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Abstract. Cryptographic algorithms like Advanced Encryption Stan-
dard (AES), Rivest–Shamir–Adleman (RSA) are widely used and they
are mathematically robust and almost unbreakable but its implementa-
tion on physical devices often leak information through side channels,
such as electromagnetic (EM) emissions, potentially compromising said
theoretically secure algorithms. This paper investigates the application of
machine learning (ML) techniques and Deep Learning models to exploit
such leakage for partial key recovery. We use the public ASCAD ‘fixed’
and ‘variable’ key dataset, containing 700-sample and 1400 EM traces re-
spectively from an AES-128 implementation on an 8-bit microcontroller.
The problem is framed as a 256-class classification task where we target
the output of the first-round S-box operation, which is dependent on a
single key byte. We then evaluate standard classifiers (Random Forest
(RF), Support Vector Machine (SVM)), a tailored Convolutional Neu-
ral Network (CNN) and a Residual Neural Network(ResNet). We also
explore the utility of RF-based feature importance for dimensionality
reduction. Crucially, we employ this domain-specific Key Rank metric
for evaluation, showing its necessity over standard classification accu-
racy, which remained below 2% due to low signal-to-noise ratio. Our
results show that SVM and RF on full features perform poorly in key
ranking. However, RF trained on reduced (top 100) identified via im-
portance analysis achieves Rank 0 (successful key byte recovery) using
almost half the attack traces. The implemented CNN as well, despite
exhibiting overfitting in terms of validation loss, also achieves Rank 0 ef-
ficiently using approximately 65 attack traces for the fixed-key dataset.
The ResNets perform best on large and complex datasets but may not
always be the best choice for simple fixed key dataset in terms of effi-
ciency. Thus we conclude that models, particularly CNNs, ResNets and
feature-selected RF, coupled with the Key Rank metric, are an effective
tool for side-channel key recovery, confirming the practical vulnerability
of the cryptographic implementations.
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1 Introduction

Cryptographic algorithms like the Advanced Encryption Standard (AES) are
mathematically robust and cannot be compromised through mathematical flaws.
However, physical devices executing cryptographic operations lead to uninten-
tional information leakage through various ‘side channels’, such as power con-
sumption, timing variations, and electromagnetic (EM) emissions.[1] Electro-
magnetic analysis (EMA) is a potent form of side-channel analysis (SCA) where
attackers non-invasively measure the EM fields radiating from a device during
any cryptographic operation. These emissions often contain subtle variations cor-
related with the intermediate data being processed. And these are often related
to the key, which poses a huge challenge. Recent advancements have shown that
Machine Learning (ML) and Deep Learning (DL) are powerful tools for automat-
ically learning these complex correlations, potentially outperforming traditional
statistical SCA techniques.[2][3]

This paper investigates the practical application of ML techniques to re-
cover an AES-128 key byte by analyzing EM side-channel traces from the public
ASCAD (ANSSI SCA Database) fixed and variable key dataset[4]. We frame
the problem as a multi-class classification task targeting the output of the first-
round AES S-box operation. The low signal-to-noise ratio in the EM traces poses
a significant challenge for standard classification metrics like accuracy. This of-
ten yields misleadingly poor results. Therefore, a key aspect of this work is the
rigorous use of the domain-specific Key Rank metric. Key Rank evaluates an
attack’s success by determining the position of the true key in a list of all possi-
ble key candidates ranked by their likelihood score derived from the ML model’s
output across multiple traces. This metric directly reflects the practical ability
to recover the key, even when per-trace classification accuracy is low.

The contributions of this work are: (1) a comparative performance analysis
of standard classifiers (Random Forest (RF), Support Vector Machine (SVM)),
ResNets and a tailored Convolutional Neural Network (CNN) for AES key byte
recovery on the ASCAD dataset, (2) an exploration of RF-based feature impor-
tance for dimensionality reduction, its impact on model efficiency and effective-
ness, (3) a clear demonstration of the necessity of the Key Rank metric over the
standard accuracy for evaluating ML-based SCA success, and (4) confirmation
of successful key recovery using ResNets, CNN, SVMs and feature-selected RF
models, despite low classification accuracy, highlighting the practical feasibility
of ML-based side-channel attacks.

The remainder of this paper is organized as follows: Section 2 details the
AES S-box operation, EM leakage principles, the ASCAD dataset, and outlines
our experimental setup and the Key Rank evaluation methodology. Section 3
presents and analyzes the results from the RF, SVM, CNN and ResNet models.
Section 4 discusses the implications of our findings, the accuracy versus Key
Rank paradox, and limitations. Finally, Section 5 concludes the paper and sug-
gests avenues for future research.
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2 Background and Methodology

This section provides the necessary background on the target cryptographic
operation, the nature of EM side channel leakage, the ASCAD dataset used
for experiments, and the specific ML models implemented in our study. We
begin with an overview of the AES S-box operation, followed by a discussion
of the ASCAD dataset and the data preprocessing steps. We then detail the
architectures and hyperparameters for our implemented ML models (Random
Forest, SVM, CNN and ResNets) and finally reiterate the importance of the Key
Rank metric for evaluation.

2.1 AES - Sbox Operation and Leakage

The Advanced Encryption Standard (AES) is a symmetric block cipher that
encrypts data in 16-byte (128-bit) blocks using a key of 128, 192, or 256 bits.
AES operates in rounds, with the number of rounds depending on the key size
(10 rounds for AES-128, 12 for AES-192, and 14 for AES-256). Each round
involves several transformations, including SubBytes, ShiftRows, MixColumns,
and AddRoundKey.[5] A fundamental non-linear operation within the SubBytes
step is the application of the AES S-box substitution, independently to each byte
of the internal state. The S-box input for a given byte position i is the result of
Plaintext[i] ⊕ Key[i], where ⊕ represents the XOR operation. The S-box then
outputs a different byte based on its lookup table:

Sbox Output[i] = Sbox(Plaintext[i]⊕Key[i]) (1)

Fig. 1: Basic Steps of AES Encryption Round (source: [6])

Figure 1 illustrates the four basic steps within each round of AES encryption
(excluding the final round which omits MixColumns).
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The S-box operation represents a critical point of vulnerability in an AES im-
plementation. Mangard and Schramm identified that although linear operations
at the beginning of the S-box do not leak any information, significant leakage oc-
curs in the first masked multiplier where ‘the XOR gates of this multiplier absorb
a different number of transitions for different data inputs.’[7] These differential
transitions create a distinctive power consumption pattern that correlates di-
rectly with the processed data values and creates the side-channel leakage we
aim to exploit. Since the input to the S-box in early rounds (like the first round
we target) directly combines known plaintext with the unknown key byte, any
leakage related to this operation provides information about the key.

We adopt the common value-based leakage model, assuming the EM trace
contains information correlated with the specific identity (value 0-255) of the
Sbox Output[i]. Since this output byte depends on both the known Plaintext[i]
and the unknown Key[i], predicting the S-box output from the trace allows us
to deduce Key[i]. As an 8-bit byte can take 256 distinct values, predicting the
S-box output becomes a 256-class classification problem. We specifically target
the 3rd byte (index i = 2) in this study.

2.2 ASCAD Datasets : Fixed-Key (ASCADf) and Variable-Key
(ASCADv)

For this project, we utilize the publicly available ASCAD ‘fixed-key’ dataset,
provided by ANSSI.[4] To further improve the robustness of the algorithm and
to mimic a more realistic scenario, we also trained on the ’variable-key’ dataset.
This dataset presents a more challenging scenario where the secret key changes
for each trace in both the profiling and attack sets. We will be referring to the
fixed-key dataset as ASCADf and the variable-key dataset as ASCADv through-
out this paper for simpler referencing. The ASCAD datasets were chosen for this
research due to it being publicly available and well-documented. This is a widely
used benchmark in the SCA community and thus helps in reproducible research
and comparison amongst existing literature.

This particular dataset comprises EM measurements from an AES-128 im-
plementation on an 8-bit ATMega8515 microcontroller, where fixed 128-bit key
(for ASCADf) or variable 128-bit keys (for ASCADv) were used. For a super-
vised Machine Learning problem, this dataset includes precisely labeled data
(S-box output for a known key byte ) and corresponding plaintext to help train
the classification model. The datasets contains:

– Profiling Traces: For ASCADf, A set of 50,000 traces used for training
models. Each trace consists of 700 EM measurements (features). For AS-
CADv, A set of 200,000 traces were used for training and each trace consists
of 1400 EM measurements. Associated metadata includes the plaintext, the
fixed key, and pre-calculated labels representing the output of the S-box for
the 3rd key byte (index 2).

– Attack Traces: A set of 10,000 traces (ASCADf) and 100,000 traces (AS-
CADv) were used for testing and evaluating the trained models. These traces
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also contained same number of EM measurements as the profiling counter-
parts, along with corresponding plaintexts. During the attack phase, the key
is treated as unknown.

2.3 Data Preprocessing

The raw EM traces have different offsets and scales which can impact the perfor-
mance of Machine Learning models. To fix this, we standardize the training and
testing data for both ASCADf (700 traces) and ASCADv (1400 traces) using the
mean and standard deviation calculated solely from their respective profiling sets
(50,000 traces for ASCADf, and 200,000 traces for ASCADv profiling). This helps
make sure that each feature has a zero mean and unit variance. Without scaling,
features with higher magnitudes can disproportionately affect the model’s de-
cisions, leading to suboptimal performance. Many ML algorithms, particularly
those using gradient descent (like CNNs) or distance measures (like SVMs with
RBF kernels), perform better and converge faster when input features are on a
similar scale and centered around zero. We use Scikit-learn’s StandardScaler to
perform this standardization. We fit the scaler on the training data and then
transform both the training and testing data using the fitted scaler. This en-
sures that the test data is transformed in the same way as the training data,
preventing any information leakage from the test set into the model training
process.

2.4 Machine Learning Models

Random Forest (RF): It is an ensemble learning method that aggregates
the predictions of multiple decision trees. We employ Scikit-learn’s Random-
ForestClassifier with n estimators = 100. This provides a good balance between
performance and computation. To mitigate overfitting on the high-dimensional
data, we apply regularization by setting max depth = 20 to limit the tree com-
plexity and min samples leaf = 10 to ensure that each leaf node has sufficient
number of samples. Furthermore, RF provides Gini importance scores, which we
leverage for feature selection. We sorted features by their Gini importance scores
in descending order and selected the top 100 most important features. We train
one RF model using all 700 features for ASCADf and 1400 features for ASCADv
and another using only the top 100 features as determined by the importance
ranking.

Support Vector Machine (SVC): It is a classifier that aims to find an
optimal hyperplane to separate different classes. Due to its high computational
cost and as it scales poorly with the addition in number of samples and features,
we train Scikit-learn’s SVC only on the reduced set of 100 features selected
by RF. We use the default RBF kernel (C=1.0, gamma=’scale’) and enable
probability estimates i.e probability=True as it is required for key ranking which
relies on the class probability estimates.

Convolutional Neural Network (CNN): We employ a custom CNN ar-
chitecture implemented in PyTorch, drawing inspiration from ASCAD paper in
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deep learning-based SCA. The network is designed to learn relevant features di-
rectly from the raw EM traces, enabling effective classification of S-box outputs.
The architecture details are as follows:

Fig. 2: CNN Architecture for SCA

– Input Layer: Accepts a 1D EM trace (700 samples for ASCADf, 1400
samples for ASCADv) as a tensor of shape (BatchSize, 1, TraceLength)

– Convolutional Blocks (4x): The network employs four identical convolu-
tional blocks for hierarchical feature extraction. Each block includes:
1. Conv1d Layer: Applies 1D convolutions with a kernel size of 11 and

padding of 5 (effectively ’same’ padding for the convolution operation
itself). This choice is directly supported by findings in [4] which demon-
strated that a larger kernel size (e.g., 11) significantly improves SCA-
efficiency, especially compared to multiple layers with smaller kernels.
The number of output channels (filters) increases progressively: 64, 128,
256, and 512 for the four blocks, respectively, increasing feature map
depth to compensate for spatial dimension reduction by pooling layers,
allowing the network to learn a richer set of features.

2. BatchNorm1d Layer: Performs batch normalization.
3. ReLU Activation: Applies the Rectified Linear Unit activation function.
4. AvgPool1d Layer: Performs average pooling with a kernel size of 2 and

a stride of 2, downsampling the feature map length by a factor of 2 at
each block.

– Flatten Layer: Converts the 2D feature maps (channels × length) from
the final pooling layer into a 1D vector. After four pooling layers, an initial
trace of length L becomes L/16 (with floor operations for odd lengths at
intermediate stages).

– Dense Head (Classification):
1. Linear Layer (4096 units): A fully connected layer with 4096 output

units, followed by ReLU activation. The input size to this layer is de-
pendent on the initial trace length:



Title Suppressed Due to Excessive Length 7

• For ASCADf (700 input samples, length becomes 43 after pooling):
512 channels× 43 features = 22016 inputs.

• For ASCADv (1400 input samples, length becomes 87 after pooling):
512 channels× 87 features = 44544 inputs.

2. Dropout Layer (p=0.5): Applies dropout regularization.
3. Linear Layer (256 units): A final fully connected layer outputting logits

for the 256 possible S-box values.
– Training Parameters: Optimizer : RMSprop optimizer with a learning

rate of 1 × 10−5 and a weight decay of 1 × 10−5, Loss Function : CrossEn-
tropyLoss, Batch Size : 100 Epochs : 150.

The specific CNN architecture is inspired by successful models described in re-
cent literature, and the original ASCAD paper, but has been modified to suit
our computational resources and dataset characteristics.

Residual Neural Network (ResNet): To investigate the performance
limitations of the baseline CNN architecture on the more complex variable-key
dataset, we implemented a more advanced model based on a Residual Network
(ResNet). This architecture is specifically designed to ease the training of deeper
networks by introducing residual blocks that help mitigate the vanishing gra-
dient problem. [8]The overall structure consists of a feature extractor built from
a series of these residual blocks, followed by the same dense classification head
used in the standard CNN.

Fig. 3: ResNet Architecture for SCA

The core of this model is the Residual Block, which processes the input
through two parallel paths:

– The Main Path: This path consists of two 1D convolutional layers, each
with a kernel size of 11. Each convolution is followed by a Batch Normaliza-
tion layer, and a ReLU activation function is applied after the first block.
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– The Shortcut Connection: This path bypasses the main convolutional
layers, allowing information to flow directly to a later stage of the block. If
the number of input channels does not match the number of output channels
for the block, a 1x1 convolution is applied in the shortcut path to match the
dimensions. Otherwise, it acts as an identity connection.

The outputs of the main path and the shortcut connection are then summed
element-wise. A final ReLU activation is applied to this sum, and the result is
passed to the next layer.

Our full ResNet feature extractor is composed of four of theseResidualBlocks
stacked sequentially. Following each residual block, an AvgPool1d layer with a
kernel size of 2 and a stride of 2 is used to downsample the feature map length
by a factor of two. Similar to the baseline CNN, the number of filters in the
convolutional layers increases through the network, using values of 64, 128, 256,
and 512 for the four blocks, respectively. After the feature extractor, the data is
flattened and passed to a dense classification head identical to the one described
for the standard CNN.

2.5 Hyperparameter Selection

To get a deeper understanding and analysis of our model configurations and
justify our parameter choices, we conducted a series of runs with varied hyper-
parameters, which helped validate our baseline parameters and provide insights
into the model’s sensitivities.

Random Forest: Our baseline RF model with 100 features proved highly
effective and computationally efficient. To justify our parameter choices, we ex-
plored variations. We found that increasing the number of trees n estimators =
200 offered no improvement in attack efficiency (180 traces) while increasing the
computation time. Furthermore, using a more complex model by increasing the
tree depth (max depth = 30) caused the model to fail in recovering the key,
highlighting the importance of a constrained depth for regularization against
noisy data. These findings validate that our baseline parameters represent an
effective balance between performance and cost.

Support vector Machines(SVC): The baseline SVC was highly effective,
recovering the key in 320 traces. While successful, the SVC was the most com-
putationally expensive model, with training being particularly demanding for
the larger variable-key dataset. To justify our parameter choices, we focused on
tuning the c parameter, which controls the model’s regularization. The c pa-
rameter manages the trade-off between creating a simple model (with a wide
margin) and correctly classifying all training points (a more complex model).
A c value that is too high can cause the model to overfit by memorizing noise
in the training data. An overfitted model, by contrast, may make highly con-
fident but incorrect predictions on the attack set, which severely penalizes the
cumulative log-probability score of the true key. Our exploration confirmed that
c=1.0 provided a strong, generalizable result, while a higher value of c=10.0 or
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c=100.0 did not yield a significant performance gain to justify the increased risk
of overfitting and the even longer training times. Thus we concluded that the
standard c=1.0 and gamma=’scale’ parameters provided strong results.

CNN: Our primary CNN architecture, as described in Section 2.4, is highly
effective but sensitive to its training configuration. The baseline model with
kernel size = 11, and batch size = 100 consistently recovered the key on the
fixed-key dataset in approximately 65 traces. Performance was particularly sen-
sitive to batch size. Decreasing the batch size to 64 required 90 traces, but
resulted in longer training times. Similarly, while increasing the batch size to
200, the training time was reduced, but it required almost 180 traces. Further
exploration were made by varying the kernel size and the network depth. But
it did not yield a better result than our baseline choice of 11. We experimented
with 3 blocks and 5 block architecture, but 3 block were not sufficient to recover
key, and 5 block architecture was a tradeoff on time. Critically, this tuning pro-
cess also confirmed the CNN’s limitations, as all tested configurations failed to
recover the key on the more complex variable-key dataset. This current archi-
tecture does not generalize well to the ASCADv challenge, which suggests that
more advanced network designs are required for such complex scenarios. This
problem is addressed by ResNets.

ResNet: To address the generalization failure of our standard CNN on the
ASCADv dataset, we introduced a ResNet architecture. Our hypothesis was
that the plain CNN, despite its depth, suffered from degrading gradient flow
that prevented learning the abstract patterns required for variable-key attacks.
The ResNet architecture directly addresses this through residual blocks with
shortcut connections that add the block’s input to its convolutional output, We
tested the ResNet using a configuration directly comparable to our best standard
CNN: four blocks, kernel size = 11, and similar filter progression. ResNet suc-
ceeded exceptionally well where the standard CNN had failed, confirming that
residual connections were the critical factor for learning generalizable features.
While we explored minor variations in depth and kernel size, our chosen config-
uration represented an optimal trade-off between performance and complexity,
solidifying our conclusion that the architectural shift was the principal reason
for success.

2.6 Evaluation Metric: Key Rank

While standard classification accuracy was measured, it proved uninformative
due to high noise levels. The primary metric for SCA success is the Key Rank.[9]
The process is as follows:

– Obtain the predicted probability distribution (vector of 256 probabilities)
from the trained model for each of the N attack traces. Let P (label=z|trace i)
be the probability assigned to S-box output value z for trace i.

– For each key byte hypothesis k guess (from 0 to 255):
• Calculate the hypothetical S-box output
Z hyp i = Sbox(plaintext i⊕k guess) for each attack trace i from 1 to N .
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• Calculate the total Summed Log-Probability (SLP) score for this key
guess:
Score(k guess) =

∑N
i=1 log(P (label = Z hyp i|tracei) + ε)

where ε is a small constant (e.g., 1e-40) to prevent log(0). The logarithm
is used to avoid numerical underflow when multiplying many small prob-
abilities, and to improve computational efficiency by converting multi-
plications to additions.

– Rank the 256 key guesses based on their scores, from highest (most likely)
to lowest.

– The Rank of the true key byte (k true) is its position in this ranked list
(Rank 0 indicates it has the highest score and is successfully recovered).

– Plotting the Rank vs. the number of traces (N) shows the efficiency of the
attack. The Key Score Plot (bar chart of Score(k guess) vs. k guess) visually
confirms the correct key’s dominance.

Fig. 4: Sample Example of a Key Rank Chart

Figure 4 illustrates a sample Key Rank chart, showing the rank of the true
key byte (2) as a function of the number of attack traces used. The graph
illustrates how the rank improves with more traces, and successfully recovers
the key after 50 traces.

The superiority of Key Rank over standard accuracy in this context stems from
the nature of SCA. The goal is not to achieve perfect classification of the S-box
output for every single noisy trace, which is often an unrealistic expectation due
to low signal-to-noise ratio (SNR). Instead, the goal is to distinguish the single
correct secret key byte from 255 incorrect hypotheses. Key Rank achieves this
by aggregating subtle, consistent evidence (the model’s probability assignments)
across numerous traces. Even if a model has low accuracy, if it consistently
assigns a slightly higher probability to the true S-box output (when the correct
key is hypothesized) compared to random outputs, this difference gets amplified
when log-probabilities are summed over many traces. This makes the score for
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the true key dominant, leading to successful recovery, while individual trace noise
that confounds accuracy is averaged out.

3 Experimental Results

3.1 Setup

Experiments were conducted using Python 3.11 with PyTorch (for CNN and
ResNet) and Scikit-learn (for RF, SVM, Scaler) libraries. The Random Forest
model utilized 16 cores for parallel processing and 16GB of RAM, while the SVM
was limited to a single thread. Training and evaluation were performed on an
Nvidia P100 GPU for the CNN and ResNet models and CPU for RF and SVM
models.

3.2 Random Forest Results

For the full-feature RF model on ASCADf (n estimators = 100, max depth =
20,min samples leaf = 10), 10-fold cross-validation yielded a training accuracy
of 43.55% but a validation accuracy of only 0.46%. This highlights the challenge
of directly classifying individual traces due to the low signal-to-noise ratio in-
herent in EM leakage. The Key Rank metric is therefore crucial for evaluating
SCA success.

In terms of cross-validation, 5 out of 10 folds achieved Rank 0 within 1000
traces. Among these successful folds, the average number of traces required was
492 (σ = 129.21). The final full-feature RF model exhibited similar performance,
requiring hundreds of attack traces to recover the key.

Feature selection using RF’s Gini importance significantly improved perfor-
mance. By training a second RF model on only the top 100 features, the number
of attack traces required to achieve Rank 0 was reduced to approximately 200.
This represents a 50% reduction in the number of traces needed for successful
key recovery compared to the full-feature model, demonstrating the effectiveness
of dimensionality reduction in mitigating overfitting and focusing on the most
informative leakage points.

RF on ASCADv with similar parameters and full 1400 features required
750 traces to recover the key. Meanwhile, evaluation on reduced 100 features
recovered the key in only 470 traces, reducing the trace count by almost 40%
and re-emphasizing the importance of feature-reduction.
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Fig. 5: Key Rank Charts for RF on Datasets ASCADf(left) and ASCADv(right)

The feature importance analysis also revealed that leakage is distributed
across the trace but with clear concentration in certain time regions. This con-
firmed the targeted S-box operation leaves electromagnetic fingerprints at spe-
cific points in time during execution.

3.3 CNN Results

The CNN model exhibited typical deep learning behavior with continuously
decreasing training loss (from 5.56 to 5.27) but relatively stable validation loss
(around 5.38-5.40), suggesting overfitting by conventional metrics. The final test
accuracy was extremely low at only 0.81%, which would typically indicate a
failed model.

Fig. 6: Key Rank Charts for CNN on ASCADf(left) and ASCADv(right)

However, the key recovery performance told a completely different story.
When tested on the attack set, the CNN model’s rank of the correct key byte
dropped rapidly, reaching Rank 0 consistently after approximately 65 attack
traces. This performance was superior to both the full-feature and reduced-
feature RF models and is consistent with recent literatures. A reduced learning
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rate and reduced batch size consistently improved performance. We decided that
the current batch size of 100 and learning rate of 1 × 10−5 were best in terms
of performance and computational efficiency. The final key score distribution
after using all attack traces showed a clear, dominant peak at the correct key
byte 224(for ASCADf), far exceeding the scores of incorrect key guesses. This
confirms the CNN successfully learned relevant leakage patterns despite its low
classification accuracy. The CNN trained on ASCADv told a different story.
The key-byte recovery was unsuccessful with unstable potentially recovery at
800 traces but it was not sufficient enough. This tells us that there is room for
improvement with potential architectural changes for the ASCADv dataset.

3.4 Support Vector Machine Results

The SVM model was trained only on the reduced set of 100 features selected
by RF feature importance, as training on the full 700 and 1400 features would
be computationally complex and time consuming. Despite this optimization, the
SVM model with RBF kernel for ASCADf required 3383 seconds and ASCADv
took 42116 seconds for training, which is expected due to substantially larger
dataset size. The key recovery was achieved at 320 traces for both ASCADf and
ASCADv. However, the execution was very computationally extensive suggest-
ing this model might not be very efficient for this task. Standard scikit-learn’s
SVC implementation is often limited in its internal parallelization for training,
and SVM in itself is very largely influenced by noisy and irrelevant time points
and might not be the most efficient choice for large-scale side-channel analy-
sis. It could be viable in circumstances where noise is less of a factor typically
on hardware devices with clearer leakage or in datasets that are de-noised. Fu-
ture investigations could also explore other high-performance GPU-based SVM
libraries.

Fig. 7: Key Rank Charts for SVC on Datasets ASCADf(left) and ASCADv(right)
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3.5 ResNet Results

ResNets turned out to be one of the best-performing models. On the ASCADf
dataset, the ResNet performed comparably to the standard CNN, successfully
recovering the key after 110 traces. The model demonstrated a robust ability
to learn the necessary leakage patterns from the fixed-key training data. The
true value of the ResNet architecture was revealed on the ASCADv dataset.
Where the standard CNN had previously failed, the ResNet model succeeded
unequivocally. The key recovery succeeded in just 30 traces. This performance
of significantly fewer traces than on the ‘easier’ fixed-key dataset was something
of a surprise but aligns with Karayalcin et al., whose study also reached similar
conclusions and noted that ResNets are particularly suited to datasets with large
training data like ASCADv. Although reaching similar conclusions, our ResNet
on ASCADf and ASCADv performs significantly better than Karayalcin et al.
These results from ResNet confirm that the addition of residual connections is
a critical architectural improvement, which enables the network to effectively
solve complex, variable-key side-channel challenges.

Fig. 8: Key Rank Charts for ResNets on Datasets ASCADf(left) and AS-
CADv(right)

3.6 Summary of Results

Table 1: Summary of Model Performance on ASCADf
Model Features Traces to

Rank 0
Training
Time (s)1

Key Recovery

RF (full) 700 ∼492 9.36 Success

RF (reduced) 100 ∼200 4.60 Success

SVM (reduced) 100 ∼320 3383 Success

CNN 700 ∼65 9322 Success

ResNets 700 ∼110 5623 Success
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Table 2: Summary of Model Performance on ASCADv
Model Features Traces to

Rank 0
Training
Time (s)2

Key Recovery

RF (full) 1400 ∼750 68.32 Success

RF (reduced) 100 ∼470 17.73 Success

SVM (reduced) 100 ∼320 42116 Success

CNN 1400 — — Failed

ResNets 1400 30 46209 Success

4 Discussion

The experiments conducted demonstrate successful AES key recovery from EM
leakage using Machine Learning on the ASCAD datasets. The ResNets with
ASCADv proved to be most efficient followed by standard CNN with ASCADf
when it achieved Rank 0 after only 65 traces. ResNets for ASCADf achieved Rank
0 after 110 traces, while RF for ASCADf with feature selection needed around
200, outperforming SVM. The SVM performed poorly despite using the same
reduced feature set as RF. This in turn, suggests that ensemble methods like RF
might be more robust than kernel methods. A key finding is that despite low
classification accuracy, successful key recovery was possible. RF feature selection
has significantly improved performance and proved that focusing on relevant
features certainly benefits certain models. RF for ASCADv was able to bring
down traces needed from almost 750 to 470, which is almost over 40% better
performance.

One possible explanation for the CNN’s superior performance compared to
feature-selected RF is that CNNs automatically learn hierarchical and nonlinear
features directly from the raw EM traces. This allows CNNs to capture sub-
tle temporal dependencies and complex leakage patterns that manual feature
selection may overlook. Additionally, the CNN architecture is designed to be
robust against noise by leveraging convolutional filters and pooling operations.
However, despite these architectural advantages, our results show this gener-
alization did not extend very well to the variable-key challenge, resulting the
standard CNN to fail. This is where the ResNet architecture demonstrates its
crucial advantage. While implemented as structurally similar to our standard
CNN, its use of residual ‘shortcut’ connections improved the gradient flow and
enabled more effective feature learning in deeper networks. ResNet succeeded
spectacularly on the ASCADv dataset by recovering the key in 30 traces. This
result confirms that for complex, variable-key scenarios, the improved training

1 Training time incorporates the model’s training duration, including the overhead for
enabling class probability estimation necessary for key guess ranking. Training times
also may have been affected due to inefficient code for parallelization.

2 The substantially longer training times on ASCADv is expected due to it having
200,000 profiling traces and 100,000 attack traces compared to 50,000 profiling and
10,000 attack traces for ASCADf.
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stability offered by the ResNet architecture is essential for achieving a successful
attack.[10] Thus, while RF with feature selection focuses on the most individu-
ally informative features, it might miss intricate interactions present in the full
trace data that the Deep Learning counterparts are designed to exploit.

The collective results from these experiments reveal several key insights into
the application of machine learning for side-channel analysis. RF performance
proves that focusing on high-importance features can significantly improve at-
tack efficiency. Most significantly, experimentation from the standard CNN to
the ResNet gives a clear picture of architectural hierarchy. While simpler archi-
tectures can succeed in idealized conditions, successfully attacking more complex
and realistic challenges requires more sophisticated models like ResNet that are
specifically designed to facilitate deep, robust, and generalizable feature learning.

4.1 Comparison with Existing Literature

The results of this study align with existing literature on ML-based SCA, partic-
ularly the effectiveness of CNNs and feature selection techniques. For instance,
recent works have shown that CNNs can outperform traditional statistical meth-
ods in key recovery tasks, especially when dealing with high-dimensional data
like EM traces. The use of RF for feature selection is also consistent with find-
ings that highlight its utility in reducing dimensionality and improving model
performance in SCA contexts.

Table 3: Comparison with Existing Literature
Reference Model Traces to Rank 0

This Study(Best) RF (reduced) ∼200

This Study(Best) CNN ∼65

This Study(Best) ResNets ∼30

Huang et al.[5] Inception Net ∼30

Rousselot et al. [11] Scoop - CNN ∼73

Zaid et al. [12] CNN ∼191

Karayalcin et al. [10] ResNets ∼47

4.2 Potential Countermeasures

The successful key recovery demonstrates that even standard AES implementa-
tions on common microcontrollers are vulnerable to ML-based EM SCA if no
specific countermeasures are in place. Potential countermeasures that are com-
monly used to mitigate such attacks include:

- Hardware-level: Noise generation, power supply randomization, specific
chip design to reduce EM leakage, shielding.

- Software-level: Masking (splitting sensitive values into shares processed
independently), shuffling (randomizing the order of operations), or constant-
time implementations.
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These countermeasures aim to reduce the correlation between the EM emissions
and the processed data, making it more difficult for attackers to extract sensitive
information. However, they often come with trade-offs in terms of performance,
complexity, and cost.

4.3 Analysis of CNN failure on ASCADv and ResNet Performance

A key finding from our results is the stark performance difference of our base-
line CNN architecture between fixed-key and variable-key datasets. While the
CNN introduced in section 2.4 consistently recovered the key on ASCADf, it
failed completely on the more challenging ASCADv dataset. This hints that this
architecture, while effective at learning specific patterns, lacks the ability to gen-
eralize to the more complex scenario where the secret key is not constant. We
attribute this limitation primarily to the challenges of training deeper networks,
where issues like the vanishing gradient can prevent the model from learning the
more abstract features needed for a variable-key attack.

To investigate this limitation further and test our hypothesis, we implemented
a follow-up experiment using a Residual Network (ResNet) architecture. ResNets
are specifically designed to overcome the challenges of training deep networks
through the use of residual skip connections, which allow gradients to flow more
effectively during training.[8] This results in an architecture that is more capable
of learning the abstract and long-range feature dependencies that is required to
generalize across the non-stationary signals.

The results of this follow-up experiment were remarkable yet surprising. The
ResNet model proved highly effective in recovering the key on the ASCADv
dataset in approximately 20 traces, while it required 110 traces on the simpler
ASCADf dataset. The exceptional performance on the variable-key set aligns
with findings from Karayalcin et al., who also note that ResNets are particularly
well-suited for larger, more complex datasets where their architectural depth can
be fully leveraged. [10]

This relative inefficiency of the more complex model on a simpler task can be
attributed to architectural overkill. On the ASCADf dataset, the baseline CNN
was already sufficient and highly efficient (∼ 65 traces). The additional depth
and complexity of the ResNet proved to be less efficient. This is likely due to
two factors. First, the skip connections may have created a more complex opti-
mization landscape that hindered rapid convergence when the leakage patterns
were relatively simple. Second, a deeper network is incentivized to find abstract
feature combinations; on a dataset with straightforward, localized leakage like
ASCADf, this can be counterproductive, causing the model to take longer to
converge on the simpler, more direct patterns.

This confirms that optimal deep learning architecture for side-channel anal-
ysis is very dependent on the target’s complexity. For simpler, fixed-key targets,
a well-tuned but shallower CNN can be more efficient and effective but for more
challenging, real-world scenarios involving variable keys, more advanced archi-
tectures like ResNet is optimal to achieve efficient results.
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4.4 Limitations

The study has its some limitations inherent to its methodology such as it primar-
ily relies on the use of synchronized dataset and the profiling attack methodology,
which represents a somewhat best-case scenario for the attacker. While this is
very important from a vulnerability and technology standpoint this may not
be a efficient practical implementation in terms of real-world application and
penetration. Real-world attacks might face significant timing jitter (desynchro-
nization) which can further increase complexity. Adapting these models to get
efficient results in more realistic conditions would require specialized prepro-
cessing or few architectural changes. More advanced architectures incorporating
attention mechanisms could also be explored, as they can learn to focus on rel-
evant leakage patterns regardless of their exact temporal position. Our profiling
attack also assumes known plaintext during the attack phase for key ranking,
which may not always be available. The trained models are also specific to the
ASCAD dataset and may not generalize well to other datasets or other devices
for that matter.

5 Conclusion

This work has successfully applied and compared Random Forest, SVM, Convo-
lutional Neural Network, and ResNet models for AES key recovery via electro-
magnetic side-channel analysis on the public ASCAD dataset. We demonstrated
that despite extremely low classification accuracy, the Key Rank metric revealed
successful and efficient key byte recovery using a tailored CNN and ResNets and
a Random Forest trained on features selected via importance ranking. Our find-
ings confirm that ML techniques can effectively learn subtle leakage patterns,
even when models exhibit overfitting by standard validation metrics. Feature
reduction using RF importance analysis significantly improved performance, re-
ducing the number of attack traces required for successful key recovery. Deep
learning models stood out for their efficiency in learning relevant features directly
from raw EM traces. The SVC model, while theoretically powerful, struggled to
achieve similar performance, suggesting that ensemble methods like RF may be
more robust in this context. The results underscore the practical vulnerability of
AES implementations to ML-driven side-channel attacks, highlighting the need
for effective countermeasures and robust security evaluation methodologies.

Future work could involve applying these techniques to more challenging sce-
narios like the desynchronized ASCAD datasets, exploring alternative feature
selection methods beyond RF importance, and developing models that can re-
cover multiple key bytes simultaneously to extract the full AES key.[2] Applying
these ML models to datasets from diverse hardware platforms and against AES
implementations protected with known countermeasures (e.g., masking) would
provide valuable insights into the practical resilience of these defenses. Archi-
tecturally, exploring attention mechanisms or residual connections within CNNs
could enhance feature learning and potentially improve performance, especially
with noisy or desynchronized traces.
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Ultimately, this research highlights the tangible threat posed by ML-driven
side-channel attacks, reinforcing the critical need for robust hardware and soft-
ware countermeasures, alongside rigorous security evaluation methodologies, to
protect cryptographic implementations in real-world devices.
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