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Abstract

Natural language explanations in visual ques-
tion answering (VQA-NLE) aim to make black-
box models more transparent by elucidating
their decision-making processes. However, we
find that existing VQA-NLE systems can pro-
duce inconsistent explanations and reach con-
clusions without genuinely understanding the
underlying context, exposing weaknesses in
either their inference pipeline or explanation-
generation mechanism. To highlight these vul-
nerabilities, we not only leverage an existing
adversarial strategy to perturb questions but
also propose a novel strategy that minimally
alters images to induce contradictory or spu-
rious outputs. We further introduce a miti-
gation method that leverages external knowl-
edge to alleviate these inconsistencies, thereby
bolstering model robustness. Extensive eval-
uations on two standard benchmarks and two
widely used VQA-NLE models underscore the
effectiveness of our attacks and the potential of
knowledge-based defenses, ultimately reveal-
ing pressing security and reliability concerns in
current VQA-NLE systems.

1 Introduction

Visual Question Answering with Natural Language
Explanations (VQA-NLE) has recently become an
active area of research (Sammani et al., 2022; Suo
et al., 2023; Lai et al., 2024), as it promises both
accurate answers and human-readable justifica-
tions. By augmenting conventional VQA pipelines
with textual rationales, it can offer deeper trans-
parency and facilitate trust in black-box models
(Kayser et al., 2021). Moreover, generating ex-
planations has been shown to reinforce question-
answering performance itself, surpassing models
trained solely on image-question pairs (Kayser
et al., 2021). Despite this potential, critical ques-
tions remain about the quality and consistency of
the explanations produced, prompting further inves-
tigation into how these models truly reason about

visual and linguistic inputs.
Specifically, while VQA-NLE models can pro-

duce explanations for their decisions, we observe
that they can yield contradictory or inconsistent
outputs even when the input scenario remains es-
sentially the same. For instance, consider an image
that depicts a woman wearing goggles and skiing
downhill. If a person asks, “Why is the woman
wearing goggles?” the model answers, “to pro-
tect eyes because the woman is wearing goggles to
protect eyes,” along with an explanation mention-
ing the goggles. However, rephrasing the prompt
slightly to “Why is the woman using goggles?”
causes the system to respond, “to photograph be-
cause the woman is using a camera,” thereby con-
tradicting its previous statement. Such inconsistent
responses raise doubts about whether these models
truly ground their reasoning in the image-question
pair or instead rely on superficial cues, thereby
questioning the extent to which VQA-NLE models
genuinely “understand” their inputs when generat-
ing explanations.

To explore whether these contradictory outputs
reflect genuine weaknesses in VQA-NLE systems,
we leverage an existing attack and also propose
a new adversarial sample generation framework
designed to uncover vulnerabilities across both tex-
tual and visual modalities. In particular, we sys-
tematically rephrase questions (while preserving
semantic equivalence) or selectively remove ob-
jects from images—even those seemingly irrele-
vant to the query. These controlled yet minimal
edits often cause the model to produce inconsis-
tent explanations, revealing the model’s reliance on
shallow patterns rather than robust visual-textual
reasoning.1

In addition to exposing such vulnerabilities, we
present an alleviation strategy based on integrating

1Although we primarily evaluate text-based and image-
based manipulations separately, in principle they can also be
combined to further stress-test a model’s consistency.
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external knowledge into the question. Concretely,
for each query, we use a language model to gen-
erate short, relevant knowledge statements (e.g.,
clarifying synonyms or describing contextual de-
tails). Appending these statements to the input
helps the VQA-NLE model anchor its reasoning in
genuine semantic understanding rather than super-
ficial cues. Experimental results demonstrate that
this knowledge-driven approach can reduce contra-
dictory explanations, offering a practical pathway
toward more reliable and transparent VQA-NLE
systems.

In summary, our contributions are as follows:

• To the best of our knowledge, this is the first
adversarial framework specifically aimed at re-
vealing potential vulnerabilities in VQA-NLE
models, offering a systematic way to probe
their security and consistency.

• Our attacks indeed degrade the semantic con-
sistency of the VQA-NLE models on standard
benchmarks (VQA-X and A-OKVQA), high-
lighting the models’ reliance on brittle cues.

• We propose a knowledge-based mitigation
strategy that reduces inconsistencies intro-
duced by adversarial textual, improving ro-
bustness in VQA-NLE.

2 Related Work

2.1 VQA Explanations

Natural language explanations (NLEs) for question-
answering (QA) have garnered increasing atten-
tion, driven by findings that explicit rationales can
bolster a model’s reasoning capabilities and in-
terpretability (Camburu et al., 2018; Park et al.,
2018; Narang et al., 2020; Wei et al., 2022a). In
the context of visual question answering (VQA),
these so-called VQA-NLE methods provide human-
readable justifications alongside predicted answers
(Park et al., 2018; Kayser et al., 2021). Approaches
broadly split into post hoc (predict first, then ex-
plain) (Park et al., 2018; Wu and Mooney, 2019;
Kayser et al., 2021) and self-rationalizing methods,
where answer prediction and explanation genera-
tion occur jointly (Sammani et al., 2022; Suo et al.,
2023). Recent work has introduced contrastive ob-
jectives to further align explanations with visual ev-
idence (Lai et al., 2024). Despite improvements in
accuracy, concerns remain regarding how faithfully
these explanations reflect genuine model reasoning,

as opposed to exploiting spurious patterns (Ray
et al., 2019; Agarwal et al., 2020). Few studies
have probed how small alterations in text or images
can undermine explanation consistency, leaving
open questions about the robustness of VQA-NLE
outputs.

2.2 VQA Robustness
Meanwhile, VQA robustness research has largely
focused on ensuring answer consistency under var-
ious input perturbations. For instance, (Ray et al.,
2019; Shah et al., 2019) investigate how changes
in question phrasing affect predictions, whereas
(Agarwal et al., 2020) examine the impact of al-
tering semantic elements in images. Augmenta-
tion techniques have also been proposed to miti-
gate inconsistent or brittle answers (Agarwal et al.,
2020; Chen et al., 2020). However, most such
work overlooks natural language explanations, and
the few efforts targeting NLE consistency (Cam-
buru et al., 2020; Jang et al., 2023) address primar-
ily text-based variations. In contrast, we adopt a
broader perspective on VQA-NLE robustness by
implementing and introducing adversarial attack
frameworks that target both linguistic and visual in-
puts. We then propose a knowledge-based defense
to bolster model reliability against these minimal
yet strategically chosen perturbations. By assessing
both answer correctness and explanation consis-
tency, our work expands robustness research into
interpretability-focused VQA systems.

3 Method

While robustness in linguistic variations and im-
age semantics has been respectively studied in the
fields of language modeling and VQA, it remains
an underexplored area for VQA-NLE models. To
this end, we structure our attack method into two
approaches, each targeting a different aspect: text-
based attack and image-based attack.

3.1 Text-based Attack
For the text-based approach, existing adversarial
attack methods for discrete data, such as BERT-
Attack (Li et al., 2020) and R&R (Xu et al., 2022),
are well-developed for generating adversarial text
samples. Here, we directly employ BERT-Attack
to generate text perturbations with synonym-based
word substitution, aiming to fool models while
maintaining grammatical and semantic coherence.
By doing so, we expect to expose the model’s re-
liance on superficial linguistic cues rather than gen-
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uine contextual understanding. Specifically, the
attack highlights cases where the model associates
certain words or phrases with specific answers and
explanations, revealing a dependency on dataset
biases rather than robust reasoning.

To implement this attack, we leverage a masked
language model (MLM) as part of the candidate
ranking mechanism. The core objective function
aims to rank substitution sequences based on con-
textual fluency. Specifically, given a set of token-
level substitution candidates generated via Byte
Pair Encoding (BPE), the method constructs full-
length sequences by exhaustively combining can-
didates across token positions. Each sequence is
then evaluated by computing the token-wise cross-
entropy loss between the MLM’s predicted distri-
bution and the actual substitute token IDs. These
losses are aggregated and exponentiated to estimate
each sequence’s perplexity, which serves as a proxy
for fluency. By ranking sequences in ascending or-
der of perplexity, the model promotes those that
are both semantically coherent and grammatically
well-formed.

Building upon this ranking mechanism, we then
apply a filtering step to ensure semantic consistency
between the adversarial and original inputs. Con-
cretely, given the original question Q, we first use
BERT-Attack to generate an adversarial candidates
set containing n samples, denoted by {Q′

i}ni=1. Af-
terwards, we compute the semantic similarity be-
tween Q′

i and the original question Q using a uni-
versal sentence encoder Us (Cer et al., 2018). If
the cosine similarity between Q′

i and Q, denoted
by γi, is lower than the predefined threshold σs,
i.e., γi = cos(Us(Q

′
i), Us(Q)) < σs, then the can-

didate Q′
i is rejected. Otherwise, Q′

i is considered
a valid adversarial example for the given image I .
Following the previous work (Garg and Ramakrish-
nan, 2020), we set σs = 0.8.

3.2 Image-based Attack
To evaluate the robustness of VQA-NLE models
against semantic changes in images, we propose a
pipeline for editing images corresponding to each
question. We hypothesize that any change influ-
encing the model’s predictions can reveal its weak
contextual understanding. For instance, in Figure 4
(left), for the question about the type of the event,
removing the table should not influence the model’s
prediction. To guarantee that the question’s context
remains unchanged after the image modification,
we must ensure that objects relevant to the ques-

tion’s context are preserved.
Specifically, to generate an adversarial image

without altering its overall meaning, we first iden-
tify any objects referenced in the question and
answer, then limit our edits to regions unrelated
to those objects. As the commonly-used VQA-
NLE datasets, e.g., VQA-X (Park et al., 2018) and
A-OKVQA (Schwenk et al., 2022) datasets, con-
tain images sourced from MS-COCO (Lin et al.,
2014), we consider the 80 predefined object classes
and ground truth bounding boxes. To remove ob-
jects from the image, we utilize a diffusion-based
inpainting approach (Zhuang et al., 2024), ensur-
ing that the edited image remains semantically co-
herent. Our approach for maintaining contextual
consistency in image modifications comprises two
steps: (1) vocabulary mapping and (2) object re-
moval.

Vocabulary Mapping To determine whether an
object can be removed, we first map all object ref-
erences in the question, answer, and explanation
to the 80 COCO categories. These categories are
often referred to using various synonyms or sub-
set terms in the QA and explanation space. For
example, van, taxi, trunk, truck, and SUV all corre-
spond to the category “car,” while table and desk
refer to the category “dining table.” To prevent
erroneous removals, we compile a comprehensive
mapping of nouns, pronouns, and synonyms used
in the QA and explanation vocabulary to the 80
COCO categories. Due to the space constraint, the
complete list of the mapping table is available in
the supplementary materials.

Object Removal Let SI represent the set of ob-
jects in the images (identified via COCO bounding
boxes), SQA represent the set of objects in the QA
pair, and SE represent the set of objects in the ex-
planation. We define the set of candidate objects
for removal as

Scandidate := SE ∩ {SI \ SQA}. (1)

We then select the most frequent object in Scandidate
as our target object, Starget. Our underlying as-
sumption is that a robust model should continue
to generate explanations that accurately reflect the
modified image content and do not mislead.

3.3 Alleviation

Because synonyms or paraphrases often cause in-
consistencies between a model’s outputs and those
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vision encoder

Vision-Language Model

Is 

this

person
an artist
<pok>
artist
is someone

music
<bos>
<poa>
yes

because
he is painting

question knowledge answer explanation

... ...

<bos>

yes
because he is
painting

<poa>

<eos>

answer explanation

image embedding

word embedding

<bos>

<eos>

begin of the sequence

end of the sequence

<pok> prefix of the knowledge

<poa> prefix of the answer

Figure 1: Architecture of our alleviation model. Given an image, its corresponding question, and external knowledge,
we then append the “<bos>” token along with the predefined prefix for answer. The model then generates the
answer and explanation in an auto-regressive manner. The external knowledge is retrieved from GPT-4o to provide
additional context for the question. For the content prefix, “<pok>” represents the knowledge prefix (“based on the
fact that”) and “<poa>” denotes the answer prefix (“the answer is”).

 Prompt

 Generate some knowledge about the concepts in the input. Generate up to 20 words. Examples:
 Input: Does the dog like Scooby Snacks?
 Knowledge: Scooby Snacks are treat rewards often enjoyed by dogs, famously associated with the character Scooby-Doo's 
 motivation.
 Input: Does this appear to be a photo of multiple exposures of the black clad snowboarder?
 Knowledge: Multiple exposures overlay several captures to create a composite image showing motion or different poses.
 Input:{question}
 Knowledge:

Figure 2: Prompt template for knowledge generation.

of a benign model, a logical remedy is to ensure
the model better captures synonym equivalences.
To address this, we propose extending the model’s
input with external knowledge relevant to the ques-
tion. The key insight is that incorporating question-
specific knowledge can help the model interpret
synonymous words more faithfully, leading to a
more robust understanding of the query. Our ap-
proach to mitigating inconsistencies in VQA-NLE
involves two main steps: (1) generating question-
related knowledge, and (2) injecting that knowl-
edge into the model’s input.

Knowledge Generation Drawing on (Liu et al.,
2022), we employ a heuristic method to generate
question-specific knowledge. Concretely, our sys-
tem prompts OpenAI’s GPT-4o API with a struc-
tured template that contains both clear instructions
and illustrative examples, along with a placeholder
to accommodate the new question. We then request
GPT-4o to produce concise but relevant knowledge
statements focusing on the core concepts of the
query. Figure 2 outlines the complete prompt con-

figuration, illustrating how these fixed demonstra-
tions and guidelines steer the model toward gener-
ating succinct yet targeted knowledge.

Knowledge Injection Once the knowledge is ob-
tained, we concatenate it with the question before
feeding both into the model. Let the image fea-
tures be

ZI =
(
ZI
1 , Z

I
2 , . . . , Z

I
i , . . . , Z

I
x

)
, (2)

where each ZI
i ∈ Rd represents the i-th im-

age patch, and x is the total number of image
patches. For a question Q =

(
q1, q2, . . . , qt

)
(length t) and a knowledge statement K =(
k1, k2, . . . , kn

)
(length n), we embed each word

into a d-dimensional space via a pretrained image-
caption model (DistilGPT2 (Sammani et al., 2022)).
This yields the question features

ZQ =
(
ZQ
1 , ZQ

2 , . . . , ZQ
m

)
, (3)

where m is the total number of question tokens
after tokenization, and the knowledge features

ZK =
(
ZK
1 , ZK

2 , . . . , ZK
r

)
, (4)
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where r is the number of tokens in the knowledge
statement. We then form the final multimodal
input by concatenating all features:

Z =
(
ZI
1 , . . . , Z

I
x︸ ︷︷ ︸

image features

, ZQ
1 , . . . , ZQ

m︸ ︷︷ ︸
question features

, ZK
1 , . . . , ZK

r︸ ︷︷ ︸
knowledge features

)
.

(5)
Finally, we fine-tune the VQA-NLE models on this
extended input until their accuracy returns to its
original level. The overall architecture is shown in
Figure 1 where our alleviation model comprises a
vision-language model and a vision encoder.

4 Experiment

This section offers a comprehensive assessment of
our proposed attack and mitigation strategy. First,
in Section 4.1, we detail our experimental setup.
We then present quantitative findings, examining
how our attacks influence textual variations (Sec-
tion 4.2) and image manipulations (Section 4.3).
Finally, in Section 4.4, we provide a case study
that offers deeper, qualitative insights into model
behavior.

4.1 Experimental Setup

4.1.1 Dataset

VQA-X (Park et al., 2018) This vision-and-
language dataset extends the original Visual Ques-
tion Answering (VQA) benchmark (Agrawal et al.,
2015) by appending detailed, human-written ex-
planations to each question–answer pair. In total,
VQA-X encompasses 28,000 images and 33,000
Q&A pairs drawn from the COCO dataset (Lin
et al., 2014). Of these, 29,000 pairs are allocated
for training, while 1,400 are held out for validation.
This additional explanatory text enables richer su-
pervision, encouraging models to justify their an-
swers rather than simply outputting them.
A-OKVQA (Schwenk et al., 2022) A-OKVQA
is another vision–language dataset that leverages
images from COCO (Lin et al., 2014), but its core
feature is the inclusion of rationales. Each sample
thus provides a question, an answer, and a rationale
explaining the reasoning behind that answer. The
dataset consists of 25,000 such triplets, split into
17,100 for training and 1,100 for validation. By
including explicit rationales, A-OKVQA further
challenges models to exhibit both accuracy and
interpretability in their responses.

4.1.2 Evaluation Metrics
In line with prior research (Lai et al., 2024), the
quality of generated explanations is measured using
the following metrics: BLEU (from B1 to B4, cor-
responding to BLEU-1 through BLEU-4) (Papineni
et al., 2002), METEOR (M) (Banerjee and Lavie,
2005), ROUGE-L (RL) (Lin, 2004), and BERT
score (BS) (Zhang et al., 2020). As these datasets
are for VQA tasks, we also provide accuracy to
measure the correctness of the predicted answers.
Additionally, we also follow (Maaz et al., 2024)
to assess the VQA-NLE model for its response
correctness, detail, and context comprehension.

4.1.3 Implementation Details
Victim Models. Since existing works (Sammani
et al., 2022; Suo et al., 2023; Lai et al., 2024) pri-
marily rely on DistilGPT2, we adopt DistilGPT2,
pretrained on image-caption pairs, as our “victim”
model for both attacks and evaluations on the VQA-
X and A-OKVQA datasets, respectively (Suo et al.,
2023; Lai et al., 2024).

Alleviation Model. To perform our knowledge-
injection (alleviation) strategy, we adopt Distil-
GPT2 (Sammani et al., 2022), which has been pre-
trained on a large corpus of image-caption pairs.
We then fine-tune it separately on the VQA-X and
A-OKVQA training sets, ensuring it can integrate
external knowledge effectively.

Image Feature Extraction. Following prior
work, we represent each image with features ex-
tracted via ViT-B/16 from CLIP (Radford et al.,
2021). This encoder converts images into patch-
level feature embeddings, which are then fed
(alongside question and/or knowledge embeddings)
into our models.

Baselines. We compare our attacks against ad-
versarial attacks targeting different modalities. For
image-based attacks, we adopt DR (Lu et al., 2020)
and SSP (Naseer et al., 2020) as baselines. These
approaches are designed to perturb image features
exclusively and can be readily adapted to our set-
ting. In contrast, other methods either rely entirely
on classifier outputs (Wei et al., 2022b; Wu et al.,
2020; Madry et al., 2018; Dong et al., 2019; Xie
et al., 2019; Wang et al., 2024) or combine fea-
ture perturbation with classification loss (Huang
et al., 2019; Inkawhich et al., 2020b,a). Such meth-
ods are incompatible with our problem setup, as
pre-trained and fine-tuned models often employ dif-
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Method
VQA-X A-OKVQA

B1 B2 B3 B4 RL M BS B1 B2 B3 B4 RL M BS

Plural 62.6 45.6 33.2 24.4 45.9 40.6 75.4 64.9 39.6 26.8 17.8 41.9 39.9 75.7
Text-based Our Attack 59.0 41.6 29.3 21.0 43.6 37.6 73.3 64.7 38.6 25.6 16.6 41.7 38.0 74.0

Alleviation 59.2 41.8 29.5 21.1 43.9 37.8 73.7 65.0 39.1 25.7 16.9 41.8 38.5 74.4

DR 64.1 46.9 34.5 25.3 47.0 41.5 75.7 63.9 38.9 26.0 16.9 41.0 37.9 74.0
Image-based SSP 65.3 48.2 35.4 25.7 47.1 42.3 76.0 65.4 40.4 27.4 18.2 42.9 39.6 74.8

Our Attack 59.9 41.6 29.6 21.2 43.0 36.9 73.1 62.0 37.4 24.3 15.3 40.4 36.9 73.8

Table 1: Comparison with the baselines on VQA-X and A-OKVQA datasets in the scenario of “unfiltered” scores.

Method
VQA-X A-OKVQA

B1 B2 B3 B4 RL M BS Acc B1 B2 B3 B4 RL M BS Acc

Plural 65.9 49.1 36.5 27.2 48.5 43.3 77.1 74.6 69.8 45.5 32.3 23.0 46.4 45.2 78.5 37.5
Text-based Our Attack 63.5 46.5 33.9 24.8 46.9 41.2 75.3 67.2 69.4 45.4 31.9 22.4 46.0 44.0 77.4 31.7

Alleviation 63.8 46.7 34.0 24.9 46.9 41.6 75.7 68.1 70.7 46.1 32.2 22.7 46.6 44.7 77.5 30.1

DR 67.4 50.4 38.0 28.3 49.8 44.9 77.4 74.1 69.2 46.1 32.8 22.5 45.0 44.2 76.8 36.8
Image-based SSP 69.4 52.6 39.4 29.1 50.2 45.5 77.7 72.6 69.3 46.7 33.8 24.6 47.9 46.1 77.5 38.7

Our Attack 63.3 45.5 33.2 24.1 46.1 40.3 75.0 70.1 66.8 43.6 30.0 19.7 43.9 41.9 76.4 33.3

Table 2: Comparison with the baselines on VQA-X and A-OKVQA datasets in the scenario of “filtered” scores.

ferent prediction heads and are optimized for dis-
tinct tasks. For text-based attacks, we refer to the
method from (Ravichander et al., 2020) as Plural,
since the original work does not assign it a specific
name. This approach converts singular nouns into
their plural forms. To minimize semantic drift and
avoid introducing contradictions, we modify only
one noun per question. We adopt this method as
one of our baselines for evaluating textual robust-
ness.

4.2 Results on Text-based Attack

The results of our text-based adversarial attacks
on the VQA-X and A-OKVQA datasets are de-
tailed in Tables 1 and 2. These tables differenti-
ate between “unfiltered” evaluations, which assess
all explanations regardless of the accuracy of the
corresponding answers, and "filtered" evaluations,
which consider only explanations linked to correct
answers. In Table 1, we illustrate that our attack
not only compromises the integrity of the original
model but also induces a marked reduction in the
consistency of the explanations when compared
to the baseline method. This effect is quantita-
tively substantial, with our method resulting in a
4% decrease in BLEU-2 scores on VQA-X and a
1.9% decrease in METEOR scores on A-OKVQA.
This highlights the effectiveness of our attack in
disrupting the model’s ability to generate coherent
and contextually appropriate explanations, thereby
revealing the model’s vulnerability to linguistic per-

turbations.

Furthermore, the incorporation of external
knowledge into the model’s framework has demon-
strated a capability to alleviate these inconsisten-
cies. By enhancing the contextual grounding of the
explanations, this strategy not only restores but also
improves their reliability, suggesting that external
knowledge can serve as a countermeasure to adver-
sarial attacks. Moving to the filtered results show-
cased in Table 2, our attack methodology continues
to outperform the baseline in terms of diminishing
explanation consistency, thereby reinforcing the
attack’s effectiveness. Concurrently, our defense
mechanism again proves beneficial, enhancing the
consistency of explanations even when considering
only correct answer contexts. This dual success
underscores the comprehensive strength of our ap-
proach in both compromising and subsequently re-
inforcing the model’s explanatory capabilities. The
reduction in consistency, driven by our effective
adversarial attacks, correlates strongly with a de-
cline in accuracy, as recorded in the "Acc" column
of both tables. This decline emphasizes the direct
impact of our attacks on the model’s overall perfor-
mance, highlighting the critical link between the
accuracy of answers and the coherence of explana-
tions. These results affirm the necessity of develop-
ing more resilient models that can withstand such
linguistic adversarial challenges while maintaining
high standards of accuracy and explanatory depth.
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Method
VQA-X A-OKVQA

Correctness ↓ Detail ↓ Context ↓ Correctness ↓ Detail ↓ Context ↓

DR 2.79 1.90 3.11 2.22 1.78 2.69
SSP 2.72 1.88 3.01 2.26 1.75 2.77

Our Attack 2.20 1.73 2.47 1.93 1.56 2.35

Table 3: Comparison with the baselines on VQA-X and A-OKVQA datasets in the scenario of “unfiltered” scores
for image-based attack.

Method
VQA-X A-OKVQA

Correctness ↓ Detail ↓ Context ↓ Acc Correctness ↓ Detail ↓ Context ↓ Acc

DR 3.03 1.97 3.26 74.1 3.09 2.17 3.44 36.8
SSP 2.98 1.97 3.19 72.6 3.00 2.05 3.36 38.7

Our Attack 2.39 1.77 2.57 70.1 2.72 1.89 3.04 33.3

Table 4: Comparison with the baselines on VQA-X and A-OKVQA datasets in the scenario of “filtered” scores for
image-based attack.

4.3 Results on Image-based Attack

We systematically modify images in a controlled
fashion, expecting that the model’s explanations
remain consistent despite minor visual differences.
By strategically removing objects that do not di-
rectly answer the question but influence the gener-
ation of explanations, we evaluate the robustness
of the model in maintaining coherent explanations
that align with the altered image content. Impor-
tantly, even after our proposed image edits, the
attacked images maintain a high degree of simi-
larity to their original counterparts, with average
cosine similarities of 81.7% and 82.1% on VQA-X
and A-OKVQA datasets, respectively, as measured
by CLIP embeddings. This ensures that the visual
changes are minimal and localized. Tables 3 and
4 demonstrate the effectiveness of our proposed
adversarial attacks, which significantly reduce the
consistency of the model’s responses compared
to those affected by random noise. Notably, our
targeted attack leads to a marked decrease in the
accuracy scores on both VQA-X and A-OKVQA
datasets, with the lowest recorded accuracies be-
ing 70.1% and 33.3%, respectively. This substan-
tial drop indicates that the models heavily rely on
the presence of specific objects to generate their
answers and explanations, resulting in substantial
misinterpretations of the image context when these
objects are absent.

In the filtered scenario, where only correct an-
swers contribute to the evaluation metrics, the at-
tacked models on VQA-X and A-OKVQA exhibit
notable declines in the “Correctness,” “Detail,” and
“Context” scores compared to their performances

under noise and original conditions. Specifically,
“Detail” score reduction from 1.97 to 1.77 on VQA-
X under attack conditions suggests that the re-
moval of contextually relevant objects disrupts the
model’s ability to provide detailed and relevant ex-
planations. Similarly, compared with the best base-
line SSP with 3.19, our attack reduces the “Context”
score to 2.57 on VQA-X, highlighting a deteriora-
tion in the model’s capacity to comprehend and
relate to the altered visual context. This is ex-
acerbated on the A-OKVQA dataset, where the
“Context” score plummets to 3.04, underscoring the
model’s increased sensitivity to visual manipula-
tions.

These findings underscore the vulnerability of
current VQA models to targeted adversarial attacks
that remove non-answering yet contextually signif-
icant objects. They also emphasize the need for
developing more robust VQA systems that do not
merely focus on detectable objects but comprehend
the holistic scene to maintain explanation integrity
under adversarial conditions.

4.4 Case Study

Text Attack As illustrated in Figure 3 (right), the
slightly changed question: “Is this at an invita-
tional?” yields the answer and explanation: “no
because there are no people in the picture.” This
explanation contradicts the visual evidence in the
image, suggesting that the model’s visual ground-
ing has been disrupted by the subtle rephrasing.
The shift leads the model to overlook relevant vi-
sual cues it had initially attended to. However,
after being provided with the knowledge describ-
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Original

Ground Truth

Q: Is this at an event?
A: yes
E: There are people gathered in cosplay

Plural
Q: Is this at an events?
A: yes
E: There are people dressed up and
talking on cell phones

Q: Is this at an invitational?
A: no
E: There are no people in the picture.

Q: Is this at an invitational?
K: Events are organized gatherings of
people for specific purposes, such as
conferences, concerts, or sports.
A: yes
E: There are people dressed up.

Our Alleviation

Plural
Q: Is this rooms clean?
A: yes
E: There is no dirt or stains on the walls

Q: Is this room clean?
A: yes
E: Everything is spotless and in its place.

Ground Truth

Our Attack
Q: Is this room neat?
A: yes
E: There is a toilet and a sink.

Q: Is this room neat?
K: Cleanliness is determined by the
absence of dirt, dust, or clutter. It's
subjective and can vary.
A: yes
E: there is no dirt or clutter on the floor.

Our Alleviation

Our Attack

Figure 3: Qualitative examples of our text-based attack.

ing what “event” is, the model is able to grasp the
context of the specific question, thus generating the
answer and explanation that align with the ques-
tion. Similarly, in Figure 3 (left), for the question:

“Is this room neat?”, the model correctly answers:
“yes”, but the accompanying explanation: “there is
a toilet and a sink.” is semantically misaligned.
This explanation is inadequate as it merely lists
objects presented in the room without addressing
the notion of neatness or cleanliness, and thus fails
to justify the answer. In our alleviation strategy, we
guide the model by explicitly associating cleanli-

ness with the absence of dirt. This helps steer its
reasoning toward evaluating the actual tidiness of
the room, resulting in a more contextually appro-
priate explanation.

Image Attack Figure 4 (top) exemplifies how
VQA-NLE models rely on spurious correlations
rather than genuine scene understanding. Initially,
the model correctly identifies it is not the ocean
based on the presence of the dog in the water. How-
ever, after removing the dog from the image, the
model shifts its prediction to “yes”. This suggests
that the model’s decision-making process is heavily

8



Ground Truth
Q: Is this the ocean?
A: no
E: This is a small pond, you
can see the other shoreline
close by.

SSP
A: no
E: There is a dog running in
the water.

DR
A: no
E: There is a lake and land.

Our Attack
A: yes
E: There are large, green trees
and a lake.

Ground Truth
Q: Is this an old photo?
A: no
E: The colors in the photo are
crisp and vibrant, and the man
is in modern clothes about to
go down a hill.

DR
A: no
E: The man is wearing
modern clothing.

SSP
A: no
E: The man is wearing modern
clothing.

Our Attack
A: no
E: It is in black and white.

Figure 4: Qualitative examples of our image-based attack. The “Q” is omitted if it matches the ground truth.

influenced by particular objects rather than reason-
ing holistically about the scene. In Figure 4 (bot-
tom), the model correctly explains the image is not
an old photo by referring to the modern clothing
worn by the man. However, after removing people
from the image, the model still answers correctly
with “no”, yet the explanation becomes “it is in
black and white”, which obviously contradicts the
visual evidence, suggesting a disconnect between
the model’s generation and its visual grounding
capabilities. Overall, the model heavily relies on
superficial correlations rather than deep reasoning
and contextual understanding. Instead of accurately
grounding its explanations in the image and ques-
tion, the model often justifies its answers using spu-
rious associations. The VQA-NLE models struggle

to adapt to minor question variations and image
modifications, leading to explanations that either
misalign with the question or contradict visual evi-
dence. This indicates a fundamental gap between
the model’s answer generation and its ability to
provide logically sound explanations.

5 Conclusion and Future Work

In this paper, we examine the robustness of VQA-
NLE models, revealing their susceptibility to gen-
erating mutually inconsistent explanations in re-
sponse to linguistic and semantic variations. To
systematically evaluate these vulnerabilities, we
implement BERT-Attack that perturbs input ques-
tions, and also propose a novel adversarial attack
framework that modifies image content. Our ex-
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periments show that VQA-NLE models exhibit
sensitivity to these perturbations, indicating a re-
liance on spurious correlations rather than genuine
reasoning. To mitigate these inconsistencies, we
introduce a method that integrates external knowl-
edge into adversarially perturbed questions. Our
results demonstrate that this approach reduces con-
tradictions, thereby enhancing the robustness of
VQA-NLE models. For future work, we plan to
extend our investigation to large vision-language
models such as LLaVA (Liu et al., 2023) and Qwen-
VL (Bai et al., 2023). Additionally, we aim to ex-
plore the effectiveness of prompting techniques,
such as chain-of-thought reasoning, as a defense
mechanism against adversarial attacks by improv-
ing step-by-step reasoning.

Limitations

Our alleviation method depends on the question-
related knowledge, which may not be effective
in certain cases. For example, the knowledge
“Dresses can be sleeveless or have varying sleeve
styles, such as short, long, or cap sleeves.” ex-
tracted from the benign question “Does the dress
have sleeves?” is helpful for the adversarial ques-
tion “Does the gown have sleeves?” because it
relates “gown” with “dress” while guiding models
to focus on sleeves. Meanwhile, “The dress could
refer to a specific dress that gained viral attention in
2015 due to the optical illusion of its colors.” pro-
vides little relevant information for answering the
question, making it a poor knowledge statement.

References
Vedika Agarwal, Rakshith Shetty, and Mario Fritz. 2020.

Towards Causal VQA: Revealing and Reducing Spu-
rious Correlations by Invariant and Covariant Seman-
tic Editing. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 9690–9698.

Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Mar-
garet Mitchell, C. Lawrence Zitnick, Dhruv Batra,
and Devi Parikh. 2015. VQA: Visual Question An-
swering. In Proceedings of the International Confer-
ence on Computer Vision, page 2425–2433.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile vision-
language model for understanding, localization, text
reading, and beyond. Preprint, arXiv:2308.12966.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An Automatic Metric for MT Evaluation with Im-

proved Correlation with Human Judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Translation
and/or Summarization, pages 65–72.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz1, and Phil Blunsom. 2018. e-SNLI:
Natural Language Inference with Natural Language
Explanations. In Advances in Neural Information
Processing Systems.

Oana-Maria Camburu, Brendan Shillingford, Pasquale
Minervini, Thomas Lukasiewicz, and Phil Blunsom.
2020. Make up your mind! Adversarial generation
of inconsistent natural language explanations. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4157–
4165.

Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
Sentence Encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174.

Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shil-
iang Pu, and Yueting Zhuang. 2020. Counterfactual
Samples Synthesizing for Robust Visual Question
Answering. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 10800–10809.

Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu.
2019. Evading Defenses to Transferable Adversarial
Examples by Translation-Invariant Attacks. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4312–4321.

Siddhant Garg and Goutham Ramakrishnan. 2020.
BAE: BERT-based Adversarial Examples for Text
Classification. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing, page 6174–6181.

Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge
Belongie, and Ser-Nam Lim. 2019. Enhancing Ad-
versarial Example Transferability with an Intermedi-
ate Level Attack. In Proceedings of the International
Conference on Computer Vision, pages 4732–4741.

Nathan Inkawhich, Kevin J Liang, Lawrence Carin, and
Yiran Chen. 2020a. Transferable Perturbations of
Deep Feature Distributions. In International Confer-
ence on Learning Representations.

Nathan Inkawhich, Kevin J Liang, Binghui Wang,
Matthew Inkawhich, Lawrence Carin, and Yiran
Chen. 2020b. Perturbing Across the Feature Hierar-
chy to Improve Standard and Strict Blackbox Attack
Transferability. In Advances in Neural Information
Processing Systems.

10

https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966


Myeongjun Jang, Bodhisattwa Prasad Majumder, Julian
McAuley, Thomas Lukasiewicz, and Oana-Maria
Camburu. 2023. KNOW How to Make Up Your
Mind! Adversarially Detecting and Alleviating In-
consistencies in Natural Language Explanations. In
Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics, page 540–553.

Maxime Kayser, Oana-Maria Camburu, Leonard
Salewski, Cornelius Emde, Virginie Do, Zeynep
Akata, and Thomas Lukasiewicz. 2021. e-ViL: A
Dataset and Benchmark for Natural Language Expla-
nations in Vision-Language Tasks. In Proceedings
of the International Conference on Computer Vision,
pages 1244–1254.

Chengen Lai, Shengli Song, Shiqi Meng, Jingyang Li,
Sitong Yan, and Guangneng Hu. 2024. Towards
More Faithful Natural Language Explanation Using
Multi-Level Contrastive Learning in VQA. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, pages 2849–2857.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: Adversarial
Attack Against BERT Using BERT. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing, page 6193–6202.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Text summariza-
tion branches out, page 74–81.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona,
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dol-
lár. 2014. Microsoft COCO: Common Objects in
Context. In European Conference on Computer Vi-
sion, pages 740–755.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual Instruction Tuning. In Advances
in Neural Information Processing Systems.

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Pe-
ter West, Ronan Le Bras, Yejin Choi, and Hannaneh
Hajishirzi. 2022. Generated Knowledge Prompting
for Commonsense Reasoning. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics, page 3154–3169.

Yantao Lu, Yunhan Jia, Jianyu Wang, Bai Li, Weiheng
Chai, Lawrence Carin, and Senem Velipasalar. 2020.
Enhancing Cross-task Black-Box Transferability of
Adversarial Examples with Dispersion Reduction. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 937–
946.

Muhammad Maaz, Hanoona Rasheed, Salman Khan,
and Fahad Shahbaz Khan. 2024. Video-ChatGPT:
Towards Detailed Video Understanding via Large Vi-
sion and Language Models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics, page 12585–12602.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards Deep Learning Models Resistant to Adver-
sarial Attacks. In International Conference on Learn-
ing Representations.

Sharan Narang, Colin Raffel, Katherine Lee, Adam
Roberts, Noah Fiedel, and Karishma Malkan. 2020.
Wt5?! training text-to-text models to explain their
predictions. Preprint, arXiv:2004.14546.

Muzammal Naseer, Salman Khan, Munawar Hayat, Fa-
had Shahbaz Khan, and Fatih Porikli. 2020. A Self-
supervised Approach for Adversarial Robustness. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 259–
268.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic Eval-
uation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, page 311–318.

Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata,
Anna Rohrbach, Bernt Schiele, Trevor Darrell, and
Marcus Rohrbach. 2018. Multimodal Explanations:
Justifying Decisions and Pointing to the Evidence.
In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, page
8779–8788.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. Preprint, arXiv:2103.00020.

Abhilasha Ravichander, Eduard Hovy, Kaheer Sule-
man, Adam Trischler, and Jackie Chi Kit Cheung.
2020. On the Systematicity of Probing Contextual-
ized Word Representations: The Case of Hypernymy
in BERT. In Proceedings of the Ninth Joint Confer-
ence on Lexical and Computational Semantics, pages
88–102.

Arijit Ray, Karan Sikka, Ajay Divakaran, Stefan Lee,
and Giedrius Burachas. 2019. Sunny and Dark
Outside?! Improving Answer Consistency in VQA
through Entailed Question Generation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing, page 5860–5865.

Fawaz Sammani, Tanmoy Mukherjee, and Nikos Deli-
giannis. 2022. NLX-GPT: A Model for Natural Lan-
guage Explanations in Vision and Vision-Language
Tasks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
8322–8332.

Dustin Schwenk, Apoorv Khandelwal, Christopher
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022.
A-OKVQA: A Benchmark for Visual Question An-
swering using World Knowledge. In European Con-
ference on Computer Vision, pages 146–162.

11

https://arxiv.org/abs/2004.14546
https://arxiv.org/abs/2004.14546
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020


Meet Shah, Xinlei Chen, Marcus Rohrbach, and Devi
Parikh. 2019. Cycle-Consistency for Robust Vi-
sual Question Answering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6649–6658.

Wei Suo, Mengyang Sun, Weisong Liu, Yiqi Gao, Peng
Wang, Yanning Zhang, and Qi Wu. 2023. S3C:
Semi-Supervised VQA Natural Language Explana-
tion via Self-Critical Learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2646–2656.

Jiafeng Wang, Zhaoyu Chen, Kaixun Jiang, Dingkang
Yang, Lingyi Hong, Pinxue Guo, Haijing Guo, and
Wenqiang Zhang. 2024. Boosting the Transferabil-
ity of Adversarial Attacks with Global Momentum
Initialization. In Expert Systems with Applications.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022a. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. In
Advances in Neural Information Processing Systems.

Zhipeng Wei, Jingjing Chen, Micah Goldblum, Zux-
uan Wu, Tom Goldstein, and Yu-Gang Jiang. 2022b.
Towards Transferable Adversarial Attacks on Vision
Transformers. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 2668–2676.

Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey,
and Xingjun Ma. 2020. Skip Connections Matter:
On the Transferability of Adversarial Examples Gen-
erated with ResNets. In International Conference on
Learning Representations.

Jialin Wu and Raymond J. Mooney. 2019. Faithful Mul-
timodal Explanation for Visual Question Answer-
ing. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, page 103–112.

Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai,
Jianyu Wang, Zhou Ren, and Alan Yuille. 2019. Im-
proving Transferability of Adversarial Examples with
Input Diversity. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 2730–2739.

Lei Xu, Alfredo Cuesta-Infante, Laure Berti-Equille,
and Kalyan Veeramachaneni. 2022. R&R: Metric-
guided Adversarial Sentence Generation. In Find-
ings of the Association for Computational Linguis-
tics: AACL-IJCNLP 2022, pages 438–452.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating Text Generation with BERT. In Inter-
national Conference on Learning Representations.

Junhao Zhuang, Yanhong Zeng, Wenran Liu, Chun
Yuan, and Kai Chen. 2024. A Task is Worth One
Word: Learning with Task Prompts for High-Quality
Versatile Image Inpainting. In European Conference
on Computer Vision.

12


	Introduction
	Related Work
	VQA Explanations
	VQA Robustness

	Method
	Text-based Attack
	Image-based Attack
	Alleviation

	Experiment
	Experimental Setup
	Dataset
	Evaluation Metrics
	Implementation Details

	Results on Text-based Attack
	Results on Image-based Attack
	Case Study

	Conclusion and Future Work

