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Abstract
With the widespread adoption of cloud computing, the need for
outsourcing statistical analysis to third-party platforms is growing
rapidly. However, handling sensitive data such as medical records
and financial information in cloud environments raises serious pri-
vacy concerns. In this paper, we present PP-STAT , a novel and effi-
cient Homomorphic Encryption (HE)-based framework for privacy-
preserving statistical analysis. HE enables computations to be per-
formed directly on encrypted data without revealing the under-
lying plaintext. PP-STAT supports advanced statistical measures,
including Z-score normalization, skewness, kurtosis, coefficient of
variation, and Pearson correlation coefficient, all computed securely
over encrypted data. To improve efficiency, PP-STAT introduces
two key optimizations: (1) a Chebyshev-based approximation strat-
egy for initializing inverse square root operations, and (2) a pre-
normalization scaling technique that reduces multiplicative depth
by folding constant scaling factors into mean and variance computa-
tions. These techniques significantly lower computational overhead
and minimize the number of expensive bootstrapping procedures.
Our evaluation on real-world datasets demonstrates that PP-STAT
achieves high numerical accuracy, with mean relative error (MRE)
below 2.4 × 10−4. Notably, the encrypted Pearson correlation be-
tween the smoker attribute and charges reaches 0.7873, with an
MRE of 2.86×10−4. These results confirm the practical utility of PP-
STAT for secure and precise statistical analysis in privacy-sensitive
domains.

CCS Concepts
• Security and privacy→ Domain-specific security and pri-
vacy architectures; • Mathematics of computing→ Probabil-
ity and statistics.

Keywords
Homomorphic Encryption, CKKS scheme, Statistical analysis, Privacy-
preserving computation
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1 Introduction
Statistical analysis services are increasingly deployed across do-
mains such as finance, education, and healthcare. These services
rely on core statistical measures—such as Z-score normalization, co-
efficient of variation, skewness, kurtosis, and Pearson correlation co-
efficient—to extract meaningful patterns from data [4, 10, 19, 27, 28].

To scale these services, cloud computing has become a de facto
solution. However, outsourcing sensitive data to public cloud plat-
forms raises serious privacy concerns, including the risk of unautho-
rized access or data leakage. To mitigate such threats, homomorphic
encryption (HE) enables computation directly over encrypted data
without decryption, supporting a variety of privacy-preserving
machine learning and statistical workloads [17, 18, 23, 26].

Among existing HE schemes, the Cheon-Kim-Kim-Song (CKKS)
scheme [14] is particularly suited for real-valued computations,
making it a practical foundation for encrypted analytics. However,
despite its flexibility, CKKS poses significant implementation chal-
lenges: it only supports polynomial operations (addition, multiplica-
tion, and rotation), requiring complex polynomial approximations
for non-linear functions. As a result, managing ciphertext noise and
computational depth becomes a critical bottleneck in large-scale
HE-based statistical analysis.

Despite growing interest, existing HE-based frameworks for
data analysis are often closed-source or limited in scope, mak-
ing practical adoption difficult. To address these limitations, we
present PP-STAT , an efficient and scalable open-source framework
for encrypted statistical analysis. PP-STAT implements five foun-
dational statistical operations—Z-score normalization, coefficient
of variation, skewness, kurtosis, and Pearson correlation coeffi-
cient—executed securely under the CKKS scheme. Many statistical
measures in PP-STAT rely on the inverse square root operation,
which is non-trivial to implement efficiently under HE. Existing
methods such as Goldschmidt or Newton’s method [11] have been
adapted for HE, but typically assume fixed initial guesses. For ex-
ample, Lee et al. [26] use 𝑦0 = 1 as the initial value in Newton’s
method, which leads to slow convergence and reduced accuracy for
small 𝑥 . Panda et al. [30] improved initialization via a homomorphic
sign function (Pivot-Tangent method), but the approach requires
six bootstrapping operations.
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To overcome these limitations, we propose CryptoInvSqrt, a
Chebyshev-based initialization method for Newton’s iteration un-
der HE. It achieves faster convergence while significantly reducing
bootstrapping overhead. Specifically, CryptoInvSqrt requires only
two bootstrapping operations, which is 2.5× and 3× fewer than
those used in Lee et al. [26] and Panda et al. [30], respectively. On
the interval [0.001, 100], CryptoInvSqrt achieves a mean relative
error (MRE) of 5.08 × 10−5, outperforming Pivot-Tangent (MRE:
3.73× 10−4) while using less than half its bootstrapping operations.
We further evaluate PP-STAT on two real-world datasets: Adult
and Insurance. When computing the encrypted Pearson correlation
coefficient between the smoker and charges attributes in the In-
surance dataset, PP-STAT produces a value of 0.7873, with a mean
relative error of 2.25× 10−4. This result demonstrates that accurate
and meaningful statistical analysis can be conducted directly over
encrypted data without revealing sensitive information.

Our contributions are as follows:
• We present PP-STAT , an efficient and scalable HE-based
framework that supports five advanced statistical operations:
Z-score normalization, kurtosis, skewness, coefficient of vari-
ation, and Pearson correlation coefficient—over encrypted
data.
• We propose CryptoInvSqrt, a Chebyshev-based initialization
for Newton’s method that reduces bootstrapping to two
rounds with higher accuracy and faster runtime than prior
work. We also introduce pre-normalization scaling, enabling
higher-degree Chebyshev polynomials within fixed multi-
plicative depth to improve accuracy without extra cost.
• We empirically demonstrate that PP-STAT achieves high
numerical accuracy on large-scale datasets. For example, Z-
score normalization over one million records in the domain
[0, 100] yields an MRE of 4.18 × 10−5.
• We validate the practical utility of PP-STAT through experi-
ments on two real-world datasets, Adult and Insurance. In
the Insurance dataset, it identifies a strong correlation (Pear-
son correlation coefficient = 0.7873) between smoker and
charges, with an MRE of 2.25 × 10−4.
• The full implementation of PP-STAT is publicly available
at https://github.com/hm-choi/pp-stat. All experiments are
fully reproducible and serve as a resource for further research
and deployment.

2 Related Work
2.1 Inverse Square Root over HE
Cheon et al. [16] proposedHE-basedmethods for computing inverse
and square root values, using Goldschmidt’s division algorithm [21]
and Wilkes’s algorithm [31], respectively. These approaches rely
solely on addition and multiplication, but do not provide a unified
method for inverse 𝑛-th root computation, which is frequently re-
quired in statistical analysis. Lee et al. [26] introduced HEaaN-STAT,
a framework supporting various statistical operations under HE.
For inverse 𝑛-th root, it applies Newton’s iteration with a fixed ini-
tial value, but does not optimize the initialization for convergence
or depth reduction. Panda et al. [30] proposed the Pivot-Tangent
method, which estimates a better initial point for Newton’s iteration
by evaluating a sign function. While this improves convergence,

the sign function is computationally expensive under HE due to its
non-linear nature. In contrast, our approach leverages Chebyshev
approximation to generate accurate initial guesses. This enables
efficient inverse square root computation with fewer Newton itera-
tions and significantly reduced bootstrapping overhead.

2.2 Statistical Analysis over HE
Several frameworks have been developed for encrypted machine
learning. HElayers [2] supports neural networks and decision trees
using a tensor-based abstraction. TenSEAL [8] enables encrypted
tensor computations for logistic regression and convolutional net-
works. UniHENN [17] proposes an HE-friendly CNN inference
architecture with approximation and batching strategies. While
effective for ML workloads, these systems provide limited support
for general-purpose statistical analysis. In contrast, PP-STAT fo-
cuses on foundational measures such as Z-score normalization,
skewness, and kurtosis, and incorporates Chebyshev-based inverse
square root approximation—an optimization not available in exist-
ing frameworks.

3 Background
3.1 Homomorphic Encryption (HE)
Homomorphic Encryption (HE) is an encryption scheme that al-
lows computation on encrypted data without decryption. Following
Gentry’s blueprint of HE in 2009 [20], there have been many studies
about HE. The Cheon-Kim-Kim-Song (CKKS) scheme [14] is the
fourth generation of HE that supports the encryption of a vector of
real or complex numbers with predefined size. The CKKS scheme
supports approximate arithmetic operations on real or complex
vectors, including addition (Add), multiplication (Mul), and rota-
tion (Rot), where Rot refers to cyclic slot-wise permutation. While
rotation (Rot) is supported by CKKS and used implicitly during
ciphertext evaluation (e.g., in bootstrapping), it is not discussed
explicitly in this paper. The allowed vector size is called the number
of slots. The allowed maximum number of multiplication of CKKS
is called depth, which is predefined in the key generation. If the
number of multiplications exceeds the depth, then the decryption
result is not guaranteed. The remaining allowed number of multi-
plication in a ciphertext is called level and denoted as 𝐿. The scale
factor Δ guarantees the precision of the ciphertext. Add (C) and
Mul (C) denote element-wise operations between two ciphertexts,
e.g., 𝐴𝑑𝑑 (𝐶 (v1),𝐶 (v2)) = 𝐶 (v1 ⊕ v2). Add (P) and Mul (P) operate
between a ciphertext and a plaintext vector (or a constant).

3.2 Bootstrapping in the CKKS Scheme
If a ciphertext’s level reaches zero, further multiplication operations
cannot be performed. To overcome this limitation, Gentry [20]
proposed bootstrapping, a technique that refreshes a ciphertext’s
level back to its initial ciphertext. Following Cheon [13], numerous
studies have been conducted to optimize the bootstrapping process
in the CKKS scheme [5, 6, 12].

However, bootstrapping in the CKKS scheme remains computa-
tionally expensive and time-consuming, as it involves encrypted
Fourier transform operations.

https://github.com/hm-choi/pp-stat
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Table 1 summarizes the runtime (in milliseconds) of addition,
multiplication, and bootstrapping operations in the Lattigo [1] li-
brary. We set the ring degree to 𝑁 = 216 with a scale factor of
Δ = 240. The total modulus size log2 (𝑃𝑄) is set to 1443 bits, and
the number of slots is 32,768.

Each value represents the mean runtime over ten trials, with the
standard deviation shown in parentheses.

Table 1: Runtime comparison of HE operations in Lattigo
(depth = 11). All values are in milliseconds, averaged over ten
trials.

Operation Addition Multiplication Bootstrapping

Runtime (ms) 6.41 (1.27) 196.35 (6.69) 43478.77 (302.74)

As shown in Table 1, bootstrapping requires more than 221.44×
the runtime of multiplication.

3.3 Newton’s Method
The Newton’s Method (Newton-Raphson Method [3]) is an in-
cremental algorithm to find a root 𝛼 of a given function 𝑓 . It
starts with an initial value 𝑥0, calculate the updating equation
𝑥𝑛+1 = 𝑥𝑛 − 𝑓 (𝑥𝑛)/𝑓 ′ (𝑥𝑛) until the error between the estimated
value 𝑥𝑛+1 and the real value 𝛼 . In this section, we only consider
Newton’s method to find an inverse square root. It is described in
Algorithm 1).

Algorithm 1 Newton’s method for the inverse square root operation

1: Input: An initial point 𝑥0, 𝑦0 is an initial approximation at 𝑥0,
𝑑 is the number of iterations

2: Output: An approximation 𝑦𝑑 .
3: for 𝑖 = 1 to 𝑑 do
4: 𝑦𝑖 ← 0.5 · 𝑦𝑖−1 · (3 − 𝑥0 · 𝑦2𝑖−1)
5: end for
6: return 𝑦𝑑

Newton’s method converges very fast when the initial value 𝑥0 is
close to the real value 𝛼 , but if 𝑥0 is far from 𝛼 , then it may diverge.
Thus, it is important to find a good initial value 𝑥0 for finding the
suitable estimated result of the Newton’s method.

3.4 Polynomial Approximation
The CKKS scheme allows arithmetic operations such as addition
and multiplication, but only supports polynomial operations. Non-
polynomial functions, such as square root or absolute value, cannot
be directly supported in CKKS. Many previous approaches about im-
plementing non-polynomial type of function use the approximation
methods to convert it to a polynomial function. For instance, the ap-
proximated polynomial of the sign function can be obtained using
the minimax approximation methods [15, 24, 25], and sine function
used in the modulus evaluation in the bootstrapping obtained by
Chebyshev approximation [12, 22].

3.5 Approximation Algorithm for Inverse
Square Root

To find an inverse square root of a given encrypted value, authors
in [29] obtained a square root using Newton’s method first with
Goldschmidt’s algorithm to get the inverse of it. However, for fast
convergence, Goldschmidt’s algorithm requires a suitable initial
point of 1/

√
𝑥 .

Panda et al [30] suggest a novel method Pivot-Tangent, a 2-line
approximation to find a polynomial of an approximation of inverse
square root using the pivot point and sign function. It overcomes
the challenge of finding a good initial point for faster Newton’s
iteration, they split a domain [𝑎, 𝑏] as two intervals [𝑎, 𝑃] and
[𝑃,𝑏] as a pivot point 𝑃 , and combine them using a function 𝛽 (𝑥) =
𝑠𝑡𝑒𝑝 (𝑃/(𝑏 − 𝑎), 𝑥/(𝑏 − 𝑎)) where 𝑠𝑡𝑒𝑝 (𝑥) = (1 + 𝑠𝑖𝑔𝑛(𝑥))/2. The
initial point ℎ(𝑥) of 𝑥 using the Newton’s method can be derived
as follows:
ℎ(𝑥) = (1 − 𝛽 (𝑥)) · 𝐿1 (𝑥) + 𝛽 (𝑥) · 𝐿2 (𝑥) where

𝐿1 (𝑥) = −0.5 · 𝑘2 · 𝑥−1.51 · 𝑥 + 1.5 · 𝑘2/
√
𝑥1

𝐿2 (𝑥) = −0.5 · 𝑘2 · 𝑥−1.52 · 𝑥 + 1.5 · 𝑘2/
√
𝑥2

In [30] amethod to find the pivot point 𝑃 and parameters𝑘1, 𝑘2, 𝑥1, 𝑥2
and some examples of them are suggested. The convergence time
of the algorithm is about half of them in [29] using both Newton’s
method and Goldschmidt’s algorithm.

4 Overview of PP-STAT
We present PP-STAT , a HE-based framework for privacy-preserving
statistical analysis over encrypted client data. An overview of the
system architecture is shown in Figure 1.

Figure 1: System overview of PP-STAT .

PP-STAT supports advanced statistical operations including Z-
score normalization, skewness, kurtosis, coefficient of variation, and
Pearson correlation coefficient. These operations require inverse or
inverse square root operations, which are not natively supported
by the CKKS scheme. To address this, PP-STAT introduces an op-
timized Chebyshev polynomial approximation—CryptoInvSqrt for
computing both 1/𝑥 and 1/

√
𝑥—and reuses them across all statistical

functions to reduce depth and improve computational efficiency.
The system follows a standard client-server model:
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1○ The client encrypts sensitive input data using the public key
and sends it to the server along with evaluation keys. The
secret key is kept private and never leaves the client.

2○ The server performs statistical operations over the encrypted
data using PP-STAT ’s supported operations.

3○ The client receives the encrypted results and decrypts them
locally to obtain the final statistical outputs.

Section 5 provides the technical details of the CryptoInvSqrt
construction. Section 6 presents the algorithms used to compute
the five supported statistical measures.

5 HE-Based Inverse and Inverse Square Root
Computation

In this work, we define a unified function CryptoInvSqrt to represent
the𝑛-th inverse root operation of the form 𝑥−1/𝑛 . This general form
covers both inverse (𝑛 = 1) and inverse square root (𝑛 = 2), and
is used throughout the paper for consistent construction and opti-
mization under HE. The operation serves as a core computational
primitives for several statistical functions in PP-STAT , including
Z-score normalization, covariance, kurtosis, skewness, and Pearson
correlation coefficient.

5.1 HE implementation of the inverse square
root

CryptoInvSqrt is designed to estimate suitable initial values for
Newton’s method in computing inverse 𝑛-th square roots under
encryption. Notably, the inverse operation corresponds to the case
where 𝑛 = 1. Algorithm 2 describes a HE implementation of New-
ton’s method for approximating the inverse 𝑛-th square root of an
encrypted input. The accuracy of this method critically depends
on the initial guess 𝑦0, which should closely approximate the true
inverse 𝑛-th root of the encrypted input 𝑥 . However, since 𝑥 is
encrypted in the HE setting, selecting a suitable 𝑦0 is challenging.

Algorithm 2 HE-based Newton’s method for inverse 𝑛-th square root

1: Input:
• 𝑐𝑡𝑥 : Ciphertext of 𝑥 .
• 𝑐𝑡0: Ciphertext of 𝑦0.
• 𝑑 : Number of iterations

2: Output:
• 𝑐𝑡𝑑 : Approximation ciphertext.

3: if 𝑛 ≥ 2 then
4: 𝑐𝑡𝑥 ← 𝑀𝑢𝑙 (𝑃) (𝑐𝑡𝑥 , 1/𝑛)
5: end if
6: for 𝑖 = 1 to 𝑑 do
7: 𝑡𝑚𝑝𝑎 ← 𝑀𝑢𝑙 (𝑃) (𝑐𝑡𝑖−1, (𝑛 + 1)/𝑛)
8: 𝑡𝑚𝑝𝑏 ← 𝑀𝑢𝑙 (𝐶) (𝑐𝑡𝑥 , 𝑐𝑡𝑖−1)
9: for 𝑗 = 1 to 𝑛 do
10: 𝑡𝑚𝑝𝑏 ← 𝑀𝑢𝑙 (𝐶) (𝑡𝑚𝑝𝑏 , 𝑐𝑡𝑖−1)
11: end for
12: 𝑐𝑡𝑖 ← 𝑆𝑢𝑏 (𝐶) (𝑡𝑚𝑝𝑎, 𝑡𝑚𝑝𝑏 )
13: end for
14: return 𝑐𝑡𝑑

Lee et al. [26] use a fixed constant for the initial value 𝑦0 (e.g.,
𝑦0 = 1), which leads to slow convergence. Their method requires
25 and 21 Newton iterations for inverse 𝑛-th root with 𝑛 = 1 and
𝑛 = 2, respectively. This results in deep computation graphs and a
total of five bootstrapping operations to maintain noise levels.

Panda et al. [30] improve the initialization by applying a homo-
morphic sign function, but their method still consumes six boot-
strapping operations due to the additional depth required for poly-
nomial evaluations and iterative refinement.

In contrast, CryptoInvSqrt approximates 𝑦0 using a Chebyshev
polynomial, which enables fast convergence in just 6 Newton it-
erations. Our method requires only two bootstrapping operations
in total—less than half of Lee et al.’s and one-third of Panda et
al.’s—while achieving higher accuracy and faster runtime. See Ex-
periment 1 in Section 7.

Algorithm 3 Initial value estimation for inverse 𝑛-th square root
using Chebyshev approximation
1: Input:

• 𝑐𝑡𝑥 : Ciphertext of 𝑥 (assumed in [0, 1])
• 𝑑 : Degree of Chebyshev approximation
• 𝑛: Root degree (e.g., 1 for Inv, 2 for InvSqrt)

2: Output:
• 𝑐𝑡0: Initial approximation ciphertext

3: 𝑐𝑡0 ← ChebyshevApprox(𝑐𝑡𝑥 , 𝑑)
4: 𝑐𝑡0 ← Bootstrapping(𝑐𝑡0)
5: if 𝑛 == 2 then
6: 𝑐𝑡0 ← Mul(𝑐𝑡0, 𝑐𝑡0)
7: end if
8: return 𝑐𝑡0

In Algorithm 3, a unified initial approximation is used for both
inverse and inverse square root computations. Specifically, Inv(𝑥)
can be computed by squaring InvSqrt(𝑥), eliminating the need for
separate approximations.

5.2 Domain Mapping for CryptoInvSqrt
Since Chebyshev approximation is defined on the interval [−1, 1],
we set the function 𝐹 (𝑥) as a shifted version of the inverse square
root function to match this domain. The function is given as:

𝐹 (𝑥) =
{ 1√

𝑥+1
if 𝑥 > −1,

0 if 𝑥 ≤ −1.
(1)

This definition ensures that 𝐹 (𝑥) is continuous on [−1, 1] and
can be approximated using Chebyshev polynomials. The shift by
+1 maps the original domain [0, 2] of the inverse square root to the
standard Chebyshev domain. A polynomial 𝑝1 (𝑥) of fixed degree
can be constructed to approximate 𝐹 (𝑥) over the domain [−1, 1]
using Chebyshev approximation. This transformation shifts the
Chebyshev approximation back to the original inverse square root
domain. As a result, AppInvSqrt(𝑥) closely approximates 1/

√
𝑥

over 𝑥 ∈ [0, 2], while remaining Chebyshev-compatible in the
computational pipeline.
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6 Statistical Operations with CryptoInvSqrt
PP-STAT supports five advanced statistical operations: Z-score nor-
malization, kurtosis, skewness, Pearson correlation coefficient, and
coefficient of variation, as introduced in Section 1. All these mea-
sures fundamentally rely on inverse or inverse square root opera-
tions, which are implemented using the optimized CryptoInvSqrt
method presented in Section 5. In this section, we detail the HE-
based constructions of these operations and describe how our op-
timizations reduce multiplicative depth and improve runtime. For
brevity, we omit the full description of skewness, as its computa-
tional structure closely mirrors that of kurtosis.

6.1 Pre-normalization Scaling: Reducing Depth
via Constant Folding

To ensure stable bootstrapping and accurate polynomial approx-
imation, inputs to CryptoInvSqrt must lie within a bounded do-
main—typically [−1, 1] for bootstrapping and [0, 2] for Chebyshev
approximation. However, intermediate results such as variance and
mean often exceed these ranges in practical applications. For exam-
ple, the standard deviation in Z-score normalization can exceed 2,
placing its inverse square root outside the approximable range of
Chebyshev polynomials. To address this, we rescale intermediate
values by multiplying the input ciphertexts with a constant fac-
tor 1/𝐵, where 𝐵 is a predefined bound. Unlike the conventional
normalization method—which applies scaling after computing sta-
tistics such as variance and thus consumes an extra multiplicative
level—our pre-normalization scaling embeds the constant factor di-
rectly into the computation of mean and variance. This eliminates
the additional multiplicative level overhead without compromising
numerical correctness. Since computing variance already requires
two levels (due to squaring and averaging), our method keeps the
total depth prior to applying CryptoInvSqrt at two instead of three.
This transformation is shown in Equation 2.

𝐵 · Var(𝑋 ) = 𝐵 ·
(
𝐸 [𝑋 2 ] − 𝐸 [𝑋 ]2

)
(2)

= 𝐵 ·
(∑︁ (

𝑋/
√
𝑁

)2
−

(∑︁
𝑋/𝑁

)2)
(3)

=
∑︁ (

𝑋/
√︁
𝑁 /𝐵

)2
−

(∑︁
𝑋/(𝑁 /

√
𝐵)

)2
(4)

This manipulation folds the constant 𝐵 into the normalization
coefficients, allowing it to be applied earlier via plaintext multipli-
cation. As a result, we reduce the cost of computing variance from
three multiplicative levels to two before applying CryptoInvSqrt.
To reflect this rescaling in the approximation, we modify the target
function for inverse square root operation as:

𝐹 (𝑥, 𝐵) =
{ 1√

𝐵 ·
√
𝑥+1

if 𝑥 ≥ −1
0 otherwise

(5)

We define CryptoInvSqrt(𝑥, 𝐵) as the Chebyshev approximation
of 𝐹 (𝑥, 𝐵) in Equation 5, ensuring numerical compatibility with the
scaled variance. This strategy can also be applied to compute the
square root of variance, as used in the coefficient of variation. For
that, we define a scaled square root function:

𝐹 (𝑥, 𝐵) =
{√

𝐵 ·
√
𝑥 + 1 if 𝑥 ≥ −1

0 otherwise
(6)

Let CryptoSqrt(𝑥, 𝐵) denote the Chebyshev polynomial that ap-
proximates Equation 6.We also apply this pre-normalization scaling

technique to the mean operation:

Mean(𝑥, 𝐵) :=
∑︁ ( 𝑥𝑖

𝐵 · 𝑁

)
=

1
𝐵
· Mean(𝑥 )

Variance(𝑥, 𝐵) :=
∑︁ ((

𝑥𝑖

𝐵 ·
√
𝑁

)2)
−

(∑︁ ( 𝑥𝑖

𝐵 · 𝑁

))2
=

1
𝐵2 · Var(𝑥 )

This constant-folding strategy reduces multiplicative depth by
one level and is applicable to both mean and variance. An additional
benefit of this method is that it enables the use of higher-degree
Chebyshev polynomials under the same depth constraint. For exam-
ple, in Z-score normalization, the maximum allowable Chebyshev
degree is 28 − 1 under depth 11 without pre-normalization scaling.
With this technique, we can raise the polynomial degree to 29 − 1
without increasing the number of bootstrapping rounds, thereby
improving approximation accuracy without incurring additional
computational cost.

6.2 Z-Score Normalization (ZNorm)
Z-score normalization is a standard statistical technique used to
standardize values across datasets by removing the influence of
differing means and variances. It is computed as the difference
between a value and the mean, divided by the standard deviation:

ZNorm(𝑋 ) = 𝑋 − 𝜇

𝜎

Given that the standard deviation is the square root of the variance,
computing its reciprocal reduces to evaluating the inverse square
root of the variance. This can be efficiently approximated using
CryptoInvSqrt, enabling low-depth Z-score normalization under HE.
We apply a scaling factor 𝐵 during the variance operation to fit the
input into the valid approximation range. The corresponding cor-
rection factor 𝐵2 is passed to CryptoInvSqrt to ensure numerical
consistency. The complete procedure is presented in Algorithm 4.

Algorithm 4 HE-based Z-score Normalization (ZNorm)
Input: 𝑐𝑡𝑋 : Ciphertext of input vector 𝑋
Output: 𝑐𝑡𝑧𝑛𝑜𝑟𝑚 : Ciphertext of ZNorm(𝑋 )
1: 𝑐𝑡𝜇 ← Mean(𝑐𝑡𝑋 )
2: 𝑐𝑡𝑣𝑎𝑟 ← Variance(𝑐𝑡𝑋 , 𝐵)
3: 𝑐𝑡𝑏 ← CryptoInvSqrt(𝑐𝑡𝑣𝑎𝑟 , 𝐵2)
4: 𝑐𝑡𝑎 ← Sub(𝐶) (𝑐𝑡𝑋 , 𝑐𝑡𝜇 )
5: 𝑐𝑡𝑧𝑛𝑜𝑟𝑚 ← Mul(𝐶) (𝑐𝑡𝑎, 𝑐𝑡𝑏 )
6: return 𝑐𝑡𝑧𝑛𝑜𝑟𝑚

6.3 Kurtosis (Kurt)
Kurtosis is a statistical measure that quantifies the heaviness of
the tails of a distribution relative to a normal distribution. It is
defined as the ratio of the fourth central moment to the square of
the variance:

Kurt[𝑋 ] = 𝐸 [ (𝑥 − 𝐸 [𝑋 ] )4 ]
(𝐸 [ (𝑥 − 𝐸 [𝑋 ] )2 ] )2

In HE, we compute the fourth central moment and the square of
the variance homomorphically. The denominator is strictly non-
negative, allowing us to apply an inverse square root approximation
to its square for better depth efficiency. Algorithm 5 outlines the
full procedure.
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Algorithm 5 HE-based Kurtosis (Kurt)
Input: 𝑐𝑡𝑋 : Ciphertext of input vector 𝑋
Output: 𝑐𝑡𝑘𝑢𝑟𝑡 : Ciphertext of Kurt(𝑋 )
1: 𝑐𝑡𝜇 ← Mean(𝑐𝑡𝑋 )
2: 𝑐𝑡𝑥1 ← Sub(𝑐𝑡𝑋 , 𝑐𝑡𝜇 )
3: 𝑐𝑡𝑥2 ← Mul(𝐶) (𝑐𝑡𝑥1, 𝑐𝑡𝑥1)
4: 𝑐𝑡𝑥4 ← Mul(𝐶) (𝑐𝑡𝑥2, 𝑐𝑡𝑥2)
5: 𝑐𝑡𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 ← Mean(𝑐𝑡𝑥4)
6: 𝑐𝑡𝑣𝑎𝑟 ← Variance(𝑐𝑡𝑋 , 𝐵)
7: 𝑐𝑡𝑖𝑛𝑣 ← CryptoInvSqrt(𝑐𝑡𝑣𝑎𝑟 , 𝐵2)
8: 𝑐𝑡𝑖𝑛𝑣2 ← Mul(𝐶) (𝑐𝑡𝑖𝑛𝑣, 𝑐𝑡𝑖𝑛𝑣)
9: 𝑐𝑡𝑖𝑛𝑣4 ← Mul(𝐶) (𝑐𝑡𝑖𝑛𝑣2, 𝑐𝑡𝑖𝑛𝑣2)
10: 𝑐𝑡𝑘𝑢𝑟𝑡 ← Mul(𝐶) (𝑐𝑡𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 , 𝑐𝑡𝑖𝑛𝑣4)
11: return 𝑐𝑡𝑘𝑢𝑟𝑡

6.4 Coefficient of Variation (CV)
The coefficient of variation (CV) is a statistical measure defined as
the ratio of the standard deviation to the mean of a given dataset.
Unlike other statistical operations, CV involves a denominator—the
mean—that can be negative. This poses a challenge for polynomial
approximations such as CryptoInvSqrt, which are typically de-
fined over non-negative domains. To address this, we define the
inverse of the mean as 1/𝜇 = CryptoInvSqrt(𝜇2). However, since
the square of the inverse square root is always positive, this ap-
proach does not produce the correct sign when the mean is negative.
To handle this, we first extract the sign of the mean using a sign
function and then apply it after the inverse operation. This enables
compatibility with the CryptoInvSqrt function while preserving the
correct output sign. The CV is then computed as follows, where
Std denotes the standard deviation:

CV(𝑥 ) = Std(𝑥 ) · sign(𝜇 )|𝜇 | = Std(𝑥 ) · CryptoInvSqrt(𝜇2 ) · sign(𝜇 )

Algorithm 6 summarizes the implementation.

Algorithm 6 HE-based Coefficient of Variation (CV)
Input: 𝑐𝑡𝑋 : Ciphertext of input vector 𝑋
Output: 𝑐𝑡𝑐𝑣 : Ciphertext of CV(X)
1: 𝑐𝑡𝜇 ← Mean(𝑐𝑡𝑋 , 𝐵)
2: 𝑐𝑡𝑠𝑖𝑔𝑛 ← Sign(𝑐𝑡𝜇 )
3: 𝑐𝑡𝜇_𝑠𝑞𝑟 ← Mul(𝐶) (𝑐𝑡𝜇 , 𝑐𝑡𝜇 )
4: 𝑐𝑡𝜇_𝑖𝑛𝑣 ← CryptoInvSqrt(𝑐𝑡𝜇_𝑠𝑞𝑟 , 𝐵)
5: 𝑐𝑡𝑣𝑎𝑟 ← Variance(𝑐𝑡𝑋 , 𝐵)
6: 𝑐𝑡𝑠𝑡𝑑 ← CryptoSqrt(𝑐𝑡𝑣𝑎𝑟 , 𝐵)
7: 𝑐𝑡𝑡𝑚𝑝 ← Mul(𝐶) (𝑐𝑡𝑠𝑡𝑑 , 𝑐𝑡𝜇_𝑖𝑛𝑣)
8: 𝑐𝑡𝑐𝑣 ← Mul(𝐶) (𝑐𝑡𝑡𝑚𝑝 , 𝑐𝑡𝑠𝑖𝑔𝑛)
9: return 𝑐𝑡𝑐𝑣

6.5 Pearson Correlation Coefficient (PCC)
The Pearson correlation coefficient (PCC) is a statistical measure
of linear dependence between two random variables. It is defined
as the ratio of their covariance to the product of their standard
deviations:

PCC(𝑋,𝑌 ) = Cov(𝑋,𝑌 )√︁
Var(𝑋 ) ·

√︁
Var(𝑌 )

Lee et al. [26] proposed a homomorphic algorithm for computing
PCC using the CKKS scheme. In our implementation, we compute
the centered versions of 𝑋 and 𝑌 , then apply mean, multiplication,
and inverse square root operations homomorphically. The inverse
square roots are approximated using CryptoInvSqrt, as in other
statistical functions. The overall procedure follows Algorithm 3 in
[26] for detailed pseudocode.

7 Experiment
7.1 Experimental Setup
We evaluate the precision and computational efficiency of PP-STAT
under standard CKKS homomorphic encryption settings. All exper-
iments are implemented using Lattigo v6 [1], an open-source HE
library written in Go that supports approximate arithmetic over real
numbers. For a fair and consistent comparison, we reimplemented
the inverse 𝑛-th square root algorithms proposed in Pivot-Tangent
and HEaaN-STAT within the same Lattigo environment.
Hardware Configuration. All experiments were conducted on
a server equipped with an Intel(R) Xeon(R) Gold 6248R CPU @
3.00GHz processor, 64GB RAM, and 500GB SSD. All implementa-
tions were executed in single-thread mode to ensure consistency
across all evaluations.
Parameter Settings.We set the ring dimension (polynomial de-
gree) to 𝑁 = 216 with a maximum depth of 27 and the scale factor
to Δ = 240. The total modulus size log2 (𝑃𝑄) is set to 1443 bits,
which supports up to 11 levels of multiplicative depth before requir-
ing bootstrapping. For bootstrapping, log2 (𝑃𝑄) is set to 744 bits.
The number of slots is 32, 768, half of 𝑁 . This configuration satis-
fies the 128-bit security level under the standard RLWE hardness
assumptions [9].

7.2 Experiment 1: Performance Comparison of
Inverse Square Root Operation

The inverse square root operation is a critical component in comput-
ing fundamental statistical measures such as Z-score normalization,
kurtosis, skewness, and the Pearson correlation coefficient in PP-
STAT . Given its central role, we evaluate the accuracy and efficiency
of the proposed CryptoInvSqrt method in comparison to existing
techniques, specifically those proposed in HEaaN-STAT and Pivot-
Tangent. In this experiment, we measure the MRE of inverse square
root operations across three methods: HEaaN-STAT , Pivot-Tangent,
and our proposed CryptoInvSqrt. Panda et al. [30] utilize a function
𝐺
(7)
3 (𝑥) as a sign function to generate a suitable initial value for

Newton’s method.𝐺 (7)3 (𝑥) denotes the 7-fold composition of the
degree-7 polynomial 𝑔3 (𝑥):

𝑔3 (𝑥 ) =
35
16𝑥 −

35
16𝑥

3 + 21
16𝑥

5 − 5
16𝑥

7 .

However, 𝐺 (7)3 (𝑥) exhibits instability in the narrow interval |𝑥 | ≤
0.01, leading to poor approximation behavior near zero. To address
this, we adopt a minimax-optimized step function [24], which, while
requiring 5 additional multiplicative levels, achieves significantly
higher precision over the entire input domain. Figure 2 compares
𝐺
(7)
3 (𝑥) (green) with the minimax approximation (blue).



PP-STAT : An Efficient Privacy-Preserving Statistical Analysis Framework using Homomorphic Encryption CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Figure 2: Comparison of step functions: 𝐺 (7)3 (𝑥) (green) vs.
minimax approximation (blue).

Both Pivot-Tangent and CryptoInvSqrt are designed to operate
directly over the input domain [0.001, 100.0] without any precon-
ditioning. In contrast, the original HEaaN-STAT method requires
inputs in the interval (0, 1]. To enable a fair comparison, we scale
the inputs for HEaaN-STAT by a factor of 1/100, and subsequently
rescale the outputs by

√
100 to align with the full domain of the

inverse square root function. To assess approximation accuracy
across a wide dynamic range, we evaluate the MRE over 32,768 real-
valued inputs sampled from [0.001, 100]. The domain is partitioned
into two subranges to capture both low- and high-value behaviors:
16,384 inputs in [0.001, 1.0] (spacing ≈ 6.10 × 10−5), and 16,384 in
[1.0, 100] (spacing ≈ 6.04 × 10−3).

Table 2 summarizes the evaluation results. Here, #BTS denotes
the number of bootstrapping operations, and Runtime (s) is mea-
sured using single-core execution. All values are averaged over
10 runs, with standard deviations shown in parentheses. Unlike
Pivot-Tangent, which supports only the narrow input domain [0, 1],
HEaaN-STAT requires normalization when operating over broader
ranges. To ensure compatibility, we scale the input data by a con-
stant factor of 1/𝐵, where 𝐵 = 100. This same factor is also applied
inside CryptoInvSqrt to maintain consistency with the transformed
domain.

Table 2: Performance comparison of inverse square root op-
eration over the input domain [0.001, 100]. The parameter B
denotes the constant scaling factor. All values are averaged
over ten runs; values in parentheses represent standard devi-
ations.

Method 𝐵 #BTS MRE Runtime (s)

HEaaN-STAT - 5 5.36 × 10−3 ( 1.05 × 10−7 ) 225.02 (3.18)
Pivot-Tangent 100.0 6 3.73 × 10−4 ( 1.68 × 10−9 ) 273.48 (5.29)
CryptoInvSqrt 100.0 2 5.08 × 10−5 ( 1.75 × 10−9 ) 94.73 (1.05)

As shown in Table 2,CryptoInvSqrt achieves the highest precision
among all methods, with a MRE of 5.08 × 10−5. While all methods
adopt Newton’s method for inverse square root approximation,
CryptoInvSqrt utilizes a Chebyshev-based strategy to determine an

optimized initial guess, significantly reducing the number of New-
ton iterations and associated bootstrapping operations. As shown
in Table 1, bootstrapping is approximately 221.44× slower than ho-
momorphic multiplication. Consequently, CryptoInvSqrt requires
fewer bootstrapping rounds and achieves the fastest runtime. To ac-
commodate the wide input domain [0.001, 100], we set the constant
scaling factor 𝐵 to 100, enabling accurate approximation within the
Chebyshev-valid range.

Compared to Pivot-Tangent, CryptoInvSqrt achieves approxi-
mately 7.34× lowerMREwhile consuming less than half the number
of bootstrapping operations. Relative to HEaaN-STAT , CryptoIn-
vSqrt delivers over 105.51× better accuracy and reduces runtime by
a factor of 2.38× (94.73s vs. 225.02s). These results highlight the ef-
fectiveness of our Chebyshev-based initialization in reducing both
multiplicative depth and latency in homomorphic inverse square
root operation.

7.3 Experiment 2: Accuracy on Large-Scale
Dataset

In this experiment, we evaluate the MRE of five core statistical
operations in PP-STAT : Z-score normalization, skewness, kurtosis,
PCC, and CV. For scalar-valued metrics (e.g., kurtosis, skewness),
MRE corresponds to the relative error between the decrypted result
and its plaintext reference. Z-score normalization is applied to raw
input distributions with wide dynamic ranges, while the remaining
operations are computed over normalized data. Since Chebyshev
polynomial approximation suffers from increased error over wide
domains, we evaluate Z-score normalization over [0, 100] and the
other measures over [0, 20]. Each experiment is conducted on one
million independently sampled real-valued inputs to simulate large-
scale data processing. Table 3 summarizes the accuracy and runtime.

Table 3: Accuracy and efficiency of Z-score normalization
evaluated over the domain [0, 100], and the remaining four
statistical measures over [0, 20]. All values are averaged over
10 trials; values in parentheses denote standard deviations.
The parameter 𝐵 denotes the constant scaling factor used for
normalization.

Measure B #BTS MRE Runtime (s)

ZNorm 100 2 4.18 × 10−5 (6.06 × 10−6) 141.29 (1.55)
Skew 20 2 8.12 × 10−3 (1.41 × 10−2) 154.10 (1.61)
Kurt 20 2 3.73 × 10−4 (6.97 × 10−6) 154.70 (1.34)
CV 20 7 1.25 × 10−4 (9.70 × 10−5) 311.08 (2.94)
PCC 20 4 2.62 × 10−4 (3.21 × 10−5) 289.86 (3.47)

Abbreviations: ZNorm = Z-score normalization, skew = skewness, kurt = kurtosis

Table 3 shows that Z-score normalization achieves high accuracy,
with an MRE of 4.18× 10−5 over the wide input domain [0, 100]. To
ensure compatibility with this domain, we apply a constant scaling
factor of 𝐵 = 100 to align the inputs to the Chebyshev-valid range.

Among the five operations, four—Z-score normalization, skew-
ness, kurtosis, and PCC—require computing the inverse square root
of variance. In contrast, the CV additionally involves computing
the inverse of the mean. These intermediate values often exceed the
valid Chebyshev approximation domain [0, 2], which may lead to
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substantial approximation error. To address this, we normalize the
variance and mean using a constant scaling factor 𝐵 = 20, applying
1/𝐵2 = 1/400 and 1/𝐵 = 1/20, respectively. This transformation
ensures compatibility with the approximation domain, while cor-
rectness is preserved through the multiplicative homomorphism of
CKKS and symmetric post-processing.

Unlike variance, which is always non-negative, the mean can be
negative. To correctly compute the inverse in such cases, we adopt
a sign-aware approach: we extract the sign using the minimax ap-
proximation [25], apply CryptoInvSqrt to the absolute value, and
reapply the sign. This is implemented using a minimax-optimized
polynomial of multiplicative depth 32, requiring three bootstrap-
ping rounds. As a result, CV incurs the highest bootstrapping cost
(seven rounds) due to its multi-phase computation, including stan-
dard deviation calculation, sign-aware inverse mean approximation,
and additional polynomial evaluations. In contrast, the other mea-
sures require at most four bootstrapping rounds, reflecting their
lower depth complexity and higher runtime efficiency.

7.4 Experiment 3: Evaluation on Real-world
Datasets

To evaluate the practical applicability of PP-STAT in real-world
settings, we conduct experiments on two widely used datasets:
the UCI Adult Income Dataset [7] and the Medical Cost Insurance
Dataset [4]. For brevity, we refer to them as Adult and Insurance,
respectively.

7.4.1 Dataset Descriptions. TheAdult dataset contains 48,842 records
with 14 attributes, including age, hours-per-week, and education-
num. It is commonly used to predict whether an individual’s income
exceeds $50,000. The Insurance dataset consists of 1,338 samples
across 7 features such as age, bmi, smoker, and charges, and is
often used in regression and cost modeling tasks.

Using PP-STAT , we compute several statistical measures—including
Z-score normalization, skewness, kurtosis, CV, and PCC—on se-
lected features from both datasets. Decrypted outputs are compared
to plaintext baselines to assess numerical accuracy.

7.4.2 Evaluation on the UCI Adult Income Dataset. We select three
continuous-valued features from the Adult income dataset (Adult
dataset): age, education-num, and hours-per-week. For each fea-
ture, we compute the mean relative error (MRE) for Z-score normal-
ization as well as for four additional statistical measures: skewness,
kurtosis (reported as excess kurtosis), CV, and PCC. In addition, we
compute the PCC between the feature pairs (age, hours-per-week)
and (age, education-num). We empirically set the constant scal-
ing factor 𝐵 to 50, based on the observation that the means of the
selected features—particularly hours-per-week typically fall be-
tween 30 and 50. The results are summarized in Table 4. As shown
in Table 4, PP-STAT maintains high accuracy across all metrics.
Z-score normalization, skewness, and kurtosis yield MREs below
3×10−3, while PCC results show errors consistently under 1.4×10−4.
CV results vary depending on feature scale, with increased error
observed in education-num, which has a relatively small mean.
This behavior aligns with the known sensitivity of CV to small
denominators.

Table 4: Evaluation of statistical operations over the Adult
dataset. We report MRE for Z-score normalization (ZNorm),
kurtosis (Kurt), skewness (Skew), and coefficient of variation
(CV) across selected features. PCC denotes the Pearson cor-
relation coefficient between feature pairs. The parameter 𝐵
denotes the constant scaling factor. All values are averaged
over ten trials; values in parentheses indicate standard devi-
ations.

Measure Feature(s) 𝐵 Output MRE Runtime (s)

ZNorm AGE 50 - 2.47 × 10−5 ( 3.39 × 10−21 ) 110.18 (2.42)
EDU 50 - 1.02 × 10−4 ( 1.36 × 10−20 ) 110.03 (1.40)
HPW 50 - 7.62 × 10−5 ( 1.36 × 10−20 ) 109.73 (1.71)

Skew AGE 50 0.5576 7.92 × 10−5 ( 1.36 × 10−20 ) 113.92 (1.83)
EDU 50 -0.3165 2.50 × 10−4 (0.00) 112.32 (2.02)
HPW 50 0.2387 1.38 × 10−4 (0.00) 111.81 (1.68)

Kurt AGE 50 -0.1844 4.81 × 10−3 (0.00) 113.20 (2.07)
EDU 50 0.6256 2.14 × 10−3 (0.00) 113.02 (1.58)
HPW 50 2.9506 7.76 × 10−4 (0.00) 112.36 (1.52)

CV AGE 50 0.3548 4.39 × 10−5 ( 6.78 × 10−21 ) 297.60 (3.84)
EDU 50 0.2551 1.10 × 10−3 ( 2.17 × 10−19 ) 295.72 (3.92)
HPW 50 0.3065 4.82 × 10−5 ( 6.78 × 10−21 ) 295.68 (3.08)

PCC AGE vs HPW 50 0.0716 1.40 × 10−4 ( 2.71 × 10−20 ) 222.39 (3.05)
AGE vs EDU 50 0.0309 1.01 × 10−4 (0.00) 222.38 (3.35)

Abbreviations: AGE = age, EDU = education-num, HPW = hours-per-week

7.4.3 Evaluation on the Medical Cost Insurance Dataset. To assess
the applicability of PP-STAT to real-world privacy-preserving sta-
tistical analysis tasks, we conduct experiments on the Medical Cost
Insurance Dataset (Insurance dataset), which includes sensitive per-
sonal and medical information often used in actuarial studies. We
select three representative features: age, bmi, and smoker, which
are frequently analyzed in medical cost prediction. Categorical or
discrete features such as sex, children, and region are excluded to
simplify encrypted operation and ensure reproducibility. Both age
and bmi are continuous variables ranging from 18 to 64 and 15.96
to 53.13, respectively. The smoker attribute is binary, and we map
it to numerical values (yes→ 1, no→ 0) to enable encrypted com-
putation of PCC. The target variable charges ranges from 1121.87
to 63770.43; we scale it by a factor of 1/1000 before encryption to
match the CKKS dynamic range. Since the PCC is scale-invariant,
this transformation does not affect the final result. This configura-
tion enables privacy-preserving statistical analysis on encrypted
features and target variables, allowing us to extract meaningful
patterns without exposing sensitive data. We set 𝐵 = 100 for Z-
score normalization, and 𝐵 = 20 for all other evaluations. Table 5
summarizes the evaluation results. As shown in Table 5, PP-STAT
achieves high accuracy across all evaluated statistical functions.
Z-score normalization, skewness, and CV produce MREs below
8 × 10−4, highlighting the framework’s robustness even for high-
variance numerical attributes. Pearson correlation values involving
age and bmi also maintain low error. In contrast, the PCC involv-
ing the binary smoker feature shows higher error due to its lim-
ited dynamic range, which affects the stability of the denominator
in correlation operation. As shown in Table 5, all relative errors
lower than 3 × 10−4, demonstrating the high numerical precision
of PP-STAT in encrypted computation. The skewness of charges is
measured as 1.5143, indicating a right-skewed distribution. This
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Table 5: Evaluation of statistical metrics using PP-STAT over
the Insurance dataset. We report the mean relative error
(MRE) for each statistical function compared to the plain-
text result. PCC denotes the PCC between the target feature
(charges) and selected predictors. The parameter 𝐵 denotes
the constant scaling factor. Kurtosis is reported as excess
kurtosis (i.e., normal kurtosis minus 3).

Measure Feature(s) 𝐵 Output MRE Runtime (s)

ZNorm charges 100 - 3.81 × 10−5 ( 0.00 ) 108.26 (3.34)

Skew charges 20 1.5143 8.67 × 10−5 ( 1.36 × 10−20 ) 105.52 (2.36)
Kurt charges 20 1.5966 6.08 × 10−4 ( 1.08 × 10−19 ) 104.94 (2.45)
CV charges 20 0.9123 5.54 × 10−5 ( 6.78 × 10−21 ) 279.02 (5.11)

PCC AGE vs charges 20 0.2990 2.22 × 10−4 ( 0.00 ) 207.87 (4.73)
BMI vs charges 20 0.1983 7.33 × 10−5 ( 0.00 ) 207.85 (3.64)
SMOKER vs charges 20 0.7873 2.86 × 10−4 ( 5.42 × 10−20 ) 209.98 (2.07)

suggests that most insurance fees are concentrated near the lower
range, while a small subset of individuals are charged substantially
higher fees. The excess kurtosis is 1.5966, implying a leptokurtic
distribution with heavy tails. This reflects the presence of extreme
outliers—individuals who incur unusually high charges, a common
pattern in real-world insurance data. The CV is 0.9123, suggesting
that the standard deviation is nearly as large as the mean. This
highlights the substantial variability in insurance fees across the
population, and underscores the need for secure statistical tools in
sensitive domains. Z-score normalization achieves MRE well below
10−4, validating PP-STAT ’s ability to support encrypted feature
scaling with high precision. Figure 3 illustrates the kernel density
estimation (KDE) of charges, visually confirming the right-skewness
and heavy-tailed structure observed in our numerical evaluation.

Figure 3: Kernel density estimation (KDE) of charges in the
insurance dataset.

In the PCC evaluation, the correlation between smoker and
charges is 0.7873, indicating a strong positive association. This
indicates that smoking status is a dominant factor affecting medical
costs. The PCC between age and charges is 0.2990, reflecting a
moderate positive correlation—insurance fees tend to increase with
age. Meanwhile, the PCC for bmi is 0.1983, suggesting a weaker but
still positive relationship. These results demonstrate that PP-STAT

enables accurate and meaningful higher-order statistical analysis
on encrypted medical cost data. The ability to perform normaliza-
tion, distributional analysis, and correlation estimation directly in
the encrypted domain underscores the practical value of PP-STAT
in privacy-preserving healthcare analytics.

8 Discussion and Future Work
In this work, we focus on the Chebyshev approximation for de-
termining suitable initial values in Newton’s iteration. Beyond
engineering optimizations, PP-STAT introduces key technical inno-
vations, including pre-normalization scaling to reduce multiplica-
tive depth, Chebyshev-based initialization for fast CryptoInvSqrt
convergence. However, potential vulnerabilities arising from poly-
nomial approximation errors—such as information leakage through
output deviation patterns—were not deeply analyzed in this study.
In future work, we plan to conduct a comprehensive security analy-
sis of such approximation-based vulnerabilities. Currently, PP-STAT
supports only five statistical operations. We plan to investigate
more optimized operations, such as minimum and maximum. The
computation of CV incurs a considerably large runtime due to the
use of the sign function, which requires three bootstrapping opera-
tions; optimizing the CV algorithm to reduce this cost is therefore
necessary. While our current focus is on encrypted statistical anal-
ysis, extending PP-STAT to privacy-preserving machine learning
(ML) pipelines is a natural next step. This includes enabling se-
cure feature selection, model training, and inference on encrypted
datasets. At present, PP-STAT is implemented using Lattigo, a Go-
based HE library that operates in CPU-only environments. Since
HE operations are computationally intensive with limited through-
put in such settings, we plan to explore hardware acceleration via
GPU-based HE libraries and dedicated computing platforms such
as FPGAs or ASICs. Furthermore, we aim to extend PP-STAT to
support secure multi-party computation (MPC), federated analytics,
and differential privacy (DP) mechanisms. Such integration will
broaden the applicability of PP-STAT in collaborative, distributed,
and privacy-regulated environments.

9 Conclusion
In this work, we presented PP-STAT , a homomorphic encryption
(HE)-based framework for privacy-preserving statistical analysis.
PP-STAT supports five fundamental statistical measures—Z-score
normalization, skewness, kurtosis, coefficient of variation, and
Pearson correlation coefficient—directly over encrypted data. A
key contribution is our optimized inverse square root operation,
achieving 7.34× lower mean relative error (MRE) and 2.38× faster
runtime compared to prior approaches such as Pivot-Tangent and
HEaaN-STAT . This reduces multiplicative depth and bootstrapping
frequency, enabling practical computation of higher-order statistics
under HE. We also proposed a pre-normalization scaling technique
that eliminates the additional multiplicative level without additional
cost. We validated PP-STAT on two real-world datasets—Adult and
Insurance—and demonstrated accurate and efficient encrypted com-
putation across diverse statistical tasks. These results confirm that
PP-STAT provides a practical and scalable solution for secure data
analysis in privacy-sensitive domains.
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