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Abstract—Cyber-physical system (CPS) is the foundational
backbone of modern critical infrastructures, so ensuring its
security and resilience against cyber-attacks is of pivotal impor-
tance. This paper addresses the challenge of designing anomaly
detectors for CPS under false-data injection (FDI) attacks and
stochastic disturbances governed by unknown probability dis-
tribution. By using the Wasserstein ambiguity set, a prevalent
data-driven tool in distributionally robust optimization (DRO),
we first propose a new security metric to deal with the absence of
disturbance distribution. This metric is designed by asymptotic
reachability analysis of state deviations caused by stealthy FDI
attacks and disturbance in a distributionally robust confidence
set. We then formulate the detector design as a DRO problem
that optimizes this security metric while controlling the false
alarm rate robustly under a set of distributions. This yields a
trade-off between robustness to disturbance and performance
degradation under stealthy attacks. The resulting design problem
turns out to be a challenging semi-infinite program due to the
existence of distributionally robust chance constraints. We derive
its exact albeit non-convex reformulation and develop an effective
solution algorithm based on sequential optimization. Finally, a
case study on a simulated three-tank is illustrated to demonstrate
the efficiency of our design in robustifying against unknown
disturbance distribution.

Index Terms—Robust FDI attack detection, reachability anal-
ysis, performance degradation, distributionally robust optimiza-
tion.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are a critical component of
modern technological advancements, integrating cyber com-
munication and computation with physical plants. CPSs can
be used in various fields, such as autonomous vehicles [1], in-
dustrial control systems [2] and power grid [3]. However, CPSs
are often exposed to threats from external cyber-attackers,
who may compromise communication networks, manipulate
sensor data, or interfere with control signals, leading to severe
consequences. Therefore, the security of CPS has gained
increasing research attention over the recent decade.

As an essential problem of CPS security, anomaly detection
aims at identifying unusual or malicious actions, thereby
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addressing the underlying challenge of mitigating malicious
activities before significant harms are caused [4]. The anomaly
detection problem is closely related to fault detection of
technical processes, which has been a hot spot in the control
community [5], [6]. However, cyber-attacks are more difficult
to deal with than faults since attackers can meticulously design
the attack mechanism to deceive the detector by exploiting
available system knowledge [4], [7], [8]. Among various types
of cyber-attacks, the stealthy false data-injection (FDI) attack
has received the most attention and many tailored detector
design schemes have been developed. In [7], a subspace-
based detector based on coding theory was proposed to tackle
undetectable sensor FDI attacks. [9] borrowed ideas from the
random finite set theory to detect multiple attacks on different
sensors. Deep reinforcement learning has also been found use-
ful for detecting FDI attacks under disturbance by formulating
the design problem as a partially observable Markov decision
process in [10]. Aiming to accelerate the response speed, [11]
designed an optimal weighting fusion criterion to calibrate
the threshold under the limited bandwidth. A generalized
likelihood ratio-based scheduler was presented in [12], which
selectively transmits the most informative sensor data to detect
potential cyber-attacks under limited communications.
Uncertain disturbance is widespread in real-world CPS.
In previous works on cyber-attack detection, it is frequently
assumed that the disturbance is either bounded or governed
by a Gaussian distribution to ease analysis and design. Under
the assumption of bounded disturbances, [13] proposed and
minimized a valid reachability-based performance metric of
the CPS, which is also useful for further guiding the con-
trol synthesis [14]-[16]. However, it critically hinges on the
set-based description of system disturbances. In engineering
practice, it remains non-trivial to obtain precise support infor-
mation of stochastic disturbance. On the other side, the well-
known generalized likelihood ratio test (GLRT) provides an
optimal detection framework under the Gaussian assumption
in [17]. However, once disturbance distribution deviates from
Gaussianity, such as exhibiting heavy-tailed or non-stationary
characteristics, the accuracy and reliability of cyber-attack de-
tection are inevitably compromised. As an effective technique
for managing uncertainty in probability distributions, distri-
butionally robust optimization (DRO) has attracted extensive
attention in the field of anomaly detection recently. Instead
of assuming the true probability distribution to be precisely
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known, DRO optimizes the worst-case performance within the
ambiguity set composed of all possible distributions, thereby
offering a more robust solution than generic methods. While
various distributionally robust anomaly detectors have already
been developed, see e.g. [18]-[22], they are primarily oriented
towards fault detection tasks, aiming to maximize sensitivity
to faults but ignoring the adversarial nature of cyber-attacks.

This work aims at addressing the FDI attack detection
problem in CPS subject to stochastic disturbance whose dis-
tribution is unknown. The main contributions of this work can
be summarized as follows:

« We propose a new distributionally robust security metric
to evaluate the performance degradation due to stealthy
FDI attacks and stochastic disturbance governed by a
unknown distribution. This is achieved by using the
Wasserstein ambiguity set for data-driven uncertainty de-
scription and performing asymptotic reachability analysis.

o We formulate FDI attack detector design as a DRO
problem that minimizes our proposed performance degra-
dation metric while simultaneously controlling the false
alarm rate (FAR), thereby achieving a desirable trade-
off between security against attacks and robustness to
disturbances.

e We establish an exact reformulation of the proposed
distributionally robust detector design problem, success-
fully transforming a semi-infinite program into a finite-
dimensional problem but involving bilinear matrix in-
equalities (BMIs). To solve this resulting non-convex
problem, we develop a customized and efficient algorithm
based on sequential optimization.

The remainder of this article is organized as follows. The
basics of CPS and the distributionally robust anomaly detector
design are revisited in Section II. Section III presents our
attack detector design scheme, and case study results are given
in Section IV. Section V concludes this article.

Notations: We use N(u,%) to denote a Gaussian distri-
bution with mean s and covariance Y . Y2, denotes a Chi-
square distribution with n degrees of freedom and its upper
a-quantile is denoted by x2, (). I denotes an identity matrix
of appropriate dimension. For a vector x, the weighted /5-norm
lz|lw = (zTW=z)z and ||f]| = (fT f)2 with omitting the
weight W = I, . For a matrix X, X[;.;) denotes the submatrix
X that goes from the ith to the jth column. Xt denotes its
Moore—Penrose inverse, tr{X} denotes its trace, and ||X|2
denotes its spectral norm. diag{X1,---,X,} is the block
diagonal matrix with diagonal block matrices Xi,:--, X,.
For a symmetric X, X > (>)0 indicates that X is positive
(semi-)definite. For discrete-time signal x(k), the concatenated

vector is denoted by x,(k) = [z(k —s+1)T -~ar;(l<:)T]T

II. PRELIMINARIES

A. CPS Configuration

As described in Fig. 1, a CPS under study consists of a
physical plant, a feedback controller, and an attack detector.

Actuator Physical Plant Sensor
actual lant
a k p
input (k)tl(k) Attack a(k) () output
actuator attack acker sensor attack
u(k)
- Feedback Controller
desired
input compromised|
output y (k)
Detector
alarm

signal

Fig. 1. CPS under FDI attacks.

The physical plant can be described as a stochastic discrete-
time linear time-invariant (LTT) system:

(k+1) = Az(k) + Bu®(k) + Bad(k)
y(k) = Ca(k) + Dad(k)

where x € R™, y € R™, u® € R™ and d € R™ denote
system state, output signal, actual control signal, stochastic
disturbance, and additive faults, respectively. A, B, By, C and
D, are state-space matrices of appropriate dimensions. It is
assumed that (A, C) is observable and (A, B) is controllable.
The sensor and actuator attacks can be described as:

u®(k) = u(k) + Bga(k)
y* (k) =

y(k) + Dqa(k)
where the attack a(k) € R™*"v signal injects false data
into u(k) and y(k) through channels B, and D,, and y®(k)
represents the compromised output. u(k) is the desired input
produced by the feedback controller:

ze(k +1) = Acze(k) + Belyrer (k) — y (k)]
u(k) = Cexe(k) + Delyret (k) — y2 (k)]

where z, € R™ and y.r(k) € R™ are the state of the
controller and the reference output signal. By defining the
augmented state Z(k) = [z(k)" acc(k)T]T and combining
(1), (2) and (3), one attains the dynamics of the closed-loop
system under attack:

{ ok +1) = As(k) + Bries(8) + Bualh) + Bad(h)
y*( Cz(k)

(1)

2

3)

+ Dya(k) + Dyd(k)

4)
where
- [A-BD.C BC. - [BD] ~ [C
i g e[ e [G)
- [BB,-D.D,)] 5 _[Bs—BD.Dy
Ba‘[ ~B.D, }’Bd‘{ ~B.Dy }

To detect possible attacks, a parity-space-based residual
generator can be constructed. Given order s > n,, the parity
relation of the desired input us (k) and the compromised output
y%(k) is expressed as

yo(k) =Tex(k — s) + Hy sus(k) + Hy sds(k) + Hy sas(k),
(5)
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.
where T'y, = [bCT (CA)T (CAS—l)T} is the ex-
tended observability matrix, and
D 0 0 0
CB D 0 -0
H,,— CAB CB D -0 :
CA*~ B CAB CB D

is the Toeplitz matrix. Then H; , and H, , can be constructed
in a similar form of H, ; with {B, D} replaced by {Bg4, D4}
and {BB,, D, }, respectively. As a result, the residual signal
r(k) € R™ can be generated as follows [23]:

r(k) = P Ty [ys (k) — Husus(k))

= P[des(k) + Waas(k)] ©

where the disturbance and attack projection matrices W, =
TiHyg we =TEH, s T'E € R —n2)Xsmy g the orthog-
onal complement of I, thereby eliminating the impact of the
initial state z(k — s) on r(k), and P is the projection matrix
with some design freedom. It is obvious that (k) depends
affinely on d(k) and a(k), and the choice of P shall balance
between insensitivity to ds(k) and sensitivity to as(k). It is
essential to ensure that the design matrix P has full column
rank, avoiding being blind to some not strictly stealthy attack
directions as ¢ ker(W,). Subsequently, one can evaluate the
residual through the function J(r) = ||r(k)|? to detect the
occurrence of attacks. The alarm logic is expressed as:

J(r) > Jin = Attack alarm
J(r) < Jyn = No alarm

Without loss of generality, the threshold can be set to Jy, = 1,
since its design freedom can be accounted for by optimizing
the projection matrix P. Due to the randomness in d(k),
unwanted false alarms may be raised under the attack-free
condition, and FAR has been widely adopted to evaluate
robustness performance of the detector. For notational brevity
of probabilistic analysis, we use & € R™¢ to denote the random
variable of the s-long augmented disturbance ds where the
time index k is dropped.

Definition 1 (FAR [5]). Given the threshold Ji,, = 1 and the
evaluation function J(r) = ||r||?, the FAR is defined as

FAR = P¢ {||r[|> > 1| a, = 0} @)
=P {||PWag|]* > 1}. (8)

To compute FAR, the exact probability distribution of £ has
to be known. The Gaussian assumption, i.e. £ ~ N(0, %),
is mostly adopted in current literature. As an example, in the
GLRT approach the design of P is formulated as a hypothesis
test with the null hypothesis H( and the alternative hypothesis
Hy [17]:

Ho : (k) ~ N'(0, PSoPT)
Hy:r(k) ~ N(PWaas, PLoPT)

where $o = W;SoW, . Given a preset FAR upper bound
a, GLRT gives rise to the threshold Jiy, = 1 and residual
generator (6) with the optimal design matrix

P =5, W, (W, S5 W) W, S5 /VX2(1—a). (9

B. Wasserstein-based Distributionally Robust Detection De-
sign

To effectively detect cyber-attacks, a critical issue is how to
describe the statistical properties of underlying disturbances
are modeled and analyze its impact on detection performance.
Under the Gaussian assumption, the well-established GLRT
has been widely used to design cyber-attack detectors. How-
ever, the true disturbance distribution IP¢ is typically unknown
and show complicated characteristics, e.g. nonstationarity,
heavy tails or multimodality, thereby deviating greatly from
Gaussianity. When such distributional mismatch occurs, alarm
floods can be induced, which make practitioners eventually
discredit the attack detector.

To address uncertainty in probability distributions, we draw
ideas from DRO to formulate the detector design problem,
which captures the unknown disturbance distribution Pz by
constructing a so-called ambiguity set D instead of using a
single parametric distribution. Specifically, as long as historical
data are available for defining an empirical distribution, one
can construct D as a family of probability distributions that
are close to the empirical distribution at hand. To evaluate the
distance between two probability distributions, the Wasserstein
distance has been a popular option due to its clear interpretabil-
ity and favorable statistical properties [20], [24].

Definition 2 (Wasserstein distance, [25]). For given two
distributions P, € M(Z), where M(Z) is the probability
space, whose random & is supported on =

dw(P,P)= inf E — ¢,
WEP) = inf | Eq{e-€)

where Q(P,IP') € M(Z2) is the set composed of all the joint
distributions of & and &' with marginal distributions P and .

Definition 3 (WasserstAein ambiguity set, [24]). Given N
independent samples {&;}Y |, the Wasserstein ambiguity set
is defined as:

Dy (6; N) = {IP’ € M(E)

dw(P, IEDN) < 0} ,

where M(ZE) is the probability space supported on E, 0 is
the radius of the ambiguity set, and Py = % Zf\il 5&_ is the
empirical distribution.

Departing from the usual Gaussian assumption, the Wasser-
stein ambiguity set offers a general data-driven tool for char-
acterizing uncertainty in the true distribution IP¢ provided that
the radius 6 is suitably chosen. Following the spirit of DRO,
a distributionally robust anomaly detector design problem can
be formulated as follows [20]:

PW 1
max tr{W,PW,} (10a)
st. sup P{ETW PWye > 1} < a (10b)
Pe€Dw
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where P = PTP > 0 is introduced to make the objective

linear in P. It maximizes the overall detectability ||PW,||%
in (10a) while respecting the distributionally robust chance
constraint (DRCC) on FAR in (10b).

III. MAIN RESULT

A. Stealthy Attack Set and Performance Degradation Metric

The distributionally robust detector (10) only focuses on
maximizing the highest overall detectability, while ignoring
the adversarial nature of cyber-attacks. The attacker aims to
cause damage to the CPS while avoiding raising security
alarms. In this work, the attacker is assumed to have access to
full system knowledge. Admittedly, for any detector design
matrix P, there always exist stealthy attacks that are too
unobvious to be detected. This leads to a high security risk
that a well-designed stealthy attack may not trigger alarms
but do harm to the CPS. Thus we seek to design a detector
oriented towards minimizing performance degradation of the
CPS subject to FDI attacks. Based on the residual generator
and the threshold Ji,, = 1, we first define the stealthy attack
set S, as:

Sa = {as [||[P(Wa€ + Waas)|? < 1}. (11)
We assume that the attack projection matrix W, has full
row rank, such that WaI/V;r = I, and define a new attack
representation a:
as = —WIW4€ + as, (12)
By substituting (12) into (11), one can decouple S, from &,
leading to the residual dynamic r = PW,as. On this basis,
we can define an equivalent, but now deterministic stealthy
attack set Sz using a,:

Sa = {a, |[|PWaas||> < 1}.

However, the primary consequence of W, being row-rank-
deficient is the existence of a non-trivial kernel space ker(W,).
Under this case, attackers can design strictly stealthy attacks
as € ker(W,), which satisfy W,as = 0 and thus will not be
reflected in r based on (6). Therefore, we decompose a; into
detectable components @.™# and strictly stealthy ones @<°':

4, = V,aime + vbaker, (13)

Y/ /L
Vo= Va,[l:sny—nw]7 Va = Va,[sny—nm-i-l:sna]

where the orthogonal matrix V, € R®™=*"a comes from
the singular value decomposition W, = U,AV,". Note that
V:-aker is completely undetectable by the detector (6), so we
set @5" = 0 and merely focus on the detectable component
amé. Consequently, the core of the stealthiness analysis re-
duces to characterizing the set of attacks @'™8. By substituting
(13) into (6), we arrive at r = PWaVaC_L;mg, resulting in the
following stealthy attack set under study:

S = {aie || PW, Val™®|? < 1}

Next we analyze the effect of stealthy attacks on system
states in the absence of the true distribution of £. The aug-
mented state & in (4) can be decomposed as follows:

Z(k) = "™ (k) + 29V (k)
oM (k + 1) = Az (k) + Byres (k)
79k + 1) = A7V (k) + Baa(k) + Bad(k)

(14)

where 2"°™ represents the deterministic response to the given

reference trajectory ¥, and £V captures the state deviation
caused by both the attack a and uncertain disturbance d. The
reachable set of Z4°V can be useful for evaluating performance
degradation under stealthy attack. To align with the s-long
stealthy attacks @ in Sz, we first augment the dynamics (14)

of the deviation component over a time horizon of s:

i"fev(kJrS) = Asg_jgev(k)“i’éa,sas (k+57 1)+Bd,e§(k+57 1)

(15)
where

0 0 A
_ 0 0 A2
As: . . P

0 0 As

B, 0 0

— AsBa Ba 0
Ba,sz . ;

As~1B, As2B, --- B,

and Bd,s are defined akin to Ba,s with B, replaced by By.
One can further replace as with ag by substituting (12) and
(13) into the augmented system (15):

79V (k + ) = A3V (k) + BY"®a™8 (k + s — 1)
+ BXTaX (k4 s — 1) + Be&(k + s — 1)

a,ss

(16)

where
pimg __ r/ pker _ 1 van
Bﬁ,s - BG,SVU«’ Bz‘z,s - BU«,SVa

Be = Byy — Ba s WiWa.

However, ¢ may have an unbounded support and is governed
by an unknown probability distribution. To carry out set-
based reachability analysis, we turn to a distributionally robust
confidence set & (B) = {§|||£||Z) <1} with Q = 0 at a
high confidence level 8 > 0 (e.g. 0.95), which satisfies the
following DRCC:

inf -~ Pe{{ (B} =0

PeeDw (0,N)
This DRCC ensures that & is a safe 3-confidence set for any
distribution P residing in the Wasserstein ball Dy (6, N). On
this basis, we define the following distributionally robust (-
level reachable set at time %k under stealthy attack:
(16); 1€ Nl:k7
| PWaVaal ()| < 1, i € Ny,
IE@NIG <1, i € Ny
which characterizes possible state deviations caused by both

stealthy attacks and disturbance in the 3-confidence set. Intu-
itively, a larger size of Rzaev (k) indicates severer performance

Raaer (k) = § 2, (k)

S
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degradation and consequently, a heavier impact of stealthy
attacks on CPS security; however, its explicit dependence on
k erects obstacles for evaluating the performance degradation.
Therefore, we consider its asymptotic outer approximation in
the form of an ellipsoid irrespective of k:

Raaer (k) C v = {20 [||Z{VI3 < 1}, k=00 (17)

where M > 0 decides both the shape and the volume of the
ellipsoid 5§§ev In a nutshell, 8§§ev provides an approximation
of asymptotically reachable set with stochastic disturbance
sampled from the [-confidence set & (). It is known that
1/4/det(M) is proportional to the volume of £25.. [26],
which naturally motivates the utilization of — log det zM )asa
metric for quantifying performance degradation under stealthy
attacks and eventually guiding the design of P.

B. Derivation of Asymptotically Outer Approximation

Our objective is to find the shape matrix A/ that defines
the smallest possible invariant ellipsoid S odov - To this aim, we
first present preliminary result, which is useful for developing
an asymptotic bound on the state evolution under multiple
bounded inputs.

Lemma 1. ( [13, Lemma 1]). Suppose a given constant a €
(0, 1) and a nonnegative function V (k), if w;(k) " Q;w;(k) < 1

with Q; > 0, Vi € Ny.n, and there exist a; € (0,1), Vi €

Ni.n, satisfying Zf\il a; > a and
N,

V(k+1) <aV(k)+ > (1 —a)w] (k)M(k)wi(k), (18)

i=1

then, the bound of V (k) satisfies

Na _ 1— k—1
Vicy) <@ty Lez o)

l1—a

and its asymptotic upper bound is given by limy_,., V (k) <
(Ng —a)/(1 —a).

Now we are in a position to derive the necessary conditions
that the matrix M must satisfy to ensure the ellipsoid é’;ﬁpv

covers. Therefore, Theorem 1 is proposed to formalize these
conditions.

Theorem 1. If (17) with M is a valid asymptotic outer
approximation of the reachable set Rgaev (k), for a given
€ (0,1), then there exist ay, as and M satisfying:

MZ%M%O, ar+ax > a
0<a1<1,0<a2<1

off 0 AN (19)
0 QO BINM|=0
MA, MBy, M
where
Q =diag {(1 — a2)V,) W, PW,V,, (1 — a3)Q} ,
B, = [B™ B].
Proof. We first define ((k) = zV(sk), V(k) =

CT(k)M((k), wi(k) = a8 (s(k + 1) — 1), wa(k) = &(s(k +

1) — 1), w(k) = [wi(k) wa(k)] and N, = 2. By invoking
Lemma 1, there exists a; + as > a € (0,1), such that (18)
holds for any zd¢V(sk). By substituting (16) into (18), we
obtain

sw(k))

CT(R)MC(k) — (AC(k) + Byw(k)) M (AL(K) + B
(1 ar)wi (k)W PWawi (k) + (1 — ag)ws (k)Qw (k)
_[¢to)]" [add — ATMA, —ATMB, | [¢(k)
[w(k)} [ ~BTMA, Q—BJMB} L(k)} 0
which implies
a T _ AT AT A _ AT D,
[ ]\{3541\2]1\4{& Q_Aé%ffés] =0 @0

Because M > 0, we can apply the Schur complement to
(20), which directly yields condition (19). This establishes that
for the state sequence 7%(sk), the asymptotic upper bound
limy_yo0 V (k) < 222 holds. Due to a € (0,1), the influence
of any initial states {xdc"( )}:Z; vanishes exponentially over
time. Therefore, the asymptotically outer approximation of the
reachable set {xdev |xde"TM zdev < 1} can be extended to
the entire trajectory Z4¢V(k), thus completing the proof. [

C. Design Problem Formulation and Solution Algorithm

The proposed distributionally robust design of FDI attack
detector is formalized as follows:

~min  — logdet(M) (21a)
P>0,Q-0,
M=0,a1,a2
s.t. sup P {|[Wil|3 >1} <a  (21b)
Pe €Dw (6,N)
sup P {[[¢lll >1} <1-8  (2lo)
Pe€Dw(0,N)
Constraint (19) (21d)

In this design, the FAR is guaranteed to be below the
tolerance level o for any disturbance distribution P¢ within
the ambiguity set Dw by the DRCC (21b). The DRCC (21c¢)
defines a safe S-confidence set for £ that is useful for deriving
the asymptotic outer approximation in (21d). Constraint (21d)
derived in Theorem 1 is the core of defining the proposed secu-
rity metric by finding an ellipsoid parameterized by M being
a valid outer approximation of the asymptotic reachability set
of state deviations. Note that minimizing the proposed metric
—log det(M) is equivalent to minimizing —log det(M ). Thus
we adopt the convex objective function —logdet(M) as the
objective, which seeks to reduce the CPS state deviation
caused by stealthy attacks as much as possible. However, the
optimization problems (21b) and (21c) contain semi-infinite
optimization problems, which are computationally intractable.
To handle two Wasserstein-based DRCCs, we introduce the
following result.

Lemma 2. ( [20, Theorem 5]). For given probability threshold
« the Wasserstein-based ambiguity set Dw (0, N), the worst-
case FAR chance-constraint

sup

P{|Wa|p > 1} <@
Pe€Dw (6,N)
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holds if and only if

A>0

y; >0, 7>0, y; > A—1t;, i € Ni.y
9+szlyl<)\a 1€ Ni.n

I —& W PW,; 0
& &é-a 0o -1
] i € N1i.n,

=0, (22

—T;

123 .
1] =0, i € Np.n.

In the light of Lemma 2, we can now address the semi-
infinite constraints (21b) and (21c) in our design problem.
Therefore, Theorem (2) is proposed by replacing them with a
finite set of constraints.

Theorem 2. The distributionally robust attack detector design
problem (21) admits the following exact reformulation:

min —log det(M)

P,M,Q,a1,a2
’Ya)‘7yz»vu7—z;
Tiyti  UisDisqi

s.t. v >0, ui>0 m; >0, 1 € Ny

0+ — Zul_ (1-p

—&; Q 0
Tt o)

I (23)
[ & 76—
1€ Ny

[ﬁi ﬂ = 0,i € Ny
P=0,Q=0

Constraints (19), (22)

Proof. The proof is a direct application of Theorem 1 and
Lemma 2, so it is omitted for brevity. O

Despite the equivalence between (23) and (21), (23) is a
non-convex optimization problem due to the bilinear terms
TP, m:Q, agVTWTPW V, and a@Q. Although these BMIs
are NP-hard [27], a key observation is that if either set of
bilinear variables {7;, 7;, a1, as} is fixed, the problem becomes
a semi-definite program (SDP), which is convex with respect to
the other set { P, Q} and thus becomes solvable. This specific
structure motivates us to solve the problem using sequential
optimization approach. First, we rewrite (23) as follows:

_min  — logdet(M)
P>0,Q>0
st. Ji(P) <0, %(Q) <0, (24)
jS(Pa Q) >a

where J1(P) is the optimal value of the following subprob-

lem:
1
WS DI
st. i >0,y >2A—t;, 1,20, €Ny
[I_TiWJde S (25)
=3 Gé&—aqi+m]
1€ Ny
{‘j tl] =0, i€ Ny, A2 0
J2(Q) is the optimal value of the following subproblem:
| XN
i 0+ — i — (1 —
RSSO
st. v, >0, v;>2n—u;, m >0, i€NLy
I-mQ —& } ,
nt =0, i €Ny
[ =& &Gi-pitm '
bi U .
|:ui 1:|>07Z€N1:N7’7>0
(26)

and J3(P, Q) is the optimal value of the following subprob-
lem:

max_ aj + ag

al,a2,1\/[
st. 0<a;<1,0<a<1, M>0
i 0 ALN
0  Q BIM|=0

MA, MB, M
Q = diag {(1 — a1)V,) W] PW,V,, (1 — a2)Q}
(27

This decomposition allows us to perform sequential optimiza-
tion to resolve the original non-convex problem (23). First,
we initialize P and ) with small positive-definite matrices
to ensure initial feasibility. Then, we can alternately solve
three SDPs (25), (26) and (27) using off-the-shelf solvers with
fixed { P, Q} to enlarge the feasible region, and solve the SDP
(24) with fixed {7, 7;,az,a3} to achieve a higher objective.
This procedure is repeated until convergence or the maximum
number of iterations. As this iterative scheme is a form of
coordinate descent, the objective function is guaranteed to be
non-decreasing at each iteration and finally converges. The full
implementation details are summarized in Algorithm 1.

Remark 1. A practical simplification to the design problem
(21) can be made by coupling the DRCC on FAR (21b)
and the DRCC on disturbance confidence set (21b). That is,
letting B = 1 — a > 0, then we can choose the disturbance
confidence set in asymptotic reachability analysis to be the
same set of disturbances that do not trigger a false alarm,
ie. E(B) = {€||Wa€||% < 1}. This strategy can effectively
eliminate the need to solve for the matrix (Q and the associated
BMIs. Consequently, the subproblem (26) vanishes in each
iteration, thereby improving the computational efficiency of
Algorithm 1.
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Algorithm 1 Solution algorithm for reformulation of the

distributionally robust detector design problem (23)

Require: Coefficient matrices W,, Wy, A,, B(—w, Bf, dis-
turbance samples {é}f\il, Wasserstein radius 8 > 0,
tolerable FAR 0 < o < 1 and asymptotic convergence
rate 0 < a < 1.

1: Initialize P(©) < eI and Q < eI with a small enough
€ > 0 and nyje < 0.
2: while stopping criteria not met do
3 Solve (25) over {\, s, T, ti,q;} with P« P(mie),
and obtain the optimal solution 7,"**
4: Solve (26) over {v,v;, 7, u;, p;} with Q < QMite),
and obtain the optimal solution 7ri7“‘e
5: Solve (27) over {ai,as, M} with P < P(™) and
Q < Q") and obtain the optimal solution a(n‘“) and
énlte). .
6. Solve (24) with 7; + 7%,
and ay < al*®
and Q(nitc+1)

: Nite < Nite + 1.

8: end while

9: Return P .

(ite) (ite)

T <= T, , Q1 < a3
, and obtain the optimal solutlon P("'““)

Remark 2. The proposed design involves three key hy-
perparameters, {«,0,a}, whose selection requires practical
consideration. The FAR tolerance o encodes a direct trade-
off between detection sensitivity and alarm reliability, and
should be set based on the specific application’s operational
requirements. The Wasserstein radius 0, which governs the
level of distributional robustness, can be effectively calibrated
using K-fold cross-validation [20]-[22]. Finally, a is the
asymptotic convergence rate in the derivation of the invariant
outer approximation which directly influences the shape and
conservatism of & xde" Since it confines to (0,1), a can be
easily tuned using grid search.

D. Design under the Case of Row Rank-Deficient W,

In practice, the attack projection matrix W, may not have
full row rank due to the sensor redundancy or the inherent
actuator structure. This section is therefore organized to ad-
dress this more general and challenging case. We continue to
employ the presentation (12) and (13), but redefine

Vo= Va,[l:rank(Wa)]v Val = (23)

Va,[rank(Wa)-i-l:sna]
because W, is row rank-deficient. By substituting (13) into
(6), the residual r can be governed by
r=PW,(I - WIW,)é + PW,V,a™s. (29)
Because of WJ Wy # 0, (29) only eliminates the component of
W4€ that lies in the row space of W, but it cannot completely

remove the influence of . To characterize a deterministic

set of stealthy attacks a™&, we adopt two distinct design

philosophies, leading to two different definitions. First, a
conservative stealthy attack set S'™¢ is defined as:
Ve € E(n)

s
30)

which only includes those attacks that can remain undetectable
for every possible realization of disturbance ¢ in the confidence
set & (n). From the defender’s point of view, this is an
optimistic assumption that the attacker will only launch attacks
that are guaranteed to be stealthy with a probability of at least
1. Next, we develop a more tractable approximation of (30).

(I = W WHWaé + W, Va8 ||% < 1,

Theorem 3. By choosing n = 1 —a > 0 and &(n) =
{¢ |||VVd§||215 < 1} being a valid n-confidence set, if

1
IWaVaa™8 |3 < 7~ M= UAUAE @31

then
(I = WaWHWaé + W, Vaal™8||% < 1, V€ € Ee(n) (32)

Proof. To derive a tractable sufficient condition, we upper
bound for the left hand of (32):

(I — WaWHWae + W,V a8 (|2
< 2||(I — WoWHWael|% + 2| W Vaai™e|1%
< 2T = W W3 IIWall b + 2I[Wa Vaais||%
<2 = W W3 + 2| W Vaal 8|5

(33)

Here, the first inequality follows from the Cauchy-Schwarz
inequality, the second inequality is due to the property of the
spectral norm of matrix, and the last inequality holds by the
definition of £ (n). By inserting (31) into (33), we obtain (32),
which completes the proof. O

Remark 3. It is worth noting the tightness of this sufficient
condition (31). A noteworthy special case occurs when the
singular value of I — W,W/ is large enough to make the
right-hand side of |I — W, W] |3 > i, leading to an empty
Sémg. The physical interpretation is that there exists a large
degree of freedom for the disturbances & that are orthogonal
to the row space W, to affect the residual r. Consequently, the
worst-case disturbance becomes so inﬂuential that the alarm
can be triggered under any attacks a8,

To alleviate conservatism in S8, we introduce an alterna-

a,l >
tive stealthy attack set Sa”ég’ as:

o = e W Va3 < 1},

which is a broader and more computationally tractable set that
characterizes all attacks that are stealthy in the disturbance-free
case. This seemingly simple set also bears a clear probabilistic
interpretation. If the disturbance ¢ is drawn from any centrally
symmetric distribution, any attacks a™#& € Sm;g are guaran-
teed to be opportunistically stealthy with a probabﬂlty of at
least 50%.

We now have obtained the well-defined ellipsoidal bounded
sets SI™& and 862, whose structure is the same as that
developed for the case of full row-rank W,. Therefore, the
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Fig. 2. Schematic of the three-tank system.

corresponding detector design procedure follows a similar
spirit to Theorems 1, 2 and Algorithm 1, which is not detailed
here since no new ideas are required.

IV. CASE STUDY

In this section, we demonstrate the applicability of the
proposed distributionally robust FDI attack detector through
a benchmark three-tank system. The laboratory setup known
as DTS200 is given in Fig. 2, which consists of three in-
terconnected tank and two pumps. The detailed parameters
of DTS200 can be found in [6]. To obtain a discrete-time
LTI system, the nonlinear dynamics of DTS200 are linearized
around the operating point z; = 10cm and z3 = 8cm with
sample time AT = 5s, resulting in the system (1) with state-
space matrices

[0.8586  0.0107 0.1304
A= 100107 0.7958 0.1254],
0.1303  0.1254 0.7390
[0.0301  0.0001
B = [0.0001 0.0290|, C=1s, By=1I5, Dy=0.
0.0023  0.0022

The sensor and actuator attack channels are modeled given
by:

By = [ 02x3],Da = [03x2 Is]

The system is controlled by a feedback controller designed
based on an observer and a state-feedback control law.

The controller is composed of a Luenberger observer and a
state-feedback control law, resulting in the parameters of (3):

[ 0.8078  0.0348 —0.0041

A.= | 0.0854 0.8017 —0.0307],
|—0.0583 0.0307  0.6471
[—1.5368 —1.7682  0.8636

B.= 08590 0.9389  0.2613 |,
|—1.9897 —0.6146 —1.5481
0.1173  0.1297 —0.2509

Ce = —0.3283 —0.0058 0.0179 |’ De=0.

The residual generator (6) with full row-rank W, and Wy
is obtained by using the parity space method [23] with order
s = 4 is used to generate residuals. Additive disturbances

FS

T T
Proposed method
GLRT

- - = = Threshold Jy,

w
T

J(r) and Jiy,

0 50 100 150 200 250 300 350 400 450 500

Time
a =0.05
4 ‘ ‘ ‘ : :
Proposed method
sl GLRT
- - = = Threshold Jy,

J(r) and Jy,

0 50 100 150 200 250 300 850 400 450 500
Time
a =0.1
‘

IS

T T
Proposed method
GLRT

- - - = Threshold Jy,

w
T
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a =0.2
‘
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- !
Proposed method
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- - - - Threshold Jy,

w
T

J(r) and Jiy,

0 50 100 150 200 250 300 350 400 450 500
Time

Fig. 3. Residual evaluation function J(r) of the proposed method with 8 =
0.7 and the GLRT design under the attack-free case.

d(k) are generated from a Laplace distribution with covariance
Yq = 0.01] and mean pg = 0. As for details to implement
the proposed method, we use N = 200 samples {él}f\il and
the Wasserstein radius § = 0.0029 to construct the ambiguity
set Dw(6; N), and the convergence rate is chosen in the
design problem. The induced SDPs (24)-(27) are modeled
using YALMIP interface [28] and solved using MOSEK [29]
in MATLAB R2024a.

To compare the FARs of our proposed method with the
GLRT design (9), we performed Monte Carlo simulations with
200, 000 data points. The FARs of different designs are shown
in Table I, and a representative 500 sample is shown in Fig.
3 to showcase the evaluation function J(r) under fault-free
cases. As can be seen from the results, the GLRT detector,
which is designed under a strict Gaussian assumption, suffers
from an “alarm flood” when facing non-Gaussian disturbances.
In contrast, the introduction of distributional robustness allows
our proposed method to effectively maintain the FAR below
the tolerance level a. To visualize the high-dimensional ellip-
soid £25.,, we project it onto a lower-dimensional subspace,



THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION. COPYRIGHT MAY BE TRANSFERRED WITHOUT NOTICE, AFTER WHICH THIS VERSION MAY NO LONGER BE ACCESSIBLE. 9

TABLE I
FARS OF THE PROPOSED DETECTOR WITH 3 = 0.8 AND GLRT DESIGN
EVALUATED ON 200, 000 TIME POINTS

a=003 a=005 a=01 «a=02
Proposed method 1.26% 4.85% 7.06% 16.57%
GLRT 9.02% 13.32% 18.35% 26.27%

—logdet (M)
o 3

S e—5=09

oll——B=09 \e\é\e\e\e |
—a— =085
5-|——0=0.8 1

I
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
[0}

Fig. 4. Residual evaluation function J(r) of the proposed method and the
GLRT design under fault-free case.

by partitioning M in (17) as

M,

_ M,
M—[MJ }

M3
where M, € R™*™_Using the Schur complement, we obtain
the following projection £. .., on R"»:

Elaew = {z €R™ | 2T (M1 — MoM5 ' M) )z < 1}.

By setting different values of {a, 8}, the performance degra-
dation metric —logdet(M) of the induced detector design
is displayed in Fig. 4. The induced projection of the outer
approximation ellipsoid £25., onto the first two state dimen-
sions i‘sielv and 93‘362" by using different o and § is shown
in Figs. 5 and 6. As expected, a general trend is observed
that the objective value tends to decrease as « increases or 3
decreases. This can be intuitively explained by the balance
trade-off in our design. On one hand, enforcing a stricter
FAR constraint, i.e. a smaller «, reduces the sensitivity of the
detector, allowing stealthy attacks to cause greater harm and
thus resulting in a larger state deviation ellipsoid £25.,. On
the other hand, demanding a performance guarantee against a
higher confidence set of disturbances, i.e. a larger 3, implies
that the performance guarantee must hold for a broader set of
disturbances, forcing the design to be more conservative, also
reflected in a larger ngev. However, a more nuanced behavior
is visible in Fig. 4 that the objective value sometimes does not
decrease monotonically with increasing «. This is because our
sequential optimization algorithm is guaranteed to converge to
a local, rather than global, optimum in the non-convex feasible
region of problem (23) with BMISs.

Finally, we depict in Fig. 7 the convergence process of Algo-
rithm 1 under different 5, which highlights the effectiveness

of Algorithm 1. It can be observed that a larger 5 leads to

dev
5,2

:Ev‘

Fig. 5. State deviation reachable set of zdeV

o.[1:2] Versus varying o with 8 = 0.7

——3=099

1By —3=0.95]]

101 —p=09
6=07

5 —03=0.5 |1

Fig. 6. State deviation reachable set of 9V

s.[1:2] versus varying 3 with o =
0.05 )

faster convergence, and this can be explained by the fact that
using a larger (3 reduces the size of the feasible region of
the constraint (20). By operating within a more constrained
solution space, the sequential optimization procedure can find
a satisfactory solution faster. In contrast, a smaller 5 enlarges
the feasible region, requiring a more extensive search and thus
leading to a slower convergence.

V. CONCLUSION

In this work, we proposed a novel detector against FDI
attacks in the CPS, with a primary focus on the performance
degradation caused by stealthy attacks and stochastic distur-
bance following an unknown distribution. We first presented a
distributionally robust performance degradation metric, which
is defined by the volume of an asymptotic outer ellipsoidal
approximation of the reachable set of state deviation under
stealthy attacks. By optimizing this metric, we formulated
the detector design problem while using DRCC to control
the FAR under a tolerance level, thereby balancing between
FAR and security against stealthy attacks. Next, to address
the intractability of the original design problem involving
DRCCs, we reformulate it into a finite-dimensional program
with BMIs, and devise a tailored solution algorithm based
on sequential optimization to efficiently solve the non-convex
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Fig. 7. Iterations of the performance degradation metric in Algorithm

1

problem. Furthermore, we discussed how to extend our de-
tector design scheme to the more general and challenging
case of row rank-deficient attack projection matrix, where
we formulate the stealthy attack sets in both conservative
and optimistic viewpoints. Finally, a case study on a three-
tank system demonstrated the efficiency of our design and
solution algorithm. For future work, a promising direction is
to address strictly stealthy attacks under this distributionally
robust paradigm.
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