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Abstract
The rise of Virtual Reality (VR) has provided developers with
an unprecedented platform for creating games and applica-
tions (apps) that require distinct inputs, different from those
of conventional devices like smartphones. The Meta Quest
VR platform, driven by Meta, has democratized VR app pub-
lishing and attracted millions of users worldwide. However,
as the number of published apps grows, there is a notable
lack of robust headless tools for user interface (UI) explo-
ration and user event testing. To address this need, we present
AUTOVR, an automatic framework for dynamic UI and user
event interaction in VR apps built on the Unity Engine. Unlike
conventional Android and GUI testers, AUTOVR analyzes the
app’s internal binary to reveal hidden events, resolves genera-
tive event dependencies, and utilizes them for comprehensive
exploration of VR apps. Using sensitive data exposure as
a performance metric, we compare AUTOVR with Android
Monkey, a widely used headless Android GUI stress testing
tool. Our empirical evaluation demonstrates AUTOVR’s su-
perior performance, triggering an order of magnitude of more
sensitive data exposures and significantly enhancing the pri-
vacy of VR apps.

1 Introduction

Virtual Reality (VR) is rapidly emerging as a transformative
force in the consumer device market. By 2025, the global
VR market is projected to reach USD 32.40 billion, with
expectations to soar to USD 187.40 billion by 2030 [13]. This
platform offers users a diverse range of interactions, from
physical gestures to haptic feedback, delivering immersive
experiences that far surpass traditional platforms like smart-
phones. As the VR audience continues to expand, the need for
rigorous testing and quality assurance of VR apps has become
increasingly critical. Ensuring user privacy, safety, and
security is paramount: not only to safeguard sensitive data but
also to provide authentic and trustworthy user experiences.

Despite this urgency, automated testing for VR apps
remains underdeveloped [37]. Conventional tools such as

Android Monkey [15], while capable of UI testing, struggle
with the complexities of 3D engine-based apps, particularly
those built on Unity [12], which serves as the backbone for
most VR games and applications [9]. Notably, Unity is the
only 3D engine officially endorsed by Apple for its Vision Pro
VR device [11]. However, the absence of accessible source
code for VR apps creates a significant gap in understanding
their internal workings, demanding a reverse engineering
approach to the Unity VR app binaries [37].

While reverse engineering of Unity-centric apps is hardly
new, with established success in static analysis [14, 57] as
exemplified by tools like Il2CppDumper [10] in the Unity
space, the arena of dynamic analysis tools specifically
designed for Unity apps remains vacant. Unity-based apps,
such as video games, not only present a complex matrix
for security testing due to event dependencies on preceding
user actions as well as in-app physical interactions but also
contain a broader amount of execution entry points, meaning
that there is more than one way to interact with the “main"
execution of the app. Therefore, current security testing tools
such as UI fuzzing, are often ineffective on Unity-based apps.

Upon detailed examination of Unity app binaries, four
distinct observations surface: (1) the Unity app UI structure is
embedded within the Unity app binary, instead of traditional
markup or configuration files; (2) the Unity UI structure is
generative: UI objects and in-app objects become enabled
or disabled based on the state of the app execution; (3) the
binary’s operation on a virtual machine that offers internal
APIs, thereby enabling the identification of class, method,
and object symbols within the Unity app at run-time; (4)
Unity VR apps are highly reliant on physical interactions
(e.g., grabbing, hitting, and moving) with surrounding in-app
objects, such interactions may contain critical functionality
as users are constantly interacting with such objects.

In light of these observations, we present AUTOVR, the first
automated UI exploration tool that leverages Unity’s unique
generative features and internal binary introspection APIs.
AUTOVR ambitiously tackles three interrelated challenges
from Unity VR apps: (1) the semantic recovery of the Unity
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UI information, (2) the modeling of generative Unity UI el-
ements to extract event handlers, and (3) the context-aware
execution of these handlers by resolving event dependencies.
As a practical demonstration, we utilize AUTOVR to detect
sensitive data exposures that developers may have embedded
within their apps.

We have developed AUTOVR on top of Frida [3], an
open-source dynamic instrumentation toolkit, compatible
with Android devices and, consequently, Meta Quest devices.
To gauge the effectiveness of AUTOVR, we have evaluated
its performance against the widely used tool Android Monkey
across the Unity VR apps, evaluating the sensitive data
exposures that both tools could invoke. In this empirical
assessment spanning 366 apps, including 103 paid apps,
AUTOVR demonstrated a remarkable capacity to activate 390
unique sensitive data exposures, dwarfing the 117 instances
(a 2.2× coverage increase) induced by Monkey.

Contributions. We make the following contributions:

• Novel Techniques (§4). We introduce novel techniques
including VR UI semantic recovery, generative event
modeling to recover symbols and semantics of Unity VR
apps, and context-aware event execution of UI elements.

• Practical Framework (§5). We have developed these
techniques in AUTOVR, an open-source1 framework for
automated UI exploration of VR apps, compatible with
the ever-changing environment of VR applications.

• Empirical Evaluation (§6). Our evaluation with 366 VR
apps shows a superior capacity of AUTOVR to trigger
2.2x more unique sensitive data exposing functions in
comparison to widely used tool Monkey.

2 Background

Developing VR apps is a complex task, often requiring spe-
cialized tools and support. 3D engines like Unity have made
this process much easier by providing essential tools such as
real-time rendering APIs, documentation, cross-platform sup-
port, and user-friendly IDEs. In fact, Unity is the most widely
used game engine within the Meta Quest store [32]. Given
its popularity and extensive support for VR development, we
have chosen to focus on VR apps developed using the Unity
engine.

Scripting Backend. Unity VR apps, much like mobile games,
are developed using C#, with the final binary translated into
assembled C++ code. Developers may choose from two trans-
lation scripting backends: (1) Mono, a just-in-time (JIT) com-
piler [8], or (2) IL2CPP, an ahead-of-time (AOT) compiler [5].
Unity predominantly emphasizes IL2CPP for its enhanced
performance and security.

IL2CPP. The translation of C# code to C++ is a complex
process, requiring compatibility with specific C# features

1https://github.com/OSUSecLab/AutoVR

(a) A Trigger Event (b) A Collision Event
Figure 1: Illustration of Trigger and Collision Events

such as garbage collection, reflection, and exception han-
dling [22]. Both developer scripts and Unity libraries written
in C# must be translated to C++. IL2CPP accomplishes this
translation, augmenting each function with additional checks.
The resultant assembled native C++ binary, libil2cpp.so,
has symbols (e.g., class names, method names, and field
names) stripped [52], but to support reflection and other
features, the symbols are encrypted and stored separately in
global-metadata.dat, bundled within the APK.

Scene. Within Unity, a scene acts as a container for game ob-
jects, each defined with specific attributes such as position, ro-
tation, and scale. Managed by the SceneManager object [53],
scenes are analogous to the UI in Android’s Activity. Al-
though an app may include multiple scenes, only one is ren-
dered at a time, allowing Unity UI to switch between them to
create varied app scenarios.

GameObject. GameObjects in Unity [41, 51] can represent
any object within the game environment, such as players,
walls, or UI buttons. Serving as the building blocks of a
Unity app, each GameObject can host multiple Component
objects in a modular fashion [50]. These components gov-
ern the GameObject’s behavior, such as movement or sound,
and can range in complexity. Unity provides numerous base
components to control app logic, including Collider [49]
components for collision detection and the UnityEngine.UI
components for UI handling [17].

UI Events. UI events are typically user-driven and can be
triggered through interaction with the VR controllers, such
as pointing and clicking using the controller’s trigger button.
A detailed illustration of UI events can be found in Figure 2.
This example presents a series of GameObjects—such as the
START button, OPTIONS, ABOUT, and QUIT—each equipped
with a Button component that manages their appearance
and logic within the VR app. In this example, we assume a
developer crafting this user interface in the Unity Editor by
attaching a Button component [1, 45] to each button-themed
GameObject. While other UI elements also exist, buttons are
universally understood and functionally unambiguous.

Physics Events. In addition to UI events, there are physics
events that involve interactions with 3D objects within the VR



play area and may be associated with critical functionalities,
such as scene changes. There are two primary kinds of physics
events, as illustrated in Figure 1:

(1) Triggers. Triggers are activated when one GameObject
intersects with the bounds of another [40, 43]. Unlike
collisionable objects, trigger objects are not solid,
allowing other GameObjects to pass through rather than
collide. For instance, a 3D ball object is thrown through
an open door. The ball intersects the bounds of the door
but is not physically affected by the door. Such an event
is classified as a trigger event.

(2) Collisions. Collisions happen when a solid GameObject
intersects with the bounds of another solid object that is
not a trigger [40, 43]. For example, a solid enemy hand
might interact with a rock, another solid object, by picking
it up, touching it, or engaging in other forms of interaction.
In contrast to the ball and open door example, suppose
the door was closed and is now a solid, non-trigger object.
Now the ball physically bounces off the door on intersec-
tion, and such an event is classified as a collision event.

3 Overview

3.1 Objective and Scope

Objective. The primary objective of this work is to develop
AUTOVR, an automated UI testing framework tailored
specifically for 3D VR apps developed using Unity. Unlike
traditional Android app UI exploration, this framework can
effectively test Unity apps, which are packaged as Android
Package files (APK). Traditional methods stumble because
UI/physics events within Unity apps are concealed within
the binary, rendering them neither parsable nor adaptable
to standard UI exploration techniques. AUTOVR seeks to
overcome these barriers, with an extended ambition to employ
the framework for enhancing security and privacy. We show-
case the effectiveness of our framework by systematically
analyzing privacy data exposure in third-party Unity VR apps.

Scope. While there are different 3D engine-based VR apps,
this work focuses on VR apps based on the Unity Engine,
specifically those utilizing IL2CPP. As mentioned in §2,
the majority of VR apps for Quest devices are developed
via the Unity Engine—a trend likely to escalate with the
introduction of new VR devices like the Apple Vision Pro,
which employs Unity for the app development [11]. For this
work, we focus on Unity apps compiled using the IL2CPP
compiler. Compared to the JIT compiler Mono, IL2CPP, an
AOT compiler, ensures enhanced performance, a critical
attribute for VR apps. Additionally, IL2CPP is anticipated
to be used by future Unity-developed VR apps [26].

3.2 Running Example
To better understand the Unity UI structure, we depict a
VR UI example formulated using the Unity Editor; we have
shown this example in Figure 2. The left side of the figure
shows the initial state of the UI app before the user clicks
the OPTIONS button. The right-hand side shows the state of
the app after the OPTIONS button is clicked. We also illustrate
the hierarchical interconnection of GameObjects and their
corresponding components within the app. This hierarchy
may encompass child GameObjects. Grayed-out text
represents currently deactivated GameObjects, whereas bold
text signifies enabled ones. The Game View segment reflects
what a user would perceive within his/her VR device upon
executing this app at their respective state. The highlighted
portion (i.e., 0x16A2AD8) indicates the function offsets or
virtual addresses of the UI element’s function callback.

We also present the code snippet for the OPTIONS but-
ton’s event function callback (EFC). The OPTIONS button’s
EFC (denoted by Options$$OnOptionsClick) activates the
TurnOptions GameObject, along with its associated compo-
nents, thereby making them visible to the user within the UI.
Simultaneously, this action leads to the disabling of the pre-
vious Menu GameObject, and their subsequent child GameOb-
jects, as indicated in line 23 of the “Options Button Callback
Snippet”.

3.3 Challenges and Insights
(C1) How to Recover UI Semantics. Parsing Unity UI
elements differs from typical Android apps as these elements
are not directly accessible through the Android app layer
nor from a static configuration file such as the AndroidMan-
ifest.xml file. For instance, when using the Android UI
Inspector tool in Android Studio, it shows the UI hierarchy of
all Android UI elements. However, when debugging a Unity
app, this inspector will not display any UI elements created
within the Unity app engine. This is because Unity apps do
not embed UI elements through Android activities, instead
they are embedded within the IL2CPP game binary.

To solve this challenge, we employ Frida to dynamically
instrument the IL2CPP app binary and extract UI elements
at runtime. IL2CPP provides a runtime introspection API
utilized by the Unity Engine to access detailed class metadata,
including class fields and methods, and to create, collect,
and resolve object types at any state of the Unity app. While
these APIs resemble standard C# libraries, they have been
modified by the IL2CPP compiler for optimizations and
C++ compatibility. Unlike previous approaches [14, 57] that
statically accessed class metadata from the libil2cpp.so
binary using global-metadata.dat, our solution directly
invokes IL2CPP API functions from the libil2cpp.so
binary using Frida to access class metadata. However, while
direct introspection can contain accurate symbols, critical
symbols are sometimes lost as some functions are called only



17 // Offset: 0x16A2AD8
18 Options$$OnOptionsClick(this) {
19   v1 = *(this + 0x38)
20   // Enable TurnOptions
21   GameObject$$SetActive(v1,1)
22   // Disable Menu
23   GameObject$$SetActive(v2,0)
24   // Show Other Options
25  ...
26 }

Options Button Callback Snippet:Game Menu UI
├── Menu (GameObject)
│  ├── ...
│  │  └── ...
│  ├── Options (GameObject)
│  │  ├── Button (Component)
│  │  └── Transform (Component)
├── TurnOptions (GameObject)
│  └── DropDown (Component)
├── VolumeOptions (GameObject)
│  └── ...
├── Panel (GameObject)
└── Validate Options (GameObject)

GameObject-Component Hierarchy

Game View

Game Menu UI
├── Menu (GameObject)
│  ├── ...
│  │  └── ...
│  ├── Options (GameObject)
│  │  ├── Button (Component)
│  │  └── Transform (Component)
├── TurnOptions (GameObject)
│  └── DropDown (Component)
├── VolumeOptions (GameObject)
│  └── ...
├── Panel (GameObject)
└── Validate Options (GameObject)

GameObject-Component Hierarchy

Initial State After Options Click State

Game View

Figure 2: Running example of a Unity Scene, illustrating Unity UI logic internals.
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...

Per VR Game
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UI or Physics
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SCENE = Scene Event

= No Events

Figure 3: Outline of a scene model per VR game.

through reflection rather than direct invocation. As such, we
combine both the static global-metadata.dat file along
with dynamic introspection, to get a comprehensive list of
IL2CPP functions to call.

(C2.1) How to Parse and Model UI Events. To extract
and model the Unity UI structure, parsing the Unity UI is
necessary. Unlike typical Android apps, where the UI is
separate from the app logic, Unity UI elements are integrated
directly into the logic and perform like generic GameObjects.
This relationship is illustrated by the hierarchy in Figure 2,
where GUI components like the Button are attached to
their respective GameObjects, much like other objects in
an app. Therefore, we face the challenge of collecting UI
elements and their callbacks from a generative UI at runtime,
rather than relying on static configurations. Furthermore, the
extraction of the function callbacks from the UI elements
poses an additional challenge: the Unity SDK provides two
different ways of assigning EFCs to UI event components:
dynamically by using the UnityEvent.AddListener API,
or static assignment in the Unity Editor.

We identify UI elements and event handling interfaces in
Unity by identifying the IEventSystemHandler interface in
Component classes using the IL2CPP class introspection API.
We bypass the time-consuming process of class inspection
by directly accessing loaded objects within the app. This
allows to only extract the UI elements in the current scene.

We then analyze each object at the start of a Scene to identify
event system handler objects as UI elements, extracting EFCs.
Simply using API hooks for the UnityEvent is insufficient,
as function callbacks assigned in the editor will not use the
UnityEvent.AddListener API, nor any API during initial-
ization. As such, to extract the hidden function callbacks, we
use IL2CPP’s field introspection API to extract the developer’s
function callbacks, enabling the extraction of UI objects at
runtime. We call this process Generative UI Modeling.

(C2.2) How to Parse and Model Physics Events. Similarly,
we realize physics events are also generative, especially in
a VR environment. For example, we notice a popular game
VRChat utilizes physics events to perform scene changes (e.g.,
when players enter portals to different online rooms). In a
VR 3D environment, it is crucial to account for physics, as a
significant portion of VR interactions involve the movement
and intersection of objects.

Fortunately, physics events are comparatively easier to ex-
tract than UI events. As outlined in §2, Unity has two main
physics event types: collision and trigger. Physics events oc-
cur when two GameObjects (with an attached Collider com-
ponent) intersect. To trigger these events, GameObjects must
follow their respective physics type’s rules, in order to trigger
the correct event. As such, to invoke Collision type events,
each respective GameObject must contain both a Collider
and RigidBody component. To invoke Trigger type events,
each component must have an attached Collider component,
and the isTrigger property set to be true. Using IL2CPP
and Frida, we can use semantic information resolved from
C1 to find GameObjects that match their respective physics
criteria and set the positions of each GameObject to intersect
one another. We iteratively perform these intersections on dy-
namic GameObjects within the scene. As such, we similarly
label this process Generative Physics Modeling.
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Figure 4: Generative UI-driven model of the running example. This is analogous to Scene 0 in Figure 3, where the
modeling process per scene is repeated for every scene in a VR game. The lighter colored text indicates the UI event has
been found but not yet triggered, whereas the darkened colored text indicates a the UI event has been triggered.
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Select
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...
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Turn
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Volume
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Validate
Options
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...
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Select

Start QuitOptions

Initial State After Options
Click State

Figure 5: High level event state before and after Op-
tions$$OnOptionsClick was clicked in Figure 2.
Highlighted in green is the path taken, and highlighted
gray with dotted outlines are disabled events.

(C3) How to Execute Events and Resolve Event Depen-
dencies. Executing the EFCs from the generative Unity UI
also introduces another challenge: dynamic dependencies. Be-
cause the UI is generative, it is also possible that triggering
EFCs may cause other UI GameObjects to be deactivated,
or spawn/enable new UI GameObjects. For instance, in Fig-
ure 2, we notice that the Options$$OnOptionsClick will
disable/deactivate the Menu UI and all UI elements under-
neath. However, neither About nor Quit buttons have been
explored. We identify these issues as dynamic dependencies
where the spawned or deactivated UI GameObjects are de-
pendent on the initial UI GameObject executed. This also
applies for GameObjects that integrate physics events. This
dependency model occurs for every scene within a VR game,
as such, each scene may contain an entirely different set of
events to model. Figure 3 illustrates example event models
for each scene per VR game, representing the complete event
exploration state of the game. To be complete, execution of
as-many-as-possible modeled event function callbacks is nec-
essary and is a challenge we solve for this work.

We solve this challenge by creating a UI-driven generative
state model, where the triggering of one such event may cause
more unknown events to be spawned or enabled, thus adding

to the overall known event state space of a scene. We show-
case this process in Figure 4. When the initial scene is loaded
(a), the game uncovers two events that have not been triggered.
In a depth-first search manner, each event is triggered, and,
as a side effect, uncover new unknown (or disabled) events.
Additionally, it is possible that no additional events may be
uncovered, leading to an empty set of next-events (b). How-
ever, unlike a typical tree-traversal problem, the state of the
game cannot be easily back-tracked to its previous state, as
the invocation of one event may lose the existence of an-
other event. We illustrate this problem in Figure 5. When
the OPTIONS button is selected, the START and QUIT buttons
become disabled and cannot be further exercised upon, losing
valuable events. As such, to solve this, we utilize a synthetic
Scene Event that acts as the state reset in the game. This scene
event essentially loads/reloads the current scene by leverag-
ing Frida’s unique capabilities of function invocation on the
IL2CPP binary. Specifically, we notice that Unity’s core scene
invocation relies on the LoadSceneAsyncNameIndexInter-
nal function to load new scenes. Upon the invocation of this
function, it is possible to reload the scene back to its initial
state, effectively “back-tracking" the scene state to explore
a different event path. Using the information gathered by (a)
and (b) in Figure 4, we can derive the next sequence of un-
explored events to trigger, without losing the information of
other events, leading to state (c). Eventually, this process is
repeated until every event path leads to an empty set of new
events, ensuring the maximum number events are exercised
per scene.

4 Detailed Design

In this section, we present the detailed design of AUTOVR.
We illustrate AUTOVR’s overall design in Figure 6. There
are three key components inside AUTOVR: (1) UI Semantic
Recovery (§4.1), (2) Generative Event Modeling (§4.2), and
(3) Context-aware Event Execution (§4.3). The final output
is generated from the plugin application. In this work, our
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Figure 6: Overview of AUTOVR

plugin application, AntMonitor [28], will produce information
on sensitive data flows for each VR app tested.

4.1 UI Semantics Recovery
Identifying events requires knowledge of the UI semantics
to eventually retrieve the EFCs within a scene. As such,
to collect UI semantics, AUTOVR will first identify the UI
components by extracting the class metadata (§4.1.1). Next,
to identify the UI function callbacks, and subsequently all ob-
jects containing such callbacks, AUTOVR will then extract all
available function metadata (§4.1.2). Lastly, to identify which
objects contain UI elements, AUTOVR will collect all objects
within the loaded scene (§4.1.3). With the class and function
metadata, along with object information, AUTOVR eventually
recovers the UI semantics of the loaded scene (§4.1.4).

4.1.1 Extracting Class Metadata

The IL2CPP runtime (i.e., libil2cpp.so) extracts and de-
crypts data from global-metadata.dat. More specifically,
class name, function address, return type, and argument
information can be extracted from the IL2CPP introspection
APIs. In particular, we use APIs from the 9 functions
prefixed with il2cpp_class invoked by Frida to collect such
metadata. These introspection APIs are detailed in Table 6
(see Appendix) for readers of interest. We notice that class
metadata is stored as pointers in memory, and dereferencing
such pointers can provide rich information from the class
metadata, as well as the invocation of its own constructor,
child methods, and fields. We also notice these class functions
allow to invoke any child methods of the class, create a new
instance, or access its field members. This functionality is
especially important for UI information extraction, as class
metadata is key to identifying UI elements within a VR app.

4.1.2 Extracting Function Metadata

Similarly to the class metadata, the function metadata is also
stored in the global-metadata.dat. These function names
are denoted using the combination of the function’s resid-
ing class name along with the function name itself (e.g., in

Figure 2: Options$$OnOptionsClick). We notice that the
IL2CPP runtime initializes this metadata information once
the app is started, storing it in memory. In order for the en-
gine to properly invoke translated functions, and support re-
flection in C++, there must be generic C++ code to handle
function signature extraction and invocation. This extraction
is achieved by invoking C++ IL2CPP functions prefixed with
il2cpp_method. There are APIs for 7 such functions de-
tailed in Table 6. These functions return or handle references
to every method offset from both C++ translation functions
(i.e., IL2CPP functions) and translated C# code (e.g., devel-
oper functions, and engine packages). AUTOVR essentially
leverages these IL2CPP functions to extract function meta-
data, which will be used for EFC identification. By invoking
such IL2CPP functions during the initial startup of the game,
we create a global function table (GFT) with the entry ad-
dress (i.e., the function offset) as the key, and the function’s
reference handle as the value.

4.1.3 Extracting Objects

To identify which objects are UI components and physics
components, AUTOVR uses the IL2CPP runtime library to
collect objects currently loaded in the scene using memory
snapshots generated by IL2CPP. More specifically, we notice
that the IL2CPP runtime can use memory snapshots to identify
garbage collection handles that point to objects. This means
we can invoke objects and the fields of such objects directly
using Frida. Furthermore, we consider accessing field values
and types essential for identifying UI events. Event objects are
often stored within the fields of the residing object. For exam-
ple, in Figure 2, we notice that Options$$OnOptionsClick,
as well as nearly every UI GameObject, are attached with
a Button component. We use two functions prefixed with
il2cpp_object in Table 6 to collect values of event objects.

4.1.4 Recovering Unity UI elements

Recall in §2 that the UI elements are embedded in the IL2CPP
app binary. As such, it is necessary for AUTOVR to access the
libil2cpp.so binary and extract runtime UI objects which
are in the form of GameObjects and Components. Using
Frida with class metadata extraction as described, it is possi-
ble to extract the embedded Unity UI element GameObjects
by filtering for UI identifying classes. Unity treats UI ele-
ments similarly to every other GameObject within the app.
More specifically, the core developer scripts are built and man-
aged using GameObjects, as such, Unity treats UI elements
as GameObjects that have attached UI components. For in-
stance, in Figure 2, the OPTIONS button GameObject is a UI
element because of the UI component attached to it. However,
while it is possible to identify every UI component from the
base Unity SDK, developers may also implement their own
UI components not derived from Unity UI components.



1 abstract class UnityEventBase {
2    // Member fields
3 InvokableCallList m_Calls
4 [SerializeField]
5  PersistentCallGroup m_PersistentCalls
6  
7  // Member functions
8    void DirtyPersistentCalls()
9    void RebuildPersistentCallsIfNeeded()
10    
11    
12   // Additional member functions
13   ...         
14 }

onButtonClick => 
InvokableCallList

onButtonClick => 
PersistentCallGroup

m_Calls: [0x16A2AD0]

m_PersistentCalls:[0x16A2AD8]
m_ExecutingCalls: […]
m_RuntimeCalls: [0x15F12E8]

onButtonClick : 
UnityEvent

Figure 7: Class structure of the UI-based GameCon-
troller component from the running example. The
(Unity) 3D box logo indicates that the function callback
was attached via Unity Editor, while the bracket symbol
indicates the function callback was attached via code.

We notice that the Unity Engine describes all UI events
under an event system interface. This interface must be im-
plemented by every UI component, custom or not. We iden-
tify the core interface: IEventSystemHandler [47]. In Fig-
ure 2, every UI button GameObject contains an attached But-
ton component which its base class inherits the IEventSys-
temHandler interface. Using the class metadata extracted,
AUTOVR identifies all used UI components by extracting the
class inheritance hierarchy, and searching for the IEventSys-
temHandler interface.

4.2 Generative Event Modeling

To identify the event function callbacks (EFCs) in a VR
app, AUTOVR must identify which objects such events
reside. As described in §2 there are two types of Unity
events: UI, and physics. Each event type must be extracted
from the corresponding objects within an app scene. Unity
apps are dynamic. UI and physics events are resultant of
the initialization of the scene and its GameObjects, unlike
traditional event models which are hardcoded and static (e.g.,
Android UI XML model). Unity UI however, will be gen-
erated as GameObjects are initialized either through scene
initialization or event invocation. As such, AUTOVR will
first identify all UI event objects from the loaded scene, and
collect all EFCs from the UI event objects (§4.2.1). AUTOVR
will then identify all available physics events and recover
available triggerable and collisionable objects (§4.2.2).

4.2.1 Identifying UI Events

After extracting and filtering the components described, AU-
TOVR then performs UI event identification. As mentioned
in §2, Unity’s UI SDK provides base components for de-
velopers to modify or inherit. These UI components store
callbacks in the form of UnityEvent objects. UnityEvent
objects are often stored within the fields of the residing com-
ponent, or in the form of a derived class. From Figure 2, the

OPTIONS Button component contains a UnityEvent called
onButtonClick within the fields of the Button class.

Unfortunately, UnityEvents themselves are not the func-
tion callbacks that contain developer logic. UnityEvents are
structured so that multiple function callbacks can be attached
to one UnityEvent in a many-to-one representation. Fur-
thermore, UnityEvents distinguish their function callbacks
between runtime callbacks and persistent callbacks. Runtime
callbacks are temporary callbacks that are added during the
execution of the app through developer code. For example,
in Figure 2, the Start$$Press EFC is assigned to the START
Button via Unity SDK API call: UnityEvent.AddListener.
Persistent callbacks however, are serialized callbacks added
prior to the execution of the app, typically within the Unity
Editor (e.g., Options$$OnOptionsClick in Figure 2 and
Figure 7). We notice that persistent callbacks are not added
through an API unless the player of the app invokes the
corresponding event (e.g., through a button click). As such,
API hooks alone will not be able to recover the persistent
callbacks of the UnityEvent.

Nevertheless, we notice that the base UnityEvent
class, UnityEventBase, contains two fields: m_Calls, and
m_PersistentCalls. These fields are of type Invokable-
CallList and PersistentCallGroup, respectively. Both of
these fields store function callbacks into containers assigned
to their respective UnityEvent as shown in Figure 7.
InvokableCallList m_Calls stores the runtime callbacks
and some persistent callbacks, while PersistentCall-
Group m_PersistentCalls stores the remaining persistent
callbacks assigned by the developer at compile time. These
callback containers contain the callback function metadata.
This metadata provides the callback function’s name, virtual
address, argument cache, and the object target (i.e., the
UnityEvent object). Using Frida, AUTOVR is able to extract
the values of these callback containers, and thus, the callback
functions themselves, using the functions from Table 6.

4.2.2 Identifying Physics Events

As described in §2, there are two types of physics events: col-
lisions, and triggers. Fortunately, physics events are slightly
easier to identify than UI events, as the EFCs are not hidden
within field objects. However, physics events must follow spe-
cific rules dictated by the game engine, these rules are shown
in Table 1. There are three important Collider properties to
help identify physics interactions, Rigidbody attached, Static
property, and Kinematic property [42]. Rigidbodies can be
attached to a Collider component to apply physics motions,
static property indicates the collider is a non moving object
but allows physics events to take place, while the kinematic
property indicates the collider behaves static but also allow
the movement of the collider object. In the following, we
describe how AUTOVR identifies and extracts such collider
objects to execute physics events.



Trigger Colliders Collision Colliders
RB Static Kinematic RB Static Kinematic

RB ✗ ✗ ✗ ✓ ✓ ✓

Static ✗ ✗ ✓ ✓ ✗ ✗

Kinematic ✗ ✓ ✓ ✓ ✗ ✗

Table 1: Rule matrix of two colliders executing physics
events where ✓ indicates event is executable, and ✗ not
executable. RB = colliders with Rigidbody attached, Static
= colliders without a Rigidbody, Kinematic = RB colliders
with the kinematic property set to true.

Trigger Events. A trigger event occurs when a non-solid
game object (i.e., a game object that does not contain a Rigid-
body component) intersects with other non-solid game ob-
jects. We call these non-solid game objects triggerables.
There are three properties that determine if a game object
is an invokable triggerable:

(1) A collider is attached to the game object.
(2) The collider component must have isTrigger set to

true.
(3) At least one of the game object’s components implements

at least one of the following trigger functions: OnTrig-
gerEnter, OnTriggerStay, and OnTriggerExit.

To identify other collider objects to invoke these triggers with,
we present the Trigger Collider matrix from the 2nd to the
4th column in Table 1. Collider components may contain
a Rigidbody to allow physics movements to be applied to
its host GameObject. This is also how we identify ‘solid’
objects as mentioned in §2. However, trigger events are simply
intersections between Collider components that do not contain
any physics movement properties. As such, only colliders
without a Rigidbody attached may be used with trigger events.

To identify all invokable triggerable game objects,
AUTOVR uses the components described in §4.1.3 to
filter out components that do not have the three properties,
and extract the virtual addresses of the trigger functions.
These virtual addresses are then sent to our Dependence
Resolution (§4.3.2) to resolve dependencies. Furthermore, to
identify which Collider components may interact with such
triggerable events, we filter out components using the Trigger
Collider rule matrix from Table 1.

Collision Events. A collision event occurs when a solid game
object (i.e., game object contains a Rigidbody component)
collides with other solid game objects. We call these solid
game objects collisionables. There are four properties that
determine if a game object is an invokable collisionable:

(1) A collider is attached to the game object.
(2) A Rigidbody component is attached to the game object.
(3) The collider component must have isTrigger set to

false.

(4) At least one of the game object’s components implement
at least one of the following collision functions: OnColli-
sionEnter, OnCollisionStay, and OnCollisionExit.

To identify other collider objects to invoke these collision
events with, we present the Collision Collider matrix from
the 5th to the 7th column in Table 1. However, unlike trigger
colliders, at least one of the two intersecting colliders must
have a Rigidbody attached to it. As a result, AUTOVR will
filter for collider objects that follow the Collision Collider
matrix when invoking the current invokable collisionable
function, and extract the virtual addresses of these collision
functions for the follow-up analysis.

4.3 Context-aware Event Execution
Once AUTOVR collects the initial events, the execution can
be done using the extracted function offset and invocation by
Frida. However, as outlined in §3.3, the execution of events
may cause more events to be enabled and/or other events to
be disabled. These dependencies depicted in Figure 4 demon-
strate that when the OPTIONS button is clicked, the START and
QUIT buttons become disabled, while the TurnOptions, Vol-
umeOptions, and ValidateOptions buttons are enabled. To
resolve such dependencies from event execution, AUTOVR
will first execute the first found initial event from the loaded
scene, then once executed, AUTOVR will attempt to find de-
pendencies from the new state (§4.3.1). Subsequently, AU-
TOVR will then resolve the identified dependencies if there
are any (§4.3.2).

4.3.1 Event Execution and Dependency Identification

To cover and execute EFCs, AUTOVR performs context-
aware event execution by analyzing dynamic dependencies
of all identified EFCs collected. More specifically, once all
the EFCs are extracted, execution of events can be performed
through direct invocation using Frida along with the GFT to
extract the function offset and parameters. To find object pa-
rameters, we retrieve all currently available objects (collected
upon scene initialization) to find any active objects to test the
EFC with. At this stage, possible plugin applications such as
network traffic collection applications (e.g., AntMonitor [28])
can be used to observe the effects of executing the identified
EFCs. Initially, the first EFC is chosen at random; however,
as mentioned in §3.3 and illustrated in Figure 4, it is possible
that executing the EFC causes other EFCs to be enabled or
disabled. In such a case, we identify these newly changed
or added EFCs as dependencies, and map a tree of events to
model their dependencies.

4.3.2 Dependency Resolution

To cover the entire tree from Figure 4, AUTOVR will main-
tain a state machine, identifying every new event linked with



its parent. An example is the recovery of the initial state to
recover the disabled events in Figure 4. There are two cases
of recovering state:

• The parent EFC is a root event of the current scene. In this
case, recovering the initial state is necessary to recover
disabled events. As such, AUTOVR will reload the current
scene to recover the disabled callbacks and execute on a
different event path.

• The parent EFC is a child event of the current scene. In this
case, to recover the events generated by this parent EFC,
AUTOVR invokes the parent EFC again without reloading
the scene. Therefore, the disabled events in this level will
be recovered and callbacks will execute on a different path.

Using these recovery methodologies, the event dependen-
cies will be resolved. This way, the sequence of events can be
covered holistically, and all dependencies can be resolved. As
many VR apps, such as video games where the state of the
game is important to covering every execution path, we must
be sure to cover dependencies and the sequence of events to
resolve such dependencies.

5 Implementation
Dynamic Instrumentation. We have implemented a
prototype of AUTOVR atop Frida as our main dynamic
instrumentation engine. Frida contains multiple modules with
both JavaScript and Python bindings. In particular, we use
Frida’s Interceptor [4] module to perform API hooks on
function addresses, NativeFunction to perform invocation
of such function addresses, and Instruction module
to reassemble ARM64 instructions from such function
addresses. We have developed AUTOVR with over 3,000
lines of TypeScript code and over 1,000 lines of Python code.

To perform dynamic instrumentation to collect and invoke
events, AUTOVR uses Frida as the dynamic instrumentation
toolkit and interfaces with the functions shown in Table 6.
Frida is the only dynamic instrumentation toolkit and sup-
ports non-rooted Android devices, which is crucial as Quest
2 devices are typically root locked. Therefore, for non-rooted
Quest devices, we must inject the Frida server binary into
every tested app. We use frida-gadget [16], a Frida server
binary that can be injected directly into the game source files.
We then use objection [38] to repackage the APK with the
injected Frida server binary, and install the modified APK into
the Quest 2 device using adb.

Application: Sensitive Data Detection. AUTOVR supports
various security applications, including crash detection and
malware analysis, but this work focuses on detecting sen-
sitive data exposure. As an event exploration and dynamic
analysis framework, AUTOVR is application-agnostic. For
sensitive data detection, AUTOVR employs an adapted ver-
sion of AntMonitor [28] to intercept outgoing TLS traffic
from VR apps. However, SSL pinning in third-party Unity

apps presents challenges, as it encrypts network traffic and
obscures potential exposures.

To address this, AUTOVR integrates AntMonitor for TLS
traffic capture and employs decryption techniques to bypass
SSL pinning in both Android and Unity layers. While bypass-
ing SSL pinning in Android apps is well-documented [20],
Unity apps introduce additional challenges. Older Unity ver-
sions use the mbedtls_x509_crt_verify_with_profile
function for verification [48], but apps released after 2021 of-
ten utilize x509_crt_verify_restartable_ca_cb. To han-
dle this, AUTOVR supports bypassing the new verification
function using Frida for API hooking, nullifying flags and
return values.

During experiments, AntMonitor collected network traffic
while AUTOVR triggered sensitive data flows through auto-
mated event execution, unlike prior works like OVRseen [48],
which relied on human-triggered events. While AUTOVR
enables the discovery of otherwise hidden data flows, not
all such flows constitute privacy leaks, as developers may
disclose them in privacy policies.

6 Evaluation

In this section, we present the evaluation results of AUTOVR.
First, we outline our experiment setup (§6.1), followed by
its effectiveness including the capability for detecting pri-
vacy data exposure to current dynamic analysis tool Android
Monkey (§6.2). Finally, we present the efficiency overhead of
AUTOVR (§6.3).

6.1 Experiment Setup
A Custom VR Unity App. To show the effectiveness of
AUTOVR’s event exploration and execution capabilities, we
have developed a custom Unity VR app that contains both
UI and physics events and their dependencies. To accurately
test event exercising, we develop the app by ourselves so
that we know exactly the number of scenes, events, and UIs
and we can also easily instrument the app to log the event
exercise behaviors. In particular, within the app, we developed
three scenes: (1) only UI events, (2) only physics events,
(3) a combination of UI and physics events. To show the
dependency structure of such scenes, we present Figure 8,
where a screenshot of each scene is shown with the events
enabled to clearly illustrate the structure. Additionally, to test
whether AUTOVR can execute an event beyond the screen,
we placed event 4 from scene 1, and events 4 and 6 from scene
3, outside the default field of view.

Unity game acquisition. To test AUTOVR across the VR
app ecosystem, we collected 263 free games in total from
both the Meta Quest app store and the SideQuest app store.
SideQuest is a third-party endorsed app store, typically where
developers publish apps or games for facilitating distribution
or for early access releases. Specifically, we have scraped



Scene 0
Event ID 1 1a 2 2a 2b 2c 2d 3 3a 3b 3c 4
AUTOVR 41 40 41 40 39 40 39 41 40 39 39 41
Monkey 0 1 0 0 0 0 0 0 0 0 0 0

Scene 1
Event ID CCube#1 CCube#2 CCube#3 CCube#4 CCube#5 CCube#6 CCube#7 CCube#8 CCube#9 TCube#1 - -
AUTOVR 47 212 355 249 243 200 108 619 503 9 - -
Monkey 0 0 0 0 0 0 0 0 0 0 - -

Scene 2
Event ID 1 2 3 4 5 6 7 CCube#1 CCube#2 TCube#1 TCube#2 -
AUTOVR 19 19 19 4 18 3 17 133 133 10 10 -
Monkey 2 0 1 0 0 0 0 0 0 0 0 -

Table 2: Total number of events triggered by AUTOVR and Monkey, grouped by scene number from Fig-
ure 8. Physics events (e.g., CCube#1, TCube#1) sum up the total events triggered from all three callbacks (e.g.,
On(Trigger/Collision)Enter, On(Trigger/Collision)Stay, On(Trigger/Collision)Exit).

Scene 1: UI Only Scene 2: Physics Only Scene 3: Combined
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Figure 8: Custom VR app describing the dependency
structure for each scene, where each alphanumerical value
(e.g., 1, 2d, 3a, etc.) indicates a UI event, each "Cube" pre-
fixed with "C" indicates a collisionable event and "T"
indicates a triggerable event.

84 games from the free Meta Quest store and 179 games
from the SideQuest store. Additionally, we collected 103
paid games from the Meta Quest app store, totaling 366
games. Scraping Meta Quest and SideQuest resulted in
metadata acquisition from each individual game collected.
Such metadata includes app rating, number of downloads,
category keywords, and privacy policy links.

Experiment Environment. AUTOVR was deployed in
an Ubuntu 21.10 LTS desktop environment, running on a
machine equipped with an Intel i7-8750H processor, 4 CPU
cores, and 16 GB of RAM. While more processing power
could be allocated for AUTOVR, the primary bottleneck
in our tests was the event modeling and execution process,
which runs on the Quest 2 devices. The 4 used Quest 2
devices runs on 8 CPU cores from a Qualcomm Snapdragon
XR2 processor and includes 6 GB of RAM [33].

6.2 Effectiveness
Custom VR App Verification. We first verified that AU-
TOVR effectively executes and accurately identifies scenes,
GameObjects, as well as UI, collision, and trigger events
within the custom VR app. The goal state being, AUTOVR,
traverses all events of each scene.

We present the results of AUTOVR running on the custom
VR app in Table 2. We first notice a sizable number of col-
lision events triggered. Specifically, for each collision event,
the OnCollisionStay EFC is vastly higher than the OnCol-
lisionEnter/Exit EFC. Due to the necessity of moving
collider components to different positions to trigger collision
events, a short delay (300 ms) is introduced between collisions
to ensure collision event invocation. OnCollisionStay fol-
lows the FixedUpdate time rate (i.e., 20 ms per call [44,46]),
as such, each collision event will call OnCollisionStay at
least 15 times (300ms / 20ms). Additionally, for each colli-
sion event, AUTOVR will attempt to collide all collisionable
GameObjects with the acting collider within the scene, fur-
ther bloating the occurrences.

Futhermore, as shown in Table 2, AUTOVR was able to
comprehensively invoke all given UI and physics events
while also traversing the internal scenes. AUTOVR was able
to invoke events within a nested state (i.e., triggered all events
with dependencies), as well as explore the dependencies of
interleaving physics and UI events. Additionally, AUTOVR
was able to invoke events 4 (scene 1), 5 and 6 (scene 2),
which are outside the field-of-view of the default headset
position. Note that all invocations are recorded by the custom
app. Because AUTOVR attempts to trigger an event on all
available threads, it is highly likely that AUTOVR invokes
the same event multiple times per execution. Moreover, we
notice fewer invocations the deeper the UI event lies within
the dependency tree (e.g., events 4 and 6 from scene 2). The
same initial events will be invoked more times than the nested
ones due to the backtracking behavior described in §4.3.2.

VR Apps from App Stores. Next, we ran AUTOVR on the
corpus of 366 VR apps collected. The aggregated results for
this experiment are presented in Table 3. Specifically, we ag-
gregated the runtime data results based on the app’s rating
listed on the MetaQuest and SideQuest stores. The metadata
from the SideQuest and Meta Quest stores contain largely
inconsistent data keys, with some intersection, specifically
the user ratings, as such, we use ratings as the primary key
to describe the experiment results. We observe that the cat-
egory comprising apps with ratings ranging from 4.75 to 5



Free Apps Paid Apps

Rating # Apps
# Scenes

# GameObject

# UI Events

# Collisi
ons

# Triggers

Time (s)
# Apps

# Scenes
# GameObject

# UI Events

# Collisi
ons

# Triggers

Time (s)

[2.5, 2.75) 23 57 61,357 913 494 775 3353.20 3 4 1,536 0 0 13 205.21
[2.75, 3.0) 2 14 9,778 28 0 147 175.89 1 28 7,722 0 0 54 472.36
[3.0, 3.25) 6 18 35,914 82 780 281 1956.54 1 11 6,826 5 0 2 243.72
[3.25, 3.5) 9 17 29,162 2,896 0 7 1176.12 3 48 42,789 0 0 2 807.12
[3.5, 3.75) 20 99 65,731 11,320 170 541 3696.56 5 17 12,016 99 2 877 861.57
[4.0, 4.25) 39 158 158,823 10,879 191 3116 17360.33 14 45 66,106 130 230 266 3126.51
[4.25, 4.5) 39 158 222,434 6,474 1139 2774 10238.70 18 30 49,873 1,483 0 107 3111.51
[4.5, 4.75) 41 187 327,299 1,999 1114 4082 5811.47 29 194 210,346 4,396 451 520 6590.65
[4.75, 5) 84 426 439,990 22,118 4967 5466 16773.521 29 217 115,270 1,338 341 632 5437.94

Table 3: Aggregated data for Meta apps & SideQuest apps based on ratings, separating paid and free games.

(denoted as [4.75, 5)) represents the largest subset within
our dataset and, consequently, contains the highest number
of GameObjects. The table also reveals a direct correlation
between the number of GameObjects and the number of both
UI and physics events (collisions and triggers). This corre-
lation is expected, as events are inherently tied to GameOb-
jects within a scene. Therefore, apps with a greater number
of GameObjects are likely to feature more event-associated
GameObjects. While a noticeable correlation exists between
the number of scenes and the number of GameObjects, the lat-
ter is primarily influenced by the developer’s design choices
within each scene. For example, the paid apps under [4.5,
4.75) range contains more GameObjects than paid apps under
[4.75, 5), however, the scene count for [4.75, 5) is larger than
the [4.5, 4.75) range. The same can be said for [4.0, 4.25) and
[4.25, 4.5) paid apps.

From both tables, we also notice a direct correlation
between the number of collision and trigger events to the
amount of time taken for execution. Due to the necessity of
moving collider components to different positions to trigger
collision events, a short delay (300 ms) is introduced between
collisions to ensure collision event invocation. Otherwise, the
game engine will not be able to handle too many collisions
in a short period of time, causing the game to crash. As
collider components are highly prevalent in VR apps, which
will produce more collisions and triggers, the time taken to
execute AUTOVR on VR apps is significant.

Sensitive Data Exposure Detection. Next, to quantitatively
evaluate the effectiveness of applying AUTOVR for sensitive
data exposure detection, we showcase Figure 10. The X-axis
represents the types of sensitive data exposures, while the
Y-axis indicates the number of occurrences found in our total
corpus of VR apps. Unsurprisingly, the Unity version is the
most popular data exposed by all the apps, which is typically
used for game metrics sent to the developer. The next three top
data types (i.e., APP_INFO, PLATFORM_INFO, SESSION_DATA)
are potentially used for digital fingerprinting [48]. Addition-
ally, data types such as SCREEN_INFO, GPU_INFO, CPU_INFO,
and DEVICE_INFO are collected to increase fingerprinting en-
tropy, commonly used to accurately track user behavior and
identifiablility [21,48]. Throughout our experiments however,
we noticed that USER_ID and DEVICE_ID are the most stable

identifier amongst the VR apps, and is one of the common
data points we see in Figure 9.

We notice from Figure 10 that there are large discrepan-
cies in data flows for free and paid apps (e.g., USER_ID and
DEVICE_ID). Many of the paid apps were generally not ex-
posing sensitive data, as we collected exposures from only
56 apps. Additionally, we noticed application-side encryp-
tion in many of the paid app’s network packets. As these
could not be automatically decrypted beyond just SSL/TLS
decryption, much of the data could not be interpreted. We
understand that paid apps are generally well built, as most of
the paid apps are within the 3.5 rating+ range (see Table 3), as
such, application-side encryption would likely be integrated
into the apps. Free apps, conversely, generally rely on the
free in-house tools provided by Unity to send network traffic,
and many apps have integrated Unity’s in-house analytics
to send data regarding user behavior (e.g., in Figure 14, we
notice such analytical traffic where “userid" and “deviceid"
data pairs are being sent). The two top outgoing hostnames
(cdp.cloud.unity3d.com and perf-events.cloud.unity3d.com),
are specifically used for analytics and performance. Addition-
ally, there are more free apps in our corpus than paid apps,
further inflating the number of data exposures found.

Furthermore, to quantify the correlation of the total unique
sensitive data flows to the destination hostname, we present
Figure 9. We notice that majority of the data flows reach
a unity3d.com domain, Facebook domain (i.e., fb.com and
facebook.com). As such, we grouped the third-party domains
into one entity. We denote 3rd party domains as any domain
not associated with Meta, Facebook, or Unity. We identify
that significant traffic of analytic and device data outgoing
to cdp.cloud.unity3d.com and perf-events.cloud.unity3d.com.
perf-events.cloud.unity3d.com is typically used for social
features, where analytical data is needed to support such
features [48]. Additionally, other network traffic outgoing
to *.cloud.unity3d.com could be used by the developer to
obtain analytical or device information. We show an example
network packet in Figure 14 in the Appendix.

Comparison with Monkey. To compare the results of AU-
TOVR with Monkey, we performed the same data collection
process used for AUTOVR to Monkey, using AntMonitor to
collect network data and Frida for event trigger data collection.
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Figure 9: A heatmap showing unique occurrences of sensitive data flow types per app rating range of both free and paid
Meta Quest apps and SideQuest apps.
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Figure 10: Total number of sensitive data flow occurrences grouped by app store, categorized by PII (Personal Identifiable
Information), Fingerprinting, VR Sensory Data.

We allotted Monkey 20 minutes of running time and set AU-
TOVR to a 20 minute timeout to fairly assess the comparison.

We present a comparative analysis of the detected sensitive
data exposure by Monkey and AUTOVR in Figure 11. Both
tools were ran against the 366 apps. AUTOVR has collected
390 unique data flow exposures, whereas Monkey has gath-
ered only 117. This represents a 2.2x improvement in finding
unique sensitive data flow exposures.

Uniquely, AUTOVR is capable of capturing more unique
PII data flows, such as EMAIL, Gender, LOCATION, and
Serial Number. Uninspiringly, AUTOVR was able to
trigger more sensitive data flow exposures, as AUTOVR’s
context-aware execution allow the game to enter more states
as more events are triggered. Furthermore, because AUTOVR
also traverses through the app scenes, which allows AUTOVR
to load new events in different levels that Monkey cannot
access. Therefore, AUTOVR will visit more GameObjects,
and trigger both 3D collision/trigger and UI events, leading
to more outgoing data flows.

Furthermore, AUTOVR is context-aware, taking into ac-
count various game states such as scene iterations and the
components of the scene (e.g., GameObjects). This enables
it to trigger a greater number of events, thereby leading to the
identification of more privacy exposures compared to Monkey.
The comparative performance of Monkey and AUTOVR is
additionally detailed in Table 2. We notice that AUTOVR
executes all events (i.e., UI events and physics events) far
more frequently than Monkey. As such, a correlation can be
determined by the number of privacy exposures detected by

each tool versus the number of events executed, highlighting
the advancements that AUTOVR has made over Monkey.

6.3 Efficiency

For the 366 VR apps, AUTOVR took a total of 81,398.92
seconds with an average running time of 222.40 seconds each.
It is obvious that executing a random pre-computed set of
events (Monkey) would have significantly shorter runtimes
than a generative parsing and execution event model would
(AUTOVR).

From Figure 12, we notice a positive correlation be-
tween the number of GameObjects and runtime and an event
stronger positive correlation between the number of scenes
to the total runtime. While there is a clear correlation to the
number of scenes and total objects to the running time, the
event execution strategy also plays a factor. AUTOVR ex-
ecutes events in a DFS manner, and, for each newly found
object, another DFS of the object’s class fields is also per-
formed for event identification. We show our calculation for
the worst case running time in Equation 1, where E = number
of events, Pc = collisionable objects, Pt = triggerable objects,
Ct = class types, C f = fields per class type, D = event depen-
dencies. Because we are not memoizing (Ct + C f ), after each
event, AUTOVR must recalculate (Ct + C f ) after each event
invokes. As such, the running time scales higher depending
on the combination of the three events.

O(E ∗ (Pc +Pt +(Ct +C f ))+D) (1)
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Figure 11: Comparison of the effectiveness with respect to the number of unique sensitive data flow occurrences found
using AUTOVR vs Monkey.
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Figure 12: Relationship of (a) total detected objects and
(b) total scenes, to the total running time of AUTOVR for
each VR app in our corpus, where (a) has a positive cor-
relation coefficient of r = 0.24 and, (b) a stronger positive
correlation coefficient r = 0.6721.

To quantify the efficiency in relation to the scene traversal
events, EFC extraction, and event execution, we present
Table 4. We initially notice scene loading significantly
contributes to the runtime, as AUTOVR waits 5 seconds
for each time a scene loads, as such, the number scenes
will scale with running time. Physics-based events are
a significant contributor to the total running time of (2).
For each physics event, all combinations of the available
collisionable/triggerable GameObjects are executed with the
EFC. In this case, Pc + Pt is larger than (Ct + C f ), which is
reflected in the stage’s runtime. When bloating the number of
UI events, the UI execution becomes the primary contributor
to the total running time of (3). Notably, the UI execution
from (3) starkly increases from (1)-(2). Because (Ct + C f )
is recalculated after every UI event, the total (Ct + C f ) will
be significantly larger than both Pc and Pt , resulting in the
largest contributor to running time in (3).

7 Discussion, Limitations, and Future Work

Privacy Implications of Sensitive Data Flows. While
AUTOVR was successfully able to extract sensitive data flows
from VR apps, tracking the privacy implications requires
knowledge of the context (e.g., purpose, notice and consent,
law, etc.) and type (e.g., PII, fingerprinting, cookies, etc.) of
data flows. This is because the data flows themselves do not
determine a privacy concern, rather, a labeling of the outgoing
data. For instance, as shown in Figure 13, the outgoing

Running Time (ms)
Stage Name (1) (2) (3)

Scene Loading 32,497 32,536 32,516
EFC Identification 859 1,280 1,196
UI Execution 9,074 9,034 46,833
Triggers Execution 21,064 86,220 21,093
Collisions Execution 22,129 91,072 22,151

Miscellaneous 11,286 12,826 34,989

Total 96,909 232,968 158,778

Table 4: Relationship of time consuming AUTOVR stages
to run time in milliseconds across three versions of the
custom test app: (1) no changes, (2) with bloated physics
events, (3) with bloated UI events. For (2) and (3), the
bloated events are 3x from (1), including dependencies.

network packet finds an email and password, however, this
data relates to the developer’s PII data and not the user’s.
As the data flow collected is PII from the developer, this is
not necessarily a privacy concern for the user. Additionally,
the outgoing hostname is also relevant since first-party and
third-party contexts are also needed. In Figure 14, we notice
the sensitive data flows are outgoing to Unity servers, a first-
party context, not necessarily a privacy concern without the
purpose of the data being collected. As such, additional anal-
ysis must be performed with context to identify the privacy
implications, which is outside of the scope of AUTOVR.

Nevertheless, to show that AUTOVR is still useful to help
privacy concern analyses, we have collected the privacy
policies from our corpus of VR apps and cross-compared
them with the collected sensitive data flows using OVRSeen’s
improved PoliCheck [19, 48] tool. The results of which are
shown in Table 5 in the Appendix for interested readers. Only
158 of our corpus of 366 VR apps contained privacy policies,
and only 44 VR apps were able to be analyzed. We notice
a significant number of results of vague and omitted network-
to-consistency values from the privacy policies versus the
traffic being collected. Omitted (i.e., data type not found in
the privacy policy) and vague results (i.e., data collector is
vague in the privacy policy), are an indication of leaking data
flow, however, without the purpose of the data being collected,
one cannot conclude that it is indeed a privacy concern.



While the VR ecosystem continues to develop, there is
still a lack of readily available privacy policies within both
the Meta Quest and Side Quest app stores. In 2024, Guo et
al. [25] has collected 900 VR apps from the SideQuest app
store, and have found only 44.8% contain privacy policies.
Similarly, amongst our corpus of 366 VR apps, only 43.2%
contain privacy policies. Not only is there a considerable
lack of privacy policies within the VR ecosystem, but also
a significant number of inconsistent data collection policies
found by OVRSeen [48]. Yet, without these privacy policies,
privacy analysis becomes significantly more challenging as
this critical context is missing from the overall analysis.

Comparison with state-of-the-art. AUTOVR effectively ex-
ercises events within a VR game. Because these VR games
are essentially APKs, it is only possible to exercise events
using Android-supported event tools created before AUTOVR.
Monkey, for example, is one such a tool. Similarly, existing
state-aware UI exercising tools such as DroidBot [29] and
AutoDroid [55] also utilize the same triggering functionality
as Monkey by using MonkeyRunner [7] as the engine for trig-
gering events. As MonkeyRunner triggers UI events by sim-
ulating screen-level human interactions (e.g., touch, swipes,
double-taps), which are inconsistent event types within a VR
environment, event invocation becomes much more difficult.
Inherently, any Android-based event exercising tool are lim-
ited to 2D space, unlike VR, where events are expressed in a
3D space (e.g, event occurs behind the user’s viewpoint will
be unknown to traditional tools). Therefore, state-of-the-art
tools such as DroidBot and AutoDroid consequently fail for
VR apps. AUTOVR, however, does not run into described
problems. AUTOVR’s automation relies on instructing events
on the IL2CPP binary level, overcoming the screen image
and VR controller dependency that current state-of-the-art
tools run into. As such, AUTOVR significantly advances UI
automation and dynamic analysis for VR games/apps.

Integration of symbolic execution. AUTOVR provides the
foundation of event identification and execution. This lays the
groundwork for symbolic execution. Consequently, because
the Unity Engine highly utilizes custom object types as the
basis of the SDK, UnityEvents also support object types as
inputs to execute events. However, identifying such inputs
requires a deeper look into solving event constraints and is be-
yond the scope of this work. We foresee AUTOVR to expand
and support solving. An SMT solver (e.g., the Z3 solver [56])
will need to be integrated with EFCs that contain parameters
that can be abstracted and taken as input for the SMT solver.
Encouragingly, AUTOVR event execution and state-modeling
provides a first step towards understanding the dynamic paths
of a game, opening up an opportunity for further investigation.

8 Related Work

Privacy and Security in VR. Privacy risks in VR and
head-mounted displays (HMDs) have been studied since the

technology’s inception [18, 23, 54]. Trimananda et al. [48]
audited network traffic to identify sensitive data risks, reveal-
ing that 70% of Meta VR apps’ data flows were not disclosed
to users. O’Brolcháin et al. [35] explored ethical concerns,
including privacy threats, social manipulation, and the blurred
lines between real and virtual worlds. George et al. [23] an-
alyzed the usability and security of traditional authentication
methods in VR, while Lou et al. [31] demonstrated real-time
facial reconstruction through sensory input. AUTOVR
complements these works by providing an automated
framework to explore VR apps and expose privacy risks.

Android Testing. As Meta Quest runs on an Android OS
variant, related works in Android UI testing are relevant. Gu
et al. [24] abstracted the Android GUI model to generate
test cases, and Li et al. [29] introduced a lightweight tool
for dynamic, UI-guided test inputs. Su et al. [39] employed
functional fuzz testing to uncover logic bugs, while Huang
et al. [27] emphasized fuzzing Android apps in the context
of data handling. More recently, Liu et al. [30] leveraged
Large Language Models (LLMs) for context-aware test input
generation, and Ran et al. [36] proposed prioritizing UI
events to improve code coverage and detect unique crashes.

State-of-the-art tools like DroidBot [29] and AutoDroid [30]
rely on computer vision and tools such as Minicap [34] for
state identification, but these methods are incompatible with
Android 12, which powers Quest 2 devices. Additionally,
they depend on MonkeyRunner for event triggering, which
struggles with VR-specific applications. Despite advance-
ments in Android testing, a critical gap remains in developing
specialized dynamic tools for 3D engine-based apps and VR
games on platforms like Meta Quest.

9 Conclusion

We have presented AUTOVR, a novel framework tailored
for dynamically executing and exploring VR apps. By
introspecting into the app’s internal binary, AUTOVR over-
comes the limitations of existing tools, efficiently identifying
otherwise inaccessible events. Our empirical evaluation,
compared against Monkey, illustrates AUTOVR’s significant
advancement in event exploration of VR environments by
triggering events that lead to sensitive data exposures, thereby
enhancing the security and privacy of VR apps.
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Ethics Considerations

We ensured that ethics were considered early in the experimen-
tation process with AutoVR. To collect user data and instru-
mentation, three locked Meta Quest 2 devices were purchased
and used with test accounts. Additionally, a fourth unlocked
(i.e., rootable) Quest 2 device was provided by Meta, along
with a test account that had entitlements to the tested 366
VR apps used in the evaluation (§6). Meta has given explicit
permission to instrument on VR apps from the Meta Quest
store, usage, and instrumentation of AutoVR on the rooted
device. Therefore, AutoVR addresses the following concerns:
(a) experimented VR apps were entitled to the instrumenting
Meta Quest account, and (b) instrumented on devices with
owner permission. However, we must note that any misuse of
AutoVR may occur if (a) and (b) are violated. Additionally,
the data collected from the VR devices and subsequently the
test accounts will be stripped of potentially identifiable infor-
mation (PII) leaked by the developer of each VR app, prior to
the release of the network data.

Open Science

The source code of AutoVR is available on GitHub un-
der the MIT license. Additionally, raw data collected from
the AutoVR experiments depicted in the evaluation (§6),
along with the stripped network data collected by AntMonitor.
These artifacts can be found at https://doi.org/10.5281/
zenodo.15636793.
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Consistency Result
Data Flow Types Ambiguous Omitted Vague

Android ID 0 0 1
App Name 0 13 0
Build Version 0 12 0
Cookie 0 1 0
Device ID 1 5 6
Flags 0 12 0
Hardware Information 0 50 1
Language 0 3 5
Sdk Version 0 22 1
Session Information 0 14 0
System Version 0 10 0
Usage Time 0 11 0
User ID 1 5 8
VR Field of View 0 1 0
VR Movement 0 8 0
VR Play Area 0 2 0
VR Pupillary Distance 0 1 0

Total 2 170 22

Table 5: PoliCheck [19] results for the total data flow type
for each consistency result using OVRSeen’s ontology. The
set contains 44 VR apps, with privacy policies, where AU-
TOVR was able to trigger outgoing network data flows.

ob.opencampus.mobile#0.5P???
??email=********%40protonmail.com&password=******
%21ob.opencampus.mobile#0.5?P??
?POST /api/login HTTP/1.1
Host: gcsvrapi.worldbank.org
Accept-Encoding: gzip, identity
Connection: Keep-Alive, TE
TE: identity
User-Agent: BestHTTP 1.12.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 54

ob.opencampus.mobile#0.5P????ebbEb??????P??IB
GET /api/featured?unity=true&wm=false HTTP/1.1
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhImp0a<truncated>

Figure 13: Outgoing network traffic from
ob.opencampus.mobile intercepted while per-
forming AUTOVR. The plaintext email and password for
this network request is redacted, and the authorization
token is truncated.

A Case Study

While perusing the collected data exposures for AUTOVR’s
traffic, we noticed incoming and outgoing network requests
between the VR device and external servers. Notably, the one
app that exposes EMAIL was identified traffic coming from
ob.opencampus.mobile, which contained alarming HTTP
packets that include the plaintext string of an individual’s
email and password. Specifically, as shown in Figure 13,
we notice that the endpoint to the incoming and outgoing

traffic is linked to a gcsvrapi.worldbank.org domain.
However, when attempting to invoke the same exposure
behavior with Monkey, none of this traffic was identified.
This is also supported by Figure 11. This highlights the
significance of AUTOVR’s ability to uncover events at
the binary level, invoking events accurately and triggering
potentially damaging privacy exposures.

B Inclusion of Unreal Engine

AUTOVR ’s internals largely depend on the structure of
Unity IL2CPP games, however, the technique of scene
loading, event extraction, and execution applies to engines
such as Unreal. Unity Scenes are synonymous with Unreal
Levels [6]. UI events are similarly connected using function
hooks [2]. Using scenes/levels to reset the state, identifying
UI-events within GameObjects/Blueprints, and extracting the
function callbacks are synonymous to both engines. To cover
more games within the app stores, Unreal binaries will be
considered for future work beyond AUTOVR.

C Preliminary crash detection

Because AUTOVR is agnostic of the privacy/security applica-
tion, AUTOVR can be used for additional applications beyond
sensitive data exposure, such as crash detection. As such, we
separately collected the number of crashes invoked by AU-
TOVR and compared it with Monkey as shown in Table 7.
We notice that a significant number of crashes are SEGV_-
MAPERR, which could either be mapping issues between Frida

Host: cdp.cloud.unity3d.com
User-Agent: UnityPlayer/2019.2.19f1
Accept-Encoding: deflate, gzip
Accept: */*
Content-Type: application/json
event_count: 1
data_block_id: 64351db8b4d511c2e16a1d97a1907e7b
expired_session_dropped: 0
data_retry_count: 5
continuous_request: 1
request_ts: 1713146923986
X-Unity-Version: 2019.2.19f1
Content-Length: 496

com.aura.Arrows#0.5.5X?????"k??????P??-|{"common":
{"appid":"local.1457b9e91549e2a40a8d759ee2972f52",
"userid":"f213a7998a70e2340aa2f60d6137682c",
"sessionid":5687031950375056550,"platform":"AndroidPlayer",
"platformid":11,"sdk_ver":"u2019.2.19f1","session_count":3,
"localprojectid":"1457b9e91549e2a40a8d759ee2972f52",
"build_guid":"ff76281b9a0c28c46914e0c261de62e1",
"device_id":"b8ba3da0d4458fde63a51772ce84547b"}}
{"type":"analytics.appStart.v1","msg":
{"previous_sessionid":1848577819610040954,
"ts":1713146819046,"t_since_start":11062992}}
com.aura.Arrows#0.5.5Xp??..E.OM:??"oq(?Z?P??yPOST / HTTP/1.1

Figure 14: Outgoing network traffic from
com.aura.Arrows intercepted while performing
AUTOVR.



API Name Return Type Argument Types Description

Classes
il2cpp_class_get_field_from_name field pointer class pointer, string Get class field handle from name.
il2cpp_class_get_fields fields array pointer class pointer, class type Get field handles from class.
il2cpp_class_get_method_from_name method pointer class pointer, string, int Get class method handle from method name and parameter count.
il2cpp_class_get_methods methods array pointer class pointer, pointer, class type Get all method handles from class.
il2cpp_class_get_name string class pointer Get name from class handle.
il2cpp_class_get_namespace string class pointer Get class namespace name from class handle.
il2cpp_class_get_parent parent class pointer class pointer Get class’ parent handle.
il2cpp_class_get_type class type pointer class pointer Get class type from class handle.
il2cpp_class_is_assignable_from bool class pointer, other class pointer Test if class is assignable from another class.

Fields
il2cpp_field_get_parent parent class pointer class pointer Get parent class of field handle.
il2cpp_field_get_name field pointer string Get field name from field handle.
il2cpp_field_get_offset int32 field pointer Get class field offset from field handle.
il2cpp_field_static_get_value void field pointer, value pointer Get field handle’s static value into value pointer.
il2cpp_field_get_type class type pointer field pointer Get type of field from field handle.
il2cpp_field_is_static bool field pointer Test if field is static from field handle.

Methods
il2cpp_method_get_class class pointer method pointer Get residing class handle from method handle.
il2cpp_method_get_name string method pointer Get method name from method handle.
il2cpp_method_get_object object pointer method pointer Get object handle from method handle.
il2cpp_method_get_param_count uint8 method pointer Get number of parameters from method.
il2cpp_method_get_parameter_name parameters pointer string, uint32 Get parameter handle from name and parameter index.
il2cpp_method_get_pointer virtual address pointer method pointer Get virtual address from method handle.
il2cpp_method_get_return_type class type pointer method pointer Get return type of method.

Objects
il2cpp_object_get_class object pointer class pointer Get class handle from object.
il2cpp_object_new object pointer class pointer Create a new object from class handle.
il2cpp_capture_memory_snapshot objects array pointer void Creates a memory snapshot of all GC handles.

Table 6: IL2CPP Runtime Library API

and IL2CPP, or critical software crashes. Interestingly, we
notice that Monkey was also able to trigger SEGV_MAPERR
crashes, which is unrelated to Frida and IL2CPP’s mapping,
potentially indicating software issues with the game/app it-
self. We acknowledge that crash detection can be a separate
research direction for AUTOVR, exemplifying AUTOVR’s
significance in the VR ecosystem.

Free Apps Paid Apps
SEGV Code

Tool MAPERR ACCERR MAPERR ACCERR
Monkey 3 0 0 0
AutoVR 69 2 5 0

Table 7: Aggregated crash count with signal (SIGSEGV)
between Monkey and AUTOVR for both free and paid
games.
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