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Abstract—This study focuses on the creation and implemen-
tation of ransomware for educational purposes that leverages
Python’s native cryptographic APIs in a controlled environ-
ment. Additionally, an Android version of the framework is
implemented using Flutter and Dart. For both versions, open-
source cryptographic libraries are utilized. With this framework,
researchers can systematically explore the functionalities of
ransomware, including file encryption processes, cryptographic
key management, and victim interaction dynamics. To ensure safe
experimentation, multiple safeguards are incorporated, such as
the ability to restrict the encryption process to a specific directory,
providing the RSA private key for immediate decryption, and
narrowing the scope of targetable files to a carefully curated
list (.txt, .jpg, .csv, .doc). This paper draws inspiration from
the infamous WannaCry ransomware and aims to simulate its
behaviour on Android devices. By making the codebase open-
source, it enables users to study, modify, and extend the program
for pedagogical purposes and offers a hands-on tool that can be
used to train the next generation of cybersecurity professionals.

Index Terms—Ransomware Simulation, RSA, AES, Flutter,
Python, Dart, Android Port, Desktop

I. INTRODUCTION

Ransomware remains a formidable threat in the cyberse-
curity landscape, with global damages projected to exceed
20 billion USD annually, according to Beaman et al. [1].
This underscores the growing sophistication and prevalence
of ransomware attacks, which exploit system vulnerabilities to
encrypt data and demand payment for its release. A prominent
example is the WannaCry attack, which occurred on May 12,
2017 [2], and rapidly spread to infect over 200,000 computer
systems across 150 countries. It affected many critical systems,
most notably the United Kingdom’s National Health Service
(NHS), where it locked access to patient records, disrupted
medical procedures, and delayed emergency care, resulting in
estimated damages exceeding £92 million [3].

Analyzing real ransomware requires isolated environments,
such as virtual machines or sandboxes, to prevent accidental
damage to systems or networks. However, this process is
resource-intensive and often inaccessible to many learners.
Our framework addresses this gap by constructing a benign
ransomware simulation that replicates core functionalities
such as file encryption, key exchange, and ransom demands,

in a controlled and reversible manner. By providing a safe
alternative, we aim to enhance cybersecurity education by
equipping learners with practical insights into ransomware
mechanics and mitigation strategies, while also enabling the
development of robust defenses against real-world attacks.

The contributions of the paper are:

• An Open-Source Framework for Ransomware: An
architecture for ransomware that’s functional on
both desktop and Android environments, with an
implementation which is openly accessible with
comprehensive documentation1 .

• Survey of Malware and Ransomware Tools: The paper
provides a review of widely available open-source
packages and libraries for cryptography. We aim to
showcase areas of potential exploitation by malicious
actors and areas where developers can implement
stronger security measures in their applications.

• Recursive File Encryption and Decryption Algorithm: A
novel recursive encryption and decryption algorithm is
introduced. The algorithm employs a hybrid encryption
approach, using AES for efficient file encryption and RSA
to secure the AES keys, mirroring real-world examples,
such as WannaCry.

The rest of the paper is organized as follows: In the Litera-
ture Review section, we discuss the evolution of ransomware,
cryptographic techniques, anonymous payment mechanisms,
notable ransomware attacks, and ransomware statistics. The
System Overview and Scope section outlines the framework
and overall architecture, such as the encryption mechanisms
employed. In the System Design and Implementation section,
we describe the technology stacks and libraries used to im-
plement the ransomware, along with algorithms employed.
The Challenges and Design Decisions section discusses and

1The GitHub repository containing the source code is available at: https:
//github.com/jgualgoma/ransomware demo/
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justifies key design decisions. In the Evaluation section, we
present the testing and validation conducted for both Android
and Desktop implementations. Finally, the Conclusion section
summarizes our findings.

II. LITERATURE REVIEW

The first ransomware dates back to the AIDS Trojan in
1989, created by Dr. Joseph Popp. It used symmetric encryp-
tion to scramble file names on floppy disks and demanded
$189 via mail [4]. Though primitive, it introduced the concept
of data extortion through encryption, laying the groundwork
for future developments. In the early 2000s, GPCode [5]
marked a shift by employing more advanced RSA-1024 en-
cryption, albeit with several flaws that allowed data recovery.
Scareware variants like Reveton [6] later emerged, locking
screens with fraudulent law enforcement notices and demand-
ing fines, leveraging psychological pressure and deception.

Bitcoin further revolutionized ransomware by providing
an anonymous payment mechanism, fueling its proliferation.
CryptoLocker [7], utilizing an RSA-2048 and AES-256 hybrid
model, spread through phishing emails via malicious attach-
ments, extorting $300-$700 per victim and amassing a massive
$27 million in bitcoin ransom before its takedown in 2014 via
Operation Tovar [6].

Fiore et al. [7] described how the Locky ransomware tar-
geted healthcare institutions with phishing campaigns, encrypt-
ing patient records and demanding ransoms in Bitcoin, exploit-
ing the sector’s need for immediate data access. Ryuk [8],
linked to North Korea’s Lazarus Group and similar to Wan-
naCry, focused on high-value enterprise targets, demanding up
to $5 million per ransom. Petya and its derivative NotPetya [8]
leaned toward data destruction, encrypting master boot records
to render systems unbootable, costing companies like Maersk
$300 million in damages and blurring the line between ran-
somware and cyberwarfare. It was deployed as a geopolitical
weapon, particularly in countries like Ukraine.

The WannaCry outbreak of May 12, 2017, infected over
200,000 systems across 150 countries by exploiting a Windows
SMB vulnerability (CVE-2017-0144) through the EternalBlue
exploit [2]. Its hybrid model, which used AES-128 for file
encryption and RSA-2048 for key encryption, combined with
worm-like propagation, caused widespread disruption, notably
costing the NHS £92 million [3].

The WannaCry architecture remains relevant as researchers
continue to develop new ways to protect systems from ran-
somware. In one study, researchers emulated six prominent
ransomware architectures, including WannaCry, with high
accuracy to analyze their behaviour [9]. This underscores the
importance of creating ransomware simulations and studying
their attack vectors, as many modern variants are descendants
of early ransomware like WannaCry.

Furthermore, ransomware has increased its capabilities in
recent times. In one instance, researchers developed a File
System Access API (FSA) and WebAssembly (Wasm) based
infection vector, enabling ransomware to propagate through
browsers [10]. This highlights the need to study different

attack vectors of modern ransomware, as we aim to do on
the Android mobile platform. Other studies have also analyzed
ransomware and its detection using machine learning and deep
learning techniques [11]. This makes simulations like ours
especially important for safely and effectively training and
developing AI-powered detection systems.

III. SYSTEM OVERVIEW AND SCOPE

A. Desktop PC Python Implementation

This paper focuses on the development of a ransomware
simulation within a controlled framework. It encrypts files lo-
cated in a specified files directory using a hybrid cryptographic
approach that combines RSA (Rivest-Shamir-Adleman) and
AES (Advanced Encryption Standard), similar to ransomware
such as WannaCry. The simulation features a graphical user
interface, implemented via Python’s tkinter2 package, to
deliver the ransom demand and provide an immersive expe-
rience. The code is compiled into a standalone executable
compatible with Windows, macOS, or Linux systems, ensuring
broad accessibility for educational use.

Key aspects covered within this scope include the im-
plementation of recursive file encryption to simulate ran-
somware’s systematic targeting, hybrid key management to
demonstrate ransom exchange, and a UI for educational
purposes. For safety, the program restricts its operations to
a predefined set of file extensions (.txt, .jpg, .csv, .doc),
and provides the RSA private key as a key.pem file for
immediate decryption, ensuring all actions are fully reversible.
This implementation explicitly excludes advanced malicious
features, including network propagation mechanisms, such as
worm-like spreading via SMB ports, as seen in WannaCry;
exploitation of operating system vulnerabilities, such as Eter-
nalBlue; and persistence techniques that would enable the
program to persist through system reboots. It does not aim to
evade antivirus detection, bypass security software, or simulate
real-world attack vectors beyond the fundamental processes
of encryption and notification. Instead, it concentrates on de-
livering an educational experience that illustrates ransomware
operations within a controlled, ethical framework.

B. Mobile Android Implementation

Additionally, an Android app is developed using the Flut-
ter/Dart framework. This Android port is a one-to-one trans-
lation of the Python desktop application, but must employ a
new encryption package and a distinct file system. This port
is packaged as an APK that runs as a standalone Android app,
and is tested on API 36, the latest Android version available.

1) File Access Systems: One major restriction of the mobile
Android port is its limited ability to access user files. Direct
file access has been restricted, and scoped storage has been
enforced since API 29. The Google Play store also rejects
any apps that still request direct file access permissions [12].
As a result, each application running on Android OS has its

2Used to design the ransomware’s user interface. Available at: https:
//docs.python.org/3/library/tkinter.html



own isolated file storage. When accessing files from common
directories, such as camera pictures, the OS instead caches
the file, creating a temporary copy in a temporary directory
for the application to access. This poses a particular problem
for ransomware, as direct read and write access to user files
is crucial.

2) Storage Access Framework: The Storage Access Frame-
work is a complementary framework for file access based on
user permissions [13]. By using this framework and its associ-
ated APIs, an application can retain permissions to read from
and write to storage directly if a user grants access to a specific
file or folder. This means that, through social engineering
or user carelessness, a ransomware app that receives explicit
permissions could function on a mobile device as effectively
as it would on a desktop.

3) Dart Packages: The main encryption package used in
the Android port is the encrypt package. It contains the Fer-
net submodule, which is equivalent to the Python cryptography
Fernet submodule and is used in the AES encryption scheme.
It also contains an RSA submodule, which is used to encrypt
the randomly generated AES keys. The main differentiator
between the Android and desktop versions is the inclusion
of the saf_stream 3 and saf_util 4 packages. These
Dart-specific packages utilize the SAF APIs to allow direct
file access when given the proper permissions, enabling the
ransomware to encrypt files inside the chosen directory.

IV. SYSTEM DESIGN AND IMPLEMENTATION

This paper presents the design and implementation of a
ransomware simulation tailored for educational purposes, con-
tributing a unique and valuable resource to the field of cyberse-
curity. The encryption and decryption logic is developed using
the Python cryptography package to integrate RSA and
AES algorithms. These methods mirror techniques employed
by real-world ransomware variants, such as WannaCry, which
serves as a starting point for architectural insights and design
principles. A graphical ransom interface is created using
the tkinter library to simulate victim interaction, visually
demonstrating the ransom demand process and decryption
mechanism. The simulation is made portable across multiple
operating systems by utilizing the pyinstaller tool to
generate standalone executables, ensuring its versatility in
diverse educational settings.

The value of our work lies in its ability to raise awareness
about ransomware threats while providing hands-on learning
in a risk-free environment. Unlike WannaCry, a malicious,
Windows-specific ransomware that exploited the SMBv1 vul-
nerability for propagation and sought financial gain, our sim-
ulation is benign, platform-agnostic, and designed for educa-
tional purposes. This key distinction enables students and re-
searchers to dissect ransomware mechanics, such as the hybrid
encryption model and user interaction strategies, understand

3Dart Package for reading and writing using the Storage Access Framework
APIs for Android OS. Available at: https://pub.dev/packages/saf stream

4Dart Package for navigating the file system using the Storage Access
Framework APIs. Available at: https://pub.dev/packages/saf util

cryptographic principles, and explore mitigation techniques
without the ethical dilemmas or technical hazards associated
with live malware analysis. Our contribution stands out by
offering a practical, accessible tool that contrasts sharply
with WannaCry’s destructive purpose, enhancing cybersecurity
education and preparedness across academic and professional
communities.

The main contribution of the Android port is identifying the
ways in which packages and APIs of the Android operating
system can be exploited through social engineering or user
negligence to grant ransomware access to read and write
permissions. The port also demonstrates how commonly used
packages, such as the Dart/Flutter framework, can be exploited
to produce malware.

A. Technology Stack
The Flutter and Dart technology stack is chosen for its

performance and flexibility in mobile application development,
as well as its cross-platform capabilities for both web and
mobile. One of the goals is to evaluate the difficulty of creating
ransomware from scratch using limited tooling. The only
additional packages required beyond the base Dart installation
are the cryptography package and those necessary for file
access. The Dart/Flutter script can then be compiled into a
native executable for the Android platform, allowing it to
run independently without requiring Dart SDK support. This
makes the ransomware highly efficient, capable of compiling
into a working program on any Android device with minimal
compatibility issues.

B. Cryptographic Packages
The Dart cryptography package is used for all key gener-

ation and file encryption. Initially, a public/private key pair
is generated using the RSA submodule of the package. The
generated code is pushed to a source code repository and is
commented out. Since only one key pair is needed, the private
key is saved as a PEM file and used for decrypting files, while
the public key is stored as a byte string within the source code.
This does not pose a security risk, as the public key can only
encrypt files. Therefore, even if the byte string is discovered
during reverse engineering, it cannot be used to decrypt the
affected files.

C. Cryptographic Algorithms
The two primary cryptographic algorithms employed are

RSA (Rivest–Shamir–Adleman), an asymmetric public/private
key block cipher, and AES (Advanced Encryption Standard),
a symmetric key block cipher. The RSA algorithm relies on
mathematics and number theory to generate a key pair in
which the public key is used to encrypt data, and only the
corresponding private key can decrypt it. The AES algorithm,
by contrast, uses the same key for both encryption and
decryption and operates as a substitution–permutation cipher.
When using a 128-bit key, AES executes significantly faster
than RSA on modern systems.

The goal of using RSA and AES in unison is to leverage
the strengths of both algorithms. While RSA provides robust



Algorithm 1 Recursive Encryption Algorithm

Require: PU Key(RSA)

Require: extension list
1: procedure RECURSIVE ENCRYPT(DIR)
2: for file in DIR do
3: if file is directory then
4: recursive_encrypt(file)
5: else if file in extension list then
6: Key(AES)= GenAES()
7: Ef= Fernet( Key(AES), file)
8: KE= RSA( PU_Key(RSA), Key(AES))
9: dict[KE]= Ef.name

10: dict.writeToDisk()
11: end if
12: end for
13: end procedure

Algorithm 2 Decryption Algorithm

Require: keys datafile
1: procedure DECRYPT(keys datafile)
2: if PR Key(RSA) exists then
3: for KE, Ef in keys_datafile do
4: Key(AES)=RSA(PR_Key(RSA), KE)
5: file= Fernet(Key(AES), Ef)
6: end for
7: end if
8: end procedure

security due to its complex mathematical computations, it
is inefficient for encrypting a large number of files. The
AES algorithm, on the other hand, is much faster due to
its permutation-substitution-based approach. Modern malware,
such as WannaCry, has adopted a hybrid model in which
the initial encryption of files is performed using the AES
algorithm, with each file encrypted using a unique AES key.
The keys are then encrypted using the public key hard-coded
into the malware, which poses no issue for the attacker because
only the private key held by the attacker can be used to decrypt
the files.

A recursive encryption algorithm used to crawl through
the file system and encrypt all files that have a matching
extension defined in the extension list. This algorithm encrypts
all identified files and stores an association between each
encrypted file and its corresponding encrypted key so that the
file can later be decrypted using its associated key. It uses
GenAES to generate a random AES key, which the Fernet
algorithm then uses to encrypt the files. The AES key is
encrypted with a hard-coded RSA key, and the encrypted AES
key is associated with the file name. This association is stored
on disk.

A custom Decryption algorithm is used to decrypt the user
files. This algorithm executes only if a private key in the
form of a .PEM file exists in the current working directory.
This private key is provided to the victim after they have

deposited the ransom into the specified Bitcoin wallet, as
outlined in the ransom demand note. If the private key is
available, the algorithm searches for a data file on disk which
houses the encrypted AES key and its associated file. The
RSA algorithm is then used to decrypt the encrypted AES
key, and the resulting decrypted AES key is used to decrypt
the associated file, thereby restoring access for the user.

It should be noted that the payment process occurs outside
the program, as the user is prompted to deposit the ransom into
a Bitcoin wallet monitored by the attackers. Once the ransom
has been received, the private key required for decryption is
sent to the user. As shown in Algorithm 2, the algorithm
checks for the presence of the private key, which it uses for
decryption. In future updates, the ransomware may include
a module to automatically download the private key from
a remote server once the ransom has been paid. However,
this feature is not essential to the current operation of the
ransomware.

D. Safety Controls via STRIDE modeling

A full STRIDE analysis is presented in Table 1, where we
summarize potential threats and mitigation strategies. The ma-
jor areas we have identified include Spoofing, Tampering, and
Repudiation. Bad actors may pretend to be the developers and
distribute actual malware instead of the simulation. To mitigate
this, users should obtain the code only from the official GitHub
repository. To prevent tampering with the source code, commit
permissions are restricted to verified contributors, thereby
reducing the risk of unauthorized insertion of malicious code.
For Repudiation, we provide a checksum so that users can
verify it against their build to ensure that the compiled code
originates from the authors. Minor threats include Information
Disclosure, Denial of Service, and Elevation of Privilege.
These can be mitigated through basic safety training and best
practices, as outlined in the mitigation strategies section of
Table 1.

V. CHALLENGES AND DESIGN DECISIONS

A. Balancing Realism and Safety

Replicating ransomware behavior poses a risk of unintended
harm if the simulation’s scope is not adequately constrained,
potentially encrypting critical files or spreading beyond in-
tended boundaries. To address this, the simulation is designed
to restrict encryption to a specific directory using “os.path”
checks to validate file paths and ensuring operations remain
within the user’s control. Furthermore, target extensions are
limited to a whitelist (e.g., .txt, .jpg, .csv, .doc), preventing ac-
cess to system files or sensitive data, unlike WannaCry’s broad
targeting of user directories and critical infrastructure [2].
The objective is to simulate a realistic scenario where a
system could be compromised by ransomware, while avoiding
jeopardizing the safety and security of the host system.

B. AES Key Management

Following the blueprint of the WannaCry ransomware, each
file is encrypted with its own AES key. As depicted in



STRIDE Category Threat Potential Impact Mitigations
S–Spoofing Impersonation of developer/tester

or user
An adversary may impersonate a devel-
oper to distribute suspicious and mali-
ciously modified versions of this ran-
somware.

Obtain the source code only from the
official GitHub repository.

T –Tampering Modifying code or cryptographic
elements

An adversary may alter the encryption
logic or tamper with the public key.

Implement code integrity checks, such
as hashing, and restrict access to the
code repository.

R – Repudiation Denial of actions performed It may allow users or attackers to claim
that they did not execute or modify the
code.

Keep a record of all users who have ac-
cessed or forked the GitHub repository,
and provide checksum for the codebase.

I – Information Disclosure Leakage of encrypted data Users may use the provided RSA
public-private key pair for unintended
purposes.

Remind users that the provided public
key is for demonstration purposes only
and should not be used in any other
context.

D – Denial of Service Misusing encryption logic to cor-
rupt files

Users may inadvertently misuse the
program and corrupt the file system.

The encryption logic is restricted to
certain directories, so that even with
permissions, the encryption simulation
cannot operate outside its bounds.

E – Elevation of Privilege Unauthorized access to file system The application requires elevated per-
missions on Android.

Revoke those permissions afterward, or
use an emulator to prevent misuse of
elevated permissions.

TABLE I: STRIDE analysis and mitigation strategies

Fig. 1: Workflow of the Ransomware Encryption



Figure 1, during encryption, each encrypted file must be
associated with its corresponding AES key. This association
is maintained using a keys.dat file, which serves as an
intermediary structured as a dictionary that maps file names to
their encrypted AES keys. To ensure key confidentiality, each
AES key is encrypted using a public RSA key hard-coded
into the ransomware’s source code. This design ensures that
the AES keys cannot be used to decrypt the corresponding files
unless they are first decrypted using the correct RSA private
key.

VI. EVALUATION

A. Desktop Platform

The desktop simulation is tested on Windows, macOS,
and Linux using the pyinstaller package to create a
standalone executable. The executable runs consistently across
all platforms, ensuring cross-platform compatibility.

The evaluation confirms the following:

• Algorithm 1 successfully encrypts targeted files, while
Algorithm 2 efficiently decrypts them, restoring files to
their original state without data loss.

• The Tkinter-based ransom note interface effectively sim-
ulates victim interaction and demonstrates usability for
educational purposes.

• Safety controls restrict encryption to the target directory
and enforce a whitelist of file extensions, ensuring both
reversibility and system safety.

• On a test system (Intel Core i7-12700H, 16 GB RAM,
SSD), 100 files (500 MB; .txt, .jpg, .csv, .doc) were
encrypted in 12.4 s and decrypted in 14.2 s.

• For Comparison to WannaCry, Kao et al. [2] indicate
WannaCry encrypted at 10 MB/s in 2017, taking 50
seconds to encrypt 500 MB. This simulation’s 40 MB/s
rate is considereably faster, though modern ransomware
may have improved during this time.

B. Android Platform

Testing of the Android port is conducted on a Google Pixel
9 emulated device using Android Studio, running Android
16. API 36, the latest API version for Android, is utilized
in the tests. The ransomware APK successfully encrypts and
decrypts user files (e.g., .txt, .jpg) when user permissions are
granted, and it is able to decrypt the locked files once the
private key is provided. The workflow of the Android port is
the same as that of the desktop version, with the exception of
an additional step where the user must first grant permissions
to the app. It should be noted that performance testing could
not be reliably conducted, as an Android emulator was used
for testing and validation, making comparisons to real-life
hardware unrealistic.

VII. CONCLUSION

This paper successfully delivers a safe, functional ran-
somware simulation, and offers students and security re-
searchers a practical means to explore cybersecurity threats

without the ethical or technical risks associated with live
malware [2]. This framework implementation enhances un-
derstanding of ransomware threats while acting as a practical
resource for academic and professionals.

Although security for Android OS is tightening, reliance
on legacy systems, such as SAF, allow ransomware to exploit
such vulnerabilities. While an Android app as described in this
paper would not be accepted by the Google Play Store, illegal
modification and distribution of mobile apps are common, and
malware such as ransomware can easily be included with them,
as outlined in this paper.

Overall, all versions of our ransomware implementations
effectively leverage existing cryptographic APIs, showcasing
the ease by which malware creation can occur using open
source tooling.
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