
 
 

Code Vulnerability Detection Across Different 
Programming Languages with AI Models 

 

Abstract— Security vulnerabilities present in a code that has 
been written in diverse programming languages are among the 
most critical yet complicated aspects of source code to detect. 
Static analysis tools based on rule-based patterns usually do not 
work well at detecting the context-dependent bugs and lead to high 
false positive rates. Recent developments in artificial intelligence, 
specifically the use of transformer-based models like CodeBERT 
and CodeLlama, provide light to this problem, as they show 
potential in finding such flaws better. This paper presents the 
implementations of these models on various datasets of code 
vulnerability, showing how off-the-shelf models can successfully 
produce predictive capacity in models through dynamic fine-
tuning of the models on vulnerable and safe code fragments. 

The methodology comprises the gathering of the dataset, 
normalization of the language, fine-tuning of the model, and 
incorporation of ensemble learning and explainable AI. 
Experiments show that a well-trained CodeBERT can be as good 
as or even better than some existing static analyzers in terms of 
accuracy greater than 97%. Further study has indicated that 
although language models can achieve close-to-perfect recall, the 
precision can decrease. A solution to this is given by hybrid models 
and validation procedures, which will reduce false positives. 

According to the results, the AI-based solutions generalize to 
different programming languages and classes of vulnerability. 
Nevertheless, robustness, interpretability, and deployment 
readiness are still being developed. The results illustrate the 
probabilities that AI will enhance the trustworthiness in the 
usability and scalability of machine-learning-based detectors of 
vulnerabilities. 
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I. INTRODUCTION 
 The contemporary software systems are very complex and 
quite frequently developed in a plurality of programming 
languages, which elevates their vulnerability surface 
considerably. Security deficiencies have to be detected as early 
as possible so as to minimize the risks that may arise in the 

development process. By conventional wisdom, the most 
common approach to locating the vulnerabilities would be 
through Static Application Security Testing (SAST) tools, 
which are essentially rule-based methods, including the concept  
 
of pattern matching, symbolic execution, and data flow 
analysis. Such tools as Mythril and Slither on smart contracts 
or general-purpose analyzers in C/C++, Java, and Python have 
proven to work in intimate settings. Nevertheless, these tools 
have heavy false positive rates, a scarce ability to identify 
sophisticated vulnerabilities or those not covered before, and 
poor quality of work domains under multilingual circumstances 
owing to the existence of syntactic and semantic diversities [1], 
[2] 
 The recent development of artificial intelligence has been 
seen especially in the branch of deep learning models that use a 
transformer, which provides an opportunity to develop more 
intelligent and flexible approaches to vulnerability detection. 
Large and diverse models (such as CodeBERT and CodeLlama) 
can be trained to consider complex uses of syntax and semantics 
within code and interesting or novel code connections. These 
models are credible because they frame the problem of 
vulnerability detection as one based on natural language 
processing (NLP) and thus show the potential to surface more 
subtle bugs that are otherwise overlooked by other methods [3]. 
 This research endeavor is inspired by the fact that hard-
coded rule-based systems are not suitable in areas where speedy 
developing heterogeneous software environments are required. 
The AI models are able to generalize programming languages 
and learn emerging coding patterns rather than following a 
preknown signature of a vulnerability like a static analyzer. 
This flexibility is of particular concern to large-scale systems 
created in more than one language and where requirements 
reform fast. Transformers such as CodeBERT do not only 
increase the accuracy of detection, but they also decrease false 
alerts and offer better generalization in the case of 
vulnerabilities that they were not specifically trained on. 
 The paper is research on transformer-based models towards 
detecting cross-language vulnerabilities. It aims at refining 
CodeBERT and CodeLlama with multilingual vulnerability-
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ready sets and measures their accuracy, recall, and 
generalization potential. Ensemble techniques and explainable 
AI are also incorporated in this research to maximize the 
interpretability of the model and the false positive rate. 
Moreover, they are compared to the classic SAST tools to 
evaluate how they apply in practice. The contribution made by 
this work is related to the fact that the focus toward 
performance, trust, and practical user-friendliness helps create 
viable and applicable AI-powered solutions to easily implement 
secure software development. 

II. LITERATURE REVIEW 
 Recent studies have shown that deep learning has been very 
effective in identifying vulnerabilities in programs. The first 
approaches relied on RNNs and LSTMs to treat source code as 
sequences, whereas graph-based models used the structure of a 
program, including ASTs and PDGs [3]. These methods gave 
birth to transformer-based models, including CodeBERT and 
GraphCodeBERT, which are trained on millions of pieces of 
code and can be used as feature extractors due to their strong 
capabilities [4]. The relatively promising performance of the 
recently emerged Large Language Models (LLMs), such as 
CodeLlama and LLaMA 3, on vulnerability classification after 
the fine-tuning on the datasets, such as Big-Vul and 
DiverseVul, exceeded 95% F1-scores on a binary classification 
[3]. 
 DetectBERT is a line-level vulnerability detector proposed 
by [5] that does not use any graph input. It focuses on 
robustness and generalization using real-world data, including 
CVEFixes and VUDENC, and also on code normalization 
procedures. DetectBERT performed well in the detection of 
Python vulnerability and exceeded the performance of 
conventional graph-based models. 
 The multilingual models like CodeBERT can learn across 
languages and types of vulnerabilities [2]. There are alternative 
solutions, and one of them is proposed by [6], who mentioned 
the method of creating vulnerability databases through the 
mining of actual security patches in GitHub repositories of 
Python. By doing so, they produced a high-quality dataset that 
allowed successful fine-tuning of the model, such as Qwen-7B, 
with the potential that the transfer learning to similar languages 
would work. 
 In the sphere of smart contracts, the so-called SmartLLM 
proposed by [2] combines the fine-tuned LLaMA model and 
Retrieval-Augmented Generation (RAG) to understand the 
context. The model got an accuracy of 100% on the recall but 
with lower precision, thus making it ideal in critical fields 
where accepting false negatives is not an option. 
 Wang proposed the PFSCV that combines CodeBERT and 
UnixCoder to join semantic and structural code characteristics. 
This method achieved more than 94 percent sensitivity on 
vulnerability types of smart contracts, such as the reentrancy[4]. 
 To mitigate the problem of false alerts, [1] provided VVF-
AI, or a two-stage system, which has an AI-based agent that 
checks vulnerabilities identified by the first checker. The agent 
tries to simulate or reason about exploitability reaching 93.1 % 
verification rate of various forms of vulnerability. 

 Steenhoek performed a user study DeepVulGuard, which is 
an IDE plugin based on CodeBERT and GPT-4. For 
developers, the tool was accurate, and it provided interactive 
feedback but has a limitation in the context capabilities and 
false positive. This is the same reason why tools AI must be on 
par with developer workflows [7]. 
 Approaches that are based on anomalies consider the 
vulnerabilities as deviations in a normal behavior. Li introduced 
the initial methodology to utilize an anomaly-attention 
transformer based on the labels of the execution traces 
generated by fuzzing [8]. The accuracy of their model was 87.7 
percent in finding the vulnerabilities in binary programs 
compared to the CNN-based and LSTM-based models [9]. 
 Das examined the question of whether they are based on real 
vulnerability characteristics or artifacts. They demonstrated 
that their assessment based on perturbations suggests that many 
models produce false positives on patched code, spurring the 
need to train with better methods and explainable models [10]. 
 Maturi included visualization based on attention on top of a 
BiLSTM model to show the lines of code that had the most 
impact on the predictions. XAI techniques provide 
transparency and enable trust in model choices by the 
developers [9]. 

. 

III. METHODOLOGY 

a) Overview 

 The flow of vulnerability detection proposed has the main 
stages (1) preprocessing multilingual sets, (2) representation of 
code and tokenization, (3) selection and fine-tuning of a model 
(and ensembles), (4) evaluation with standard metrics, and (5) 
integration with explainability tools. The essential functionality 
is to classify the source code as vulnerable or safe in binary 
fashion and it can optionally be extended to report types of 
vulnerabilities. 

 

b) Dataset Preparation 

 In order to have a variety, we have listed code snippets in 
more than one language. 

 In the case of C/C++, we leverage Big-Vul dataset and more 
CVE samples that were considered as some of the most frequent 
issues, i.e., buffer overflow (CWE-119), integer overflow, and 
use-after-free (Curto et al. 2024). 

 In the case of Python, we mimicked the outline of CVEFixes 
and VUDENC, where we extract pairs of vulnerable-patched 
code, which encompass web-related vulnerabilities such as 
SQL injection and path traversal [5]. There was data 
normalization to minimize overfitting to identifiers. 



 In the case of Solidity smart contracts, we added SmartBugs 
and Ethereum CVEs of reentrancy, arithmetic overflows, and 
access control. To improve context, we incorporated Ethereum 
metadata that is done similarly in SmartLLM [2]. 

  We did not expose our data to the risk of data leakage; 
therefore, we maintained a high level of separation between the 
training set and test set on the project level. The data has been 
divided into 80/10/10 training, validation, and testing, 
respectively. As seen in table 1, the distribution of the sample 
is summarized. 

 

 

 

 

Table 1 Dataset Summary 

Dataset 

Name 

Total 

Samples 

Safe 

Samples 

Vulnerable 

Samples 

CVEFixe

s 

45,000 32,000 13,000 

Devign 48,687 25,000 23,687 

 

 

c) Code Representation and Tokenization 

 CodeBERT was used to tokenize code based on multi-
language support of its byte-pair encoding tokenizer that was 
optimized to operate on source code [11]. Context within which 
it was necessary was marked by tags given in language (e.g., 
<SOL>). Eight-bit (bytes) token sequences were maxed at 512, 
with long functions chopped up as required. We used line level 
annotation practices to pass line-sensitive planktonic 
information to the model [3]. 

d) Model Architecture and Training 

 We pre-trained CodeBERT using a two-way classifier with 

cross entropy loss and label smoothing and weighting of the 
classes to support imbalanced data. Recall was enhanced with 
oversampling of vulnerable samples as well CodeBERT 
performed at high levels with ~97.00 percent accuracy and F1-
score on the test data set. 

 To look at the architectural options, we have finetuned 
CodeLlama-7B in the LoRA way and developed a simple 
ensemble of CodeBERT and GraphCodeBERT, which has 
features of data flows [4]. The team did not recall much more 
but with decreased precision  

 The pipeline shown in Figure 1 incorporates CodeBERT as 
the basis encoder, a classification head, an optional ensemble 
with GraphCodeBERT, and post-checking in the shape of an 
explanatory and verification feedback loop based on GPT-4. 

e) Explainability and Feedback Loop 

 In order to have faith and complete inferences, we 
implemented an explainability module. In addition to VVF-AI 
[1] and DeepVulGuard [7], we solicited an interpretation of the 

Figure 1 Overall Architecture Pipeline of The Model. 

 



models using GPT-4-based agents. Suspect or irregular 
predictions were either flagged and/or re-examined and it 
served to the clean-up process and explanation as well. 

IV. RESULTS 

 The proposed CodeBERT-based model was evaluated using 
standard classification metrics. It achieved 97.2% accuracy, 
with a precision of 98.05%, recall of 97.31%, and F1-score of 
97.68%. These results reflect strong generalization and a low 
false positive rate (2.87%), outperforming many existing static 
and AI-based tools. For comparison, SmartLLM achieved 
perfect recall but only 70% precision [2], while DeepVulGuard 
achieved 80% precision but just 32% recall (Steenhoek et al. 
2024). 
Figure 2 illustrates the loss convergence during training, while 
Figure 3 presents the loss behavior during the final epoch. 
Figure 4 shows the confusion matrix for the test set, 
highlighting accurate classification of vulnerable and safe code. 

 

 

V. CONCLUSION 

 This paper leads one to believe that the maturity of 
transformer-based ML models, including CodeBERT, has 
arrived at a point in which they are becoming powerful and, in 
some cases, even make teams with static analysis tools to detect 
vulnerabilities. They are strong in cross-language pattern 
matching, situational flexibility, and the capability to discover 
more complicated vulnerabilities than are restricted by 
handcrafted rules. Our model, which trains data diversity, has 
demonstrated high precision and recall, which decreased false 
negatives and, therefore, is a very useful tool in security-
sensitive applications. Our demonstrations also revealed that 
integration of detection and verification by using LLM agents 
can be used to minimize false positives and develop developer 
credibility by imitating expert-like thinking. 

 Among the most notable contributions, it is possible to note 
the elaboration of a single multilingual model realized in 
different programming languages and showing generalizability 
even within the framework of uneven language presence. We 
combine explainability through attention modules and GPT-
based rationalization, which is more transparent as well as

 

allowing the use of these systems since they no longer present 
the machine-learning black-box concern. 

 Although encouraging, there are still issues to tackle 
concerning generality, the management of domain-specific or 
complex interprocedural vulnerabilities, scalability to low-
resource settings, and robustness in the real-world flow of 
work. Its results correlate with the rest of the literature that 
implies that edge-based vulnerability detection is not just viable 
but also becoming increasingly feasible due to AI. 

 In the future, one of their studies into further research needs 
to be on ongoing learning, more robust verification methods, 
active learning by user suggestions, and hybrid AI involving 
both static and dynamic evaluation. The responsible 

Figure 3 Loss During Epoch 10 

 

Figure 4 Average Training Loss pe Epoch 

 

Figure 2 Confusion Matrix on Test Set 

 



deployment also ought to be directed to address the ethical 
concerns, such as dual-use risk and data privacy. The synthesis 
of empirical findings and the work of combining grounded 
empirical evidence and evidence that spurred new research 
forms a basis of creation of intelligent, reliable, and explainable 
security in current-day software development. 
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