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Abstract

Ensemble-based attacks have been proven to be effective
in enhancing adversarial transferability by aggregating
the outputs of models with various architectures. How-
ever, existing research primarily focuses on refining en-
semble weights or optimizing the ensemble path, over-
looking the exploration of ensemble models to enhance
the transferability of adversarial attacks. To address this
gap, we propose applying adversarial augmentation to the
surrogate models, aiming to boost overall generalization
of ensemble models and reduce the risk of adversarial
overfitting. Meanwhile, observing that ensemble Vision
Transformers (ViTs) gain less attention, we propose ViT-
EnsembleAttack based on the idea of model adversarial
augmentation, the first ensemble-based attack method tai-
lored for ViTs to the best of our knowledge. Our approach
generates augmented models for each surrogate ViT using
three strategies: Multi-head dropping, Attention score scal-
ing, and MLP feature mixing, with the associated param-
eters optimized by Bayesian optimization. These adver-
sarially augmented models are ensembled to generate ad-
versarial examples. Furthermore, we introduce Automatic
Reweighting and Step Size Enlargement modules to boost
transferability.  Extensive experiments demonstrate that
ViT-EnsembleAttack significantly enhances the adversarial
transferability of ensemble-based attacks on ViTs, outper-
forming existing methods by a substantial margin. Code is
available at https://github.com/Trustworthy—
AI-Group/TransferAttack.

1. Introduction

Deep Neural Networks (DNNs), including Convolu-
tional Neural Networks (CNNs) [14] and Vision Trans-
formers (ViTs) [5], are inherently vulnerable to adversar-
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ial attacks [10, 41], despite their impressive performance
in solving various computer vision tasks. Adversarial ex-
amples, carefully designed to deceive DNNs, can be trans-
ferred between different models [22, 38], which means that
a perturbation generated on a surrogate model can also
mislead other models, even those with different architec-
tures. This transferability enables a type of adversarial at-
tack known as transfer-based attacks. Transfer-based ad-
versarial examples are trained on surrogate models and can
effectively attack unknown target models. To mitigate the
gap between surrogate models and target models, recent re-
searches [18, 21, 36, 37, 48] have introduced various tech-
niques to improve transferability, such as input transforma-
tions [9, 21, 39] and advanced objective functions [18, 46].
Ensemble-based attacks [22] combine the outputs of
multiple surrogate models to generate adversarial examples.
These attacks can be easily integrated with existing transfer-
based methods, such as gradient-based MI-FGSM [3] or
NI-FGSM [20], and input transformation methods like TI-
FGSM [4], to further enhance attack performance. Ear-
lier approaches [22] simply average the outputs of ensem-
ble models, yielding modest transferability. Subsequent
work has focused on reducing discrepancies among surro-
gate models and adjusting ensemble weights. For instance,
Stochastic Variance Reduced Ensemble adversarial attack
(SVRE) [45] utilizes the idea of Stochastic Variance Re-
duced Gradient (SVRG) [16] to reduce the variances of gra-
dient updates; Adaptive Model Ensemble Adversarial At-
tack (AdaEA) [1] and Stochastic Mini-batch black-box at-
tack with Ensemble Reweighting (SMER) [32] dynamically
adjust model weights based on adversarial contribution.
These methods have enhanced transferability by opti-
mizing the combination of fixed surrogate models. How-
ever, we think it is not enough to merely focus on how
to optimize the combination. Prior works don’t investi-
gate the potential contributions of surrogate models them-
selves in enhancing attack transferability. In other words,
original surrogate models may not be the most effective
surrogates for ensemble-based attacks. This gap motivates
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Figure 1. Overview of the proposed ViT-EnsembleAttack framework. The models f1, ..., fx represent the N original surrogate ViTs.

Unlike traditional ensemble-based attacks, ViT-EnsembleAttack generates a set of augmented models using three strategies with parameters
optimized by Bayesian optimization, and ensembles these augmented models to produce adversarial examples.

our approach of augmenting ensemble models adversarially.
It is noteworthy that model augmentation can be achieved
through various approaches. Our approach focuses on in-
creasing model diversity by introducing randomness into
the model inference process. This method requires design-
ing randomization strategies tailored to the characteristics
of the models and, more importantly, confirming the op-
timal degree of randomness. In ensemble-based attacks,
where multiple surrogate models are available, we can ap-
ply this augmentation to each individual surrogate. We then
treat the others as black-box models to evaluate the transfer-
ability of the augmented model. Higher transferability indi-
cates a more suitable degree of randomness. By doing this,
all of the augmented surrogates can generate more diverse
backpropagation paths for the same input than original sur-
rogates, guiding the update of perturbations and thereby re-
ducing the risk of adversarial overfitting.

Given the superior performance of ViTs over CNNs
in many tasks, we focus on designing an attack frame-
work specifically for ViTs, which is less explored in ex-
isting works. We propose a novel ensemble-based attack,
termed ViT-EnsembleAttack, against ViTs from the per-
spective of adversarially augmenting the ensemble mod-
els. Specifically, we draw inspiration from three data aug-
mentation strategies—masking, scaling, and mixup—and
propose three corresponding augmentation strategies for
ViTs: Multi-head dropping (MHD), Attention score scal-
ing (ASS), and MLP feature mixing (MFM). Each original
surrogate ViT will be modified through these strategies and
generate three variants. These variants are parameterized
and will be optimized by Bayesian optimization to become
augmented ViTs, which will be used as new surrogate mod-
els. Additionally, we propose Automatic Reweighting to
adjust the ensemble weights dynamically and Step Size En-
largement to accelerate convergence during the attack. The
overview of ViT-EnsembleAttack is illustrated in Figure 1.

The main contributions of this work are as follows:

* We introduce a novel perspective to improve ensemble-
based attack transferability by adversarially augmenting

the surrogate models and propose, to the best of our
knowledge, the first ensemble-based attack tailored for
ViTs.

* We design three augmentation strategies tailored to the
structure of ViTs and utilize Bayesian optimization to
fine-tune the optimal parameters. We further introduce
Automatic Reweighting and Step Size Enlargement to im-
prove the attack’s efficiency.

» Comprehensive experiments validate the superior perfor-
mance of ViT-EnsembleAttack in enhancing the adversar-
ial transferability. Notably, our approach outperforms the
state-of-the-art baseline by a clear margin of 15.3% attack
success rate on average when attacking CNNs.

2. Related Work
2.1. Adversarial Attacks

Gradient-based attacks. Adversarial attacks differ
from standard gradient descent, as they typically employ
gradient ascent to reverse the optimization effect. Goodfel-
low et al. [10] introduced the Fast Gradient Sign Method
(FGSM), which generates adversarial perturbation in a sin-
gle step. Based on this, Kurakin et al. [17] and Dong et
al. [3] proposed iterative versions of FGSM, the latter in-
troducing momentum to stabilize the update direction. Al-
though these methods achieve high performance in white-
box settings, they struggle to maintain the same transfer-
ability in black-box settings, where information about the
target model is typically unavailable.

Transfer-based attacks. Several approaches have been
explored to improve adversarial transferability [3, 8, 22,
47]. Xie et al. [44] and Lin et al. [20] combined the gradi-
ents of the augmented examples using resizing and scaling
techniques to create diverse input patterns for higher trans-
ferability. Ganeshan et al. [7] disrupted the deep features
within DNNs, while Zhang et al. [46] extended this idea
by calculating feature importance for each neuron. Li et
al. [19] targets ghost networks generated through aggres-
sive dropout applied to intermediate features, and Wang et



al. [42] mitigated gradient truncation by recovering gradi-
ents lost due to non-linear activation functions. Although
transfer-based attacks show promising performance in en-
hancing adversarial transferability between CNNss, their at-
tack success rate diminishes when transferring to ViTs,
which are known to exhibit greater robustness [41].

Ensemble-based attacks. Ensemble-based methods
fuse outputs of multiple models to enhance the effectiveness
of transfer-based attacks. Among the three common ensem-
ble approaches, ¢.e. ensemble on predictions, ensemble on
losses, and ensemble on logits, Dong et al. [4] showed that
the latter is the most effective. Xiong et al. [45] proposed
the SVRE method to reduce the variance among the ensem-
ble models utilizing the idea of SVRG [16] method. Chen
et al. [1] introduced AdaEA, which adaptively adjusts the
contribution of each model in the ensemble and synchro-
nizes update directions through a disparity-reduced filter,
aiming to bridge the gap between CNNs and ViTs. Tang et
al. [32] proposed SMER, which generates stochastic mini-
batch perturbations to enhance ensemble diversity and uti-
lizes reinforcement learning to adjust ensemble weights.
In contrast, ViT-EnsembleAttack focuses on optimizing the
surrogate models themselves rather than the ensemble path,
by exploiting unique augmentations specific to ViTs.

2.2. Adversarial Defenses

Various approaches have been proposed to defend
against adversarial attacks and improve the robustness of
DNNs. Adversarial training [35] is one of the most effec-
tive techniques, where clean images and their correspond-
ing adversarial examples are incorporated into the training
process. Another category of adversarial defense focuses
on input transformation techniques, which disrupt the ad-
versarial pattern by preprocessing the input data. Popular
methods in this category include reversing adversarial fea-
tures [28], randomly resizing [43], utilizing compression
techniques [12], and purifying inputs with GANs [28] or
diffusion models [40]. In this work, we select some de-
fensive models as target models to assess the effectiveness
of the proposed ViT-EnsembleAttack compared to existing
SOTA baselines.

3. Methodology

3.1. Preliminaries

Given a clean image = with the ground-truth label y, a
surrogate ViT model f, the goal of the adversarial attack is
to generate an adversarial image 2°% = 4§ to mislead the
model f, i.e., f(x2%) # f(x) = y, where J is the additive
perturbation. A set of boundary conditions are imposed on
the perturbation to make it imperceptible in relation to the
clean example, i.e. ||d]|, < €, where || - ||, represents the L,
norm. To align with previous works, we employ p = oo for

the following comparisons. Therefore, the iterative attack
process on a single surrogate model can be described as:

il = 2f® + o sign(Vgea J(f(277),9)), (D)

where « is step size, J is the loss function, sign(-) denotes
the sign function, a:?d” denotes the adversarial example in
t'" iteration and Vm?duj(f(z?d”), y) is the gradient of the
loss function w.r.t. ¢,

Ensemble-based attacks utilize the output of multiple
surrogate models and usually average them to obtain loss.
Assuming that there are N surrogate models, the genera-
tion process of adversarial examples can be described as:

N

2l = 20"t osign(Y - wi Ve J(fi(2f7), 1)), (2)
=1

where w; > 0 is the ensemble weight of each ensemble
model f; and satisfies va:l w; = 1.

3.2. Motivation

Since the effectiveness of transferable adversarial attacks
has been shown to be highly correlated with the diversity
of the model [1, 19], we argue that ensemble models can
be adversarially augmented to be more diverse, thus further
enhancing their adversarial transferability. This inspires us
to treat the ensemble models as tunable components, rather
than fixed components as assumed in other studies. Follow-
ing this principle, we introduce ViT-EnsembleAttack, the
first ensemble-based attack method tailored for ViTs to the
best of our knowledge.

3.3. The ViT-EnsembleAttack Method

The ViT-EnsembleAttack method consists of three mod-
ules: Model Augmentation, Automatic Reweighting, and
Step Size Enlargement. Detailed descriptions of these mod-
ules are provided below.

Model Augmentation. A typical ViT model consists
of alternating layers of multi-head self-attention (MSA)
and multi-layer perceptron (MLP) blocks. To augment
surrogate ViTs, we adapt three data-augmentation-inspired
strategies on these special modules, namely Multi-head
dropping, Attention score scaling, and MLP feature mix-
ing. We also design Parameter optimization process to
identify the optimal parameters. Detailed descriptions are
provided below.

Multi-head dropping (MHD) means randomly abandon-
ing some heads in each MSA. In practice, we set a threshold
7 € [0, 1] to determine whether to drop the head. Each head
in each MSA of the surrogate ViTs will be independently
assigned a random probability from O to 1 following a uni-
form distribution. Heads with lower probabilities than 7
will be dropped, i.e., the attention score matrix in this head



Algorithm 1 Objective function for Bayesian optimization

Input: Parameter(s) p, augmentation strategy c, surrogate
model f, test models set £ = {fi,..., fy—_1}, images
for Bayesian optimization X Z with corresponding ground-
truth label Y2, the number of randomly sampled images
M.

Output: Average attack success rate.

1: Random choose M images from X? and their corre-
sponding labels to compose the attack datasets.

2: Modify f to f, according to ¢ and p.

3: Using MI-FGSM algorithm generate adversarial exam-

ples {z§%, ..., 25"} on f¢.
4: Calculate the average attack success rate of

{x9dv ..., 299"} on test models F .

5: return Average attack success rate.

becomes an all-zero matrix. Here 7 is the corresponding
parameter to be optimized.

Attention score scaling (ASS) means that for each atten-
tion score matrix, we generate a matrix with random scaling
factors € [s—¢&, s+£] following a uniform contribution. The
scaling matrix has the same shape with the attention score
matrix to make element-wise multiplication. Here s, £ are
the corresponding parameters to be optimized.

MLP feature mixing (MFM) randomly permutates the
feature representations of MLP to form a new matrix. Then
mix the vanilla MLP matrix with (1 — p) and the new ma-
trix with p as the final output. Here p is the parameter to be
optimized.

Parameter optimization. Each surrogate model f; can
generate three variants f{ with the above strategies, where
c € {MHD,ASS, MFM} means the augment strategy,
pi € {7, (si, &), pi} means the corresponding parame-
ter(s). For simplicity, we use f;. in place of f7 . We
employ Bayesian optimization to optimize parameters for
these variants. The most important aspect of Bayesian op-
timization is a well-designed objective function that guides
the search process. In our method, we generate adversar-
ial examples on f; and attack the other original surrogates
{f1, - fi—1s fit1, .-, fn}. The average attack success rate
on target models is set as the output of objective function,
with the purpose of enhancing the transferability of the se-
lect model fy, . Details of the objective function are listed in
Algorithm 1. For convenience, we use gp_minimaize func-
tion in Python library skopt to build this Bayesian optimiza-
tion process. We denote the number of calls to the objective
function as n.,;5, the parameter selection space as P, and
the remaining parameters of gp_minimize are set as de-
fault.

Automatic Reweighting. Due to the difference in inner
architecture between surrogate models, the loss calculated
on each model will exhibit different magnitudes. It is more
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Figure 2. Comparison of average loss values during the attack
process for ViT-B/16, PiT-B, Visformer-S, and Deit-B-Dis over 10
iterations, (a) without and (b) with Automatic Reweighting, with
embedded bar charts showing the final white-box attack success
rate (ASR) for each surrogate model.

likely that adversarial examples will overfit to the models
with larger loss values because they play a more important
role in the backpropagation of gradients. Figure 2 (a) shows
when averaging the ensemble weights, Visformer-S has the
largest loss value and it also achieves the highest attack suc-
cess rate of nearly 100%. However, models with low loss
values, such as ViT-B/16 and DeiT-B-Dis, achieve less than
80% attack success rate.

To mitigate this issue, we propose an Automatic
Reweighting module to balance the contribution of each
model to the loss calculation. Specifically, we record the
loss values of all surrogate models at each iteration and as-
sign weights to each model according to the following equa-

tion:
(me )b

Wi = SN 3)

b
ey (Repaz )

J

where Ly, = max{Lq,...,Ly} is the maximum loss
among all surrogate models, L; denotes the loss of the i-
th model f;, and b is the hyper-parameter. Figure 2 (b)
provides the loss value and attack performance with Au-
tomatic Reweighting. The results demonstrate that it effec-
tively reduces discrepancy in loss magnitudes across surro-
gate models and enhances the white-box attack success rate,
especially for those with low loss values originally.

Step Size Enlargement. Traditionally, the step size « in
each iteration is set to %, where ¢ is the maximum pertur-
bation and 7" is the number of attack iterations. However,
as shown in Figure 2 (a), we find that while using the ba-
sic ensemble attack setting (Ens), ensemble models retain a
large margin to 100% white-box attack success rate, indi-
cating that the attack process has not converged yet. Hence,
we propose Step Size Enlargement to enhance the attack
strength and accelerate the convergence process. Specifi-
cally, we set the step size as & = %4, and ¢ is the hyper-
parameter. We do comprehensive ablation studies to test
the attack performance under different ¢ and validate that a



Algorithm 2 ViT-EnsembleAttack

Input: Loss function J, surrogate models {f1,..., fn}, a
clean image x with ground-truth label y, the maximum per-
turbation €, number of iterations 7', inference times loop,
step size enlargement times g, momentum decay factor p
, objective function OF, Bayesian optimization function
gp-minimize, parameter selection space P, the number of
calls to the objective function n¢415-

Output: Adversarial images 2.

: for i=0 to N-1 do

Set F' = {fl, ey fifl, fi+17 ey fN}

Build Bayesian optimization process
gp-minimize(nequs, P,OF (p € P,c, fi, F))
5. 1, = gp-minimize(c = MHD)

6:  si,& = gp-minimize(c = ASS)
7

8

LA

. pi = gp-minimize(c = MFM)
: end for

9:

10: Set step size @ = L=, gg = 0, 24" = .

11: fort =0toT — 1 do

122 fori=0to N —1do

13: for j = 0inloop — 1 do

14 Li = J(FMHD (g0dv), ) 4 J(FASS (a5), y)
15 + T(FMM (a0), )

16: end for

17:  end for

18:  Calculate {wy, ..., wy } using Eq. (3).
19: gt+r1 = ngdu (Zf\;l wj - Lz)

20: Jt+1 = M- gt + ”;]tj—llul

2t @l = + oo sign(ges)

22: end for

23; return %%

large step size leads to high transferability.

Overall attack framework. We present the details of
ViT-EnsembleAttack in Algorithm 2, and there are two as-
pects that should be highlighted. First, to take full advan-
tage of the randomness of our method and improve the
diversity of ensemble models, we perform inference loop
times for the augmented models. Second, model augmen-
tation and ensemble attack are two independent processes.
Note that the model augmentation is a pre-process that takes
only once. When generating adversarial examples, most of
the time consumption depends on the number of ensemble
models and the inference times.

4. Experiments

In this section, we begin by detailing our experimental
setup, then compare our method with the latest adversar-
ial ensemble attacks against ViTs and CNNs. This com-

parison highlights the effectiveness of our method in en-
hancing ensemble transferability between ViTs as well as
cross-structure transferability. We also do ablation studies
on the modules of ViT-EnsembleAttack, hyperparameters ¢,
b, loop, and resource consumption. Finally, we further an-
alyze the effect of each augmentation strategy on the trans-
ferability of adversarial examples.

4.1. Experimental Setup

We compare the performance of ViT-EnsembleAttack
with existing state-of-the-art methods against the normally
trained ViTs, robust ViTs, adversarially trained ViTs, nor-
mally trained CNNs, adversarially trained CNNSs, and a hy-
brid model, respectively. Our experiments concentrate on
the image classification task.

Dataset. We randomly sample 1000 images from the
ILSVRC 2012 validation set [29] as the clean images to be
attacked, then randomly sample another 4000 different im-
ages used for Bayesian optimization. We check that all of
the surrogate and target models achieve almost 100% clas-
sification success rate on the two sampled datasets.

Models. We choose four representative ViT models as
the surrogate models to generate adversarial examples, in-
cluding ViT-B/16 [5], PiT-B [15], DeiT-B-Dis [33], and
Visformer-S [2]. We evaluate the transferability of adver-
sarial examples of ViTs under two attacking scenarios. One
is that the surrogate and target models are both ViTs to val-
idate the transferability across different ViTs. The other is
that the surrogate models are ViTs, but the target models
are CNNs to examine the cross-model structure transfer-
ability. For the first setting, the target ViT models con-
tain four normally trained ViTs: CaiT-S/24 [34], TNT-S
[13], LeViT-256 [11], ConViT-B [6], three robust ViTs:
RVT-S* [25], Drvit [23], Vit+Dat [24], and an adversarially
trained ViT: ViT-B/16 41 [27]. For the second setting, we
select normally trained CNNs: Inception-v3 (Inc-v3) [30],
Inception-v4 (Inc-v4) [31], Inception-Resnet-v2 (IncRes-
v2) [31], Resnet-v2-152 (Res-v2) [14], adversarially trained
models: an ensemble of three adversarial trained Incep-
tionv3 models (Inc-v3.,,s3) [35], an ensemble of four ad-
versarial trained Inception-v3 models (Inc-v3.,,s4) [35], ad-
versarial trained Inception-Resnet-v2 (IncRes-v2,4,) [35]
and a hybrid model MobileViTv2 (MViTv2) [26] which has
both convolutional layers and ViT blocks as the target mod-
els.

Comparisons and baselines. We choose the ensem-
ble attack (Ens), which updates adversarial examples us-
ing Eq (2) and average weights, and three SOTA methods,
SVRE [45], AdaEA [I] and SMER [32], as the compet-
itive baselines. All methods are integrated into four at-
tack settings, including I-FGSM [17], MI-FGSM [3], DI-
FGSM [44], and TI-FGSM [4].

Evaluation metric. The evaluation metric is the attack



Attack Model | CaiT-S/24 | TNT-S | LeViT-256 | ConViT-B | RVT-S* | Drvit | Vit+DAT | ViT-B/16 41

Ens 63.6 60.9 48.6 61.4 47.8 59.1 50.4 97.6

SVRE 94.1 90.2 74.3 92.9 75.9 88.6 84.3 97.7

I-FGSM | AdaEA 86.8 78.9 61.0 84.8 60.0 76.5 70.5 97.6
SMER 95.3 90.4 78.6 94.1 79.7 90.0 86.4 97.8

Ours 99.1 98.1 95.4 99.0 92.7 97.4 97.1 97.9

Ens 76.1 74.8 69.0 74.6 69.4 72.5 69.8 97.7

SVRE 99.5 97.9 95.1 99.4 94.3 97.6 97.8 97.8

MI-FGSM | AdaEA 96.4 93.7 86.3 95.9 86.8 93.8 92.4 97.8
SMER 99.7 98.1 95.0 99.5 94.2 97.8 97.4 97.8

Ours 99.5 99.0 98.5 99.3 97.3 99.3 99.1 97.9

Ens 78.0 78.5 73.7 76.5 72.5 74.6 69.0 97.4

SVRE 98.9 98.5 96.7 98.5 95.1 97.8 96.0 97.8

DI-FGSM | AdaEA 92.1 89.9 81.0 91.2 81.5 88.6 84.9 97.5
SMER 99.0 98.0 96.9 98.6 96.0 98.3 96.4 97.8

Ours 99.9 100.0 99.8 100.0 99.7 100.0 99.4 98.0

Ens 70.9 68.9 55.2 68.5 55.0 67.7 58.2 97.6

SVRE 94.8 92.5 79.1 93.9 81.2 92.8 87.8 91.7

TI-FGSM | AdaEA 90.2 84.9 67.1 88.5 68.1 84.4 71.5 97.8
SMER 95.9 93.6 81.4 94.9 83.1 93.9 89.4 97.8

Ours 99.5 99.1 97.8 99.4 95.4 99.2 98.3 97.9

Table 1. The attack success rates (%) against eight ViTs by various transfer-based ensemble attacks. The best results appear in bold.

Attack Model | Inc-v3 | Inc-v4 | IncRes-v2 | Res-v2 | Inc-v3.,s3 | Inc-v3e,s4 | IncRes-v2,4, | MVIT-v2
Ens 38.8 384 32.6 34.6 26.1 23.1 17.9 30.2
SVRE 63.3 61.9 55.1 54.9 46.3 41.6 329 50.9
I-FGSM | AdaEA | 474 44.8 384 40.8 29.2 26.7 20.2 354
SMER 64.9 62.5 57.5 58.4 48.7 46.0 37.6 53.7
Ours 90.3 88.1 84.5 84.6 76.8 70.7 61.8 79.5
Ens 66.3 64.3 60.4 63.3 54.2 50.3 46.5 57.9
SVRE 88.4 87.2 87.4 84.6 78.0 72.5 68.5 80.9
MI-FGSM | AdaEA | 76.5 77.3 73.4 73.0 66.9 62.4 59.0 69.8
SMER 88.2 87.7 85.8 84.7 77.6 74.1 68.8 81.0
Ours 95.7 95.3 94.0 93.3 89.0 84.4 80.0 90.2
Ens 67.3 67.1 60.9 62.1 54.1 50.9 45.9 58.3
SVRE 91.9 92.2 90.9 87.1 82.9 80.4 76.7 86.0
DI-FGSM | AdaEA | 70.9 70.4 64.7 63.6 57.6 53.6 47.5 61.2
SMER 934 92.7 91.1 87.7 84.1 82.0 76.8 86.8
Ours 99.0 99.2 98.3 97.0 97.2 96.1 93.8 97.2
Ens 46.4 45.6 39.9 40.2 31.6 29.2 23.7 36.7
SVRE 68.9 70.6 62.6 61.2 56.8 54.5 47.0 60.2
TI-FGSM | AdaEA | 55.1 53.0 47.0 47.7 38.2 354 294 437
SMER 73.8 71.9 64.6 63.5 59.2 56.4 50.4 62.8
Ours 93.9 94.8 90.5 88.9 84.8 82.2 76.2 87.3

Table 2. The attack success rates (%) against eight CNNs by various transfer-based ensemble attacks. The best results appear in bold.

success rate (ASR), the ratio of the adversarial examples
that successfully mislead the target model among all sam-
ples.

Hyper-parameters. For a fair comparison, we follow
the hyper-parameters setting in [32] to set the maximum

perturbation to € 16 and the number of iterations to
T = 10, so the step size in other methods is o = % = 1.6.
Hyper-parameters of other methods follow their default set-
tings. For the decay factor © in MI-FGSM, we set . to 1.0.
For the translation kernel in TI-FGSM, we use the Gaus-



sian kernel, the size is 5 x 5. For transformation opera-
tion T'(-;p) in DI-FGSM, we set p = 0.5 and the range
of rnd is [224,248). We set ngqus = 50, P = (0, 1) for
gp-minimize function. For the other hyper-parameters in
ViT-EnsembleAttack, we set loop = 2, ¢ = 3 and b = 2.
All images are resized to 224 x 224 to conduct experiments
and set the patch size to 16 for the inputs of ViTs.

4.2. Transferability

Here we analyze the performance of our approach
against ViTs and CNNs, respectively. Specifically, we gen-
erate adversarial examples on four given surrogate models
and directly attack various target models to show the gener-
alization of the proposed method.

Performance on ViTs. We first compare the general at-
tack performance of ViT-EnsembleAttack with existing en-
semble methods on the normally trained, robust and adver-
sarially trained ViTs. As shown in Table 1, in the black-box
setting, our method outperforms the state-of-the-art base-
lines by a large average margin of 4.6% attack success rate
on average. Specifically, our method improves the attack
success rate from 78.6% to 95.4% on LeViT-256 when inte-
grating with [-FGSM. For DI-FGSM, our method achieves
an attack success rate of nearly 100%, further demonstrat-
ing its effectiveness.

Performance on CNNs. We then attempt to evaluate the
cross-structure transferability by attacking normally trained
and adversarially trained CNNs. The results are summa-
rized in Table 2. It can be seen that the attack success rate
decreases a lot compared to attacking ViTs, illustrating the
difficulty of cross-model structure transfer attack. Never-
theless, our method still achieves nearly 88.3% attack suc-
cess rate on average, outperforming SMER by a significant
margin of 15.3% on average, which represents a substantial
advancement over prior methods, demonstrating the supe-
rior cross-structure transferability performance of our pro-
posed ViT-EnsembleAttack .

4.3. Ablation Study

In this subsection, we analyze the contribution of
each module and study the effects of several key hyper-
parameters to justify our choices.

On the modules of ViT-EnsembleAttack. We inte-
grate our method with all attack algorithms, utilizing var-
ious modules to craft adversarial examples, and report their
transferability on ViTs and CNNs. As shown in Table 3,
Model Augmentation module improves the attack success
rate mostly, indicating its effectiveness in ViT-based en-
semble attacks. Automatic Reweighting and Step Size En-
largement each surpass the baseline individually, and their
combination outperforms either alone. When paired with
augmentation, both techniques improve upon augmenta-
tion alone, with the best results achieved by combining all

Augmentation Reweighting Enlargement | ViTs CNNs
- - - 70.5 48.1
v - - 934 78.8
- v - 78.6 52.6
- - v 87.1 65.5
v v - 95.7 81.0
v - v 98.0 88.1
- v v 89.2 66.9
v v v 984 88.3

Table 3. The average attack success rates (%) against ViTs and
CNNss by various settings of modules. v'indicates that the module
is applied. For simplicity, we only retain the last word of each
module.
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Figure 3. Average attack success rate against ViTs and CNNs un-
der three varying parameters: (a) automatic reweighting parameter
b, (b) model inference times loop, and (c) step size enlargement
parameter q. (d) Computational cost (FLOPs) for different model
inference times loop.

three, exceeding any single or pairwise setup. This outcome
demonstrates that the three modules in ViT-EnsembleAttack
are complement and combine each other could achieve the
improvement of transferability.

On hyper-parameter sensitivity. We conduct a detailed
analysis of the key hyper-parameters b, ¢, and loop to ex-
plain the optimal configuration. As shown in Figure 3 (a),
the variation in attack success rate with changes in b, ex-
cept for b = 0, is not significant. We set b = 2 as the
final choice because it maintains high attack success rates
across all algorithms, making it a balanced option. Figure 3
(c) illustrates that a moderate increase in ¢ enhances attack
success, with the peak performance observed at ¢ = 3 for
most algorithms. However, beyond this point (e.g., ¢ = 5
and ¢ = 10), the attack success rate declines, likely due



to instability caused by excessively large step sizes. Based
on this observation, we select ¢ = 3 as the optimal value.
Figure 3 (b) exhibits that increasing [oop improves the at-
tack success rate, but the gains become marginal beyond
loop = 2. Meanwhile, Figure 3 (d) indicates that the com-
putational cost grows exponentially with larger loop values.
Given the trade-off between attack effectiveness and com-
putational efficiency, we choose loop = 2 to balance per-
formance and resource consumption.

Increasing the number of loop iterations improves attack
success because our method uses model augmentation to in-
ject randomness during inference, resulting in varied gradi-
ent estimates at each back-propagation. Accumulating these
diverse directions over multiple rounds enhances transfer-
ability. Without model augmentation, repeated inference
yields identical gradients. Thus, loop is designed to amplify
the effect of model augmentation.

Table 4. Computational resource consumption of different meth-
ods. We report the result of our method into two phases, as de-
scribed in Algorithm 2.

Ours
Ens SVRE AdaEA SMER Phasel  Phase?

FLOPs (P) 3290 29.623 18.653 61.309 | 54.069 19.738
Time (s) 3952 34602 2176.0 7573.9| 2394.7 2669.9

On resource consumption. In Table 4, we report both
floating-point operations per second (FLOPs) and time to
compare computational resource consumption of all meth-
ods. Since our method includes two phases, we calculate
the resource consumption on the two phases separately. Our
method consumes 54.069P FLOPs and takes 2394.7 sec-
onds in Phase 1. Although the resource consumption in
Phase 1 is relatively high, it is worth noting that Phase 1
only needs to be executed once. In Phase 2, our method
consumes 19.738P FLOPs and takes 2669.9 seconds. Com-
pared to Phase 1, the resource consumption in Phase 2 is
significantly reduced. Compared to other methods, such as
SMER and SVRE, our method consumes fewer resources
in general during the attack process.

4.4. Further Analysis

Since we design three strategies for model augmentation,
we further analyze the effect of each strategy on the trans-
ferability of adversarial examples.

Whether each strategy contributes to the improve-
ment of transferability? We first conduct experiments to
test the attack performance when using the three strategies
separately. From Figure 4(a), it can be observed that all
three strategies significantly improve the attack success rate
over the Ens setting, demonstrating their effectiveness in
augmenting the surrogate models.

Is each strategy indispensable to the overall attack
performance? We further conduct experiments to test the

Ens MHD ASS MFM

©
P

Attack Success Rate (%)

~
O

I Ml DI TI
(a) The effect of using each strategy separately

ViT-EnsembleAttack w/o MHD w/o ASS w/o MEM

S
S

Attack Success Rate (%)

®
S

I M DI T
(b) The effect of abandoning each strategy separately

Figure 4. The average attack success rates (%) against ViTs and
CNNs with different settings of augment strategies: (a) the effect
of using each strategy separately, (b) the effect of abandoning each
strategy separately.

effect of abandoning each strategy on the overall attack suc-
cess rate. It can be seen from Figure 4 (b) that when aban-
doning one strategy, the attack success rate declines in most
cases, demonstrating that each strategy is indispensable in
our model augmentation. We also observe an interesting
phenomenon: when abandoning MFM, the attack success
rate declines the most. We believe this is because MHD and
ASS are both designed for the multi-head attention module,
restricting the diversity of augmented models. In contrast,
when abandoning MHD or ASS, the remaining two strate-
gies are for multi-head attention and multi-layer perception,
ensuring diversity and achieving higher performance.

5. Conclusion

In this work, we propose ViT-EnsembleAttack, a novel
ensemble-based adversarial attack designed for ViTs. Dif-
ferent from prior ensemble-based attacks, we propose to
augment surrogate models by increasing diversity to en-
hance the transferability of adversarial examples. Exten-
sive experimental results show that our method outperforms
state-of-the-art methods by a substantial margin across var-
ious transfer settings. The core innovation of our method
lies in the adversarial augmentation of the surrogate models.
Future work could explore new augmentation techniques on
ViTs and other kinds of models to enhance the ensemble-
based adversarial transferability.
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