
Attack Graph Generation on HPC Clusters
Ming Li

Tandy School of Computer Science
The University of Tulsa

Tulsa, United States
ming-li@utulsa.edu

John Hale
Tandy School of Computer Science

The University of Tulsa
Tulsa, United States
john-hale@utulsa.edu

Abstract—Attack graphs (AGs) are graphical tools to analyze
the security of computer networks. By connecting the exploitation
of individual vulnerabilities, AGs expose possible multi-step
attacks against target networks, allowing system administrators
to take preventive measures to enhance their network’s security.
As powerful analytical tools, however, AGs are both time- and
memory-consuming to be generated. As the numbers of network
assets, interconnections between devices, as well as vulnerabilities
increase, the size and volume of the resulting AGs grow at a much
higher rate, leading to the well-known state-space explosion. In
this paper, we propose the use of high performance computing
(HPC) clusters to implement AG generators. We evaluate the
performance through experiments and provide insights into how
cluster environments can help resolve the issues of slow speed
and high memory demands in AG generation in a balanced way.

Index Terms—attack graph, scalability, high performance com-
puting, cluster, state-space explosion

I. INTRODUCTION

Attack graphs (AGs) visualize possible paths attackers can
take to compromise computer networks [1], cyber-physical
systems (CPSs) [2], IoT [3], and even networks of Docker
containers [4]. AGs allow users to logically connect individual
vulnerabilities together to reveal multi-step attacks, which
might be unseen if each vulnerability is handled separately.
AGs are generated with input information modeling network
assets, interconnections between entities, and vulnerabilities.
The output of AG generators typically consists of node and
edge sets, and other relevant information. The structure of
the generated AGs can be analyzed, which identifies nodes,
edges and vulnerabilities that are pivotal to achieve attackers’
goals. By further applying probability based approaches [5],
the likelihood of different attack paths can be compared.
Accordingly, system administrators are informed of more
valuable intelligence of the weakness in their system. They
can concentrate the limited time, money and man-power on
addressing the most pressing security needs.

The generation of AGs is the most challenging aspect in
their application. Starting from some initial states, the input
set of vulnerabilities are repeatedly applied to derive new
states. Most AGs have a tree-like structure. The farther away

A preliminary version of this paper appeared in CSCE 2024. The final
published version is available at Springer, Cham https://doi.org/10.1007/978-
3-031-85638-9 9. This is the author’s version and may differ from the
published version.

from the tree root, the more nodes are branched out. The
earliest AG models, such as [6] and [7], permute all the
vulnerabilities to enumerate every possible attack path. Each
AG node in these models represents a network state, which
describes the security status of all the network entities. Each
edge is the exploitation of one or more vulnerabilities, and
causes a transition between two states. While these models
provide the most detailed security evaluation, they suffer from
the exponential growth of the state space as the input size
increases [7]. To address the issue of state-space explosion,
later research proposed more scalable AG models, such as
logical AGs [1], [8]. In these models, AG nodes are no longer
defined to describe the entire network, instead, they may just
represent a specific pre- or post-condition, a vulnerability,
or a privilege of an attacker on a certain host. The edges
are simply causal connections between nodes and are not
associated with any exploitation operations. Logical AGs and
their variations [9], [10] often assume that attackers will never
relinquish a privilege already acquired from previous attack
steps, therefore, further reduce the state space to be explored
in the generation process. The generators for Logical AGs
and its variations are demonstrated to be polynomial over
their input size, which are more efficient than those for state-
enumeration AGs. While the generation complexity of novel
AG models are reduced because of simplified model definition
and the monotonicity assumptions, they are not completely
free of the scalability issue. When such models are applied
to analyze the security posture of large-scale networks, the
total computation task and the required memory capacity still
easily overwhelm single PCs and small-scale servers. [11]–
[13] introduced parallelism into the AG generation process,
however, their efforts are limited in the environment of single
computers. Although distributed AG generation is not a novel
idea, to the best of our knowledge, there is no AG generator
aiming to run on high performance computing (HPC) clusters,
let alone any useful performance data on such. We observe
that AG generation should be treated as other computation
intensive tasks and seek the help of HPC.

In this research, we design a parallel algorithm for AG
generation that utilizes OpenMPI processes and OpenMP
threads to break down the generation task and explore partial
state space in parallel. We conduct the performance evaluation
on OSCER, an HPC cluster from University of Oklahoma [14].

ar
X

iv
:2

50
8.

12
16

1v
1 

 [
cs

.C
R

] 
 1

6 
A

ug
 2

02
5

https://doi.org/10.1007/978-3-031-85638-9_9
https://doi.org/10.1007/978-3-031-85638-9_9
https://arxiv.org/abs/2508.12161v1


Our research fills the aformentioned gap and provides design
and engineering knowledge to industry and academia that need
effective solutions to AG generation.

II. RELATED RESEARCH

Research efforts to address the scalability issue of AG mod-
els can be partitioned into two tracks. One track simplifies AG
definition to reduce the complexity of the generation process,
which is represented logical AGs. The other track applies
multi-threaded programming to accelerate the exploration of
AG state space. Typical platforms are either single PCs or
small servers.

A. Logical AGs

Two consecutive papers [1] and [8] established the foun-
dation of logical AG models. The nodes in these AGs are
categorized as SINK, AND and OR nodes, representing input
facts, vulnerability exploitations and derived facts. As exploita-
tions are defined as a special type of nodes, edges in logical
AGs only represent dependence between nodes. Backtracking
is one of the culprits that cause state-space explosion in state-
enumeration AG models. To address this, logical AGs assume
that attackers will never relinquish any privileges they have al-
ready acquired. This monotonicity assumption helps eliminate
unnecessary permutations of exploitations during state-space
exploration, giving logical AGs and its variations [9], [10] an
advantageous polynomial time generation characteristic.

B. Multi-threaded AG Generation

Multi-threaded programs are implemented in [13], [15], [16]
to accelerate the generation of AGs. The data structure to store
the resulting AG is shared among the participating threads,
which are either OpenMP threads in [13] or CUDA warps in
[15]. Each thread starts with a few nodes assigned to it from
the initial frontier prepared by a master thread and explores
its partial state space. In [15], to take advantage of GPU’s
computational power, the SIMD threads in each warp further
accelerates loops inner to the outer-loop that expand AG nodes.
In [16], work-stealing is proposed to balance the workload
among the threads, which further reduces the execution time.
While these designs are able to accelerate AG generation,
they are implemented on either a single PC or a small server,
and the performance worsens sharply as the memory demands
exceed the available capacity.

Our research extends the multi-threaded scheme by propos-
ing an AG generation algorithm targeting HPC clusters. Mod-
ern HPC clusters have ample memory on each node, satisfying
the needs of many memory-intensive programs. To the best of
our knowledge, however, no existing research ever deployed
AG generators on HPC clusters.

In [11], a distributed AG generator is proposed. The authors
apply reachability hyper-graph partitioning to divide the target
network into groups of networked software applications. Each
group is assigned as a task to a search agent to derive a part of
the AG. The multiple agents communicate with one another
through TCP sockets and access a virtually shared memory to

avoid redundant expansion of nodes that are already processed.
While this AG generator is designed to execute with distributed
computing agents, the experiments yielding a speedup of
X2.65 were actually conducted on a single computer with a
quad-core Intel processor. More experiments are needed to
evaluate if this distributed AG generator can perform equally
well on a real distributed platform, especially after adding the
overhead from TCP/IP communication between search agents
and from accessing the virtually shared memory.

In [12], the authors proposes to use cluster-computing envi-
ronment Spark to parallelize AG generation. Utilizing multiple
Spark executors enables each to generate a distinct sub-AG.
Following parallel execution, these subgraphs are merged into
a comprehensive resulting AG. To optimize the parallelization
efficiency, a multilevel k-way partition algorithm divides the
input network into smaller segments according to topology,
which significantly reduces the workload added to each ex-
ecutor. While the experiments in [12] on a single computer
indicate that the Spark-based scheme outperforms a distributed
AG generation algorithm, crucial experiment details, such as
the implementation specifics of the baseline AG generator
being compared, and the dimensions of each target AG, are
omitted.

Different from these existing efforts to parallelize AG
generation, we not only deploy our parallel AG generator
crossing multiple nodes on an HPC cluster, but also tune the
platform parameters to examine the impacts of the hardware
configuration on the performance and cost. Furthermore, we
profile the execution times of different components in our AG
generator to identify the most critical one and propose further
optimizations to speed it up.

III. AG GENERATION ON HPC CLUSTERS

This section introduces the AG model used by this paper and
applies it to an example network. It then presents a parallel
algorithm for the model’s AG generator to be deployed on
HPC clusters.

A. AG Model

Our AG model follows the design in [16]. The model defines
an AG as a tuple:

AG = {V,E} (1)

, where V is the set of nodes and E is the set of directed edges.
Each node represents the set of properties of network assets
relevant to attacks. Each edge represents the exploitation of
one or more vulnerabilities, causing a state transition from
one node to the other. To build an AG for a target network,
the input must include:

• A list of assets, which encompasses network devices and
software entities.

• A list of vulnerabilities. Each vulnerability is formatted
as a set of pre-conditions and a set of post-conditions.

• A set of initial properties of network assets, which
essentially defines the root node of the AG. According
to [16], the AG tree structure originates from the root



asset1: web server

vulnerable service 0 

(exploit 0)

asset2: file server

vulnerable service 1 

(exploit 1)

asset 3: database server

attacker

Internet

vulnerable OS (exploit 2) 

Fig. 1. A target network for AG generation.

Fig. 2. Generated AG for the network in Fig.1.

node, and all derived nodes are either intermediate states
or target states after attacks are carried out successfully.

As an example, Fig.1 shows a small network with three
servers. The security policy regulates that any user from the
Internet can only use the web or file service. The database
server only provides backend service to the other two servers.
The web server and the file server both have vulnerable
services that might be used by an attacker to gain root
privileges. In addition, the database server has a bug in its OS,
which might be exploited by an attacker that has a foothold on
either the web server or the file server. With the given input
information, the AG is generated as in Fig.2. Considering that
the attacker may choose the database server as the final goal,
the AG shows that the exploitation 2 on the database server
always conditions on either exploitation 0 on the web server or
exploitation 1 on the file server. Thus, this AG helps security
administrator to identify all the possible multi-step attacks that
can compromise the database server.

Fig. 3. Parallel algorithm to generate AG on HPC clusters.

B. Parallel AG Generator on HPC Clusters

To generate AGs on HPC clusters, we design a parallel
algorithm as illustrated in Fig.3, which comprises three distinct
phases. In phase 1 (lines 1-9), the initial AG state (Note: AG
state is used hereafter instead of AG node to avoid confusing
with cluster node) and its derived states are expanded by each
cluster node locally to fill a per-node queue (Q) with more
unexpanded states. The queue is identical on each cluster
node as they take identical input. When the size of the per-
node queue grows greater than a preset threshold T, the multi-
threaded phase 2 (lines 10-12) begins. Suppose comm sz is
the number of cluster nodes and n threads is the number of
threads from each node, then the total number of threads in
the multi-threaded phase is comm sz*n threads. Each thread
maintains its own thread queue (threadQ), with an initial size
equal to the per-node queue size (Q.size()) divided by the total
number of threads. The partition of the unexpanded states in
the per-node queue is cyclic, aiming to divide the AG state
space evenly among all the threads. For instance, with 9 states
(s1-s9 in discovered order) in the per-node queue to begin
with, a parallel AG generator launched on three cluster nodes
(n1-n3) and each with three threads (t1-t3) will partition the
initial work as follows:

n1-t1: s1, n2-t1: s2, n3-t1: s3,
n1-t2: s4, n2-t2: s5, n3-t2: s6,
n1-t3: s7, n2-t3: s8, n3-t3: s9

As inter-node communication is more expensive than local
computations, in phase 1 and 2, each cluster node explores
its partial state space independently. In phase 3 (lines 13-16),
a master node merges all the partial graphs into a complete
AG. The merging needs to remove duplicate nodes and edges
through hashing methods. With comm sz nodes, the merging
requires a total of comm sz-1 inter-node communications,
which might add a long latency to the total execution time. If



attacker

Internet

servers workstations

… … …

Fig. 4. Target network for AG generation in performance evaluation.

no merging is required, however, each node can keep its partial
AG in the local memory or store it into an AG database.

IV. PERFORMANCE EVALUATION

We implement the parallel algorithm for AG generation on
HPC clusters with the hybrid of Message Passing Interface
(MPI) and Open Multi-Processing (OpenMP), both of which
are available in most HPC environments. Specifically, each
cluster node in the algorithm is embodied by an OpenMPI pro-
cess. Each OpenMPI process forks multiple OpenMP threads
for the multi-threaded phase in the algorithm.

A. Performance Evaluation

The AG to be generated targets a network structured in a tree
topology in Fig.4. The attacker from the Internet has the option
to compromise any of the servers. With a compromised server
as a foothold, the attacker can subsequently attack any of
the workstations connected to the server via LAN. The target
network has 150 computers, 20% of which have a vulnerability
to be exploited. The generated AG has 5,859,375 states and
56,640,625 edges. The storage cost is 13.5GB, which is not
small compared with the limited memory capacity of single
computers.

As the baseline configuration, two compute nodes are tested
first, each with the number of threads per-node tuned from 2
to 40, which matches the maximum number of CPUs per-
node. Fig.5 shows that as the number of threads in the multi-
threaded phase increases, the total execution time decreases.
Considering only phase 2, its execution time reduces about
50% each time the number of threads doubles, demonstrating
the effectiveness of intra-node parallelism in accelerating the
AG generation process. Based on the algorithm in Fig.3, there
is only one MPI send/recv communication between node 0
(master) and node 1 during phase 3 to merge partial AGs. For
the case of 40 OpenMP threads per-node, the breakdown of
the execution time:

Fig. 5. Baseline performance with two compute nodes. Each node has 40
CPUs (Intel Xeon E5-2650 @2.3Ghz) and one 32GB memory.

Fig. 6. Tune the number of compute nodes. Node configuration: 8 OpenMP
threads; 32 GB memory per-node; CPU-Intel Xeon E5-2650 @2.3Ghz.

phase 1 total: 0.48 seconds
phase 2 total: 65.65 seconds
Phase 3 total: 69.47 seconds
- MPI comm prep: 0.65 seconds
- MPI send/recv: 23.95 seconds
- Merging states: 2.58 seconds
- Merging edges: 42.29 seconds
total time: 136.62 seconds

Phase 1 takes a very short duration to prepare the workload
for the multi-threaded phase 2. However, phase 3 contributes
the largest amount to the total execution time. While the time
for MPI send/recv is a necessary cost (23.95 seconds) for the
AG merging process, merging edges takes a longer time of
42.29 seconds, implying that further optimization is required.

The next experiment tunes the number of invoked compute
nodes. Specially, the execution times of the three phases are
compared under 2-node, 3-node and 4-node settings. As Fig.6
suggests, invoking more compute nodes increases the overall
execution time. From 2 nodes to 4 nodes, the three settings
spend approximately equal time on phase 1 and 2. However,



phase 3 becomes more expensive. This trend is attributed to
a larger overhead on MPI send/recv communication between
compute nodes. For example, under 4-node settings, node 1,
2 and 3 must send their AG states and edges (essentially the
partial AG itself) to node 0 for merging. In an application
setting where merging partial AGs is not required, the time of
phase 3 will not be a factor. As a result, the total execution
time is expected to be non-increasing even if more compute
nodes are enlisted.

On the other hand, although the total running time is
unsatisfactory due to the implementation of phase 3, the
benefits of running with multiple HPC nodes to mitigate the
pressure of memory usage should not be overlooked. Our
experimental AG needs 13.5GB of storage. A typical OSCER
compute node provides about 30GB memory, which can be
shared by at most 2 of our MPI processes. Mapping more
processes to each node results in unsuccessful launching of the
MPI program. With these processes more sparsely distributed,
such as one process per-node in the conducted experiments,
a master node easily allocates space for the storage of two
partial AGs: one for itself and the other for buffering the AG
received from other nodes. Execution time is not the only goal
of an efficient solution to AG generation. Designing an AG
generator to run on HPC clusters will need to strike a balance
between minimizing execution time and distributing storage
cost on participating nodes.

B. Optimization

To reduce overhead of merging AGs, we propose the
following options to accelerate phase 3 of our AG generator.

• Option 1: create multiple threads in the master node, and
each thread receives and merges one partial AG. This
option means each thread in the master node must have
its own buffer to store a partial AG, which results in a
higher memory demand on the master node.

• Option 2: create a software pipeline on the master node
with multiple threads. Some threads serve as produc-
ers only receiving new partial AGs, while others as
consumers only merge those already received into the
complete AG.

• Option 3: create a hierarchical merging process, which
aims to accelerate when more than four nodes are in-
voked. For instance, the even ID-ed processes merge into
the adjacent odd ID-ed first, then the odd ID-ed ones
merge together to build the complete AG.

As of the writing of this paper, experiments are underway to
evaluate these optimization options. Option 3 is tested with
the same cluster setting as the experiments already conducted.
Both option 1 and 2 require more memory than the current
implementation, and they are being tested on OSCER’s large
memory queues.

V. CONCLUSIONS AND FUTURE WORK

To address the scalability issue of AG generation, this
paper presents a parallel algorithm and implementation on
HPC clusters. The proposed algorithm partitions the generation

process into three phases. Phase 1 runs a single thread per-
node to prepare enough workload for multiple threads. Phase
2 runs a hybrid of MPI processes and OpenMP threads to
accelerate the exploration of partial AGs. Phase 3 merges
partial AGs into a complete one through MPI communications.
The experimental results reveal that AG generation on HPC
clusters can achieve an equilibrium between accelerating the
generation process and reducing the memory demands on the
computing device. For subsequent research, we will complete
the design and experiments that optimize the merging of
partial AGs. In addition, we will explore possible solutions
to eliminate the need to merge partial AGs on a master node,
for instance, via building a distributed database to store AG
nodes and edges.

ACKNOWLEDGMENT

The computing of this project was performed at the OU
Supercomputing Center for Education & Research (OSCER) at
the University of Oklahoma (OU). OSCER Research Comput-
ing Facilitator Thang Ha provided valuable technical expertise.

REFERENCES

[1] X. Ou, S. Govindavajhala, A. W. Appel et al., “Mulval: A logic-based
network security analyzer.” in USENIX security symposium, vol. 8.
Baltimore, MD, 2005, pp. 113–128.

[2] M. Ibrahim, Q. Al-Hindawi, R. Elhafiz, A. Alsheikh, and O. Alquq,
“Attack graph implementation and visualization for cyber physical
systems,” Processes, vol. 8, no. 1, p. 12, 2019.

[3] B. Yiğit, G. Gür, F. Alagöz, and B. Tellenbach, “Cost-aware securing of
iot systems using attack graphs,” Ad Hoc Networks, vol. 86, pp. 23–35,
2019.

[4] A. Ibrahim, S. Bozhinoski, and A. Pretschner, “Attack graph generation
for microservice architecture,” in Proceedings of the 34th ACM/SIGAPP
symposium on applied computing, 2019, pp. 1235–1242.

[5] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk manage-
ment using bayesian attack graphs,” IEEE Transactions on Dependable
and Secure Computing, vol. 9, no. 1, pp. 61–74, 2011.

[6] C. Phillips and L. P. Swiler, “A graph-based system for network-
vulnerability analysis,” in Proceedings of the 1998 workshop on New
security paradigms, 1998, pp. 71–79.

[7] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Automated
generation and analysis of attack graphs,” in Proceedings 2002 IEEE
Symposium on Security and Privacy. IEEE, 2002, pp. 273–284.

[8] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to
attack graph generation,” in Proceedings of the 13th ACM conference
on Computer and communications security, 2006, pp. 336–345.

[9] K. Ingols, R. Lippmann, and K. Piwowarski, “Practical attack graph gen-
eration for network defense,” in 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06). IEEE, 2006, pp. 121–130.

[10] S. Jajodia, S. Noel, and B. O’berry, “Topological analysis of network
attack vulnerability,” Managing Cyber Threats: Issues, Approaches, and
Challenges, pp. 247–266, 2005.

[11] K. Kaynar and F. Sivrikaya, “Distributed attack graph generation,” IEEE
Transactions on Dependable and Secure Computing, vol. 13, no. 5, pp.
519–532, 2015.

[12] N. Cao, K. Lv, and C. Hu, “An attack graph generation method based
on parallel computing,” in International Conference on Science of Cyber
Security. Springer, 2018, pp. 34–48.

[13] M. Li, P. Hawrylak, and J. Hale, “Concurrency strategies for attack graph
generation,” in 2019 2nd International Conference on Data Intelligence
and Security (ICDIS). IEEE, 2019, pp. 174–179.

[14] OSCER. Available: https://ou.edu/oscer. (Accessed: May 1st, 2024).
[15] M. Li, P. J. Hawrylak, and J. Hale, “Implementing an attack graph

generator in cuda,” in 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2020, pp. 730–
738.

https://ou.edu/oscer


[16] M. Li, P. Hawrylak, and J. Hale, “Strategies for practical hybrid attack
graph generation and analysis,” Digital Threats: Research and Practice,
vol. 3, no. 4, pp. 1–24, 2022.


	Introduction
	Related Research
	Logical AGs
	Multi-threaded AG Generation

	AG Generation On HPC Clusters
	AG Model
	Parallel AG Generator on HPC Clusters

	Performance Evaluation
	Performance Evaluation
	Optimization

	Conclusions and Future Work
	References

