 94.60 0.1804 0.0406 98.87 0.0364 0.0016 
#2 LSTM32 +MHA8 94.61 0.1884 0.038 98.33 0.0600 0.0023 
#3 BiGRU64 -(LSTM32 +MHA8 ) 95.30 0.1665 0.0243 99.01 0.0284 0.0016 
#4 (BiGRU64+MHA8)-LSTM32 96.19 0.1368 0.0211 99.04 0.0262 0.0013 
#5 (MHA 8 +BiGRU64 )-LSTM32 86.12 0.4893 0.0983 97.57 0.0841 0.0024 
#6 BiGRU64 -(MHA8 +LSTM32 ) 95.88 0.1400 0.0200 99.11 0.0227 0.0013 
#7 (BiGRU128 +MHA8 )-LSTM256 94.62 0.1811 0.0456 97.73 0.0734 0.0079 
#8 (BiGRU64 +MHA2 )-LSTM32 94.21 0.1938 0.0478 98.55 0.0365 0.0038 
#9 (BiGRU64 +MHA4 )-LSTM32 94.41 0.1823 0.0356 98.85 0.0300 0.0178 
#10 (BiGRU64 +MHA8 )-LSTM32 "0.3 D" 94.92 0.1688 0.0294 98.68 0.0522 0.0020 
#11 (BiGRU64 +MHA8 )-LSTM32 "0.7 D" 93.96 0.1892 0.0486 99.00 0.0278 0.0016 
#12 (BiGRU64 +MHA8 )-LSTM32 "0.2 D" 93.72 0.2068 0.0449 98.94 0.0303 0.0043 

  After balancing data 
#1 BiGRU64 +MHA8 96.15 0.0828 0.007 99.32 0.0165 0.0013 
#2 LSTM32 +MHA8 98.41 0.0440 0.0026 98.88 0.0304 0.0023 
#3 BiGRU64 -(LSTM32 +MHA8 ) 94.73 0.1100 0.0093 99.12 0.0194 0.0020 
#4 (BiGRU64+MHA8)-LSTM32 99.13 0.0257 0.0013 99.34 0.0158 0.0013 
#5 (MHA 8 +BiGRU64 )-LSTM32 65.69 0.7986 0.0625 99.04 0.0260 0.0013 
#6 BiGRU64 -(MHA 8 +LSTM32 ) 93.74 0.1295 0.0106 99.32 0.0159 0.0013 
#7 (BiGRU128 +MHA8 )-LSTM256 90.74 0.2156 0.0323 60.27 1.1627 0.4231 
#8 (BiGRU64 +MHA2 )-LSTM32 93.54 0.1344 0.0146 99.21 0.0214 0.0016 
#9 (BiGRU64 +MHA4 )-LSTM32 95.64 0.0944 0.0090 99.26 0.0217 0.0013 
#10 (BiGRU64 +MHA8 )-LSTM32 "0.3 D" 95.49 0.0978 0.0089 99.30 0.0230 0.0013 
#11 (BiGRU64 +MHA8 )-LSTM32 "0.7 D" 94.18 0.1290 0.0106 99.31 0.0166 0.0013 
#12 (BiGRU64 +MHA8 )-LSTM32 "0.2 D" 94.06 0.1221 0.0623 99.20 0.0211 0.0020 

Abbreviations: Dropout (D) 

 

For instance, L2D2 [18] achieves 98% accuracy on CI- 
CIoMT2024, but omits loss, FPR, and inference time. Sim- 
ilarly, BiGRU–LSTM in [22] reaches 98.32% accuracy on 
EdgeIIoT, with no F1-score, loss, or runtime reported. The 
DNN model from [39] records an even lower accuracy of 
96.01%, while providing no supporting metrics. Likewise, 
the XGBoost model in [42] achieves only 95.01% on CI- 
CIoMT2024 and lacks any further evaluation criteria. The 
absence of FPR, inference time, and loss in all these studies 
limits their applicability in real-time, resource-constrained 
environments such as healthcare and industrial IoT, where 
both detection quality and operational efficiency are crit- 
ical. On the other hand, three notable works—[16], [17], 
and [43]—conduct cross-domain testing across datasets rep- 
resenting different IoTcontexts. However, their generalisa- 
tion capability remains limited. For example, [43] achieves 
99.88% on CICIoMT2024 but drops drastically to 33.30% 
on EdgeIIoT. Similarly, [16] and [17] report imbalanced 
precision-recall and omit runtime metrics, hindering deploy- 
ment potential. 

In contrast, the proposed BiGAT-ID model offers con- 
sistent and robust performance across domains, achieving 
up to 99.13% accuracy on CICIoMT2024 and 99.34% on 
EdgeIIoT, with exceptionally low FPRs (0.0013%), and in- 
ference times as low as 0.0002s and 0.0001s per instance, 
respectively. Notably, it is the only model to report a full 
set of evaluation metrics with stable performance across do- 
mains, highlighting its readiness for deployment in diverse 
and dynamic IoT environments. 

To validate the generalizability of the proposed BiGAT- 
ID model, experiments were extended to the TON_IoT 
dataset, which comprises 10 classes of diverse IoT/IIoT 
attack types with varying traffic characteristics. Two pre- 
processing settings were applied: SMOTE with RoS and 
focal loss. As shown in Table 6, the SMOTE+RoS config- 
uration achieved the best results on TON_IoT, with 98.67% 
accuracy, 99.36% precision, 98.94% recall, and 99.15% F1- 
score, while focal loss yielded 98.47% accuracy, 98.63% 
precision, 98.47% recall, and 98.51% F1-score. These results 
demonstrate the proposed BiGAT-ID model’s robustness 
across datasets with varying characteristics and imbalance 
levels, showing superior performance on IIoT and IoMT 
datasets and maintaining competitive results on a general 
IoT dataset in terms of multiple DL performance metrics 
and inference time. 

 
5. Conclusion 

This paper introduced BiGAT-ID model, designed for 
intrusion detection across heterogeneous IoT environments. 
Validated on medical and industrial datasets, the model 
demonstrated consistent and high performance, aided by tai- 
lored balancing strategies to address class imbalance. Unlike 
previous approaches, BiGAT-ID provides a complete evalu- 
ation, including precision, latency, and FPR, confirming its 
readiness for real-time deployment in critical infrastructures. 
The study also emphasizes the importance of cross-domain 
generalization, an area where many existing models strug- 
gle. BiGAT-ID addresses this through architectural synergy 
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Table 6 
Performance metrics of the proposed BiGAT-ID model in comparison to state-of-the-art methods for multiclass classification. 

 

Work Model Dataset Acc. (%) Loss Pr (%) Rc (%) F1 (%) FPR (%) Inf time (sec/inst) 
[18] 
[22] 
[39] 
[42] 

L2D2 (LSTM) 
BiGRU-LSTM 

DNN 
XGBoost 

CICIoMT2024 
EdgeIIoT 
EdgeIIoT 

CICIoMT2024 

98 
98.32 
96.01 
95.01 

✗ 
✗ 
✗ 
✗ 

98 
98.78 
✗ 
✗ 

98 
97.22 
✗ 
✗ 

98 
✗ 
✗ 
✗ 

✗ 
✗ 
✗ 
✗ 

✗ 
✗ 
✗ 
✗ 

[16] DNN CICIoMT2024 
CICIoT2023 

99.56 
99.09 

✗ 
✗ 

94.59 
91.56 

91.28 
66.98 

92.62 
69.86 

✗ 
✗ 

✗ 
✗ 

[17] Att-DNN CICIoMT2024 
MQTT-IoT-IDS 

✗ 
✗ 

✗ 
✗ 

84.43 
92.14 

98.73 
99.17 

91.02 
95.53 

✗ 
✗ 

✗ 
✗ 

[43] CNN-LSTM-ResNet-SA CICIoMT2024 
EdgeIIoMT 

99.88 
33.30 

✗ 
✗ 

99.89 
33.31 

99.99 
100 

99.94 
49.97 

✗ 
✗ 

✗ 
✗ 

 

 
Our 

BiGRU+MHA-LSTM 
(SMOTE+RoS) 

CICIoMT2024 
EdgeIIoT 
TON_IoT 

99.13 
99.34 
98.67 

0.0257 
0.0158 
0.0476 

99.13 
99.34 
98.68 

99.13 
99.34 
98.67 

99.13 
99.34 
98.67 

0.0013 
0.0013 
0.0086 

0.0002 
0.0001 

0.00016 
BiGRU+MHA-LSTM 

(Focal loss) 
CICIoMT2024 

EdgeIIoT 
TON_IoT 

94.98 
99.13 
98.47 

0.0145 
0.0016 
0.0054 

94.98 
99.13 
98.63 

93.66 
99.13 
98.47 

94.23 
99.13 
98.51 

0.0293 
0.0013 
0.0068 

0.00026 
0.00017 
0.00015 

 
between temporal modeling and attention mechanisms, re- 
sulting in stable outcomes across diverse IoT contexts. Given 
the limited availability of labeled IoT data, particularly in 
IoMT, future work may focus on leveraging transfer learn- 
ing, enhancing interpretability, and optimizing the architec- 
ture for scalable real-world deployment. In particular, fine- 
tuning small language models could be explored to improve 
the efficiency of the proposed BiGAT-ID architecture across 
diverse IoT domains. 
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Figure 5: Mean SAHAP value average impact on model output 
magnitude. (a): For the CICIoMT2024 dataset; (b): For the 
EdgeIIoT dataset. 
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