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Abstract—With the rise of sophisticated authentication by-
pass techniques, passwords are no longer considered a reliable
method for securing authentication systems. In recent years,
new authentication technologies have shifted from traditional
password-based logins to passwordless security. Among these,
Time-Based One-Time Passwords (TOTP) remain one of the
most widely used mechanisms, while Passkeys are emerging
as a promising alternative with growing adoption. This paper
highlights the key techniques used during the implementation
of the authentication system with Passkey technology. It also
suggests considerations for integrating components during system
development to ensure that users can securely access their
accounts with minimal complexity, while still meeting the require-
ments of a robust authentication system that balances security,
usability, and performance. Additionally, by examining TOTP
and Passkey mechanisms from an implementation perspective,
this work not only addresses major security concerns such as
password leaks, phishing attacks, and susceptibility to brute-
force attacks, but also evaluates the feasibility and effectiveness
of these mechanisms in real-world implementations. This paper
demonstrates the superior security of Passkey technology and its
potential for broader adoption in secure authentication systems.

Index Terms—Passkey, TOTP, OAuth2, Rate Limiting, Two-
Factor Authentication (2FA)

I. INTRODUCTION

Since technology has continued to develop rapidly in recent
years, severe cyberattacks have also increased dramatically
and are becoming more challenging than ever to protect
sensitive data and users from unauthorized access. Traditional
password mechanisms are too simple and no longer sufficient
to prevent sophisticated attacks. To mitigate these risks, Time-
Based One-Time Passwords (TOTP) and Passkey are superior
alternatives in the authentication process to replace password-
based systems. TOTP, a lightweight cryptographic algorithm
and an advanced version of OTP, reduces computational load.
However, it remains susceptible to brute-force attacks, which is
a primary concern for this technology [1]. In contrast, Passkey
employs a public-private key mechanism, resulting in better
phishing resistance. Furthermore, the primary advantage of
Passkey technology lies in its integration of hardware tokens
with built-in device capabilities [2]. Some of the key aspects
of Passkey, such as multi-device synchronization, phishing
resistance, and seamless user experience, will be discussed in

the paper. With the deployment of passwordless authentication
with passkey technology, our primary contributions include:

• Proposed Framework: The proposed framework, con-
structed using JavaScript and Python, aims to provide
developers with a foundational structure to build au-
thentication systems that seamlessly integrate Passkey
technology while retaining the familiar features of TOTP
authentication, thereby ensuring a smooth transition and
enhancing user adoption.

• Implementation Guidelines: This work outlines the key
considerations for developers deploying authentication
solutions in real-world environments. By evaluating the
security characteristics of Passkey in practical deploy-
ments, this contribution provides a foundational frame-
work to help organizations make informed decisions
about adopting new authentication technologies.

The remainder of the paper is organized as follows: Section
II reviews the relevant literature on TOTP and Passkey. Section
III details the methodology. Section IV presents the exper-
imental setup and offers recommendations for deployment.
Section V provides a discussion, and Section VI concludes
the paper.

II. LITERATURE REVIEW

To determine the optimal authentication mechanism for the
deployment system, this paper evaluates the advantages and
disadvantages, as well as the challenges in deploying TOTP
and Passkey, based on existing research. Sofian et al. [1]
highlight that the use of AES and DES encryption standards in
TOTP contributes to a secure mechanism for critical sectors.
Due to its lightweight features, TOTP may also address some
of the security limitations in IoT environments. However,
Berrios et al. [3] state that TOTP is not able to resist all
adversaries. The primary vulnerability lies in plaintext secret
keys. In the event of obtaining the key, an attacker can easily
gain access without the original device.

Concerning cybersecurity threats, the vulnerability of TOTP,
as observed by Dixit et al. [4], also carries the risk of password
exposure through phishing attacks. Although this weakness
lies in the human element, TOTP itself does not inherently
prevent users from revealing their static password and the
one-time code when users are tricked into fraudulent sites.
Additionally, the entropy limitations of TOTP are further
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corroborated in recent work by Nair and Song [5]. The 20-
bit entropy of 6-digit TOTP codes, despite its popularity as
an authentication factor, is not sufficient to resist brute-force
attacks. Furthermore, Ding and Wang [6] also point out that
in the 2FA framework, relying on the login terminal could
expose a potential risk to users. They also suggested that it is
more secure for users to exclusively trust their own devices.

George [7] extensively discusses the vulnerabilities of pass-
words and positions Passkey as the optimal replacement.
With WebAuthn and Fast Identity Online (FIDO) protocols,
Passkey has limited the password transmitting process, lever-
aging public-key cryptography. Regarding the security aspect,
Passkey has demonstrated robust cryptographic strength to
resist phishing, man-in-the-middle, and replay attacks. Ou et
al. [8] also state that Passkey offers users flexible control and
convenience when logging into multiple devices, making it an
advanced solution.

Nevertheless, the use of a passkey as a replacement for
passwords still faces some challenges in practical scenarios.
Matzen et al. [9] have provided several possible hesitations
among users who, due to a tendency to share their accounts
or delegate access, would find the passkey inconvenient, given
that the private key is stored on a specific device. Regarding
account recovery, the authors also note the limitation of the
recovery mechanism, which has not yet been standardized.
Although both TOTP and Passkey have outstanding benefits
and drawbacks, few studies provide practical deployment
frameworks and deployment considerations to utilize the ad-
vantages of both methods.

III. METHODOLOGY

We developed a decoupled front- and back-end
authentication system that supports multiple login methods,
including user registration, email-based login with verification
codes, Google OAuth authentication, and Passkey login to
enhance security. The system integrates modern technologies,
frameworks, and security protocols to create authentication.
The system is managed, deployed, and run using Docker1 to
provide a secure and high performance authentication solution.

To achieve a robust and fortified security system, A compre-
hensive analysis of the TOTP and Passkey methods has been
conducted to explore a hybrid implementation approach. Our
implementation framework prioritizes Passkey as the primary
authentication method while maintaining TOTP as a strategic
backup. Fig. 1 illustrates the workflow and setup for Passkey
and TOTP in our deployment.

A. Passkey Security Characteristics

• Brute Force Protection: Passkey uses a unique challenge-
response mechanism without the presence of a password
to effectively prevent brute-force attacks.

• Phishing Prevention: Since the private key is stored on
the user’s device and authentication is bound to specific

1Docker is an open-source platform for packaging applications and their
dependencies into lightweight, portable containers.

Fig. 1: Passkey and TOTP Authentication Deployment

domains, phishing attacks are effectively prevented even
if users are tricked into fraudulent sites.

• Replay Attack Prevention: A new random challenge is
generated for each authentication attempt, and when
combined with timestamped signatures, it helps neutralize
replay attacks.

B. TOTP Implementation

During the registration phase, Two-Factor Authentication
(2FA) via TOTP is implemented to enhance security facilitated
by the speakeasy 2 library, which generates a unique secret key
for the user using the speakeasy.generateSecret() method.
This secret key, associated with the user’s account, allows them
to verify the registration process.

Even though TOTP was selected during the registration
process, our preference for login purposes is Passkey be-
cause of several concerns regarding the inconsistent time
synchronization between the user’s device and the server of
TOTP. This inconsistency can lead to login failures, and
more critically, a sophisticated attacker might exploit these
timing discrepancies to generate and save valid TOTP codes
corresponding to future time intervals on a user’s device and
bypass authentication [10].

C. Passkey Implementation

Passkey is a new authentication standard based on the
WebAuthn specification developed by the FIDO Alliance and
W3C, offering a convenient authentication experience for
users [11]. Passkey is implemented in both the back-end
and front-end components to ensure a seamless passwordless
experience for users.

A combination of modern technologies, frameworks, and
security protocols is used to create a resilient authentication

2https://github.com/speakeasyjs/speakeasy



system. The system is managed, deployed, and run using
Docker, starting with basic features and progressing to more
advanced techniques.

D. Web App Security

This paper employs two key technologies: Bcrypt3 and
JSON Web Tokens (JWT)4 to improve security and per-
formance. Bcrypt is a prominent hashing function used for
securing passwords. Created by Niels Provos and David
Mazieres based on the Blowfish algorithm, Bcrypt incorporates
a salt to generate a unique hash, converting plain-text pass-
words into a fixed-length, non-reversible format. Compared to
SHA-256 hashing algorithms, Bcrypt is outperformed in the
event of brute-force attacks [12]. Besides, with an advanced
characteristic of work factor, this algorithm can determine
the resources needed to hash a password according to the
computational resources [13]. Fig. 2 represents the process of
storing passwords using salted hashing with bcrypt. The cost
factor (work factor) is configured as follows.

bcrypt.hash(password, 10)

The number 10 represents the salt rounds, meaning bcrypt
performs 210 iterations to generate the hash. Each password
gets a unique salt automatically.

bcrypt.compare(oldPassword, user.password)

bycrypt.compare() is the function to examine the old
password with the new password by re-hashing the provided
password using the salt from the stored hash. It returns true
if the hashes match.

Fig. 2: Password Encryption with Salting

JSON Web Tokens (JWT) provide a foundational framework
for authentication and access control in modern web

3https://www.npmjs.com/package/bcryptjs
4https://jwt.io/

applications. With JWT-based authentication, relevant user
access information is embedded into a token and subsequently
signed using the JWT secret. Although this approach offers
scalability, a major drawback of JWT is the difficulty of
revoking tokens at will [14]. To address this, a blacklisting
mechanism was implemented to validate each token included
in incoming requests. A token blacklist allows the system to
revoke JWTs before their expiration, helping prevent potential
compromise.

token: {
type: String,
required: true,
unique: true,

},
createdAt: {
type: Date,
default: Date.now,
expires: "1h",

}

This setup provides a simple blacklisting mechanism using
a Mongoose schema, which corresponds to a MongoDB5

collection named “TokenBlacklist” Schema.
The field named token of type ‘String’ is intended to hold
the actual JWT or a unique identifier of a revoked token.
The field named createdAt of type ‘Date’ represents a
JavaScript ‘Date’ object.
Mongoose will automatically set its value to the current
date and time with default: Date.now(). MongoDB will
automatically delete documents from the “TokenBlacklist”
collection one hour after creation, as defined by expires:
“1h”.

E. Implementation Details

Basic Components:

• Password Encryption: bcrypt (for password hashing and
verification)

• JWT Implementation:
– Uses jsonwebtoken library for token generation
– Token structure: header.payload.signature
∗ Header: Token type and algorithm
∗ Payload: Encoded data
∗ Signature: Generated via sign() method using

header, payload, and secret key
• Token Blacklist:

– MongoDB query: TokenBlacklist.findOne({
token })

– Returns “Token has been revoked” if found

Advanced Components:

• Passkey Authentication:

5MongoDB is a NoSQL database that stores data JSON-like documents



– Passwordless auth using WebAuthn standard
– Native browser APIs + @simplewebauthn/
server (Node.js backend)

– Key files: passkeyController.ts
• Storage and Process Management:

– PasskeyCredential: Stores credentials (ID,
public key, counter, device name)

– PasskeySession: Tracks registra-
tion/authentication status

• API Endpoints:
– Registration: /auth/passkey/register-
options, /auth/passkey/register-verify

– Authentication: /auth/passkey/auth-options,
/auth/passkey/auth-verify

– Management: /auth/passkey/list,
/auth/passkey/:id

• 2FA: Nodemailer (verification code delivery)
• OAuth 2.0: Passport.js (Google OAuth integration)

IV. EXPERIMENTAL SETUP

The experiment will demonstrate various authentication ap-
proaches, including password-based authentication, passkeys,
two-factor authentication (2FA), and OAuth2 third-party login,
with full-stack implementation. The source code, along with
deployment scripts, is available on GitHub6.

A. Architectural Design
To support multiple secure login methods, including user

registration, email-based verification, Google OAuth authen-
tication, and Passkey login, the system employs a modular
architecture. This design, facilitated by Docker, also ensures
consistent deployment environments in different phases of the
implementation. In addition, the isolation capabilities of this
design help reduce security risks in the event of a compromise.

B. Technologies

Framework: Node.js, Express
Language: TypeScript
Database: MongoDB (via Mongoose ODM)
Cache: Redis (for storing short-term verification codes)
Authentication Framework: Passport.js (for Google OAuth
2.0 authentication)
WebAuthn: @simplewebauthn/server (for Passkey au-
thentication)
Email Service: Nodemailer (for sending verification codes)
Two-Factor Authentication (2FA): speakeasy (for generating
and verifying TOTP tokens)
Password Encryption: bcrypt (for password hashing and
verification)
Security Middleware: helmet (for HTTP header security)
Session Management: express-session
Rate Limiting: express-rate-limit (to prevent brute force at-
tacks)
Token Generation: jsonwebtoken (JWT implementation)
Environment Variables: dotenv

6https://github.com/Alex-xd/login-system

C. Logic Implementation

1) User Registration: Once the user enters their email on the
registration page and requests a verification code, the sys-
tem stores the generated code in Redis with a 30-second
expiration and saves the email in a temporary user table.
Nodemailer is then used to send the verification email
using predefined configurations. If the entered email and
code match the stored values, the user is allowed to
set a password. Upon successful verification, the system
updates the temporary table (setting ‘otpVerified’ to true)
and deletes the verification code from Redis. The entered
password is then hashed and stored in the temporary table.
Finally, the user’s information is saved in the MongoDB
database, and the corresponding entry in the temporary
table is deleted. The system returns a message indicating
whether the registration was successful or failed.

2) Email and Verification Code Authentication Flow: On the
login page, the user enters their email and password. If the
credentials are valid, the system generates a verification
code and sends it to the user’s email. Upon successful
verification of the code, the system generates a JWT
token, stores it in localStorage, and redirects the user
to the profile page. Once the authorization code for an
access token is exchanged and the user’s Google profile
information is retrieved, the system checks whether the
user already exists in MongoDB. If the user exists, their
information is returned; otherwise, a new user is created
and stored in the database. Finally, the system generates a
JWT and returns it to the frontend along with a response
indicating whether the operation was successful or failed.

3) Google Login: The user clicks the “Google Login” button,
which redirects them to Google’s OAuth 2.0 authorization
page. There, Google prompts the user to grant permission
to access their account information. Once an authorization
code is obtained, Google redirects the user back to the
backend, where the system uses Passport.js’ GoogleStrat-
egy to handle the OAuth 2.0 callback.

4) Passkey Registration: Upon the user requesting Regis-
tration Options, the backend receives the request and
generates WebAuthn registration options, including a
challenge value and user information. Next, the system
creates a session record, saves the challenge, and sets
an expiration time. The backend then returns the op-
tions and session ID to the frontend, which will later
call navigator.credentials.create() with the provided
options and prompt the user for biometric authentication
(e.g., Face ID) or a security key. After authentication, the
browser generates credentials and sends them, along with
the device name, to the backend. The system retrieves
the session record and verifies the credentials using We-
bAuthn libraries. If the credentials are valid, the backend
stores them in the database and marks the session as
completed.

5) Passkey Login Process: When the user clicks “Login
with Passkey,” the frontend sends a request for au-



thentication options. The backend receives this request
and creates WebAuthn authentication options, including
a challenge value, and temporarily stores the session
record and challenge. Subsequently, the frontend calls
navigator.credentials.get() with the provided options,
prompting the browser for biometric authentication. Fig. 3
illustrates the Passkey login flow. After successful authen-
tication, the browser submits the authentication response
to the backend. The backend then verifies the response
using WebAuthn libraries. If the response is valid, the
backend updates the credential counter to prevent replay
attacks, generates a JWT token, and sends it to the
frontend along with a successful response. Finally, the
frontend saves the JWT token and redirects the user to
the homepage.

Fig. 3: Passkey Login Authentication Sequence Map

D. Results

• Password-Based Authentication: The secured password
hashing using bcrypt was successfully implemented to
avoid common attacks like brute force or dictionary
attacks.

• Passkey Authentication: Integrating Passkey authentica-
tion using WebAuthn (@simplewebauthn/server)
eliminated the need for passwords and significantly re-
duced the risk of phishing attacks and credential theft.

• Two-Factor Authentication (2FA): Implemented email-
based 2FA using Nodemailer. A unique verification code
was sent whenever a user logged in and must be entered to
complete the process. If the password was compromised,
access would be denied without the verification code.

• OAuth2 Integration: OAuth2 authentication was inte-
grated through Passport.js to enable Google login. The

implementation also included token handling and permis-
sion scopes to ensure user data protection.

• JWT Authentication: Implemented secure token-based
authentication using jsonwebtoken (JWT). A predefined
session duration in which users were logged in would
automatically end when the tokens expired. In the event
of a security breach, a token blacklist would revoke the
token.

• Rate Limiting: Rate limiting using express-rate-limit was
added to prevent brute-force attacks and enhance overall
system security. With rate limiting, the risk of automated
attacks is significantly minimized, leading to a more
secure and reliable authentication system.

• HTTP Header Security: Security middleware (helmet)
was incorporated to strengthen HTTP headers, reducing
vulnerabilities to common web attacks.

• Caching: Redis was used to cache temporary data and
significantly improved authentication performance by re-
ducing database load and speeding up data retrieval.

• Session Management: Session management was handled
via express-session, ensuring secure and efficient user
session handling.

• Database: MongoDB was used as the database, with
Mongoose ODM facilitating structured interaction.

• Environment Variables: Configuration parameters were
managed securely using dotenv.

E. Implementation Considerations

Several factors should be taken into account when im-
plementing authentication using passkeys and TOTP. Firstly,
platform support is vital for this work; developers must check
browser compatibility with the WebAuthn API and consider
fallback authentication methods for unsupported browsers. For
compatibility, legacy devices may not support passkeys, and
certain environments might restrict their usage. As mentioned
above, the recovery mechanism has a significant impact on
user experience; for that reason, ensuring a robust recovery
and providing a clear on-boarding process would help users
to adapt to the new system. The FIDO Alliance guidelines7 and
Passkey Roll-Out Guides8 provide a comprehensive foundation
that developers can reference to follow security best practices
tailored to business needs, such as proper key storage on the
server side, rate limiting, and secure session management.
Finally, it is important to handle edge cases to ensure a smooth
and secure user experience.

F. Lessons Learned

One of the most significant lessons learned during the devel-
opment of this secure authentication system is the complexity
involved in integrating various components and ensuring they
work seamlessly together. The integration of multiple security
methods requires careful consideration of their interdependen-
cies, which are reflected in the system’s modular architecture,
as illustrated by the distinct directories for controllers, models,

7https://www.passkeycentral.org/design-guidelines/
8https://www.passkeycentral.org/passkey-roll-out-guides



routes, and middlewares. Additionally, conflicts can occur dur-
ing the process of configuration fine-tuning, and inappropriate
settings can lead to overly restricted or insufficient security,
potentially affecting the effectiveness of the authentication
system.

G. Recommendations

Based on our deployment experience and comparative anal-
ysis, this work proposes the following strategies to ensure
successful implementation. Given the limitations of TOTP
compared to passkeys, adopting passkeys as the primary
authentication method will significantly enhance system se-
curity. TOTP can serve as a suitable backup or supplementary
mechanism. This layered approach supports a smooth user
transition and reinforces a clear and transparent communi-
cation policy regarding authentication practices. For high-
security scenarios, such as financial transactions, enforcing
passkey-only authentication is recommended. For general use
cases, an optional TOTP fallback mechanism, accompanied
by appropriate risk warnings, should be sufficient. In special
cases, it may be reasonable to allow flexible configurations,
such as temporary TOTP support for legacy systems. To ensure
a smooth transition, passkey authentication should be rolled
out gradually. Maintaining TOTP support during the migration
phase is essential, along with monitoring user acceptance and
adjusting policies based on feedback.

V. DISCUSSION

TOTP is a widely used, lightweight two-factor authentica-
tion mechanism. However, it relies on a shared secret between
the client and the server, which introduces inherent security
vulnerabilities. If the secret is compromised, the authentication
process can be bypassed, and the need for manual code
entry may introduce additional usability friction. In contrast,
Passkey authentication, implemented via the WebAuthn stan-
dard, offers a better experience and a more secure method of
authentication. It completely eliminates passwords by using
asymmetric cryptography. Authentication occurs through the
signing of a cryptographic challenge, typically using biometric
input [7]. Recent industry trends reflect a shift toward the ex-
clusive use of passkeys. For example, Porkbun adapts passkey-
only authentication at the time of account creation [15]. If an
attacker gains access to a user’s email or password, authenti-
cation is still impossible without biometric verification on the
user’s device. From a strict security perspective, passkeys pro-
vide stronger guarantees than TOTP. Under ideal conditions,
a passkey-only system is sufficient to secure user accounts.
Considering the redundancy between passkeys and TOTP, it is
evident that passkeys offer a more robust and efficient solution
for secure authentication. While TOTP may still play a role
due to limited device compatibility with passkeys, its necessity
diminishes as passkey adoption increases.

VI. CONCLUSION

This work highlights the advantages of Passkey authentica-
tion over traditional password-based systems and TOTP-based

two-factor authentication. Passkey’s reliance on asymmetric
cryptography and biometric verification provides more security
while minimizing user friction. However, while TOTP is
still relevant in some contexts, it is increasingly becoming
redundant as passkey adoption grows. This paper concludes
that passkeys have strong potential to become the primary
authentication method in future systems, offering a more
secure and efficient approach to authentication. TOTP may still
serve as a supplementary backup in scenarios where passkey
implementation is not yet feasible.
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