

Code Vulnerability Detection Across Different
Programming Languages with AI Models

Abstract— Security vulnerabilities present in a code that has
been written in diverse programming languages are among the
most critical yet complicated aspects of source code to detect.
Static analysis tools based on rule-based patterns usually do not
work well at detecting the context-dependent bugs and lead to high
false positive rates. Recent developments in artificial intelligence,
specifically the use of transformer-based models like CodeBERT
and CodeLlama, provide light to this problem, as they show
potential in finding such flaws better. This paper presents the
implementations of these models on various datasets of code
vulnerability, showing how off-the-shelf models can successfully
produce predictive capacity in models through dynamic fine-
tuning of the models on vulnerable and safe code fragments.

The methodology comprises the gathering of the dataset,
normalization of the language, fine-tuning of the model, and
incorporation of ensemble learning and explainable AI.
Experiments show that a well-trained CodeBERT can be as good
as or even better than some existing static analyzers in terms of
accuracy greater than 97%. Further study has indicated that
although language models can achieve close-to-perfect recall, the
precision can decrease. A solution to this is given by hybrid models
and validation procedures, which will reduce false positives.

According to the results, the AI-based solutions generalize to
different programming languages and classes of vulnerability.
Nevertheless, robustness, interpretability, and deployment
readiness are still being developed. The results illustrate the
probabilities that AI will enhance the trustworthiness in the
usability and scalability of machine-learning-based detectors of
vulnerabilities.

Keywords—Code Vulnerability Detection, Artificial Intelligence,
Transformer Models, Multi-language Code Analysis, CodeBERT,
Explainable AI (XAI), Software Security

I. INTRODUCTION
 The contemporary software systems are very complex and
quite frequently developed in a plurality of programming
languages, which elevates their vulnerability surface
considerably. Security deficiencies have to be detected as early
as possible so as to minimize the risks that may arise in the

development process. By conventional wisdom, the most
common approach to locating the vulnerabilities would be
through Static Application Security Testing (SAST) tools,
which are essentially rule-based methods, including the concept

of pattern matching, symbolic execution, and data flow
analysis. Such tools as Mythril and Slither on smart contracts
or general-purpose analyzers in C/C++, Java, and Python have
proven to work in intimate settings. Nevertheless, these tools
have heavy false positive rates, a scarce ability to identify
sophisticated vulnerabilities or those not covered before, and
poor quality of work domains under multilingual circumstances
owing to the existence of syntactic and semantic diversities [1],
[2]
 The recent development of artificial intelligence has been
seen especially in the branch of deep learning models that use a
transformer, which provides an opportunity to develop more
intelligent and flexible approaches to vulnerability detection.
Large and diverse models (such as CodeBERT and CodeLlama)
can be trained to consider complex uses of syntax and semantics
within code and interesting or novel code connections. These
models are credible because they frame the problem of
vulnerability detection as one based on natural language
processing (NLP) and thus show the potential to surface more
subtle bugs that are otherwise overlooked by other methods [3].
 This research endeavor is inspired by the fact that hard-
coded rule-based systems are not suitable in areas where speedy
developing heterogeneous software environments are required.
The AI models are able to generalize programming languages
and learn emerging coding patterns rather than following a
preknown signature of a vulnerability like a static analyzer.
This flexibility is of particular concern to large-scale systems
created in more than one language and where requirements
reform fast. Transformers such as CodeBERT do not only
increase the accuracy of detection, but they also decrease false
alerts and offer better generalization in the case of
vulnerabilities that they were not specifically trained on.
 The paper is research on transformer-based models towards
detecting cross-language vulnerabilities. It aims at refining
CodeBERT and CodeLlama with multilingual vulnerability-

Hael Abdulhakim Ali Humran
Department of Artificial Intelligence and Data Science

Istanbul Aydin University
Istanbul, Turkey

habdulhakimhumran@stu.aydin.edu.tr

Prof. Dr. Ferdi Sönmez
Department of Artificial Intelligence and Data Science

Istanbul Aydin University
Istanbul, Turkey

ferdisonmez@aydin.edu.tr

ready sets and measures their accuracy, recall, and
generalization potential. Ensemble techniques and explainable
AI are also incorporated in this research to maximize the
interpretability of the model and the false positive rate.
Moreover, they are compared to the classic SAST tools to
evaluate how they apply in practice. The contribution made by
this work is related to the fact that the focus toward
performance, trust, and practical user-friendliness helps create
viable and applicable AI-powered solutions to easily implement
secure software development.

II. LITERATURE REVIEW
 Recent studies have shown that deep learning has been very
effective in identifying vulnerabilities in programs. The first
approaches relied on RNNs and LSTMs to treat source code as
sequences, whereas graph-based models used the structure of a
program, including ASTs and PDGs [3]. These methods gave
birth to transformer-based models, including CodeBERT and
GraphCodeBERT, which are trained on millions of pieces of
code and can be used as feature extractors due to their strong
capabilities [4]. The relatively promising performance of the
recently emerged Large Language Models (LLMs), such as
CodeLlama and LLaMA 3, on vulnerability classification after
the fine-tuning on the datasets, such as Big-Vul and
DiverseVul, exceeded 95% F1-scores on a binary classification
[3].
 DetectBERT is a line-level vulnerability detector proposed
by [5] that does not use any graph input. It focuses on
robustness and generalization using real-world data, including
CVEFixes and VUDENC, and also on code normalization
procedures. DetectBERT performed well in the detection of
Python vulnerability and exceeded the performance of
conventional graph-based models.
 The multilingual models like CodeBERT can learn across
languages and types of vulnerabilities [2]. There are alternative
solutions, and one of them is proposed by [6], who mentioned
the method of creating vulnerability databases through the
mining of actual security patches in GitHub repositories of
Python. By doing so, they produced a high-quality dataset that
allowed successful fine-tuning of the model, such as Qwen-7B,
with the potential that the transfer learning to similar languages
would work.
 In the sphere of smart contracts, the so-called SmartLLM
proposed by [2] combines the fine-tuned LLaMA model and
Retrieval-Augmented Generation (RAG) to understand the
context. The model got an accuracy of 100% on the recall but
with lower precision, thus making it ideal in critical fields
where accepting false negatives is not an option.
 Wang proposed the PFSCV that combines CodeBERT and
UnixCoder to join semantic and structural code characteristics.
This method achieved more than 94 percent sensitivity on
vulnerability types of smart contracts, such as the reentrancy[4].
 To mitigate the problem of false alerts, [1] provided VVF-
AI, or a two-stage system, which has an AI-based agent that
checks vulnerabilities identified by the first checker. The agent
tries to simulate or reason about exploitability reaching 93.1 %
verification rate of various forms of vulnerability.

 Steenhoek performed a user study DeepVulGuard, which is
an IDE plugin based on CodeBERT and GPT-4. For
developers, the tool was accurate, and it provided interactive
feedback but has a limitation in the context capabilities and
false positive. This is the same reason why tools AI must be on
par with developer workflows [7].
 Approaches that are based on anomalies consider the
vulnerabilities as deviations in a normal behavior. Li introduced
the initial methodology to utilize an anomaly-attention
transformer based on the labels of the execution traces
generated by fuzzing [8]. The accuracy of their model was 87.7
percent in finding the vulnerabilities in binary programs
compared to the CNN-based and LSTM-based models [9].
 Das examined the question of whether they are based on real
vulnerability characteristics or artifacts. They demonstrated
that their assessment based on perturbations suggests that many
models produce false positives on patched code, spurring the
need to train with better methods and explainable models [10].
 Maturi included visualization based on attention on top of a
BiLSTM model to show the lines of code that had the most
impact on the predictions. XAI techniques provide
transparency and enable trust in model choices by the
developers [9].

.

III. METHODOLOGY

a) Overview

 The flow of vulnerability detection proposed has the main
stages (1) preprocessing multilingual sets, (2) representation of
code and tokenization, (3) selection and fine-tuning of a model
(and ensembles), (4) evaluation with standard metrics, and (5)
integration with explainability tools. The essential functionality
is to classify the source code as vulnerable or safe in binary
fashion and it can optionally be extended to report types of
vulnerabilities.

b) Dataset Preparation

 In order to have a variety, we have listed code snippets in
more than one language.

 In the case of C/C++, we leverage Big-Vul dataset and more
CVE samples that were considered as some of the most frequent
issues, i.e., buffer overflow (CWE-119), integer overflow, and
use-after-free (Curto et al. 2024).

 In the case of Python, we mimicked the outline of CVEFixes
and VUDENC, where we extract pairs of vulnerable-patched
code, which encompass web-related vulnerabilities such as
SQL injection and path traversal [5]. There was data
normalization to minimize overfitting to identifiers.

 In the case of Solidity smart contracts, we added SmartBugs
and Ethereum CVEs of reentrancy, arithmetic overflows, and
access control. To improve context, we incorporated Ethereum
metadata that is done similarly in SmartLLM [2].

 We did not expose our data to the risk of data leakage;
therefore, we maintained a high level of separation between the
training set and test set on the project level. The data has been
divided into 80/10/10 training, validation, and testing,
respectively. As seen in table 1, the distribution of the sample
is summarized.

Table 1 Dataset Summary

Dataset

Name

Total

Samples

Safe

Samples

Vulnerable

Samples

CVEFixe

s

45,000 32,000 13,000

Devign 48,687 25,000 23,687

c) Code Representation and Tokenization

 CodeBERT was used to tokenize code based on multi-
language support of its byte-pair encoding tokenizer that was
optimized to operate on source code [11]. Context within which
it was necessary was marked by tags given in language (e.g.,
<SOL>). Eight-bit (bytes) token sequences were maxed at 512,
with long functions chopped up as required. We used line level
annotation practices to pass line-sensitive planktonic
information to the model [3].

d) Model Architecture and Training

 We pre-trained CodeBERT using a two-way classifier with

cross entropy loss and label smoothing and weighting of the
classes to support imbalanced data. Recall was enhanced with
oversampling of vulnerable samples as well CodeBERT
performed at high levels with ~97.00 percent accuracy and F1-
score on the test data set.

 To look at the architectural options, we have finetuned
CodeLlama-7B in the LoRA way and developed a simple
ensemble of CodeBERT and GraphCodeBERT, which has
features of data flows [4]. The team did not recall much more
but with decreased precision

 The pipeline shown in Figure 1 incorporates CodeBERT as
the basis encoder, a classification head, an optional ensemble
with GraphCodeBERT, and post-checking in the shape of an
explanatory and verification feedback loop based on GPT-4.

e) Explainability and Feedback Loop

 In order to have faith and complete inferences, we
implemented an explainability module. In addition to VVF-AI
[1] and DeepVulGuard [7], we solicited an interpretation of the

Figure 1 Overall Architecture Pipeline of The Model.

models using GPT-4-based agents. Suspect or irregular
predictions were either flagged and/or re-examined and it
served to the clean-up process and explanation as well.

IV. RESULTS

 The proposed CodeBERT-based model was evaluated using
standard classification metrics. It achieved 97.2% accuracy,
with a precision of 98.05%, recall of 97.31%, and F1-score of
97.68%. These results reflect strong generalization and a low
false positive rate (2.87%), outperforming many existing static
and AI-based tools. For comparison, SmartLLM achieved
perfect recall but only 70% precision [2], while DeepVulGuard
achieved 80% precision but just 32% recall (Steenhoek et al.
2024).
Figure 2 illustrates the loss convergence during training, while
Figure 3 presents the loss behavior during the final epoch.
Figure 4 shows the confusion matrix for the test set,
highlighting accurate classification of vulnerable and safe code.

V. CONCLUSION

 This paper leads one to believe that the maturity of
transformer-based ML models, including CodeBERT, has
arrived at a point in which they are becoming powerful and, in
some cases, even make teams with static analysis tools to detect
vulnerabilities. They are strong in cross-language pattern
matching, situational flexibility, and the capability to discover
more complicated vulnerabilities than are restricted by
handcrafted rules. Our model, which trains data diversity, has
demonstrated high precision and recall, which decreased false
negatives and, therefore, is a very useful tool in security-
sensitive applications. Our demonstrations also revealed that
integration of detection and verification by using LLM agents
can be used to minimize false positives and develop developer
credibility by imitating expert-like thinking.

 Among the most notable contributions, it is possible to note
the elaboration of a single multilingual model realized in
different programming languages and showing generalizability
even within the framework of uneven language presence. We
combine explainability through attention modules and GPT-
based rationalization, which is more transparent as well as

allowing the use of these systems since they no longer present
the machine-learning black-box concern.

 Although encouraging, there are still issues to tackle
concerning generality, the management of domain-specific or
complex interprocedural vulnerabilities, scalability to low-
resource settings, and robustness in the real-world flow of
work. Its results correlate with the rest of the literature that
implies that edge-based vulnerability detection is not just viable
but also becoming increasingly feasible due to AI.

 In the future, one of their studies into further research needs
to be on ongoing learning, more robust verification methods,
active learning by user suggestions, and hybrid AI involving
both static and dynamic evaluation. The responsible

Figure 3 Loss During Epoch 10

Figure 4 Average Training Loss pe Epoch

Figure 2 Confusion Matrix on Test Set

deployment also ought to be directed to address the ethical
concerns, such as dual-use risk and data privacy. The synthesis
of empirical findings and the work of combining grounded
empirical evidence and evidence that spurred new research
forms a basis of creation of intelligent, reliable, and explainable
security in current-day software development.

VI. REFERENCES

[1] C. Liu, T. Liu, Y. Tang, and J. Lin, “VVF-AI: A

Vulnerability Verification Framework Based on AI-
Agent,” pp. 960–964, Jun. 2025, doi:
10.1109/AINIT65432.2025.11035850.

[2] J. Kevin and P. Yugopuspito, “SmartLLM: Smart
Contract Auditing using Custom Generative AI,” Feb.
2025, Accessed: Jul. 25, 2025. [Online]. Available:
https://arxiv.org/pdf/2502.13167

[3] C. Curto, D. Giordano, D. G. Indelicato, and V. Patatu,
“Can a Llama Be a Watchdog? Exploring Llama 3 and
Code Llama for Static Application Security Testing,”
Proceedings of the 2024 IEEE International
Conference on Cyber Security and Resilience, CSR
2024, pp. 395–400, 2024, doi:
10.1109/CSR61664.2024.10679444.

[4] D. Wang and S. Duan, “The smart contract
vulnerability detection based on pre-trained model
feature fusion,” pp. 1761–1764, Jun. 2025, doi:
10.1109/ISCAIT64916.2025.11010394.

[5] S. S. Gujar, “DetectBERT: Code Vulnerability
Detection,” 2024 Global Conference on
Communications and Information Technologies,
GCCIT 2024, 2024, doi:
10.1109/GCCIT63234.2024.10862235.

[6] K. Gladkikh and A. A. Zakharov, “Approach to
Forming Vulnerability Datasets for Fine-Tuning AI
Agents,” Proceedings - 2025 International Russian
Smart Industry Conference, SmartIndustryCon 2025,
pp. 771–776, 2025, doi:
10.1109/SMARTINDUSTRYCON65166.2025.10986
048.

[7] B. Steenhoek, K. Sivaraman, R. S. Gonzalez, Y.
Mohylevskyy, R. Z. Moghaddam, and W. Le, “Closing
the Gap: A User Study on the Real-world Usefulness of
AI-powered Vulnerability Detection & Repair in the
IDE,” pp. 01–13, Dec. 2024, doi:
10.1109/icse55347.2025.00126.

[8] S. Li et al., “Software Vulnerability Detection Based on
Anomaly-Attention,” 2022 4th International
Conference on Robotics and Computer Vision, ICRCV
2022, pp. 261–265, 2022, doi:
10.1109/ICRCV55858.2022.9953210.

[9] M. H. Maturi et al., “Enhancing Smart Contract
Security with Explainable AI: A Framework for Re-
entrancy Vulnerability Detection and Explanation,”
2025 IEEE Systems and Information Engineering
Design Symposium, SIEDS 2025, pp. 386–391, 2025,
doi: 10.1109/SIEDS65500.2025.11021147.

[10] S. Das, S. T. Fabiha, S. Shafiq, and N. Medvidovic,
“Are We Learning the Right Features? A Framework
for Evaluating DL-Based Software Vulnerability
Detection Solutions,” pp. 2893–2904, May 2025, doi:
10.1109/ICSE55347.2025.00194.

[11] Z. Feng et al., “CodeBERT: A Pre-Trained Model for
Programming and Natural Languages,” Findings of the
Association for Computational Linguistics Findings of
ACL: EMNLP 2020, pp. 1536–1547, Feb. 2020, doi:
10.18653/v1/2020.findings-emnlp.139.

Please fill in the all authors’ background:

Position can be chosen from:

Prof. / Assoc. Prof. / Asst. Prof. / Lecture / Dr. / Ph. D Candidate / Postgraduate, etc.

Full Name Email Address Position Research
Interests

Personal Website
(if any)

Hael Abdulhakim
Ali Humran

habdulhakimhumran@stu.aydin.edu.tr Student

Prof. Dr. Ferdi
Sönmez

ferdisonmez@aydin.edu.tr

Professor

